[go: up one dir, main page]

JP2006232669A - Low nitrogen concentration graphite material, low nitrogen concentration carbon fiber reinforced carbon composite material, low nitrogen concentration expanded graphite sheet - Google Patents

Low nitrogen concentration graphite material, low nitrogen concentration carbon fiber reinforced carbon composite material, low nitrogen concentration expanded graphite sheet Download PDF

Info

Publication number
JP2006232669A
JP2006232669A JP2006147208A JP2006147208A JP2006232669A JP 2006232669 A JP2006232669 A JP 2006232669A JP 2006147208 A JP2006147208 A JP 2006147208A JP 2006147208 A JP2006147208 A JP 2006147208A JP 2006232669 A JP2006232669 A JP 2006232669A
Authority
JP
Japan
Prior art keywords
nitrogen concentration
low nitrogen
carbon
gas
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006147208A
Other languages
Japanese (ja)
Inventor
Ichiro Fujita
一郎 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tanso Co Ltd
Original Assignee
Toyo Tanso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tanso Co Ltd filed Critical Toyo Tanso Co Ltd
Priority to JP2006147208A priority Critical patent/JP2006232669A/en
Publication of JP2006232669A publication Critical patent/JP2006232669A/en
Pending legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a low nitrogen concentration graphite material, a low nitrogen concentration carbon fiber reinforced carbon composite material, and a low nitrogen concentration expanded graphite sheet, the nitrogen concentration of which is respectively 50 ppm or lower by the glow discharge mass spectrometry, and which are stored in such a state that the materials and sheet are kept out of the air. <P>SOLUTION: A carbon material which is highly purified in a halogen gas atmosphere is heat-treated at a pressure of 100 Pa or less at a temperature of 1,800°C or higher in an atmosphere which is not exposed to nitrogen gas so that nitrogen atoms in the carbon material are discharged. Thereafter, the carbon material is cooled to a predetermined temperature in a pressure of 100 Pa or less, and further cooled to room temperature in a noble gas atmosphere. Then the carbon material is stored in such a state that the carbon material is kept out of the air. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、低窒素濃度炭素系材料に関し、特に、シリコン半導体、化合物系半導体の製造用治具、エピタキシャル成長膜製造用治具等、炭化ケイ素(以下、SiCという。)単結晶の製造用治具や、SiCウェハーのエピタキシャル成長用治具等に用いられる低窒素濃度炭素系材料及びその製造方法に関する。   The present invention relates to a low nitrogen concentration carbon-based material, and in particular, a silicon semiconductor, a compound semiconductor manufacturing jig, an epitaxial growth film manufacturing jig, and the like, a silicon carbide (hereinafter referred to as SiC) manufacturing jig. Further, the present invention relates to a low nitrogen concentration carbon-based material used for a jig for epitaxial growth of a SiC wafer and a method for manufacturing the same.

近年、SiC或いはガリウムヒ素、インジウムリン等の軽元素で構成された化合物系半導体の開発が活発に行われている。かかる化合物系半導体は、エネルギーのバンドギャップ、絶縁破壊電界、熱伝導度が大きいことが特徴である。そして、この特徴を活かして、高効率・高耐圧パワーデバイス、高周波パワーデバイス、高温動作デバイス、あるいは青色から紫外発光デバイス用の材料として注目を集めている。しかしながら、結合エネルギーが強いため、これらの化合物は、大気圧では高温にしても融解せず、シリコン(以下、Siという。)半導体で用いられる場合のごとくSi融液を再結晶化してバルク結晶とすることが困難である。   In recent years, compound semiconductors composed of light elements such as SiC, gallium arsenide, and indium phosphide have been actively developed. Such a compound semiconductor is characterized by a large energy band gap, dielectric breakdown electric field, and thermal conductivity. And taking advantage of this feature, it has attracted attention as a material for high efficiency and high withstand voltage power devices, high frequency power devices, high temperature operation devices, or blue to ultraviolet light emitting devices. However, since the binding energy is strong, these compounds do not melt even at high temperatures at atmospheric pressure, and recrystallize the Si melt as used in silicon (hereinafter referred to as Si) semiconductors to form bulk crystals. Difficult to do.

例えば、SiCを半導体材料として使用するためには、ある程度の大きさを有する高品質な単結晶を得る必要がある。このため従来は、アチェソン法と呼ばれる化学反応を利用する方法、レーリー法と呼ばれる昇華再結晶法を利用する方法によりSiC単結晶の小片を得ていた。最近は、これらの方法によって製造されたSiCの単結晶を種結晶として用い、この上に昇華再結晶化させる改良レーリー法によってSiCインゴットを育成し、このSiCインゴットをスライス、鏡面研磨したSiC基板が製造されるようになった。そして、その基板上に気相エピタキシャル成長法または液相エピタキシャル成長法によって目的規模のSiC単結晶を成長させることにより、不純物密度と膜厚を制御した活性層が形成され、これを用いてpn接合ダイオード、ショットキーダイオードや各種のトランジスタなどのSiC半導体デバイスが製造されている。これらの方法には、ハロゲンガス雰囲気下で高純度処理した黒鉛材料や、該黒鉛材料表面にSiCを被覆したSiC被覆黒鉛材料等の炭素系材料が使用されている。   For example, in order to use SiC as a semiconductor material, it is necessary to obtain a high-quality single crystal having a certain size. For this reason, conventionally, SiC single crystal pieces have been obtained by a method using a chemical reaction called the Acheson method and a method using a sublimation recrystallization method called the Rayleigh method. Recently, a SiC ingot is grown by an improved Rayleigh method in which a single crystal of SiC produced by these methods is used as a seed crystal and is sublimated and recrystallized thereon, and this SiC ingot is sliced and mirror polished. It came to be manufactured. Then, an active layer with a controlled impurity density and film thickness is formed by growing a SiC single crystal of a target scale on the substrate by vapor phase epitaxy or liquid phase epitaxy, and using this, a pn junction diode, SiC semiconductor devices such as Schottky diodes and various transistors are manufactured. In these methods, a carbon material such as a graphite material subjected to high-purity treatment in a halogen gas atmosphere or a SiC-coated graphite material in which SiC is coated on the surface of the graphite material is used.

