JP2006233147A - Electroluminescent phosphor particle and dispersion type electroluminescent element - Google Patents
Electroluminescent phosphor particle and dispersion type electroluminescent element Download PDFInfo
- Publication number
- JP2006233147A JP2006233147A JP2005053753A JP2005053753A JP2006233147A JP 2006233147 A JP2006233147 A JP 2006233147A JP 2005053753 A JP2005053753 A JP 2005053753A JP 2005053753 A JP2005053753 A JP 2005053753A JP 2006233147 A JP2006233147 A JP 2006233147A
- Authority
- JP
- Japan
- Prior art keywords
- particles
- layer
- electroluminescent
- particle
- metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002245 particle Substances 0.000 title claims abstract description 167
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 title claims abstract description 72
- 239000006185 dispersion Substances 0.000 title description 9
- 229910052984 zinc sulfide Inorganic materials 0.000 claims abstract description 29
- 229910052751 metal Inorganic materials 0.000 claims abstract description 25
- 239000002184 metal Substances 0.000 claims abstract description 25
- 239000005083 Zinc sulfide Substances 0.000 claims abstract description 24
- DRDVZXDWVBGGMH-UHFFFAOYSA-N zinc;sulfide Chemical compound [S-2].[Zn+2] DRDVZXDWVBGGMH-UHFFFAOYSA-N 0.000 claims abstract description 24
- 230000007704 transition Effects 0.000 claims abstract description 13
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 11
- 229910052802 copper Inorganic materials 0.000 claims abstract description 11
- 239000010949 copper Substances 0.000 claims abstract description 11
- 239000012190 activator Substances 0.000 claims abstract description 10
- 239000000460 chlorine Substances 0.000 claims abstract description 9
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 claims abstract description 7
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 claims abstract description 7
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 claims abstract description 7
- 229910052794 bromium Inorganic materials 0.000 claims abstract description 7
- 229910052801 chlorine Inorganic materials 0.000 claims abstract description 7
- 230000003081 coactivator Effects 0.000 claims abstract description 6
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical group [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 14
- 230000000694 effects Effects 0.000 claims description 11
- 229910021645 metal ion Inorganic materials 0.000 claims description 11
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 3
- 229910052725 zinc Inorganic materials 0.000 claims description 3
- 239000011701 zinc Substances 0.000 claims description 3
- 239000010410 layer Substances 0.000 description 108
- 239000000463 material Substances 0.000 description 54
- 239000010408 film Substances 0.000 description 52
- 239000011248 coating agent Substances 0.000 description 36
- 238000000576 coating method Methods 0.000 description 36
- 238000000034 method Methods 0.000 description 25
- 239000000243 solution Substances 0.000 description 20
- 239000011230 binding agent Substances 0.000 description 18
- 239000000843 powder Substances 0.000 description 17
- 238000007789 sealing Methods 0.000 description 17
- 230000006872 improvement Effects 0.000 description 12
- -1 polyethylene Polymers 0.000 description 12
- 229920005989 resin Polymers 0.000 description 12
- 239000011347 resin Substances 0.000 description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 11
- 238000001035 drying Methods 0.000 description 10
- 229910052782 aluminium Inorganic materials 0.000 description 9
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 9
- 239000002904 solvent Substances 0.000 description 9
- 230000008569 process Effects 0.000 description 8
- 239000002274 desiccant Substances 0.000 description 7
- 239000010419 fine particle Substances 0.000 description 7
- 238000010304 firing Methods 0.000 description 7
- 238000002156 mixing Methods 0.000 description 7
- 239000002861 polymer material Substances 0.000 description 7
- 230000005540 biological transmission Effects 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 6
- 239000004020 conductor Substances 0.000 description 6
- 238000005401 electroluminescence Methods 0.000 description 6
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 6
- 229910052737 gold Inorganic materials 0.000 description 6
- 239000010931 gold Substances 0.000 description 6
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 6
- 229910001887 tin oxide Inorganic materials 0.000 description 6
- KXJGSNRAQWDDJT-UHFFFAOYSA-N 1-acetyl-5-bromo-2h-indol-3-one Chemical compound BrC1=CC=C2N(C(=O)C)CC(=O)C2=C1 KXJGSNRAQWDDJT-UHFFFAOYSA-N 0.000 description 5
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 5
- 238000010521 absorption reaction Methods 0.000 description 5
- 230000005264 electron capture Effects 0.000 description 5
- 238000001125 extrusion Methods 0.000 description 5
- 230000004907 flux Effects 0.000 description 5
- 150000002739 metals Chemical class 0.000 description 5
- 229920000642 polymer Polymers 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 229910052709 silver Inorganic materials 0.000 description 5
- 239000004332 silver Substances 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 239000004743 Polypropylene Substances 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 229920001971 elastomer Polymers 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 239000000049 pigment Substances 0.000 description 4
- 229920001155 polypropylene Polymers 0.000 description 4
- 239000005060 rubber Substances 0.000 description 4
- 239000010409 thin film Substances 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 3
- 239000004372 Polyvinyl alcohol Substances 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 239000003989 dielectric material Substances 0.000 description 3
- 230000005684 electric field Effects 0.000 description 3
- 239000007772 electrode material Substances 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 229910010272 inorganic material Inorganic materials 0.000 description 3
- 239000002346 layers by function Substances 0.000 description 3
- 229910044991 metal oxide Inorganic materials 0.000 description 3
- 150000004706 metal oxides Chemical class 0.000 description 3
- 229910052697 platinum Inorganic materials 0.000 description 3
- 229920000139 polyethylene terephthalate Polymers 0.000 description 3
- 239000005020 polyethylene terephthalate Substances 0.000 description 3
- 229920005990 polystyrene resin Polymers 0.000 description 3
- 229920002451 polyvinyl alcohol Polymers 0.000 description 3
- 229910052814 silicon oxide Inorganic materials 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- BQCIDUSAKPWEOX-UHFFFAOYSA-N 1,1-Difluoroethene Chemical compound FC(F)=C BQCIDUSAKPWEOX-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 2
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 2
- 239000004695 Polyether sulfone Substances 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- SMWDFEZZVXVKRB-UHFFFAOYSA-N Quinoline Chemical compound N1=CC=CC2=CC=CC=C21 SMWDFEZZVXVKRB-UHFFFAOYSA-N 0.000 description 2
- 229910002367 SrTiO Inorganic materials 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 229910052787 antimony Inorganic materials 0.000 description 2
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- IOJUPLGTWVMSFF-UHFFFAOYSA-N benzothiazole Chemical compound C1=CC=C2SC=NC2=C1 IOJUPLGTWVMSFF-UHFFFAOYSA-N 0.000 description 2
- 229910052797 bismuth Inorganic materials 0.000 description 2
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 2
- 229920005549 butyl rubber Polymers 0.000 description 2
- 239000012461 cellulose resin Substances 0.000 description 2
- 229920000547 conjugated polymer Polymers 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 239000004088 foaming agent Substances 0.000 description 2
- 229910052733 gallium Inorganic materials 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 238000005286 illumination Methods 0.000 description 2
- 239000011147 inorganic material Substances 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 2
- 229920000767 polyaniline Polymers 0.000 description 2
- 229920001230 polyarylate Polymers 0.000 description 2
- 239000004417 polycarbonate Substances 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 229920006393 polyether sulfone Polymers 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 239000011112 polyethylene naphthalate Substances 0.000 description 2
- 229920013716 polyethylene resin Polymers 0.000 description 2
- 229920000128 polypyrrole Polymers 0.000 description 2
- 229920002050 silicone resin Polymers 0.000 description 2
- 229920002379 silicone rubber Polymers 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- QGKMIGUHVLGJBR-UHFFFAOYSA-M (4z)-1-(3-methylbutyl)-4-[[1-(3-methylbutyl)quinolin-1-ium-4-yl]methylidene]quinoline;iodide Chemical compound [I-].C12=CC=CC=C2N(CCC(C)C)C=CC1=CC1=CC=[N+](CCC(C)C)C2=CC=CC=C12 QGKMIGUHVLGJBR-UHFFFAOYSA-M 0.000 description 1
- PCAXXRKTPORRHB-UHFFFAOYSA-N 1,2,2-triethyl-3h-indole Chemical compound C1=CC=C2CC(CC)(CC)N(CC)C2=C1 PCAXXRKTPORRHB-UHFFFAOYSA-N 0.000 description 1
- POXIZPBFFUKMEQ-UHFFFAOYSA-N 2-cyanoethenylideneazanide Chemical group [N-]=C=[C+]C#N POXIZPBFFUKMEQ-UHFFFAOYSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- GJCOSYZMQJWQCA-UHFFFAOYSA-N 9H-xanthene Chemical compound C1=CC=C2CC3=CC=CC=C3OC2=C1 GJCOSYZMQJWQCA-UHFFFAOYSA-N 0.000 description 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229910017109 AlON Inorganic materials 0.000 description 1
- WHVLVEATLPIRED-UHFFFAOYSA-N C=C.F.F.F Chemical class C=C.F.F.F WHVLVEATLPIRED-UHFFFAOYSA-N 0.000 description 1
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 1
- 229910052691 Erbium Inorganic materials 0.000 description 1
- 229920000181 Ethylene propylene rubber Polymers 0.000 description 1
- 229910052693 Europium Inorganic materials 0.000 description 1
- 229910001111 Fine metal Inorganic materials 0.000 description 1
- 244000043261 Hevea brasiliensis Species 0.000 description 1
- 241001175904 Labeo bata Species 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 101100496858 Mus musculus Colec12 gene Proteins 0.000 description 1
- 229920000459 Nitrile rubber Polymers 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 239000012327 Ruthenium complex Substances 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- 229920006311 Urethane elastomer Polymers 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 229910000287 alkaline earth metal oxide Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 150000004703 alkoxides Chemical class 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 239000000987 azo dye Substances 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 229910052790 beryllium Inorganic materials 0.000 description 1
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000003490 calendering Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 235000013339 cereals Nutrition 0.000 description 1
- 239000002772 conduction electron Substances 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 229910000365 copper sulfate Inorganic materials 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 1
- OMZSGWSJDCOLKM-UHFFFAOYSA-N copper(II) sulfide Chemical compound [S-2].[Cu+2] OMZSGWSJDCOLKM-UHFFFAOYSA-N 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- PZPGRFITIJYNEJ-UHFFFAOYSA-N disilane Chemical compound [SiH3][SiH3] PZPGRFITIJYNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- UYAHIZSMUZPPFV-UHFFFAOYSA-N erbium Chemical compound [Er] UYAHIZSMUZPPFV-UHFFFAOYSA-N 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- OGPBJKLSAFTDLK-UHFFFAOYSA-N europium atom Chemical compound [Eu] OGPBJKLSAFTDLK-UHFFFAOYSA-N 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 235000013312 flour Nutrition 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 239000003230 hygroscopic agent Substances 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 150000002596 lactones Chemical class 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- QDLAGTHXVHQKRE-UHFFFAOYSA-N lichenxanthone Natural products COC1=CC(O)=C2C(=O)C3=C(C)C=C(OC)C=C3OC2=C1 QDLAGTHXVHQKRE-UHFFFAOYSA-N 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229920003052 natural elastomer Polymers 0.000 description 1
- 229920001194 natural rubber Polymers 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000000123 paper Substances 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 125000002080 perylenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC5=CC=CC(C1=C23)=C45)* 0.000 description 1
- CSHWQDPOILHKBI-UHFFFAOYSA-N peryrene Natural products C1=CC(C2=CC=CC=3C2=C2C=CC=3)=C3C2=CC=CC3=C1 CSHWQDPOILHKBI-UHFFFAOYSA-N 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 229920006255 plastic film Polymers 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920001084 poly(chloroprene) Polymers 0.000 description 1
- 229920000553 poly(phenylenevinylene) Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920002857 polybutadiene Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920005668 polycarbonate resin Polymers 0.000 description 1
- 239000004431 polycarbonate resin Substances 0.000 description 1
- 229920001195 polyisoprene Polymers 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000011164 primary particle Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000001054 red pigment Substances 0.000 description 1
- 239000013557 residual solvent Substances 0.000 description 1
- 230000027756 respiratory electron transport chain Effects 0.000 description 1
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 238000010532 solid phase synthesis reaction Methods 0.000 description 1
- 229910052950 sphalerite Inorganic materials 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Landscapes
- Luminescent Compositions (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
Description
本発明は、電場発光蛍光体粒子および該エレクトロルミネッセンス蛍光体粉末を分散塗布した発光粒子層を有する分散型エレクトロルミネッセンス素子に関するものである。 The present invention relates to a dispersion type electroluminescent device having electroluminescent phosphor particles and a luminescent particle layer in which the electroluminescent phosphor powder is dispersedly applied.