しかしながら、ハロゲンガス雰囲気下で高純度処理を行った炭素系材料中であっても、約1000ppmの窒素が含まれている。この窒素は、炭素系材料の気孔中に存在しているものではなく、例えば、黒鉛の層間にトラップされたり、炭素原子と置換された状態で存在している。また、炭素系材料中に微量に含まれる金属不純物と結合して窒素化合物を形成している。これら炭素系材料中に含まれる窒素は、従来、特に注目されていなかったが、化合物系半導体、特にSiCデバイスの製造用治具として用いた場合、前述のSiC単結晶や、SiCエピタキシャル成長時に、SiC中に侵入し、SiC単結晶や、SiCウェハー中等の窒素濃度を上昇させ、結晶中の欠陥の一因となることが最近になって見出された。例えば、SiCウェハー中には、1017atoms/cm以上、エピタキシャル成長膜中には、1016atoms/cm以上の窒素が含有される。この窒素は、SiC半導体等の化合物系半導体に対してドーパントとなり、製造されるSiCデバイスの特性を著しく劣化させている。また、低窒素化した場合、これを一定期間保持する必要がある。 However, even in a carbon-based material that has been subjected to high-purity treatment in a halogen gas atmosphere, about 1000 ppm of nitrogen is contained. This nitrogen is not present in the pores of the carbon-based material, but is present, for example, in a state where it is trapped between graphite layers or substituted with carbon atoms. Moreover, it combines with metal impurities contained in a trace amount in the carbon-based material to form a nitrogen compound. Conventionally, nitrogen contained in these carbon-based materials has not been particularly noticed. However, when used as a jig for manufacturing compound-based semiconductors, particularly SiC devices, the above-described SiC single crystal or SiC epitaxial growth is performed during SiC epitaxial growth. It has recently been found that it penetrates into and increases the nitrogen concentration in SiC single crystals, SiC wafers, etc., and contributes to defects in the crystals. For example, the SiC wafer contains nitrogen at 10 17 atoms / cm 3 or more, and the epitaxial growth film contains 10 16 atoms / cm 3 or more nitrogen. This nitrogen serves as a dopant for compound semiconductors such as SiC semiconductors, and significantly deteriorates the characteristics of the manufactured SiC device. In addition, when the nitrogen is lowered, it is necessary to maintain this for a certain period.

本発明は、グロー放電質量分析法(以下、GDMSという。)による窒素濃度が50ppm以下であり、この状態を保持する低窒素濃度炭素系材料を提供することを目的とする。   An object of the present invention is to provide a low nitrogen concentration carbon-based material that maintains a nitrogen concentration of 50 ppm or less by glow discharge mass spectrometry (hereinafter referred to as GDMS).

課題を解決するための手段及び効果Means and effects for solving the problems

本発明は、炭素系材料中の窒素濃度を低減させ、これら低窒素濃度炭素系材料を化合物系半導体等の製造用治具として使用することで、製造される化合物系半導体等の結晶中の欠陥の発生を抑制できることを見出し本発明を完成した。すなわち、前記課題を解決するための本発明の低窒素濃度炭素系材料、は、GDMSによる窒素濃度が50ppm以下であり、大気と遮断した状態で保管されたものである。低窒素濃度炭素繊維強化炭素複合材料又は低窒素濃度膨張黒鉛シートも同様である。また、これらの低窒素濃度炭素系材料などは、シリコン半導体、化合物系半導体の製造用治具及びエピタキシャル成長膜製造用治具に用いられることが好ましい。   The present invention reduces the nitrogen concentration in the carbon-based material, and uses these low nitrogen concentration carbon-based materials as a jig for manufacturing a compound-based semiconductor, thereby producing defects in the crystal of the compound-based semiconductor manufactured. As a result, the present invention has been completed. That is, the low nitrogen concentration carbon-based material of the present invention for solving the above-mentioned problems is one that is stored in a state where the nitrogen concentration by GDMS is 50 ppm or less and is shut off from the atmosphere. The same applies to a low nitrogen concentration carbon fiber reinforced carbon composite material or a low nitrogen concentration expanded graphite sheet. These low nitrogen concentration carbon-based materials are preferably used for jigs for manufacturing silicon semiconductors and compound semiconductors and jigs for manufacturing epitaxial growth films.

炭素系材料中の窒素濃度を、50ppm以下、より好ましくは10ppm以下、さらに好ましくは5ppm以下とする。これにより、例えば、シリコン半導体、化合物系半導体の製造用治具及びエピタキシャル成長膜製造用治具に用いた場合、製造される半導体製品中への窒素の侵入を抑制することができ、従来よりも1桁以上窒素濃度が少ない半導体を製造することが可能となる。   The nitrogen concentration in the carbon-based material is 50 ppm or less, more preferably 10 ppm or less, and even more preferably 5 ppm or less. Thereby, for example, when used in a jig for manufacturing a silicon semiconductor or a compound semiconductor and a jig for manufacturing an epitaxial growth film, the intrusion of nitrogen into the manufactured semiconductor product can be suppressed. It becomes possible to manufacture a semiconductor having a nitrogen concentration that is less than an order of magnitude.

本発明で使用される炭素系材料は、黒鉛材料、炭素繊維強化炭素複合材料、膨張黒鉛シート、ガラス状炭素及び熱分解炭素等、及びこれらを基材とするもの、例えば、黒鉛材料の表面にSiCが被覆されたSiC被覆黒鉛材料や、熱分解炭素が被覆された熱分解炭素被覆黒鉛材料等を含んだものである。   The carbon-based material used in the present invention is a graphite material, a carbon fiber reinforced carbon composite material, an expanded graphite sheet, glassy carbon, pyrolytic carbon, and the like, for example, on the surface of the graphite material. It includes SiC-coated graphite material coated with SiC, pyrolytic carbon-coated graphite material coated with pyrolytic carbon, and the like.

また、本発明でいうシリコン半導体、化合物系半導体の製造用治具には、例えば、単結晶シリコンや、SiC単結晶等の化合物半導体の引上げ等に使用されるルツボやヒーター等の炉内部品を含む。また、エピタキシャル成長膜製造用治具としては、例えば、シリコンやSiC膜のエピタキシャル成長用サセプター等が例示できる。その他には、断熱材や加熱用ヒーター等も含めた炉内部品をも治具に含めるものとする。   In addition, the jigs for manufacturing silicon semiconductors and compound semiconductors referred to in the present invention include furnace parts such as crucibles and heaters used for pulling compound semiconductors such as single crystal silicon and SiC single crystals. Including. Further, examples of the epitaxial growth film manufacturing jig include a susceptor for epitaxial growth of silicon or SiC film. In addition, furnace parts including a heat insulating material and a heater for heating are also included in the jig.

また、本発明の低窒素濃度炭素系材料の製造方法は、ハロゲンガス雰囲気下で高純度処理した炭素系材料を、圧力100Pa以下、1800℃以上で熱処理し、炭素系材料中の窒素原子を放出させた後、圧力100Pa以下で所定温度まで冷却し、その後、希ガス雰囲気下において冷却を行うものである。あるいは、窒素原子を放出させた後、希ガスを導入し、希ガス雰囲気下において冷却を行うものである。   Further, the method for producing a low nitrogen concentration carbon material of the present invention releases a nitrogen atom in the carbon material by heat-treating the carbon material which has been highly purified in a halogen gas atmosphere at a pressure of 100 Pa or less and 1800 ° C. or more. Then, it is cooled to a predetermined temperature at a pressure of 100 Pa or less, and then cooled in a rare gas atmosphere. Alternatively, after releasing nitrogen atoms, a rare gas is introduced and cooling is performed in a rare gas atmosphere.

ハロゲンガス雰囲気下で高純度処理した後に、引き続き連続的に圧力100Pa以下、好ましくは1Pa以下、1800℃以上、好ましくは2000℃以上で熱処理する。あるいは、既に高純度処理を行った炭素系材料を再度、圧力100Pa以下、好ましくは1Pa以下、1800℃以上、好ましくは2000℃以上で熱処理する。この、熱処理により、ハロゲンガス雰囲気下での高純度処理時あるいは黒鉛化処理時に黒鉛層間にトラップされた窒素等が炭素系材料から放出される。これによって、低窒素濃度の炭素系材料とすることができる。冷却時は、圧力100Pa以下、好ましくは1Pa以下、で所定温度まで冷却した後、希ガスを導入して室温まで冷却する。あるいは、窒素ガスを放出する熱処理後に希ガスを導入し、希ガス雰囲気下において室温まで冷却を行う。これによって、冷却中に炭素系材料中への窒素の侵入を抑制することができる。ここで、希ガスとしては、アルゴンガスやヘリウムガス等を使用することができる。   After high-purity treatment in a halogen gas atmosphere, heat treatment is continuously performed at a pressure of 100 Pa or less, preferably 1 Pa or less, preferably 1800 ° C. or more, preferably 2000 ° C. or more. Alternatively, the carbon-based material that has already been subjected to high-purity treatment is again heat-treated at a pressure of 100 Pa or less, preferably 1 Pa or less, 1800 ° C. or more, preferably 2000 ° C. or more. By this heat treatment, nitrogen or the like trapped between the graphite layers during the high-purity treatment or graphitization treatment in a halogen gas atmosphere is released from the carbon-based material. Thereby, a carbon-based material having a low nitrogen concentration can be obtained. At the time of cooling, after cooling to a predetermined temperature at a pressure of 100 Pa or less, preferably 1 Pa or less, a rare gas is introduced to cool to room temperature. Alternatively, a rare gas is introduced after the heat treatment for releasing the nitrogen gas, and cooling is performed to room temperature in a rare gas atmosphere. As a result, nitrogen can be prevented from entering the carbon-based material during cooling. Here, argon gas, helium gas, or the like can be used as the rare gas.

また、本発明の低窒素濃度炭素系材料の製造方法は、前記希ガス雰囲気下において室温まで冷却を行った後、大気と遮断した状態で保管するものである。   Moreover, the manufacturing method of the low nitrogen concentration carbonaceous material of this invention is stored in the state isolate | separated from air | atmosphere after cooling to room temperature in the said rare gas atmosphere.

高純度処理後、又は、炭素系材料中の窒素等を除去する熱処理を行った後に、大気と遮断した状態で保管することによって、より確実に炭素系材料中の窒素濃度を低い状態で維持することができる。ここで、大気と遮断した状態とは、例えば、いわゆる真空パックと呼ばれる樹脂フィルム等の機密性に優れた袋内を大気圧よりも減圧状態にして炭素系材料を密封した状態とする。又は、ガスパックと呼ばれる樹脂フィルム等の機密性に優れた袋内に希ガス雰囲気とともに炭素系材料を密封した状態としたものをいう。ここで、樹脂フィルムとしては、塩化ビニルフィルム、ポリエチレンフィルム等を使用することができる。   After high-purity treatment or after heat treatment to remove nitrogen in the carbon-based material, store it in a state where it is cut off from the atmosphere, so that the nitrogen concentration in the carbon-based material is more reliably maintained at a low level. be able to. Here, the state cut off from the atmosphere is, for example, a state in which the carbon-based material is sealed by setting the inside of the bag excellent in confidentiality such as a resin film called a so-called vacuum pack to a reduced pressure state from the atmospheric pressure. Or the thing which made the state which sealed the carbonaceous material with the noble gas atmosphere in the bag excellent in confidentiality, such as a resin film called a gas pack. Here, a vinyl chloride film, a polyethylene film, etc. can be used as a resin film.

以下に、本発明で使用される炭素系材料の実施形態例の一例として黒鉛材料について説明する。   Below, a graphite material is demonstrated as an example of the embodiment example of the carbonaceous material used by this invention.

本実施形態例に用いられる黒鉛材料は、一般的な製法で製造されたものを使用することができる。一般的な製法の一例として、先ず炭素成形体を焼成炉内において800乃至1000℃に加熱し、バインダー等に含まれる易揮発成分を、分散、蒸散させて焼成する工程(工程A)、次に焼成体を取り出し、黒鉛化炉、例えばアチェソン式炉、カストナー式炉又は誘導加熱炉(例えば特開昭57−166305号、166306号、166307号、166308号)にて3000℃に加熱して黒鉛化する工程(工程B)、更に、このようにして得られた黒鉛材料を、別の反応器中でハロゲンガス雰囲気中で加熱し、黒鉛材料中の不純物を蒸気圧の高い物質に変化せしめて母材から揮散させ、黒鉛材料の高純度化を行う工程(工程C)から成る工程を経て製造する。   As the graphite material used in the present embodiment, one manufactured by a general manufacturing method can be used. As an example of a general production method, first, a carbon molded body is heated to 800 to 1000 ° C. in a firing furnace, and a readily volatile component contained in a binder or the like is dispersed and evaporated to be fired (step A), then The fired body is taken out and graphitized by heating to 3000 ° C. in a graphitization furnace such as an Acheson furnace, a Kaston furnace, or an induction heating furnace (for example, JP-A 57-166305, 166306, 166307, 166308). In addition, the graphite material thus obtained is heated in a halogen gas atmosphere in another reactor to change the impurities in the graphite material to a substance having a high vapor pressure. It is manufactured through a process consisting of a process (process C) which volatilizes from the material and purifies the graphite material.