エレクトロルミネッセンス(以下、「EL」とも称する)蛍光体は電圧励起型の蛍光体であり、蛍光体粉末を電極の間に挟んで発光素子とした分散型EL素子として用いられることが知られている。分散型EL素子の一般的な形状は、蛍光体粉末を高誘電率のバインダー中に分散したものを、少なくとも一方が透明な二枚の電極の間に挟み込んだ構造であり、両電極間に交流電場を印加することにより発光する。蛍光体粉末を用いて作成された発光素子であるEL素子は1mm以下の厚さとすることが可能であり、製造プロセスにおいて高温プロセスを用いないため、プラスチックを基板としたフレキシブルで軽量な素子の形成が可能であること、真空装置を使用することなく比較的簡便な工程で、低コストで製造が可能であること、面発光体であることなど数多くの利点を有するため、LCDなどのバックライト、表示素子へ応用が可能であり、道路標識、各種インテリアやエクステリア用の照明、液晶ディスプレイ等のフラットパネルディスプレイ用の光源、大面積の広告用の照明光源等としての用途がある。 An electroluminescence (hereinafter also referred to as “EL”) phosphor is a voltage-excited phosphor, and is known to be used as a dispersed EL element in which a phosphor powder is sandwiched between electrodes and used as a light-emitting element. . The general shape of a dispersion-type EL element is a structure in which phosphor powder is dispersed in a binder with a high dielectric constant, and at least one is sandwiched between two transparent electrodes. Light is emitted by applying an electric field. An EL element, which is a light emitting element made using phosphor powder, can be 1 mm or less in thickness and does not use a high-temperature process in the manufacturing process. Therefore, a flexible and lightweight element using a plastic substrate is formed. Can be manufactured at a low cost with a relatively simple process without using a vacuum device, and has a number of advantages such as being a surface light emitter. It can be applied to display elements, and has applications such as road signs, illumination for various interiors and exteriors, light sources for flat panel displays such as liquid crystal displays, and illumination light sources for large-area advertisements.
分散型EL素子の蛍光体粒子としては、一般に、硫化亜鉛を母体とし、これに付活剤として銅およびハロゲン(塩素または臭素)を含有する蛍光体が用いられている。しかしながら、この様な従来の蛍光体粒子を用いたEL素子では輝度や寿命に問題があり、蛍光体粒子に対しての様々な改良がなされてきた。
これらの改良法としては、製造方法による改良の他に、金属または金属イオンを蛍光体粒子に含有させることによる粒子の”改質”として行われてきた。蛍光体粒子へ金属または金属イオンを含有させることはその添加量が微量であっても粒子の持つ性質を大きく変化させる。
As the phosphor particles of the dispersion-type EL element, a phosphor containing zinc sulfide as a base material and containing copper and halogen (chlorine or bromine) as an activator is generally used. However, such conventional EL elements using phosphor particles have problems in luminance and life, and various improvements have been made to the phosphor particles.
These improvement methods have been carried out as “modification” of particles by incorporating phosphors into the phosphor particles in addition to the improvement by the production method. Inclusion of metal or metal ions in the phosphor particles greatly changes the properties of the particles even if the addition amount is very small.
例えば、特許文献1では硫化亜鉛粒子に金を添加することによって発光輝度が上昇し、寿命が長くなることが記載されている。粒子の発光特性に影響を与える金属は金ばかりではなく、特許文献2ではアンチモンの含有で、特許文献3ではビスマスの含有で、特許文献4ではベリリウムの含有でそれぞれ寿命が改善されることが記載されている。さらに、特許文献5や特許文献6をはじめとするいくつもの特許にアルミニウムによる輝度向上が記載されており、特許文献7ではガリウムによる輝度向上が記載されている。
しかしながら、これらの方法では輝度の向上と寿命の向上が同時に最適にもたらされることがなかったり、輝度が向上しても寿命が低下、あるいは反対に寿命が向上しても輝度が低下したりし、完全に粒子の性能を制御するというには至っていなかった。
従って本発明は、発光効率を改善し、発光輝度を向上させた電場発光蛍光体粒子を得ることを課題とする。
However, in these methods, the improvement in brightness and the improvement in life are not optimally brought about at the same time, the life is reduced even if the brightness is improved, or the brightness is reduced even if the life is improved, It has not been possible to completely control the performance of the particles.
Accordingly, it is an object of the present invention to obtain electroluminescent phosphor particles with improved luminous efficiency and improved luminous brightness.
本発明の上記課題は、以下の手段で解決することができる。
(1) 付活剤として銅を含み、共付活剤として塩素および臭素から選ばれる少なくとも1種類を含む硫化亜鉛粒子において、6族から10族までの第2遷移系列または第3遷移系列に属する金属元素の少なくとも1種類を含有することを特徴とする電場発光蛍光体粒子。
(2) 6族から10族までの第2遷移系列または第3遷移系列に属する金属元素を亜鉛1モルに対して1×10-7モルから1×10-3モルを含有することを特徴とする上記(1)に記載の電場発光蛍光体粒子。
The above-described problems of the present invention can be solved by the following means.
(1) In zinc sulfide particles containing copper as an activator and containing at least one kind selected from chlorine and bromine as a coactivator, belong to the second or third transition series from Group 6 to Group 10 An electroluminescent phosphor particle comprising at least one metal element.
(2) The metal element belonging to the second transition series or the third transition series from Group 6 to Group 10 contains 1 × 10 −7 mol to 1 × 10 −3 mol with respect to 1 mol of zinc. The electroluminescent phosphor particles according to (1) above.
(3) 付活剤として銅を含み、共付活剤として塩素および臭素から選ばれる少なくとも1種類を含む硫化亜鉛粒子であって、含有させることによって光照射によって生じた光電子の存在時間を長くする効果を持った元素を含有することを特徴とする電場発光蛍光体粒子。
(4) 前記含有させることによって光照射によって生じた光電子の存在時間を長くする効果を持った元素が金属または金属イオンであることを特徴とする上記(3)に記載の電場発光蛍光体粒子。
(5) 前記含有させることによって光照射によって生じた光電子の存在時間を長くする効果を持った金属または金属イオンが第2または第3遷移系列の白金族元素であることを特徴とする上記(4)に記載の電場発光蛍光体粒子。
(6) 透明電極、発光粒子層、誘電体層および背面電極を含有するエレクトロルミネッセンス素子において、発光粒子層に含有される粒子が上記(1)〜(5)のいずれかに記載の電場発光蛍光体粒子であることを特徴とするエレクトロルミネッセンス素子。
(3) Zinc sulfide particles containing copper as an activator and at least one kind selected from chlorine and bromine as a coactivator, and increasing the existence time of photoelectrons generated by light irradiation when contained. An electroluminescent phosphor particle comprising an element having an effect.
(4) The electroluminescent phosphor particle according to (3) above, wherein the element having the effect of increasing the existence time of photoelectrons generated by light irradiation by inclusion is a metal or a metal ion.
(5) The above-mentioned (4), wherein the metal or metal ion having the effect of increasing the existence time of photoelectrons generated by light irradiation by being contained is a platinum group element of the second or third transition series. The electroluminescent phosphor particles as described in 1).
(6) In the electroluminescent device containing a transparent electrode, a luminescent particle layer, a dielectric layer, and a back electrode, the particles contained in the luminescent particle layer are the electroluminescent fluorescence according to any one of (1) to (5) above. An electroluminescent element, characterized in that it is a body particle.
これまでに知られてきた、硫化亜鉛粒子への金、アンチモン、ビスマスやアルミニウム、ガリウム添加による輝度向上や寿命の良化において、添加された金属または金属イオンの役割は明確になっていない。発明者の実験によれば、これらの金属は硫化亜鉛粒子の中で電子捕獲中心を与えてはいるが、電子捕獲中心での滞在時間が長いためにその電子捕獲中心あるいはその近傍で電子が失活し、いずれも発光効率を低下させるものであった。輝度の向上について考えると、輝度向上は、本来、粒子内での電子移動の効率や発光中心への電子伝達の効率を向上させて輝度を向上させる、即ち、発光効率を向上させながら輝度を向上させるべきである。しかしながら、これまで知られてきた蛍光体粒子への金属添加ではいずれの場合も発光効率を向上させる挙動を見ることは出来ず、粒子内の電子的な挙動に影響を与えていると言うよりは、発光中心自体に影響を与えるか、粒子内の欠陥などの構造に影響を与えているかで輝度を向上させていたと推測される。 The role of the added metal or metal ion has not been clarified in the improvement of the brightness and the improvement of the lifetime due to the addition of gold, antimony, bismuth, aluminum and gallium to the zinc sulfide particles that have been known so far. According to the inventor's experiment, these metals give an electron capture center in the zinc sulfide particles, but because the residence time at the electron capture center is long, electrons are lost at or near the electron capture center. All of them were reduced in luminous efficiency. Considering the improvement in luminance, luminance improvement originally improves the luminance by improving the efficiency of electron transfer within the particle and the efficiency of electron transmission to the emission center, that is, improving the luminance while improving the luminous efficiency. Should be allowed. However, the metal addition to the phosphor particles that has been known so far cannot be seen to improve the luminous efficiency in any case, rather than affecting the electronic behavior in the particles. It is presumed that the luminance was improved depending on whether the emission center itself was affected or the structure such as defects in the particles was affected.
この様に発光効率を向上させながらの輝度向上は、硫化亜鉛中に浅い電子捕獲中心を与える元素を含有させることで実現出来ると考えられる。この浅い電子捕獲中心は硫化亜鉛中で伝導帯に存在する電子を弱い力で拘束し、電子が失活するのを防ぐ。即ち、粒子内で電場によって生じた伝導電子が発光中心まで移動する時間を増加させることが出来、発光効率を向上させながら輝度を増加させる。これと同時に、この様な効果を持った元素を含有させることによって、光照射によって生じた光電子の存在時間も長くなる。 Thus, it is considered that the luminance improvement while improving the luminous efficiency can be realized by adding an element that gives a shallow electron capture center to the zinc sulfide. This shallow electron capture center restrains electrons existing in the conduction band in zinc sulfide with a weak force and prevents the electrons from being deactivated. That is, it is possible to increase the time required for the conduction electrons generated by the electric field in the particles to move to the emission center, thereby increasing the luminance while improving the light emission efficiency. At the same time, the existence time of photoelectrons generated by light irradiation is increased by including an element having such an effect.
この効果を得るのに好ましい元素としては、3価または4価の金属イオンであって、結晶中で亜鉛と置き換わることが出来るもの、−1価、0価の陰イオンまたは元素であって、結晶中の硫黄と置き換わることが出来るものであり、さらには硫化亜鉛粒子の伝導帯の底のすぐ下にエネルギー準位を持つ金属または金属イオンも好ましい元素となる。この様な元素として具体的に好ましくは6族から10族までの第2遷移系列または第3遷移系列に属する金属元素であり、中でも第2または第3遷移系列の白金族元素が好ましく、特にモリブデン、白金が好ましい。これらの金属は硫化亜鉛中に硫化亜鉛1モルに対して1×10-7モルから1×10-3モルの範囲で含まれることが好ましく、より好ましくは1×10-6モルから5×10-4モル含まれることが好ましい。 Preferred elements for obtaining this effect are trivalent or tetravalent metal ions which can replace zinc in the crystal, −1 valent or 0 valent anions or elements, Metals or metal ions having an energy level immediately below the bottom of the conduction band of zinc sulfide particles are also preferable elements. Specifically, as such an element, a metal element belonging to the second transition series or the third transition series from the 6th group to the 10th group is preferable, among which the platinum group element of the 2nd or 3rd transition series is preferable, and in particular, molybdenum. Platinum is preferred. These metals are preferably contained in zinc sulfide in the range of 1 × 10 −7 mol to 1 × 10 −3 mol, more preferably 1 × 10 −6 mol to 5 × 10 5 mol per mol of zinc sulfide. -4 mol is preferable.
これらの金属は硫化亜鉛粉末と所定量の硫酸銅と共に脱イオン水に添加し、スラリー状にした上でよく混合し、乾燥してからフラックスと共に焼成を行うことで硫化亜鉛粒子に含有させることが好ましいが、これらの金属を含む錯体粉末をフラックスと混合しておきこのフラックスを用いて焼成を行い硫化亜鉛粒子に含有させることも好ましい。いずれの場合も金属を添加する際の原料化合物としては使用する金属元素を含む任意の化合物を使用することが出来るが、より好ましくは、金属または金属イオンに酸素、または窒素が配位した錯体を用いることが好ましい。配位子としては無機化合物でも有機化合物であってもよい。 These metals can be added to deionized water together with zinc sulfide powder and a predetermined amount of copper sulfate, mixed in a slurry form, dried, and then fired with flux before being added to zinc sulfide particles. Although it is preferable, it is also preferable that the complex powder containing these metals is mixed with a flux and calcined using this flux to be contained in zinc sulfide particles. In any case, any compound containing a metal element to be used can be used as a raw material compound when adding a metal. More preferably, a complex in which oxygen or nitrogen is coordinated to a metal or metal ion is used. It is preferable to use it. The ligand may be an inorganic compound or an organic compound.
本発明によれば、発光効率を改善し、発光輝度を向上させた電場発光蛍光体粒子を得ることができる。 According to the present invention, electroluminescent phosphor particles with improved luminous efficiency and improved luminance can be obtained.
以下、本発明を更に詳述する。
本発明の母体の硫化亜鉛粒子としては、平均粒子サイズ(球相当直径)が、0.5μm以上30μm以下であることが好ましく、より好ましくは1μm以上25μm以下、さらに好ましくは1μm以上20μm以下である。その時、粒子サイズの変動係数は40%未満であることが好ましい。この硫化亜鉛粒子は銅の他、付活剤としてマンガン、銀、金及び希土類元素から選ばれる金属イオンを含有することも好ましい。さらに、共付活剤として塩素または臭素の他、ヨウ素、及びアルミニウムから選ばれるイオンを含むことも好ましい。また、本発明の硫化亜鉛粒子は粒子内部に多重双晶構造を1粒子中に5nm以下の間隔で10層以上持つことが好ましく、これらの粒子は0.01μm以上の厚みを有する非発光シェル層で被覆されていてもよい。
The present invention is described in further detail below.
The base zinc sulfide particles of the present invention preferably have an average particle size (sphere equivalent diameter) of 0.5 μm to 30 μm, more preferably 1 μm to 25 μm, and even more preferably 1 μm to 20 μm. . At that time, the variation coefficient of the particle size is preferably less than 40%. The zinc sulfide particles preferably contain a metal ion selected from manganese, silver, gold and rare earth elements as an activator in addition to copper. Furthermore, it is preferable that the co-activator contains ions selected from iodine and aluminum in addition to chlorine or bromine. Further, the zinc sulfide particles of the present invention preferably have 10 or more layers with a multiple twin structure in each particle at intervals of 5 nm or less, and these particles have a non-light-emitting shell layer having a thickness of 0.01 μm or more. It may be covered with.
本発明に利用可能な蛍光体粒子は、当業界で広く用いられる焼成法(固相法)で形成することができる。例えば、液相法で結晶子サイズ10nm以上50nm以下の範囲の微粒子粉末(通常生粉と呼ぶ)を作成し、これを一次粒子として用い、これに前述の付活剤や金属または金属イオンを混入させて融剤とともに坩堝にて900℃以上1300℃以下の範囲の高温で30分以上10時間以下の範囲、第1の焼成を行い粒子を得ることが出来る。第1の焼成によって得られる中間体である蛍光体粉末をイオン交換水で繰り返し洗浄してアルカリ金属ないしアルカリ土類金属及び過剰の付活剤、共付活剤を除去する。次いで、得られた中間体蛍光体粉末に第2の焼成を施す。第2の焼成は、第1の焼成より低温の500以上800℃以下の範囲で、30分以上3時間以下の範囲の加熱(アニーリング)をする。これら焼成により蛍光体粒子内には多くの積層欠陥が発生するが、微粒子でかつより多くの積層欠陥が蛍光体粒子内に含まれるように、第1の焼成と第2の焼成の条件を適宜選択することが好ましい。 The phosphor particles usable in the present invention can be formed by a firing method (solid phase method) widely used in the industry. For example, a fine particle powder (usually referred to as raw powder) having a crystallite size in the range of 10 nm to 50 nm is prepared by a liquid phase method, and this is used as a primary particle, which is mixed with the aforementioned activator, metal or metal ion. Then, particles can be obtained by performing the first baking in the crucible together with the flux at a high temperature in the range of 900 ° C. to 1300 ° C. for 30 minutes to 10 hours. The phosphor powder, which is an intermediate obtained by the first firing, is repeatedly washed with ion-exchanged water to remove alkali metal or alkaline earth metal, excess activator, and coactivator. Next, second baking is performed on the obtained intermediate phosphor powder. In the second baking, heating (annealing) is performed at a temperature lower than that of the first baking in a range of 500 to 800 ° C. and in a range of 30 minutes to 3 hours. These firings cause many stacking faults in the phosphor particles, but the conditions of the first firing and the second firing are appropriately set so that fine particles and more stacking faults are included in the phosphor particles. It is preferable to select.
また、上記中間体蛍光体粉末に、ある範囲の大きさの衝撃力を加えることにより、粒子を破壊することなく、積層欠陥の密度を大幅に増加させることができる。衝撃力を加える方法としては、中間体蛍光体粒子同士を接触混合させる方法、アルミナ等の球体を混ぜて混合させる(ボールミル)方法、粒子を加速させ衝突させる方法、超音波を照射する方法などを好ましく用いることができる。その後、HCl等の酸でエッチングして表面に付着している金属酸化物を除去し、さらに表面に付着した硫化銅を、KCNで洗浄して除去、乾燥して蛍光体粒子を得ることができる。 Further, by applying an impact force in a certain range to the intermediate phosphor powder, the density of stacking faults can be greatly increased without destroying the particles. As a method of applying an impact force, a method of contacting and mixing intermediate phosphor particles, a method of mixing and mixing spheres such as alumina (ball mill), a method of accelerating and colliding particles, a method of irradiating ultrasonic waves, etc. It can be preferably used. Thereafter, etching with an acid such as HCl removes metal oxides adhering to the surface, and copper sulfide adhering to the surface is removed by washing with KCN and dried to obtain phosphor particles. .
この様にして得られた硫化亜鉛粒子について、光照射によって生じた光電子の存在時間は「日本写真学会誌59巻2号、326−333(1996)」に記載される光伝導法に従って測定することが出来る。測定試料は、本発明および比較の硫化亜鉛粒子をシクロオレフィン系のポリマー「Zeonex」(日本ゼオン社製)を溶解させたトルエン溶液中に分散、厚さ60μmのフィルムを作製し、このフィルムを測定試料とした。この測定では光照射後、数μ秒から50μ秒程度の光電子寿命を測定することが出来、本発明では光伝導のシグナルが最高値の1/10に減衰するまでの時間を「光電子の存在時間」とした。なお、光照射時の光源の光量のゆらぎ等を考慮し、本発明においては、光電子の存在時間が光電子の存在時間を長くする効果を持った元素を含有しない試料に対して「5%以上長くなる試料」を、光照射によって生じた光電子の存在時間を長くする効果を持った元素を含有する粒子とする。 With respect to the zinc sulfide particles thus obtained, the existence time of photoelectrons generated by light irradiation should be measured according to the photoconductive method described in “The Journal of the Japan Photographic Society, Vol. 59, No. 2, 326-333 (1996)”. I can do it. The measurement sample was prepared by dispersing the zinc sulfide particles of the present invention and the comparative in a toluene solution in which a cycloolefin polymer “Zeonex” (manufactured by Nippon Zeon Co., Ltd.) was dissolved, and producing a film having a thickness of 60 μm. A sample was used. In this measurement, a photoelectron lifetime of several μs to 50 μs after light irradiation can be measured. In the present invention, the time until the photoconductive signal decays to 1/10 of the maximum value is expressed as “photoelectron existence time”. " In consideration of fluctuations in the amount of light of the light source at the time of light irradiation, in the present invention, the existence time of photoelectrons is longer by 5% or more than that of a sample containing no element having an effect of increasing the existence time of photoelectrons. The “sample” is a particle containing an element having an effect of extending the existence time of photoelectrons generated by light irradiation.
これらの粒子は以下の方法によりエレクトロルミネッセンス素子とすることが出来る。
本発明におけるエレクトロルミネッセンス素子は、透明電極と、背面電極と、それら両電極間に挟持された発光粒子層、誘電体層、顔料層含む構成をとる。
本発明におけるエレクトロルミネッセンス素子は透明電極側から塗布しても、背面電極側から塗布してもよい。本発明に用いる背面電極としては、導電性の有る任意の材料が使用できる。金、銀、白金、銅、鉄、アルミニウムなどの金属、グラファイトなどの中から、作成する素子の形態、作成工程の温度等により適時選択される。ITO等の透明電極を用いても良い。
These particles can be made into an electroluminescence device by the following method.