これら黒鉛化、高純度化処理時には、加熱に要するヒーター等の周りに窒素ガスを流し、ヒーター等の酸化を防止することが一般的に行われている。この窒素ガスが、黒鉛化及び高純度化処理の時に、黒鉛の層間にトラップされたり、炭素原子と置換したり、あるいは、黒鉛材料中に僅かに残った金属不純物と反応し、窒素化合物を形成し、黒鉛材料中に残存してしまう。   At the time of these graphitization and high-purification treatments, it is generally performed to flow a nitrogen gas around a heater or the like required for heating to prevent oxidation of the heater or the like. This nitrogen gas is trapped between the graphite layers during the graphitization and high-purification treatment, is replaced with carbon atoms, or reacts with metal impurities slightly remaining in the graphite material to form nitrogen compounds. And remain in the graphite material.

また、一般に、高純度化処理及び黒鉛化処理後の冷却時には、冷却速度を高めるとともに、黒鉛材料の酸化を防止するために、窒素雰囲気下での冷却が行われている。この冷却時に炉内に導入される窒素ガスも、黒鉛材料の層間にトラップされたり、炭素原子と置換したり、あるいは、黒鉛材料中に僅かに残った金属不純物と反応し、窒素化合物を形成する。   In general, at the time of cooling after the high-purification treatment and the graphitization treatment, cooling in a nitrogen atmosphere is performed in order to increase the cooling rate and prevent oxidation of the graphite material. Nitrogen gas introduced into the furnace during this cooling is also trapped between the layers of the graphite material, replaced with carbon atoms, or reacts with metal impurities slightly remaining in the graphite material to form nitrogen compounds. .

このように、黒鉛材料中に残存した窒素は、シリコン半導体、化合物系半導体の製造用治具及びエピタキシャル成長膜製造用治具として使用した場合、これら半導体中に侵入し、半導体中の窒素濃度を高めることになる。これら半導体中の窒素は、結晶内の欠陥の一因になると考えられている。   As described above, when the nitrogen remaining in the graphite material is used as a jig for manufacturing a silicon semiconductor or a compound semiconductor and a jig for manufacturing an epitaxial growth film, the nitrogen penetrates into these semiconductors to increase the nitrogen concentration in the semiconductor. It will be. Nitrogen in these semiconductors is thought to contribute to defects in the crystal.

本実施形態においては、これら、黒鉛化処理及び高純度化処理時あるいは高純度処理後に黒鉛材料が、極力窒素(大気)に晒されないようにするか若しくは後処理で窒素を放出させることで、黒鉛材料の黒鉛層間にトラップされる窒素、炭素原子と置換する窒素原子及び黒鉛材料中に僅かに残る金属不純物と反応する窒素を低減させるものである。   In the present embodiment, the graphite material is prevented from being exposed to nitrogen (atmosphere) as much as possible during the graphitization treatment and the high-purification treatment or after the high-purity treatment, or by releasing nitrogen in the post-treatment. Nitrogen trapped between the graphite layers of the material, nitrogen atoms replacing carbon atoms, and nitrogen reacting with slight metal impurities remaining in the graphite material are reduced.

すなわち、本実施形態例に係る黒鉛材料の製造にあたっては、黒鉛化若しくは高純度化処理の時のヒーター周りに流す窒素ガスに代えて、アルゴンガスやヘリウムガス等の希ガスを用いることもできる。さらには、黒鉛化処理(工程B)の時に、雰囲気ガスとしてアルゴンガスやヘリウムガス等の希ガスを用いることが好ましい。また、高純度化処理(工程C)時においては、ハロゲンガスによる処理の後、圧力100Pa以下、好ましくは1Pa以下、若しくはアルゴンガスやヘリウムガス等の希ガス雰囲気下で、1800℃以上、好ましくは2000℃以上で熱処理を行い、黒鉛材料中に何らかの状態で存在する窒素を放出させる。さらに、冷却時においても、できるだけ、窒素ガスを使用せずに、圧力100Pa以下、好ましくは1Pa以下、若しくはアルゴンガスやヘリウムガス等の希ガス雰囲気下で冷却処理を行う。この一連の工程は、同一炉で連続的に行うことも、また、各工程を夫々別の炉で行うこともできる。また、高純度処理(工程C)時におけるヒーター周りに流すガスは、ハロゲンガスによる高純度化処理時には、窒素ガスを流し、ハロゲンガスによる高純度化処理終了時にアルゴンガスやヘリウムガス等の希ガスを導入し、熱処理及び冷却処理を行い、窒素ガスを放出させてもよい。   That is, in producing the graphite material according to the present embodiment, a rare gas such as argon gas or helium gas can be used instead of the nitrogen gas flowing around the heater during the graphitization or the purification process. Furthermore, it is preferable to use a rare gas such as argon gas or helium gas as the atmospheric gas during the graphitization treatment (step B). Further, at the time of the high-purification treatment (step C), after the treatment with the halogen gas, the pressure is 100 Pa or less, preferably 1 Pa or less, or 1800 ° C. or more, preferably in a rare gas atmosphere such as argon gas or helium gas. Heat treatment is performed at 2000 ° C. or higher to release nitrogen existing in some state in the graphite material. Further, at the time of cooling, the cooling treatment is performed under a pressure of 100 Pa or less, preferably 1 Pa or less, or a rare gas atmosphere such as argon gas or helium gas without using nitrogen gas as much as possible. This series of steps can be performed continuously in the same furnace, or each step can be performed in a separate furnace. In addition, the gas that flows around the heater during the high-purity treatment (Step C) is a nitrogen gas during the high-purity treatment with the halogen gas, and a rare gas such as argon gas or helium gas when the high-purity treatment with the halogen gas is completed. May be introduced to perform heat treatment and cooling treatment to release nitrogen gas.

また、従来の方法で、黒鉛化処理、高純度化処理を行った黒鉛材料も、後工程として圧力100Pa以下、好ましくは1Pa以下、あるいはアルゴンガスやヘリウムガス等の希ガス雰囲気下で、1800℃以上、好ましくは2000℃以上に再加熱することにより、黒鉛材料中の窒素濃度を低減させることができる。   Further, a graphite material subjected to graphitization treatment and high-purity treatment by a conventional method is also subjected to a pressure of 100 Pa or less, preferably 1 Pa or less, or 1800 ° C. in a rare gas atmosphere such as argon gas or helium gas. As described above, the nitrogen concentration in the graphite material can be reduced by reheating to 2000 ° C. or higher.