The electroluminescent element in the present invention has a configuration including a transparent electrode, a back electrode, and a light emitting particle layer, a dielectric layer, and a pigment layer sandwiched between the two electrodes.
The electroluminescent element in the present invention may be applied from the transparent electrode side or from the back electrode side. As the back electrode used in the present invention, any conductive material can be used. The material is selected from metal, such as gold, silver, platinum, copper, iron, and aluminum, graphite, and the like according to the form of the element to be created, the temperature of the creation process, and the like. A transparent electrode such as ITO may be used.
本発明の硫化亜鉛粒子を含む発光粒子層は、EL蛍光体粒子含有塗布液を塗布して形成することができる。該EL蛍光体粒子含有塗布液は、少なくともEL蛍光体粒子、結合剤、および結合剤を溶解する溶剤を含有してなる塗布液である。結合剤としては、シアノエチルセルロース系樹脂のように、比較的誘電率の高いポリマーや、ポリエチレン、ポリプロピレン、ポリスチレン系樹脂、シリコーン樹脂、エポキシ樹脂、フッ化ビニリデンなどの樹脂を用いることが好ましい。これらの結合剤に、BaTiO3やSrTiO3などの高誘電率の微粒子を、結合剤100質量部に対して5〜50質量部混合して誘電率を調整することもできる。分散方法としては、ホモジナイザー,遊星型混練機,ロール混練機、超音波分散機などを用いることができる。溶剤としては極性の高い溶剤であれば限定無く用いることが出来、アルコール、ケトン、エステル、多価アルコールおよびその誘導体、可塑剤などを好ましく用いることが出来る。 The light emitting particle layer containing the zinc sulfide particles of the present invention can be formed by applying an EL phosphor particle-containing coating solution. The EL phosphor particle-containing coating solution is a coating solution containing at least EL phosphor particles, a binder, and a solvent for dissolving the binder. As the binder, it is preferable to use a polymer having a relatively high dielectric constant, such as a cyanoethyl cellulose resin, or a resin such as polyethylene, polypropylene, polystyrene resin, silicone resin, epoxy resin, or vinylidene fluoride. The dielectric constant can be adjusted by mixing fine particles having a high dielectric constant such as BaTiO 3 or SrTiO 3 in these binders in an amount of 5 to 50 parts by mass with respect to 100 parts by mass of the binder. As a dispersion method, a homogenizer, a planetary kneader, a roll kneader, an ultrasonic disperser, or the like can be used. As the solvent, any solvent having high polarity can be used without limitation, and alcohols, ketones, esters, polyhydric alcohols and derivatives thereof, plasticizers, and the like can be preferably used.
常温におけるEL蛍光体粒子含有塗布液の粘度は、0.1Pa・s以上5Pa・s以下の範囲が好ましく、0.3Pa・s以上1.0Pa・s以下の範囲が特に好ましい。EL蛍光体粒子含有塗布液の粘度が、上述の範囲内にあれば、塗膜の膜厚ムラが生じにくく、また分散後の時間経過とともに蛍光体粒子が分離沈降せず、比較的高速での塗布も可能であり、好ましい。なお、前記粘度は、塗布温度と同じ16℃において測定される値である。 The viscosity of the coating solution containing EL phosphor particles at room temperature is preferably in the range of 0.1 Pa · s to 5 Pa · s, particularly preferably in the range of 0.3 Pa · s to 1.0 Pa · s. If the viscosity of the EL phosphor particle-containing coating solution is within the above range, film thickness unevenness of the coating film is unlikely to occur, and the phosphor particles do not separate and settle with the passage of time after dispersion. Application is also possible and preferable. The viscosity is a value measured at 16 ° C. which is the same as the coating temperature.
発光粒子層は、スライドコーター又はエクストルージョンコーターなどを用いて、塗膜の乾燥膜厚が20μm以上50μm以下の範囲になるように連続的に塗布することが好ましい。中でも乾燥膜厚が30μm以上45μm以下の範囲であることが好ましい。このとき、発光粒子層の膜厚変動は、12.5%以下が好ましく、特に5%以下が好ましい。発光粒子層は透明電極を付設したプラスチック支持体等の上に塗布しても、背面電極上に誘電体層を形成した上に塗布してもよい。 The luminescent particle layer is preferably applied continuously using a slide coater or an extrusion coater so that the dry film thickness of the coating film is in the range of 20 μm to 50 μm. In particular, the dry film thickness is preferably in the range of 30 μm to 45 μm. At this time, the film thickness variation of the luminescent particle layer is preferably 12.5% or less, particularly preferably 5% or less. The luminescent particle layer may be applied on a plastic support or the like provided with a transparent electrode, or may be applied on a dielectric layer formed on the back electrode.
発光粒子層に印加させる電圧が同一駆動条件の下では、発光粒子層の膜厚が薄いほど輝度が高くなる。従来のEL素子と同程度の輝度で駆動する場合には、駆動電圧や周波数を低くすることができるため、電力消費が少なくなり、さらに振動や騒音を改善することができる。このため、本発明に用いられる蛍光体粒子は従来の蛍光体粒子より小さくすることが好ましく、平均粒径が1μm以上20μm以下の範囲の粒子を使用することが好ましい。また発光粒子層中の蛍光体粒子の充填率に制限しないが、好ましくは60質量%以上95質量%以下の範囲で、より好ましくは80質量%以上90質量%以下の範囲である。本発明の一実施態様において蛍光体粒子の粒子サイズを20μm以下にすることで、発光粒子層の塗膜膜厚の均一性が向上し、塗膜表面の平滑性も同時に向上する。さらに、単位面積当たりの粒子数が大幅に増加することで、微細な発光ムラが著しく改善できる。さらに、粒子サイズの減少は、蛍光体粒子の印加電圧の増加につながり、発光粒子層の薄層化による発光粒子層への電界強度の増加と併せて、EL素子の輝度向上にとって好ましく、雑音の原因となる振動の抑制にも好ましい。 When the voltage applied to the luminescent particle layer is the same, the brightness increases as the luminescent particle layer thickness decreases. In the case of driving with a luminance comparable to that of a conventional EL element, the driving voltage and frequency can be lowered, so that power consumption is reduced and vibration and noise can be further improved. For this reason, the phosphor particles used in the present invention are preferably made smaller than conventional phosphor particles, and it is preferable to use particles having an average particle size in the range of 1 μm to 20 μm. Moreover, although it does not restrict | limit to the filling rate of the fluorescent substance particle in a light emitting particle layer, Preferably it is the range of 60 mass% or more and 95 mass% or less, More preferably, it is the range of 80 mass% or more and 90 mass% or less. In one embodiment of the present invention, by setting the particle size of the phosphor particles to 20 μm or less, the uniformity of the coating film thickness of the luminescent particle layer is improved, and the smoothness of the coating film surface is simultaneously improved. Furthermore, when the number of particles per unit area is greatly increased, fine light emission unevenness can be remarkably improved. Furthermore, the decrease in the particle size leads to an increase in the voltage applied to the phosphor particles, and in combination with an increase in the electric field strength to the luminescent particle layer due to the thinner luminescent particle layer, it is preferable for improving the luminance of the EL element, and noise. It is also preferable for suppressing causative vibrations.
本発明における誘電体層は、発光粒子層の片側に設けてもよく、また発光粒子層の両側に設けてもよい。発光粒子層の両側に設ける場合、透明電極側の誘電体層は粒子構造を有する膜としても、高誘電率バインダーのみからなる誘電体層として設置してもよい。誘電体層を塗布で形成する場合は、発光粒子層と同様に、スライドコーター又はエクストルージョンコーターを用いることが好ましい。薄膜結晶層の場合は、基板にスパッタリング等の気相法で形成した薄膜であっても、BaやSrなどのアルコキサイドを用いたゾルゲル膜であっても良い。誘電体層に使用する誘電体粒子としては、誘電率と絶縁性とが高く、高い誘電破壊電圧を有する誘電体材料で、かつ高い反射率を有するものであれば任意のものを用いることが出来る。このような材料は、金属酸化物、窒化物から選択され、例えばTiO2,BaTiO3,SrTiO3,PbTiO3,KNbO3,PbNbO3,Ta2O3,BaTa2O6,LiTaO3,Y2O3,Al2O3,ZrO2,AlON,ZnSなどが挙げられる。これら誘電体層に用いられる粒子の平均サイズは、平均粒子径で、好ましくは2.0μm以下、より好ましくは0.01μm以上1.0μm以下、最も好ましくは0.03μm以上0.5μm以下である。誘電体層全体の厚みとしては5μm以上、40μm以下であることが好ましく、より好ましくは10μm以上、35μm以下である The dielectric layer in the present invention may be provided on one side of the luminescent particle layer or on both sides of the luminescent particle layer. When provided on both sides of the luminescent particle layer, the dielectric layer on the transparent electrode side may be provided as a film having a particle structure or as a dielectric layer comprising only a high dielectric constant binder. When the dielectric layer is formed by coating, it is preferable to use a slide coater or an extrusion coater similarly to the luminescent particle layer. In the case of a thin film crystal layer, it may be a thin film formed on a substrate by a vapor phase method such as sputtering, or a sol-gel film using an alkoxide such as Ba or Sr. As the dielectric particles used for the dielectric layer, any dielectric material can be used as long as it is a dielectric material having a high dielectric constant and insulation, a high dielectric breakdown voltage, and a high reflectance. . Such a material is selected from metal oxides and nitrides. For example, TiO 2 , BaTiO 3 , SrTiO 3 , PbTiO 3 , KNbO 3 , PbNbO 3 , Ta 2 O 3 , BaTa 2 O 6 , LiTaO 3 , Y 2 Examples include O 3 , Al 2 O 3 , ZrO 2 , AlON, ZnS, and the like. The average size of the particles used in these dielectric layers is preferably an average particle size of 2.0 μm or less, more preferably 0.01 μm or more and 1.0 μm or less, and most preferably 0.03 μm or more and 0.5 μm or less. . The total thickness of the dielectric layer is preferably 5 μm or more and 40 μm or less, more preferably 10 μm or more and 35 μm or less.
誘電体層は、好ましくは誘電体粒子含有塗布液を塗布して形成することができる。該誘電体粒子含有塗布液は、少なくとも誘電体粒子、結合剤、および結合剤を溶解する溶剤を含有してなる塗布液である。ここで、結合剤および溶剤は、発光粒子層に用いられるものと同様のものが挙げられる。常温における誘電体粒子含有塗布液の粘度は、0.1Pa・s以上5Pa・s以下の範囲が好ましく、0.3Pa・s以上1.0Pa・s以下の範囲が特に好ましい。誘電体粒子含有塗布液の粘度が、上述の範囲内にあれば、塗膜の膜厚ムラが生じにくく、また分散後の時間経過とともに誘電体粒子が分離沈降せず、比較的高速での塗布も可能であり、好ましい。なお、前記粘度は、塗布温度と同じ16℃において測定される値である。 The dielectric layer can be preferably formed by applying a coating solution containing dielectric particles. The dielectric particle-containing coating solution is a coating solution containing at least dielectric particles, a binder, and a solvent that dissolves the binder. Here, the binder and the solvent are the same as those used for the light emitting particle layer. The viscosity of the coating solution containing dielectric particles at room temperature is preferably in the range of 0.1 Pa · s to 5 Pa · s, particularly preferably in the range of 0.3 Pa · s to 1.0 Pa · s. If the viscosity of the coating solution containing dielectric particles is within the above-mentioned range, coating film thickness unevenness is unlikely to occur, and dielectric particles do not separate and settle with the passage of time after dispersion. Is also possible and preferred. The viscosity is a value measured at 16 ° C. which is the same as the coating temperature.