このようにして、黒鉛化処理時や高純度化処理時に、窒素ガスに代えてアルゴンガスやヘリウムガス等の希ガスを用いる。あるいは、窒素を使うのであれば、黒鉛材料をできるだけ窒素が黒鉛材料中に残存しないようにする。若しくは、黒鉛化処理、高純度化処理を経て製造された黒鉛材料を、別途圧力100Pa以下、好ましくは1Pa以下、若しくはアルゴンガスやヘリウムガス等の希ガス雰囲気下で1800℃以上、好ましくは2000℃以上で加熱処理を行うことにより、黒鉛材料中の窒素濃度を低減でき、GDMSによる窒素濃度が100ppm以下、好ましくは50ppm以下、より好ましくは10ppm以下、さらに好ましくは5ppm以下の黒鉛材料とすることができる。
ここで、GDMSによる窒素濃度の測定は、グロー放電質量分析装置(VG9000、VG Elemental社製)を用い、到達圧力が10−4Pa以下に保たれた容器内で、黒鉛材料の表面や気孔中に含まれる窒素ガスを十分に排気した後に行った。
In this way, a rare gas such as argon gas or helium gas is used in place of nitrogen gas during the graphitization process or the purification process. Alternatively, if nitrogen is used, the graphite material should be kept as little as possible in the graphite material. Alternatively, a graphite material produced through graphitization treatment or high-purification treatment is separately used at a pressure of 100 Pa or less, preferably 1 Pa or less, or 1800 ° C. or more, preferably 2000 ° C. in a rare gas atmosphere such as argon gas or helium gas. By performing the heat treatment as described above, the nitrogen concentration in the graphite material can be reduced, and the nitrogen concentration by GDMS is 100 ppm or less, preferably 50 ppm or less, more preferably 10 ppm or less, and further preferably 5 ppm or less. it can.
Here, the measurement of the nitrogen concentration by GDMS is performed using a glow discharge mass spectrometer (VG9000, manufactured by VG Elemental) in a vessel in which the ultimate pressure is maintained at 10 −4 Pa or less, in the surface of the graphite material or in the pores. The nitrogen gas contained in was exhausted sufficiently.

なお、本実施形態例に係る黒鉛材料は、このままであっても、シリコン半導体、化合物系半導体の製造用治具及びエピタキシャル成長膜製造用治具として使用することができる。また、SiC被覆黒鉛材の基材としても使用可能である。このように、SiC被覆黒鉛材の基材として使用すると、例えば、SiCのエピタキシャル成長膜製造用治具として使用した場合であっても、SiCウェハー中への窒素の侵入を抑制することができる。   Even if the graphite material according to the present embodiment is left as it is, it can be used as a jig for manufacturing a silicon semiconductor or a compound semiconductor and a jig for manufacturing an epitaxial growth film. It can also be used as a base material for SiC-coated graphite material. Thus, when used as a base material for a SiC-coated graphite material, for example, even when used as a jig for producing an epitaxial film of SiC, it is possible to suppress the penetration of nitrogen into the SiC wafer.

また、本実施形態例に係る黒鉛材料は、シリコン半導体、化合物系半導体の製造用治具及びエピタキシャル成長膜製造用治具、あるいはこれらに用いられるSiC被覆黒鉛材の基材として用いられる以外に、原子炉や核融合炉の中性子等との接触する部位に用いることもできる。この際、黒鉛材料中の窒素濃度が低いと、中性子との接触断面積を小さく抑えることができる。このため、中性子の利用効率が下がることを抑制することができる。これによって、核設計の精度が上昇するとともに、効率の上昇が計れる。   In addition, the graphite material according to the present embodiment is not limited to a silicon semiconductor, a compound semiconductor manufacturing jig and an epitaxial growth film manufacturing jig, or an SiC-coated graphite material used for them. It can also be used for a portion that comes into contact with a neutron or the like of a reactor or a fusion reactor. At this time, if the nitrogen concentration in the graphite material is low, the contact cross-sectional area with neutrons can be kept small. For this reason, it can suppress that the utilization efficiency of a neutron falls. This increases the accuracy of nuclear design and increases efficiency.

また、本発明は、黒鉛材料のみならず、炭素繊維強化炭素複合材料、膨張黒鉛シート、ガラス状炭素等や、例えば、黒鉛材料の表面にSiCが被覆されたSiC被覆黒鉛材料や、熱分解炭素が被覆された熱分解炭素被覆黒鉛材料等の炭素系材料全般に適用可能であり、黒鉛材料以外のものについては前記の黒鉛材料と同様の方法が適用できる。   Further, the present invention is not limited to graphite materials, but also carbon fiber reinforced carbon composite materials, expanded graphite sheets, glassy carbon, etc., for example, SiC-coated graphite materials in which SiC is coated on the surface of graphite materials, pyrolytic carbon Can be applied to all carbon-based materials such as pyrolytic carbon-coated graphite material coated with, and the same method as the above graphite material can be applied to materials other than graphite materials.

次に、実施例により本発明を具体的に説明する。   Next, the present invention will be described specifically by way of examples.

(実施例1)
以下に順を追って本発明を説明する。先ず、炉内に炭素材を設置する。次に、炉内に窒素ガスを導入し、容器内部の空気を窒素ガスで置換したのち、炉内を減圧する。そして、ヒーターに徐々に電圧を印加して炉内を加熱し、その輻射熱により被加熱炭素材を800〜1000℃に約5時間保ったのち(焼成工程)、徐々に昇温を続け、2450〜2500℃に調節しながら15時間保持した(黒鉛化工程)。容器内は加熱を始めた時点から0.1Pa程度に保たれているので、この段階で僅かに揮散してくる脱ガスの排出には好都合である。そして、黒鉛化の際、最初から或いは、黒鉛化が若干進んだ段階で、減圧状態(約0.1Pa程度)のままハロゲン又はその化合物のガス、例えばジクロルジフルオルメタンを(流量は容器内に充填する被加熱炭素材の量により増減されるが、例えば1〜7lNTP/kg程度で)8時間程度供給する。なお、前記工程中は、ヒーターを保護することを目的としてヒーター周りに常時アルゴンガスを流しておく。上記方法によって黒鉛化、高純度化工程を完了する。そして、引き続き、連続的に黒鉛化した材料を、2200℃で保持するとともに、容器内圧力を0.1Paに強減圧したまま5時間熱処理を行う(脱窒素ガス工程)。このとき、ヒーター周りのガスもアルゴンガスを使用し、窒素ガスが黒鉛材料へ侵入するのを防止する。これにより、低窒素濃度黒鉛材料を得ることができる。そして、所定時間熱処理を行うと、容器内圧力を0.1Paに保持したまま200℃まで冷却する。200℃に到達した時点で、容器内に希ガスとしてアルゴンガスを導入し、室温まで冷却する。室温まで冷却した後、大気に晒されないように、樹脂フィルムからなる袋内にアルゴンガスと共に封入して保管した。
Example 1
The present invention will be described below step by step. First, a carbon material is installed in the furnace. Next, nitrogen gas is introduced into the furnace, the air inside the container is replaced with nitrogen gas, and then the pressure in the furnace is reduced. And after applying a voltage gradually to a heater and heating the inside of a furnace and keeping the to-be-heated carbon material at 800-1000 degreeC for about 5 hours by the radiant heat (baking process), temperature rising is continued gradually, 2450- The temperature was maintained at 2500 ° C. for 15 hours (graphitization step). Since the inside of the container is maintained at about 0.1 Pa from the start of heating, it is convenient for discharging degass that is slightly volatilized at this stage. During graphitization, or at the stage where graphitization has progressed slightly, a halogen or its compound gas, such as dichlorodifluoromethane (flow rate is in the vessel) in a reduced pressure state (about 0.1 Pa). It is increased or decreased depending on the amount of the carbon material to be heated, but is supplied for about 8 hours (for example, about 1 to 7 lNTP / kg). During the process, argon gas is always flowed around the heater for the purpose of protecting the heater. The graphitization and purification steps are completed by the above method. Subsequently, the continuously graphitized material is maintained at 2200 ° C., and heat treatment is performed for 5 hours while the internal pressure of the container is strongly reduced to 0.1 Pa (denitrification gas process). At this time, argon gas is also used as the gas around the heater to prevent nitrogen gas from entering the graphite material. Thereby, a low nitrogen concentration graphite material can be obtained. And if it heat-processes for a predetermined time, it will cool to 200 degreeC, keeping the pressure in a container at 0.1 Pa. When the temperature reaches 200 ° C., argon gas is introduced into the container as a rare gas and cooled to room temperature. After cooling to room temperature, it was sealed and stored with argon gas in a bag made of a resin film so as not to be exposed to the atmosphere.

(実施例2)
実施例1と同様の方法により、黒鉛化、高純度化工程を経た黒鉛材料を、一旦、処理炉から取り出した。このとき、できるだけ、大気に晒されないように樹脂フィルムからなる袋内にアルゴンガスと共に封入して保管した。そして、この黒鉛材料を樹脂フィルムからなる袋から取り出し、再度、炉内に設置し、2200℃に再加熱するとともに、容器内圧力を0.1Paに強減圧し、5時間熱処理を行う(脱窒素ガス工程)。そして、所定時間熱処理を行うと、容器内圧力を0.1Paに保持したまま200℃まで冷却する。200℃に到達した時点で、容器内に希ガスとしてアルゴンガスを導入し、室温まで冷却する。室温まで冷却した後、大気に晒されないように、樹脂フィルムからなる袋内にアルゴンガスと共に封入して保管した。
(Example 2)
By the same method as in Example 1, the graphite material that had undergone the graphitization and purification steps was once taken out of the processing furnace. At this time, it was sealed and stored together with argon gas in a bag made of a resin film so as not to be exposed to the atmosphere as much as possible. Then, the graphite material is taken out from the bag made of a resin film, placed in the furnace again, reheated to 2200 ° C., and the pressure in the container is strongly reduced to 0.1 Pa, followed by heat treatment for 5 hours (denitrogenation). Gas process). And if it heat-processes for a predetermined time, it will cool to 200 degreeC, keeping the pressure in a container at 0.1 Pa. When the temperature reaches 200 ° C., argon gas is introduced into the container as a rare gas and cooled to room temperature. After cooling to room temperature, it was sealed and stored with argon gas in a bag made of a resin film so as not to be exposed to the atmosphere.

(実施例3)
実施例1と同様の方法により、黒鉛化、高純度化工程を経た黒鉛材料を、2200℃に再加熱するとともに、容器内圧力を0.1Paに強減圧し、5時間熱処理を行う(脱窒素ガス工程)。そして、所定時間熱処理を行うと、容器内に希ガスとしてアルゴンガスを導入し、室温まで冷却する。室温まで冷却した後、大気に晒されないように、樹脂フィルムからなる袋内にアルゴンガスと共に封入して保管した。
(Example 3)
By the same method as in Example 1, the graphite material that has undergone the graphitization and purification step is reheated to 2200 ° C., and the internal pressure of the container is strongly reduced to 0.1 Pa, followed by heat treatment for 5 hours (denitrogenation). Gas process). When heat treatment is performed for a predetermined time, argon gas is introduced into the container as a rare gas and cooled to room temperature. After cooling to room temperature, it was sealed and stored with argon gas in a bag made of a resin film so as not to be exposed to the atmosphere.

(比較例1)
実施例1と同様の方法によって、黒鉛化、高純度化処理を完了した黒鉛材料を脱窒素ガス工程を行うことなく、窒素ガスで冷却し、大気中で保管しておいた材料を比較例1の試料とした。
(Comparative Example 1)
A graphite material that has been graphitized and highly purified by the same method as in Example 1 was cooled with nitrogen gas without performing a denitrification gas step, and a material stored in the atmosphere was compared with Comparative Example 1. It was set as the sample of this.

(比較例2)
脱窒素ガス工程として、容器内圧力を0.1Paに強減圧することなく、常圧、2000℃でアルゴンガス雰囲気としたことを除き、実施例1と同様な操作を行った。
(Comparative Example 2)
As the denitrification gas step, the same operation as in Example 1 was performed, except that the internal pressure of the container was not reduced to 0.1 Pa, but an argon gas atmosphere was set at 2000 ° C. under normal pressure.

(比較例3)
脱窒素ガス工程として、容器内圧力を0.1Paに強減圧することなく、常圧、1800℃でアルゴンガス雰囲気としたことを除き、実施例1と同様な操作を行った。
(Comparative Example 3)
As the denitrification gas step, the same operation as in Example 1 was performed, except that the internal pressure of the container was not reduced to 0.1 Pa and the argon gas atmosphere was set at normal pressure and 1800 ° C.