本発明のエレクトロルミネッセンス素子では、白色発光を作るために青緑に発光する硫化亜鉛粒子の他に赤色に発光する発光材料を使用する。赤色の発光材料は発光粒子層中に分散しても、誘電体層中に分散してもよく、発光粒子層と透明電極の間や透明電極に対して発光粒子層と反対側に位置させてもよい。 In the electroluminescence device of the present invention, a luminescent material that emits red light is used in addition to the zinc sulfide particles that emit blue-green to produce white light emission. The red luminescent material may be dispersed in the luminescent particle layer or in the dielectric layer, and is positioned between the luminescent particle layer and the transparent electrode or on the opposite side of the luminescent particle layer with respect to the transparent electrode. Also good.
本発明のエレクトロルミネッセンス素子において、白色発光時の赤色の発光波長として好ましくは600nm以上、650nm以下である。この範囲に含まれる赤色発光波長を得るには、赤色発光材料を発光粒子層に含有させても、発光粒子層と透明電極の間に入れても、透明電極を中心として発光粒子層の反対側に入れてもよいが、誘電体層に含有させることが最も好ましい。赤色発光材料を含む誘電体層は、本発明におけるエレクトロルミネッセンス素子中の誘電体層を全て赤色発光材料を含む層とすることも好ましいが、素子中の誘電体層を2つ以上に分割し、そのうちの一部を赤色発光材料を含む層とすることがより好ましい。赤色発光材料を含む層は、赤色発光材料を含まない誘電体層と発光粒子層の間に位置することが好ましく、両側を赤色発光材料を含まない誘電体層で挟まれる様に位置させることも好ましい。赤色発光材料を含む層を赤色発光材料を含まない誘電体層と発光粒子層の間に位置させる場合、赤色発光材料を含む層は1μm以上20μm以下であることが好ましいが、より好ましくは3μm以上17μm以下である。赤色発光材料を添加した誘電体層中の赤色発光材料の濃度は、誘電体粒子に対しての質量%で、1質量%以上20質量%以下が好ましいが、より好ましくは3質量%以上15質量%以下である。赤色発光材料を含む層が両側から赤色発光材料を含まない誘電体層に挟まれる様に位置する場合、赤色発光材料を含む層は1μm以上20μm以下であることが好ましいが、より好ましくは3μm以上10μm以下である。赤色発光材料を添加した誘電体層中の赤色発光材料の濃度は、誘電体粒子に対しての質量%で、1質量%以上30質量%以下が好ましいが、より好ましくは3質量%以上20質量%以下である。赤色発光材料を含む層が両側から赤色発光材料を含まない誘電体層に挟まれる様に位置する場合には赤色発光材料を含む層に誘電体粒子を含有させず、高誘電率バインダーと赤色発光材料のみの層にすることも好ましい。 In the electroluminescent device of the present invention, the red light emission wavelength during white light emission is preferably 600 nm or more and 650 nm or less. In order to obtain a red light emission wavelength included in this range, whether the red light emitting material is contained in the light emitting particle layer or between the light emitting particle layer and the transparent electrode, the opposite side of the light emitting particle layer centering on the transparent electrode However, it is most preferable that it be contained in the dielectric layer. The dielectric layer containing the red light emitting material is preferably a layer containing the red light emitting material for all the dielectric layers in the electroluminescence device of the present invention, but the dielectric layer in the device is divided into two or more, It is more preferable that a part of them is a layer containing a red light emitting material. The layer including the red light emitting material is preferably located between the dielectric layer not including the red light emitting material and the light emitting particle layer, and both sides may be positioned so as to be sandwiched between the dielectric layers not including the red light emitting material. preferable. When the layer containing the red light emitting material is positioned between the dielectric layer not containing the red light emitting material and the light emitting particle layer, the layer containing the red light emitting material is preferably 1 μm or more and 20 μm or less, more preferably 3 μm or more. 17 μm or less. The concentration of the red light-emitting material in the dielectric layer to which the red light-emitting material is added is preferably 1% by mass or more and 20% by mass or less, more preferably 3% by mass or more and 15% by mass with respect to the dielectric particles. % Or less. When the layer containing the red light emitting material is positioned so as to be sandwiched by the dielectric layer not containing the red light emitting material from both sides, the layer containing the red light emitting material is preferably 1 μm or more and 20 μm or less, more preferably 3 μm or more. 10 μm or less. The concentration of the red light emitting material in the dielectric layer to which the red light emitting material is added is preferably 1% by mass or more and 30% by mass or less, more preferably 3% by mass or more and 20% by mass with respect to the dielectric particles. % Or less. When the layer containing the red light emitting material is positioned so as to be sandwiched between the dielectric layers not containing the red light emitting material from both sides, the layer containing the red light emitting material does not contain dielectric particles, and the high dielectric constant binder and the red light emitting It is also preferable to use a layer of only the material.
ここで使用される赤色発光材料が粉末の状態にある時の発光波長として好ましくは600nm以上750nm以下であることが好ましいが、より好ましくは610nm以上650nm以下であり、最も好ましくは610nm以上、630nm以下である。この発光材料がエレクトロルミネッセンス素子に添加され、エレクトロルミネッセンス発光時の赤色の発光波長としては前述の様に600nm以上、650nm以下であることが好ましいが、より好ましくは605nm以上630nm以下であり、最も好ましくは608nm以上、620nm以下である。 The emission wavelength when the red light emitting material used here is in a powder state is preferably 600 nm or more and 750 nm or less, more preferably 610 nm or more and 650 nm or less, and most preferably 610 nm or more and 630 nm or less. It is. This luminescent material is added to the electroluminescence element, and the red emission wavelength during electroluminescence emission is preferably 600 nm or more and 650 nm or less as described above, more preferably 605 nm or more and 630 nm or less, and most preferably Is 608 nm or more and 620 nm or less.
上記の様な赤色発光材料層を誘電体層中に設定する時でも、誘電体層全体の厚みとしては5μm以上、40μm以下であることが好ましく、より好ましくは10μm以上、35μm以下である。赤色発光材料を含む誘電体層に使用する誘電体粒子としては、赤色発光材料を含まない誘電体層に使用する粒子と同じものから選ぶことが出来る。誘電体粒子は赤色発光材料を含む層と赤色発光材料を含まない層とで同じ粒子を用いても異なる粒子を用いてもよい。赤色発光材料を含む層の結合剤としては、シアノエチルセルロース系樹脂のように、比較的誘電率の高いポリマーや、ポリエチレン、ポリプロピレン、ポリスチレン系樹脂、シリコーン樹脂、エポキシ樹脂、フッ化ビニリデンなどの樹脂が好ましい。誘電体材料の分散方法としては、ホモジナイザー,遊星型混練機,ロール混練機、超音波分散機などを用いて分散することが好ましい。 Even when the red light emitting material layer as described above is set in the dielectric layer, the total thickness of the dielectric layer is preferably 5 μm or more and 40 μm or less, more preferably 10 μm or more and 35 μm or less. The dielectric particles used for the dielectric layer containing the red light emitting material can be selected from the same particles as those used for the dielectric layer not containing the red light emitting material. As the dielectric particles, the same particle or different particles may be used for the layer containing the red light emitting material and the layer not containing the red light emitting material. As a binder for a layer containing a red light emitting material, a polymer having a relatively high dielectric constant, such as a cyanoethyl cellulose resin, or a resin such as polyethylene, polypropylene, polystyrene resin, silicone resin, epoxy resin, or vinylidene fluoride is used. preferable. As a method for dispersing the dielectric material, it is preferable to disperse using a homogenizer, a planetary kneader, a roll kneader, an ultrasonic disperser or the like.
本発明の赤色発光材料としては、蛍光顔料または蛍光染料を好ましく用いることが出来る。これらの発光中心をなす化合物としては、ローダミン、ラクトン、キサンテン、キノリン、ベンゾチアゾール、トリエチルインドリン、ペリレン、トリフェンニン、ジシアノメチレンを骨格として持つ化合物が好ましく、他にもシアニン系色素、アゾ染料、ポリフェニレンビニレン系ポリマー、ジシランオリゴチエニレン系ポリマー、ルテニウム錯体、ユーロピウム錯体、エルビウム錯体を用いることも好ましい。これらの化合物は単独で用いても複数種類を用いてもよい。また、これらの化合物はさらにポリマー等に分散した後に使用してもよい。 As the red light emitting material of the present invention, a fluorescent pigment or a fluorescent dye can be preferably used. Compounds having these luminescence centers are preferably compounds having rhodamine, lactone, xanthene, quinoline, benzothiazole, triethylindoline, perylene, triphenine, dicyanomethylene as the skeleton, and other cyanine dyes, azo dyes, polyphenylene vinylenes. It is also preferable to use a polymer, a disilane oligothienylene polymer, a ruthenium complex, a europium complex, or an erbium complex. These compounds may be used alone or in combination. Further, these compounds may be used after further being dispersed in a polymer or the like.
本発明のEL素子において用いられる透明電極としては、一般的に用いられる任意の透明電極材料を用いて形成された電極が用いられる。透明電極材料としては、例えば錫ドープ酸化錫、アンチモンドープ酸化錫、亜鉛ドープ酸化錫などの酸化物、銀の薄膜を高屈折率層で挟んだ多層構造、ポリアニリン、ポリピロールなどのπ共役系高分子などが挙げられる。透明電極にはこれに櫛型あるいはグリッド型等の金属細線を配置して通電性を改善することも好ましい。透明電極の比抵抗率は、0.01Ω/□以上30Ω/□以下の範囲が好ましい。透明電極は支持体上に配置するのが好ましい。この際用いることができる支持体としては、柔軟であり、透明度の高いものであれば限定無く用いることができる。好適には、PET(ポリエチレンテレフタレート)、PES(ポリエーテルサルフォン)、PAr(ポリアリレート)、PC(ポリカーボネート)、PEN(ポリエチレンナフタレート)などのプラスチックフィルムである。
また、透明電極、背面電極の両電極とも、導電性の前記微粒子材料を結合剤とともに分散した導電材料含有塗布液を作製して、スライドコーター又はエクストルージョンコーターを用いて塗布することもできる。
As the transparent electrode used in the EL device of the present invention, an electrode formed using any commonly used transparent electrode material is used. Examples of transparent electrode materials include oxides such as tin-doped tin oxide, antimony-doped tin oxide and zinc-doped tin oxide, multilayer structures in which a silver thin film is sandwiched between high refractive index layers, and π-conjugated polymers such as polyaniline and polypyrrole. Etc. It is also preferable to improve the conductivity by arranging a comb-shaped or grid-shaped fine metal wire on the transparent electrode. The specific resistivity of the transparent electrode is preferably in the range of 0.01Ω / □ to 30Ω / □. The transparent electrode is preferably disposed on the support. As a support that can be used in this case, any support that is flexible and highly transparent can be used without limitation. Preferred are plastic films such as PET (polyethylene terephthalate), PES (polyethersulfone), PAr (polyarylate), PC (polycarbonate), and PEN (polyethylene naphthalate).