以下(1)乃至(3)の状態の試料について、夫々GDMSにより、含有する窒素濃度を測定した。
(1)実施例1乃至3及び比較例1乃至3の黒鉛材中の窒素濃度、
(2)実施例1乃至3及び比較例1乃至3の黒鉛材を基材として用い、これら黒鉛材の表面にCVD−SiCを形成したときのCVD−SiC中の窒素濃度、
(3)上記(2)に係るCVD−SiC被覆黒鉛材をサセプターとして用い、SiCウェハー上にエピタキシャル成長膜を形成する際の治具として用いた場合のエピタキシャル成長膜中の窒素濃度。
In the following samples (1) to (3), the nitrogen concentration contained was measured by GDMS.
(1) Nitrogen concentration in the graphite materials of Examples 1 to 3 and Comparative Examples 1 to 3,
(2) Using the graphite materials of Examples 1 to 3 and Comparative Examples 1 to 3 as a base material, the nitrogen concentration in CVD-SiC when CVD-SiC was formed on the surface of these graphite materials,
(3) Nitrogen concentration in the epitaxially grown film when the CVD-SiC coated graphite material according to (2) is used as a susceptor and used as a jig when an epitaxially grown film is formed on a SiC wafer.

各試料の窒素濃度について表1にまとめて示す。   Table 1 summarizes the nitrogen concentration of each sample.

Figure 2006232669
Figure 2006232669

表1より、脱窒素ガス工程を経た黒鉛材料は、各段階での含有窒素濃度が低いことがわかる。また、これに伴って、実施例1乃至3に係る低窒素濃度黒鉛材料をSiC半導体の製造用治具として用いることによって、SiC半導体デバイスの結晶欠陥の発生を抑制できる。   From Table 1, it can be seen that the graphite material that has undergone the denitrification gas process has a low nitrogen concentration at each stage. Accordingly, by using the low nitrogen concentration graphite material according to Examples 1 to 3 as a jig for manufacturing a SiC semiconductor, the generation of crystal defects in the SiC semiconductor device can be suppressed.

以上より、黒鉛化処理あるいは高純度化処理時に、希ガスを用いるか、若しくは、高純度処理後に脱窒素ガス工程を経ることによって低窒素濃度炭素系材料、低窒素濃度炭素繊維強化炭素複合材料、低窒素濃度膨張黒鉛シートなどとすることができる。これらの低窒素濃度炭素系材料などを、樹脂を用いていわゆる真空パックなどし、大気と遮断した状態で保管する。これにより、現場で樹脂を除去して、上記低窒素濃度炭素系材料などをクリーンな状態で化合物系半導体等の製造用治具として用いた場合、半導体デバイスへの窒素の侵入を抑制でき、半導体デバイスの結晶欠陥を抑制できる効果を奏する。   From the above, at the time of graphitization treatment or high purity treatment, a rare gas is used, or a low nitrogen concentration carbon-based material, a low nitrogen concentration carbon fiber reinforced carbon composite material by passing through a denitrification gas step after the high purity treatment, A low nitrogen concentration expanded graphite sheet can be used. These low nitrogen concentration carbon-based materials and the like are stored in a state where they are cut off from the atmosphere by using a resin so-called vacuum packing. As a result, when the resin is removed on-site and the low nitrogen concentration carbon-based material is used as a jig for manufacturing a compound semiconductor or the like in a clean state, nitrogen can be prevented from entering the semiconductor device. It has the effect of suppressing crystal defects in the device.

Claims (3)

グロー放電質量分析法による窒素濃度が50ppm以下であり、大気と遮断した状態で保管されたSiCエピタキシャル成長膜製造用治具又はSiC単結晶製造用治具に用いられる低窒素濃度黒鉛材料。   A low nitrogen concentration graphite material used for a jig for producing an SiC epitaxial growth film or a jig for producing an SiC single crystal, which has a nitrogen concentration by glow discharge mass spectrometry of 50 ppm or less and is stored in a state of being cut off from the atmosphere. グロー放電質量分析法による窒素濃度が50ppm以下であり、大気と遮断した状態で保管されたSiCエピタキシャル成長膜製造用治具又はSiC単結晶製造用治具に用いられる低窒素濃度炭素繊維強化炭素複合材料。   Low nitrogen concentration carbon fiber reinforced carbon composite material used for SiC epitaxial growth film manufacturing jig or SiC single crystal manufacturing jig stored in a state where the nitrogen concentration by glow discharge mass spectrometry is 50 ppm or less and cut off from the atmosphere . グロー放電質量分析法による窒素濃度が50ppm以下であり、大気と遮断した状態で保管されたSiCエピタキシャル成長膜製造用治具又はSiC単結晶製造用治具に用いられる低窒素濃度膨張黒鉛シート。   A low nitrogen concentration expanded graphite sheet used for a jig for producing an SiC epitaxial growth film or a jig for producing a SiC single crystal, which has a nitrogen concentration by glow discharge mass spectrometry of 50 ppm or less and is stored in a state of being cut off from the atmosphere.
JP2006147208A 2000-12-18 2006-05-26 Low nitrogen concentration graphite material, low nitrogen concentration carbon fiber reinforced carbon composite material, low nitrogen concentration expanded graphite sheet Pending JP2006232669A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006147208A JP2006232669A (en) 2000-12-18 2006-05-26 Low nitrogen concentration graphite material, low nitrogen concentration carbon fiber reinforced carbon composite material, low nitrogen concentration expanded graphite sheet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000384346 2000-12-18
JP2006147208A JP2006232669A (en) 2000-12-18 2006-05-26 Low nitrogen concentration graphite material, low nitrogen concentration carbon fiber reinforced carbon composite material, low nitrogen concentration expanded graphite sheet

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001382973A Division JP2002249376A (en) 2000-12-18 2001-12-17 Low nitrogen concentration carbonaceous material and method for producing the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010179281A Division JP5657949B2 (en) 2000-12-18 2010-08-10 Low nitrogen concentration graphite material and storage method thereof

Publications (1)

Publication Number Publication Date
JP2006232669A true JP2006232669A (en) 2006-09-07

Family

ID=37040727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006147208A Pending JP2006232669A (en) 2000-12-18 2006-05-26 Low nitrogen concentration graphite material, low nitrogen concentration carbon fiber reinforced carbon composite material, low nitrogen concentration expanded graphite sheet

Country Status (1)

Country Link
JP (1) JP2006232669A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015033699A1 (en) * 2013-09-06 2015-03-12 住友電気工業株式会社 Silicon carbide epitaxial substrate, method for manufacturing silicon carbide epitaxial substrate, method for manufacturing silicon carbide semiconductor device, silicon carbide-growing device, and member for silicon carbide-growing device
JP2015117175A (en) * 2013-12-20 2015-06-25 日本電極株式会社 Manufacturing apparatus and method of graphite powder
JP2015146416A (en) * 2014-01-06 2015-08-13 住友電気工業株式会社 Silicon carbide substrate support member, member for silicon carbide growth device and silicon carbide epitaxial substrate manufacturing method
JP2015207695A (en) * 2014-04-22 2015-11-19 住友電気工業株式会社 Epitaxial wafer manufacturing method and epitaxial wafer
CN111351833A (en) * 2020-03-11 2020-06-30 新疆烯金石墨烯科技有限公司 Method for detecting impurity elements and content thereof in graphene oxide

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01197363A (en) * 1988-02-01 1989-08-09 Mitsui Eng & Shipbuild Co Ltd Method for cleaning graphitic member
JPH02225312A (en) * 1989-01-20 1990-09-07 Toshiba Ceramics Co Ltd Purification of carbon-graphite material
JPH107488A (en) * 1997-03-19 1998-01-13 Toyo Tanso Kk High-purity graphite material for single-crystal pulling apparatus, and its production
JPH10513146A (en) * 1995-01-31 1998-12-15 エービービー リサーチ リミテッド Method and apparatus for protecting a susceptor during epitaxial growth by CVD
JP2003086518A (en) * 2001-09-10 2003-03-20 Toshiba Corp Method for CVD of silicon carbide film, CVD apparatus and susceptor for CVD apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01197363A (en) * 1988-02-01 1989-08-09 Mitsui Eng & Shipbuild Co Ltd Method for cleaning graphitic member
JPH02225312A (en) * 1989-01-20 1990-09-07 Toshiba Ceramics Co Ltd Purification of carbon-graphite material
JPH10513146A (en) * 1995-01-31 1998-12-15 エービービー リサーチ リミテッド Method and apparatus for protecting a susceptor during epitaxial growth by CVD
JPH107488A (en) * 1997-03-19 1998-01-13 Toyo Tanso Kk High-purity graphite material for single-crystal pulling apparatus, and its production
JP2003086518A (en) * 2001-09-10 2003-03-20 Toshiba Corp Method for CVD of silicon carbide film, CVD apparatus and susceptor for CVD apparatus

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015033699A1 (en) * 2013-09-06 2015-03-12 住友電気工業株式会社 Silicon carbide epitaxial substrate, method for manufacturing silicon carbide epitaxial substrate, method for manufacturing silicon carbide semiconductor device, silicon carbide-growing device, and member for silicon carbide-growing device
JP2015051895A (en) * 2013-09-06 2015-03-19 住友電気工業株式会社 Silicon carbide epitaxial substrate, method of manufacturing silicon carbide epitaxial substrate, method of manufacturing silicon carbide semiconductor device, silicon carbide growth apparatus and member for silicon carbide growth apparatus
US9057147B2 (en) 2013-09-06 2015-06-16 Sumitomo Electric Industries, Ltd. Silicon carbide epitaxial substrate and method of manufacturing silicon carbide epitaxial substrate
CN105579625A (en) * 2013-09-06 2016-05-11 住友电气工业株式会社 Silicon carbide epitaxial substrate, method of manufacturing silicon carbide epitaxial substrate, method of manufacturing silicon carbide semiconductor device, silicon carbide growth apparatus, and silicon carbide growth apparatus components
JP2015117175A (en) * 2013-12-20 2015-06-25 日本電極株式会社 Manufacturing apparatus and method of graphite powder
JP2015146416A (en) * 2014-01-06 2015-08-13 住友電気工業株式会社 Silicon carbide substrate support member, member for silicon carbide growth device and silicon carbide epitaxial substrate manufacturing method
JP2015207695A (en) * 2014-04-22 2015-11-19 住友電気工業株式会社 Epitaxial wafer manufacturing method and epitaxial wafer
CN111351833A (en) * 2020-03-11 2020-06-30 新疆烯金石墨烯科技有限公司 Method for detecting impurity elements and content thereof in graphene oxide

Similar Documents

Publication Publication Date Title
JP4845142B2 (en) Method for producing high quality and large size silicon carbide crystals
JP5053993B2 (en) Seed-forming growth method for preparing aluminum nitride single crystals
JP5841339B2 (en) 100mm high purity semi-insulating single crystal silicon carbide wafer
JP3692076B2 (en) SiC single crystal and growth method thereof
US6881680B2 (en) Low nitrogen concentration carbonaceous material and manufacturing method thereof
WO2011024931A1 (en) Sic single crystal wafer and process for production thereof
WO2010024390A1 (en) METHOD AND APPARATUS FOR MANUFACTURING SiC SINGLE CRYSTAL FILM
EP1782454A2 (en) Low-doped semi-insulating sic crystals and method
EP2940196B1 (en) Method for producing n-type sic single crystal
WO2006070480A1 (en) Silicon carbide single crystal, silicon carbide single crystal wafer, and process for producing the same
JP2002249376A (en) Low nitrogen concentration carbonaceous material and method for producing the same
JP2006232669A (en) Low nitrogen concentration graphite material, low nitrogen concentration carbon fiber reinforced carbon composite material, low nitrogen concentration expanded graphite sheet
JP3741283B2 (en) Heat treatment apparatus and heat treatment method using the same
JP4460236B2 (en) Silicon carbide single crystal wafer
JP4253974B2 (en) SiC single crystal and growth method thereof
JP4427470B2 (en) Method for producing silicon carbide single crystal
JP5131262B2 (en) Silicon carbide single crystal and method for producing the same
JP4304783B2 (en) SiC single crystal and growth method thereof
JP5657949B2 (en) Low nitrogen concentration graphite material and storage method thereof
WO2021060369A1 (en) Sic substrate, sic substrate production method, sic semiconductor device, and sic semiconductor device production method
JP4673528B2 (en) Silicon carbide single crystal ingot and method for producing the same
JP2005239465A (en) Silicon carbide single crystal production device
WO2010082574A1 (en) Method for producing nitride semiconductor crystal, nitride semiconductor crystal, and apparatus for producing nitride semiconductor crystal
JP2005132703A (en) Method for manufacturing silicon carbide substrate and silicon carbide substrate
TW202129093A (en) Method for producing semiconductor substrates and device for producing semiconductor substrates

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090616

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100421

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100810

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100825

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20100917