Further, both the transparent electrode and the back electrode can be prepared by preparing a conductive material-containing coating solution in which the conductive fine particle material is dispersed together with a binder, and applying the coating solution using a slide coater or an extrusion coater.
その他、本発明の素子構成において、各種保護層、フィルター層、光散乱反射層などを必要に応じて付与することができる。 In addition, in the element configuration of the present invention, various protective layers, filter layers, light scattering reflection layers, and the like can be provided as necessary.
支持体上に塗布された各機能層は、少なくとも塗布から乾燥工程までを連続工程として形成することが好ましい。乾燥工程は、塗膜が乾燥固化するまでの恒率乾燥工程と、塗膜の残留溶媒を減少させる減率乾燥工程に分けられる。本発明では、各機能層の結合剤比率が高いため、急速乾燥させると表面だけが乾燥し塗膜内で対流が発生し、いわゆるベナードセルが生じやすくなり、また急激な溶媒の膨張によりブリスター故障を発生しやすくなり、塗膜の均一性を著しく損う。逆に、最終の乾燥温度が低いと、溶媒が各機能層内に残留してしまい、防湿フィルムのラミネート工程等のEL素子化の後工程に影響を与えてしまう。したがって、乾燥工程は、恒率乾燥工程を緩やかに実施し、溶媒が乾燥するのに十分な温度で減率乾燥工程を実施することが好ましい。恒率乾燥工程を緩やかに実施する方法としては、支持体が走行する乾燥室をいくつかのゾーンに分けて、塗布工程終了後からの乾燥温度を段階的に上昇することが好ましい。 Each functional layer coated on the support is preferably formed as a continuous process from at least the coating to the drying process. The drying process is divided into a constant rate drying process until the coating film is dried and solidified, and a decreasing rate drying process for reducing the residual solvent of the coating film. In the present invention, since the binder ratio of each functional layer is high, when rapidly dried, only the surface is dried and convection occurs in the coating film, so-called Benard cell is likely to occur, and blister failure is caused by rapid solvent expansion. It tends to occur and remarkably impairs the uniformity of the coating film. On the other hand, if the final drying temperature is low, the solvent remains in each functional layer, which affects the subsequent process of forming EL elements such as a moisture-proof film laminating process. Therefore, it is preferable that the drying step is performed slowly at a constant rate drying step and performed at a temperature sufficient for the solvent to dry. As a method for slowly performing the constant rate drying step, it is preferable to divide the drying chamber in which the support travels into several zones and increase the drying temperature after the coating step in a stepwise manner.
本発明のEL素子の製造においては、発光粒子層にカレンダー処理機を用いてカレンダー処理を施してもよい。カレンダー処理により形成された発光粒子層の両主面の平滑度は、10μm以下が好ましいが、より好ましくは5μm以下であり、1μm以下の範囲がさらに好ましい。特に好ましくは0.5μm以下である。使用するカレンダー処理機は特に限定されるものではなく、公知の装置の中から適宜選択することができる。少なくとも一方を例えば50℃〜200℃に加熱した一対のロールの間に、加圧しながら結合剤中に蛍光体粒子を分散させた発光粒子層を対象物として通すことで平滑化処理を施すものである。カレンダー処理において、カレンダーロールの加熱温度は、発光粒子層に含まれる結合剤の軟化温度以上にすることが好ましい。また、カレンダー圧力と搬送速度は、蛍光体粒子を破壊したり、必要以上に発光粒子層を延伸したりしないように、カレンダー温度と発光粒子層の塗布幅も考慮して、必要な平滑度が得られるように適宜選択することが好ましい。 In the manufacture of the EL device of the present invention, the luminescent particle layer may be subjected to a calendar process using a calendar processor. The smoothness of both main surfaces of the luminescent particle layer formed by the calendar treatment is preferably 10 μm or less, more preferably 5 μm or less, and even more preferably in the range of 1 μm or less. Particularly preferably, it is 0.5 μm or less. The calendar processing machine to be used is not particularly limited, and can be appropriately selected from known apparatuses. A smoothing treatment is performed by passing, as an object, a luminescent particle layer in which phosphor particles are dispersed in a binder while applying pressure between a pair of rolls heated at least one of, for example, 50 ° C to 200 ° C. is there. In the calendering process, it is preferable that the heating temperature of the calender roll is equal to or higher than the softening temperature of the binder contained in the light emitting particle layer. In addition, the calender pressure and the conveyance speed are not limited to the necessary smoothness, taking into account the calender temperature and the coating width of the luminescent particle layer so as not to destroy the phosphor particles or extend the luminescent particle layer more than necessary. It is preferable to select appropriately so that it may be obtained.
EL素子の振動抑制のために補償電極を付与する場合にも、前述の導電材料を用いることができる。例えば光を取り出す透明電極の外側に補償電極を付与する場合には、錫ドープ酸化錫、アンチモンドープ酸化錫、亜鉛ドープ酸化錫などの酸化物、銀の薄膜を高屈折率層で挟んだ多層構造、ポリアニリン、ポリピロールなどのπ共役系高分子などの透明電極材料を用いることが好ましい。 The conductive material described above can also be used when a compensation electrode is provided to suppress vibration of the EL element. For example, when a compensation electrode is provided outside the transparent electrode from which light is extracted, an oxide such as tin-doped tin oxide, antimony-doped tin oxide, or zinc-doped tin oxide, and a multilayer structure in which a thin film of silver is sandwiched between high refractive index layers It is preferable to use transparent electrode materials such as π-conjugated polymers such as polyaniline and polypyrrole.
また、光を取り出さない背面電極の外側に補償電極を付与する場合には、金、銀、白金、銅、鉄、アルミニウムなどの金属、グラファイトなど導電性の有る任意の材料が使用できるが、導電性さえあればITO等の透明電極を用いても良い。この補償電極は前記の透明電極や背面電極と絶縁層を介して付設されるが、絶縁層材料は絶縁性の無機材料や高分子材料、無機材料粉体を高分子材料に分散した分散液などを蒸着、塗布などにより形成できる。また、導電性の前記微粒子材料を結合剤とともに分散した導電材料含有塗布液を作製して、スライドコーター又はエクストルージョンコーターを用いて塗布することもできる。さらに、前記絶縁性材料を結合剤とともに分散した絶縁材料含有塗布液を作製して、前記導電材料含有塗布液と同時に塗布することもできる。付設した補償電極に駆動電源より電圧を印加するが、このとき発光粒子層に印加される電圧と逆位相にすることで、発光粒子層で発生する振動を相殺できる。補償電極は、透明電極の外側又は背面電極の外側のいずれかに絶縁層を挟んで付設しても同様の効果があるが、同時に付設して一方を接地させることで、さらなる振動抑制効果を期待できるので好ましい。また、発光粒子層(と誘電体層)の誘電率と補償電極の内側の絶縁層の誘電率が実質同等であるように調整することが振動抑制を効果的に行うためには好ましい。 In addition, when a compensation electrode is provided outside the back electrode from which light is not extracted, any conductive material such as metal such as gold, silver, platinum, copper, iron, aluminum, graphite, etc. can be used. A transparent electrode such as ITO may be used as long as it has the property. The compensation electrode is attached to the transparent electrode or the back electrode via an insulating layer. The insulating layer material is an insulating inorganic material or polymer material, a dispersion liquid in which inorganic material powder is dispersed in a polymer material, or the like. Can be formed by vapor deposition, coating, or the like. Alternatively, a conductive material-containing coating solution in which the conductive fine particle material is dispersed together with a binder can be prepared and applied using a slide coater or an extrusion coater. Furthermore, an insulating material-containing coating solution in which the insulating material is dispersed together with a binder can be prepared and applied simultaneously with the conductive material-containing coating solution. A voltage is applied to the compensation electrode provided from the driving power source. At this time, the vibration generated in the luminescent particle layer can be canceled by setting the phase opposite to the voltage applied to the luminescent particle layer. The compensation electrode has the same effect even if it is attached to either the outside of the transparent electrode or the outside of the back electrode with an insulating layer sandwiched between them. It is preferable because it is possible. Further, in order to effectively suppress vibration, it is preferable to adjust so that the dielectric constant of the light emitting particle layer (and the dielectric layer) and the dielectric constant of the insulating layer inside the compensation electrode are substantially equal.
EL素子の振動抑制のための別の方法としてEL素子に用いる緩衝材層を付与する場合には、緩衝材層として衝撃吸収能の高い高分子材料や発泡剤を加えて発泡させた高分子材料を用いることが好ましい。衝撃吸収能の高い高分子材料としては、例えば天然ゴム、スチレンブタジエンゴム、ポリイソプレンゴム、ポリブタジエンゴム、ニトリルゴム、クロロプレンゴム、ブチルゴム、ハイパロン、シリコンゴム、ウレタンゴム、エチレンプロピレンゴム、フッ素ゴムなどが使用できる。これら高分子材料の硬度としては、振動吸収能の点から50以下が好ましく、30以下がさらに好ましい。また、ブチルゴム、シリコンゴム、フッ素ゴムなどは、吸水性が低いためEL素子を水分から保護する保護膜としても機能するためより好ましい。上記のゴム材料やポリプロピレン、ポリスチレン、ポリエチレン樹脂に発泡剤を加えて発泡させた材料を緩衝材として用いることも好ましい。これらの緩衝材を用いた緩衝材層は、緩衝材層を接着剤でEL素子に貼り付けることで付設することができるが、緩衝材料を溶剤に溶解して緩衝材料含有塗布液を作製し、スライドコーター又はエクストルージョンコーターを用いて塗布することもできる。緩衝材層の膜厚は、高分子材料の硬度にもよるが、振動を十分に吸収するためには20μm以上が必要で、50μm以上が好ましい。200μm以上になると素子厚みが大きく増加して、質量やフレキシビリティの点で好ましくない。また、上記の補償電極と緩衝材層の併用は、さらに振動を抑制することができるので好ましい。 As another method for suppressing vibration of the EL element, when a buffer material layer used for the EL element is provided, a polymer material having a high shock absorbing capacity or a polymer material foamed by adding a foaming agent as the buffer material layer Is preferably used. Examples of polymer materials with high impact absorption include natural rubber, styrene butadiene rubber, polyisoprene rubber, polybutadiene rubber, nitrile rubber, chloroprene rubber, butyl rubber, hyperon, silicon rubber, urethane rubber, ethylene propylene rubber, and fluorine rubber. Can be used. The hardness of these polymer materials is preferably 50 or less, more preferably 30 or less, from the viewpoint of vibration absorption ability. In addition, butyl rubber, silicon rubber, fluorine rubber, and the like are more preferable because they have low water absorption and function as a protective film that protects the EL element from moisture. It is also preferable to use as a buffer material a material obtained by adding a foaming agent to the above rubber material, polypropylene, polystyrene, or polyethylene resin. The buffer material layer using these buffer materials can be attached by adhering the buffer material layer to the EL element with an adhesive, but the buffer material is dissolved in a solvent to prepare a buffer material-containing coating solution, It can also apply | coat using a slide coater or an extrusion coater. Although the thickness of the buffer material layer depends on the hardness of the polymer material, it needs to be 20 μm or more and preferably 50 μm or more in order to sufficiently absorb vibration. When the thickness is 200 μm or more, the thickness of the element is greatly increased, which is not preferable in terms of mass and flexibility. Further, the combined use of the compensation electrode and the buffer material layer is preferable because vibration can be further suppressed.
本発明の分散型EL素子は、最後に封止フィルムを用いて、外部環境からの湿度や酸素の影響を排除するよう加工するのが好ましい。EL素子を封止する封止フィルムは、40℃−90%RHにおける水蒸気透過率が0.05g/m2/day以下が好ましく、0.01g/m2/day以下がより好ましい。さらに40℃−90%RHでの酸素透過率が0.1cm3/m2/day/atm以下が好ましく、0.01cm3/m2/day/atm以下がより好ましい。このような封止フィルムとしては、有機物膜と無機物膜の積層膜が好ましく用いられる。 It is preferable that the dispersion type EL element of the present invention is finally processed using a sealing film so as to eliminate the influence of humidity and oxygen from the external environment. Sealing film for sealing the EL element is preferably not more than the water vapor transmission rate of 0.05g / m 2 / day at 40 ° C. -90% RH, more preferably at most 0.01g / m 2 / day. Further, the oxygen permeability at 40 ° C. to 90% RH is preferably 0.1 cm 3 / m 2 / day / atm or less, more preferably 0.01 cm 3 / m 2 / day / atm or less. As such a sealing film, a laminated film of an organic film and an inorganic film is preferably used.
有機物膜の形成材料としては、ポリエチレン系樹脂、ポリプロピレン系樹脂、ポリカーボネート系樹脂、ポリビニルアルコール系樹脂などが好ましく用いられ、特にポリビニルアルコール系樹脂がより好ましく用いることができる。ポリビニルアルコール系樹脂などは吸水性があるため、あらかじめ真空加熱などの処理を施すことで絶乾状態にしたものを用いることがより好ましい。これらの樹脂を塗布などの方法によりシート状に加工したものの上に、無機物膜を蒸着、スパッタリング、CVD法などを用いて堆積させる。堆積させる無機物膜としては、酸化ケイ素、窒化珪素、酸窒化珪素、酸化ケイ素/酸化アルミニウム、窒化アルミニウムなどが好ましく用いられ、特に酸化ケイ素がより好ましく用いられる。より低い水蒸気透過率や酸素透過率を得たり、無機物膜が曲げ等によりひび割れることを防止するために、有機物膜と無機物膜の形成を繰り返したり、無機物膜を堆積した有機物膜を接着剤層を介して複数枚貼り合わせて多層膜とすることが好ましい。有機物膜の膜厚は、5μm以上300μm以下の範囲が好ましく、10μm以上200μm以下の範囲がより好ましい。無機物膜の膜厚は、10nm以上300nm以下の範囲が好ましく、20nm以上200nm以下の範囲がより好ましい。積層した封止フィルムの膜厚は、30μm以上1000μm以下の範囲が好ましく、50μm以上300μm以下の範囲がより好ましい。例えば、40℃−90%RHにおける水蒸気透過率が0.05g/m2/day以下の封止フィルムを得るためには、上記の有機物膜と無機物膜とが2層ずつ積層された構成では50〜100μmの膜厚で済んでしまうが、従来から封止フィルムとして使用されているポリ塩化三フッ化エチレンでは200μm以上の膜厚を必要とする。封止フィルムの膜厚は、薄い方が光透過性や素子の柔軟性の点で好ましい。 As the material for forming the organic film, polyethylene resins, polypropylene resins, polycarbonate resins, polyvinyl alcohol resins and the like are preferably used, and polyvinyl alcohol resins can be more preferably used. Since polyvinyl alcohol resins and the like have water absorption properties, it is more preferable to use a resin that has been dried in advance by a treatment such as vacuum heating. An inorganic film is deposited by vapor deposition, sputtering, CVD, or the like on these resins processed into a sheet by a method such as coating. As the inorganic film to be deposited, silicon oxide, silicon nitride, silicon oxynitride, silicon oxide / aluminum oxide, aluminum nitride, or the like is preferably used, and silicon oxide is particularly preferably used. In order to obtain a lower water vapor transmission rate and oxygen transmission rate, and to prevent the inorganic film from cracking due to bending, etc., the formation of the organic film and the inorganic film is repeated, or the organic film on which the inorganic film is deposited is attached to the adhesive layer. It is preferable that a plurality of sheets are laminated to form a multilayer film. The film thickness of the organic film is preferably in the range of 5 μm to 300 μm, more preferably in the range of 10 μm to 200 μm. The thickness of the inorganic film is preferably in the range of 10 nm to 300 nm, and more preferably in the range of 20 nm to 200 nm. The thickness of the laminated sealing film is preferably in the range of 30 μm to 1000 μm, and more preferably in the range of 50 μm to 300 μm. For example, in order to obtain a sealing film having a water vapor transmission rate of 0.05 g / m 2 / day or less at 40 ° C.-90% RH, the structure in which the organic film and the inorganic film are stacked in two layers is 50. A film thickness of ˜100 μm is sufficient, but polychlorinated ethylene trifluoride conventionally used as a sealing film requires a film thickness of 200 μm or more. The thinner the sealing film, the better in terms of light transmission and device flexibility.
この封止フィルムでELセルを封止する場合、2枚の封止フィルムでELセルを挟んで周囲を接着封止しても、1枚の封止フィルムを半分に折って封止フィルムが重なる部分を接着封止しても良い。封止フィルムで封止されるELセルは、ELセルのみを別途作成しても良いし、封止フィルム上に直接ELセルを作成することもできる。この場合には、支持体の替わりとすることができる。また、封止工程は、真空又は露点管理された乾燥雰囲気中で行うことが好ましい。 When sealing an EL cell with this sealing film, even if the EL cell is sandwiched between two sealing films and the periphery is adhesively sealed, the sealing film overlaps by folding one sealing film in half The part may be adhesively sealed. As the EL cell sealed with the sealing film, only the EL cell may be separately prepared, or the EL cell may be directly formed on the sealing film. In this case, the support can be replaced. The sealing step is preferably performed in a dry atmosphere with vacuum or dew point management.
高度な封止加工を実施した場合でも、ELセルの周囲に乾燥剤層を配置することが好ましい。乾燥剤層に用いられる乾燥剤としては、CaO、SrO、BaOなどのアルカリ土類金属酸化物、酸化アルミニウム、ゼオライト,活性炭、シリカゲル、紙や吸湿性の高い樹脂などが好ましく用いられるが、特にアルカリ土類金属酸化物が吸湿性能の点でより好ましい。これらの吸湿剤は粉体の状態でも使用することはできるが、例えば樹脂材料と混合して塗布や成形などによりシート状に加工したものを使用したり、樹脂材料と混合した塗布液をディスペンサーなどを用いてEL素子の周囲に塗布したりして乾燥剤層を配置することが好ましい。さらに、ELセルの周囲のみならず、ELセルの下面や上面を乾燥剤で覆うことがより好ましい。この場合、光を取り出す面には透明性の高い乾燥剤層を選択することが好ましい。透明性の高い乾燥剤層としては、ポリアミド系樹脂等を用いることができる。 Even when an advanced sealing process is performed, it is preferable to dispose a desiccant layer around the EL cell. As the desiccant used in the desiccant layer, alkaline earth metal oxides such as CaO, SrO and BaO, aluminum oxide, zeolite, activated carbon, silica gel, paper and highly hygroscopic resin are preferably used. An earth metal oxide is more preferable in terms of moisture absorption performance. These hygroscopic agents can also be used in the form of powder, but for example, a material that is mixed with a resin material and processed into a sheet by application or molding, or a coating liquid mixed with a resin material is dispensed It is preferable to dispose the desiccant layer by applying it around the EL element. Furthermore, it is more preferable to cover not only the periphery of the EL cell but also the lower and upper surfaces of the EL cell with a desiccant. In this case, it is preferable to select a highly transparent desiccant layer for the light extraction surface. As the highly transparent desiccant layer, a polyamide-based resin or the like can be used.
以下に、本発明のEL素子を実施例に基づきさらに詳細に説明するが、本発明は以下の各実施例に制限されるものではない。 Hereinafter, the EL element of the present invention will be described in more detail based on examples, but the present invention is not limited to the following examples.
「従来技術による蛍光体粒子の作成」(比較例)
ZnS(フルウチ化学製、純度99.999%)50gに水を加えてスラリーとし、CuSO4・5H2Oを0.225g含む水溶液を添加し、一部に銅を置換したZnS生粉(平均粒径100nm)を得た。得られた生粉20gに対して、BaCl2・2H2O 3.4g、MgCl2・6H2O 14.8g、SrCl2・6H2O 21.8gを混合し、1200℃で1時間焼成を行い、蛍光体中間体を得た。この中間体粒子はイオン交換水で3回水洗し、0.1Nの塩酸で洗浄、再びイオン交換水で5回洗浄した後、乾燥した。得られた中間体5gに対し、0.5mmφのアルミナビース50gと0.05mmφのジルコニアビーズ2gを混合し、60分間ボールミルをかけた。これを空気中で700℃で6時間、アニールした。得られた蛍光体粒子を洗浄して表面にある余分な銅を取り除いた後、4回水洗し、エレクトロルミネッセンス蛍光体粒子を得た(平均粒径15μm、粒径の変動係
数38%)。
"Preparation of phosphor particles by conventional technology" (comparative example)
ZnS raw powder (average grain) in which water was added to 50 g of ZnS (manufactured by Furuuchi Chemical Co., Ltd., purity 99.999%) to form a slurry, an aqueous solution containing 0.225 g of CuSO 4 .5H 2 O was added, and copper was partially substituted. 100 nm in diameter) was obtained. BaCl 2 · 2H 2 O 3.4 g, MgCl 2 · 6H 2 O 14.8 g, SrCl 2 · 6H 2 O 21.8 g are mixed with the obtained raw flour 20 g and fired at 1200 ° C for 1 hour. And a phosphor intermediate was obtained. The intermediate particles were washed with ion-exchanged water three times, washed with 0.1N hydrochloric acid, washed again with ion-exchanged water five times, and then dried. To 5 g of the obtained intermediate, 50 g of 0.5 mmφ alumina beads and 2 g of 0.05 mmφ zirconia beads were mixed and ball milled for 60 minutes. This was annealed in air at 700 ° C. for 6 hours. The obtained phosphor particles were washed to remove excess copper on the surface, and then washed four times with water to obtain electroluminescent phosphor particles (average particle size 15 μm, particle size variation coefficient 38%).
「本発明による蛍光体粒子の作成」(本発明(1)、(2))
比較例に記載した蛍光体粒子の作製方法において、1200℃で1時間焼成を行う前にBaCl2・2H2Oの一部をとり、Na2[Pt(OH)6] をZnS生粉20gに対して、7mgまたは14mg添加し、よく混合した後に、ZnS生粉や他のフラックスと混合し、1200℃で1時間焼成したことを除いて比較例と同様にして本発明の蛍光体粒子1および2を得た。
“Preparation of phosphor particles according to the present invention” (the present invention (1), (2))
In the method for producing phosphor particles described in the comparative example, a portion of BaCl 2 · 2H 2 O is taken before firing for 1 hour at 1200 ° C., and Na 2 [Pt (OH) 6 ] is converted into 20 g of ZnS raw powder. On the other hand, after adding 7 mg or 14 mg, mixing well, mixing with ZnS raw powder and other fluxes, and firing at 1200 ° C. for 1 hour, the phosphor particles 1 of the present invention and 2 was obtained.
「本発明による蛍光体粒子の作成」(本発明(3))
本発明の蛍光体粒子2において、Na2[Pt(OH)6] を14mg添加する代わりに、[Pt(NH3)4]Cl2を13.6mg添加したことを除き、蛍光体粒子2と同様にして蛍光体粒子3を得た。
“Preparation of phosphor particles according to the present invention” (present invention (3))
In the phosphor particle 2 of the present invention, instead of adding 14 mg of Na 2 [Pt (OH) 6 ], 13.6 mg of [Pt (NH 3 ) 4 ] Cl 2 was added, Similarly, phosphor particles 3 were obtained.
「本発明による蛍光体粒子の作成」(本発明(4))
本発明の蛍光体粒子2において、Na2[Pt(OH)6]を14mg添加する代わりに、(NH4)2[Mo2O7] を13.9mg添加したことを除き、蛍光体粒子2と同様にして蛍光体粒子4を得た。
“Preparation of phosphor particles according to the present invention” (present invention (4))
In the phosphor particle 2 of the present invention, phosphor particles 2 except that 13.9 mg of (NH 4 ) 2 [Mo 2 O 7 ] was added instead of 14 mg of Na 2 [Pt (OH) 6 ]. In the same manner, phosphor particles 4 were obtained.
「本発明による蛍光体粒子の作成」(本発明(5))
本発明の蛍光体粒子2において、Na2[Pt(OH)6]を14mg添加する代わりに、[Pd(NH3)4]Cl2を10mg添加したことを除き、蛍光体粒子2と同様にして蛍光体粒子5を得た。
“Preparation of phosphor particles according to the present invention” (present invention (5))
In the phosphor particle 2 of the present invention, in the same manner as the phosphor particle 2 except that 10 mg of [Pd (NH 3 ) 4 ] Cl 2 was added instead of adding 14 mg of Na 2 [Pt (OH) 6 ]. Thus, phosphor particles 5 were obtained.
「EL素子の作成」
平均粒子サイズが0.2μmのBaTiO3の微粒子のみを30質量%シアノエチルセルロース溶液に分散し、この層厚みが20μmになるように、厚み75μmのアルミシート上に塗布、乾燥して誘電体層付きアルミシートを得た。続いて、平均粒子サイズが0.2μmのBaTiO3の微粒子を30質量%シアノエチルセルロース溶液に分散した後、この分散液に620nmに発光を持つ赤色顔料をBaTiO3の質量の6%になる様に添加、分散し、出来上がりの厚みが10μmになる様に前述の誘電体層付きアルミシートに塗布、再び110℃で5時間乾燥し、顔料層を形成した。さらに、前述の蛍光体粒子(比較例および本発明1〜5)と30質量%のシアノエチルセルロース溶液を1.2:1の比で混合・分散した後、顔料層が形成してあるアルミシートにこの層の厚みが45μmになる様に塗布し、温風乾燥機を用いて110℃で5時間乾燥した。この塗布物は、厚さ100ミクロンのポリエチレンテレフタレート上にITOをスパッターにより40nmの厚さに均一に付着したフィルムと熱圧着した。最後にリード片を載設、防湿フィルム挟み封止したものを本発明におけるEL素子とする。
“Creation of EL elements”
Only fine particles of BaTiO 3 with an average particle size of 0.2 μm are dispersed in a 30% by mass cyanoethyl cellulose solution, coated on a 75 μm-thick aluminum sheet so that the layer thickness is 20 μm, and dried with a dielectric layer. An aluminum sheet was obtained. Subsequently, BaTiO 3 fine particles having an average particle size of 0.2 μm are dispersed in a 30% by mass cyanoethyl cellulose solution, and then a red pigment having an emission at 620 nm is added to this dispersion so that the mass becomes 6% of the mass of BaTiO 3 . Addition and dispersion were applied to the aluminum sheet with a dielectric layer so that the final thickness was 10 μm, and the coating was dried again at 110 ° C. for 5 hours to form a pigment layer. Furthermore, after mixing and dispersing the above-described phosphor particles (Comparative Examples and Inventions 1 to 5) and a 30% by mass cyanoethyl cellulose solution in a ratio of 1.2: 1, the aluminum sheet on which the pigment layer is formed is formed. This layer was applied to a thickness of 45 μm and dried at 110 ° C. for 5 hours using a hot air dryer. This coating was thermocompression bonded to a film in which ITO was uniformly deposited to a thickness of 40 nm by sputtering on polyethylene terephthalate having a thickness of 100 microns. Finally, a lead piece is placed and sealed with a moisture-proof film sandwiched between them to form an EL element in the present invention.
以上により作成した本発明の蛍光体粒子を使用したEL素子の輝度および発光効率などを比較例の蛍光体粒子を使用したEL素子のそれらと比較したものを表1に挙げる。 Table 1 lists the luminance and luminous efficiency of the EL device using the phosphor particles of the present invention prepared as described above and those of the EL device using the phosphor particles of the comparative example.
本発明の蛍光体粒子を使用したEL素子では比較例の粒子を使用したEL素子に比べて輝度、発光効率が共に上昇し、その時の光電子存在時間が長くなっていることがわかる。 It can be seen that the luminance and luminous efficiency of the EL device using the phosphor particles of the present invention are both increased and the photoelectron existence time is longer than that of the EL device using the particles of the comparative example.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005053753A JP4533775B2 (en) | 2005-02-28 | 2005-02-28 | Electroluminescent phosphor particles and dispersive electroluminescence device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005053753A JP4533775B2 (en) | 2005-02-28 | 2005-02-28 | Electroluminescent phosphor particles and dispersive electroluminescence device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006233147A true JP2006233147A (en) | 2006-09-07 |
JP4533775B2 JP4533775B2 (en) | 2010-09-01 |
Family
ID=37041151
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005053753A Expired - Fee Related JP4533775B2 (en) | 2005-02-28 | 2005-02-28 | Electroluminescent phosphor particles and dispersive electroluminescence device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4533775B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008133289A1 (en) * | 2007-04-25 | 2008-11-06 | Kuraray Luminas Co., Ltd. | Blue phosphor |
EP2090640A1 (en) | 2008-01-18 | 2009-08-19 | Fujifilm Corporation | Inorganic phosphor |
JP2009242638A (en) * | 2008-03-31 | 2009-10-22 | Tdk Corp | Light emitting element and fluorescent material |
KR20200142390A (en) | 2019-06-12 | 2020-12-22 | 재단법인대구경북과학기술원 | Inorganic electroluminescent device comprising luminescent particle surrounded by a coating layer and method for producing same |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04249590A (en) * | 1990-12-28 | 1992-09-04 | Nissha Printing Co Ltd | Dispersed electroluminescent sheet |
JPH04270779A (en) * | 1991-02-27 | 1992-09-28 | Toshiba Corp | Dispersion-type el fluorescent material |
JPH11172245A (en) * | 1997-12-10 | 1999-06-29 | Toshiba Corp | Electroluminescent phosphor and electroluminescent panel |
-
2005
- 2005-02-28 JP JP2005053753A patent/JP4533775B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04249590A (en) * | 1990-12-28 | 1992-09-04 | Nissha Printing Co Ltd | Dispersed electroluminescent sheet |
JPH04270779A (en) * | 1991-02-27 | 1992-09-28 | Toshiba Corp | Dispersion-type el fluorescent material |
JPH11172245A (en) * | 1997-12-10 | 1999-06-29 | Toshiba Corp | Electroluminescent phosphor and electroluminescent panel |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008133289A1 (en) * | 2007-04-25 | 2008-11-06 | Kuraray Luminas Co., Ltd. | Blue phosphor |
JP5583403B2 (en) * | 2007-04-25 | 2014-09-03 | 株式会社クラレ | Blue phosphor |
EP2090640A1 (en) | 2008-01-18 | 2009-08-19 | Fujifilm Corporation | Inorganic phosphor |
JP2009242638A (en) * | 2008-03-31 | 2009-10-22 | Tdk Corp | Light emitting element and fluorescent material |
KR20200142390A (en) | 2019-06-12 | 2020-12-22 | 재단법인대구경북과학기술원 | Inorganic electroluminescent device comprising luminescent particle surrounded by a coating layer and method for producing same |
Also Published As
Publication number | Publication date |
---|---|
JP4533775B2 (en) | 2010-09-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2007004577A1 (en) | Transparent conductive film and dispersion-type electroluminescent device using such film | |
CN1638537A (en) | Light emitting device, display apparatus having the light emitting device, and method of manufacturing the display apparatus | |
WO2006093095A1 (en) | Dispersion-type electroluminescent element | |
JP4533775B2 (en) | Electroluminescent phosphor particles and dispersive electroluminescence device | |
KR100819233B1 (en) | El device | |
EP1736522A1 (en) | Field-emission phosphor, its manufacturing method, and field-emission device | |
CN1433247A (en) | Transparent conductive film, its production process and electroluminescent element with the film | |
JP5744621B2 (en) | Dispersion type EL device and manufacturing method thereof | |
JP2006269382A (en) | Electroluminescent display element | |
JP2010215787A (en) | Inorganic phosphor particle and distributed electroluminescence element using the same | |
JP2006156358A (en) | Distributed electroluminescent element | |
JP2006241183A (en) | Electroluminescent phosphor and el element by using the same | |
JP2006303030A (en) | Electroluminescent element | |
JP2006156339A (en) | Distributed electroluminescent element | |
WO2005122651A1 (en) | Light-emitting device and display | |
EP1467600A1 (en) | Electroluminescence element and production method therefor | |
WO2006025403A1 (en) | Dispersion type electroluminescence element | |
JP2008210780A (en) | Dispersion-type electroluminescence element and method of manufacturing the same | |
JP2006054114A (en) | Electroluminescent element | |
JP5197653B2 (en) | Dispersion-type inorganic EL element, manufacturing method thereof, and manufacturing apparatus of inorganic EL light emitting layer | |
JP2005281451A (en) | Electroluminescent element and production method of phosphor particulate | |
WO2014061118A1 (en) | Dispersion-type el element and method for producing same | |
JP2009144073A (en) | Phosphor, inorganic electroluminescent display element, backlight, and manufacturing method for them | |
JP2005325217A (en) | Distributed electroluminescence element and method for producing the same | |
JP4769627B2 (en) | Inorganic dispersion type electroluminescence device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20061127 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070621 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20071108 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20071115 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20071122 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100212 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100223 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100426 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100525 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100614 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4533775 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130618 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |