JP2006228633A - Manufacturing method of substrate heater, and the substrate heater - Google Patents
Manufacturing method of substrate heater, and the substrate heater Download PDFInfo
- Publication number
- JP2006228633A JP2006228633A JP2005043133A JP2005043133A JP2006228633A JP 2006228633 A JP2006228633 A JP 2006228633A JP 2005043133 A JP2005043133 A JP 2005043133A JP 2005043133 A JP2005043133 A JP 2005043133A JP 2006228633 A JP2006228633 A JP 2006228633A
- Authority
- JP
- Japan
- Prior art keywords
- heating element
- substrate
- resistance
- resistance heating
- resistance value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 184
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 29
- 238000010438 heat treatment Methods 0.000 claims abstract description 315
- 238000009826 distribution Methods 0.000 claims abstract description 39
- 238000000034 method Methods 0.000 claims description 104
- 230000004075 alteration Effects 0.000 claims description 72
- 230000008569 process Effects 0.000 claims description 67
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 claims description 22
- 238000005259 measurement Methods 0.000 claims description 12
- 230000001678 irradiating effect Effects 0.000 claims description 9
- 230000004048 modification Effects 0.000 claims description 6
- 238000012986 modification Methods 0.000 claims description 6
- 239000000919 ceramic Substances 0.000 abstract description 56
- 230000009466 transformation Effects 0.000 abstract 1
- 238000012545 processing Methods 0.000 description 25
- 238000010304 firing Methods 0.000 description 20
- 239000000463 material Substances 0.000 description 14
- 239000000843 powder Substances 0.000 description 14
- 238000003763 carbonization Methods 0.000 description 12
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 10
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 description 10
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 9
- 239000008187 granular material Substances 0.000 description 9
- 229910052721 tungsten Inorganic materials 0.000 description 9
- 239000010937 tungsten Substances 0.000 description 9
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 8
- 229910052750 molybdenum Inorganic materials 0.000 description 8
- 239000011733 molybdenum Substances 0.000 description 8
- 238000002203 pretreatment Methods 0.000 description 8
- 238000007639 printing Methods 0.000 description 8
- 239000002994 raw material Substances 0.000 description 8
- 239000012298 atmosphere Substances 0.000 description 7
- 239000007789 gas Substances 0.000 description 7
- 238000000465 moulding Methods 0.000 description 7
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 6
- 230000007797 corrosion Effects 0.000 description 6
- 238000005260 corrosion Methods 0.000 description 6
- 238000003754 machining Methods 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- 230000008859 change Effects 0.000 description 5
- 229910001873 dinitrogen Inorganic materials 0.000 description 5
- 238000002844 melting Methods 0.000 description 5
- 230000008018 melting Effects 0.000 description 5
- 238000005245 sintering Methods 0.000 description 5
- 238000005229 chemical vapour deposition Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 230000002411 adverse Effects 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- 239000007767 bonding agent Substances 0.000 description 3
- 238000005219 brazing Methods 0.000 description 3
- 229910002092 carbon dioxide Inorganic materials 0.000 description 3
- 239000001569 carbon dioxide Substances 0.000 description 3
- 238000010000 carbonizing Methods 0.000 description 3
- 239000011247 coating layer Substances 0.000 description 3
- 238000009694 cold isostatic pressing Methods 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 239000011888 foil Substances 0.000 description 3
- 239000011261 inert gas Substances 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 238000002791 soaking Methods 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000005553 drilling Methods 0.000 description 2
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 2
- 238000005469 granulation Methods 0.000 description 2
- 230000003179 granulation Effects 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 238000011835 investigation Methods 0.000 description 2
- 238000005304 joining Methods 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 239000011812 mixed powder Substances 0.000 description 2
- 239000010955 niobium Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 238000007650 screen-printing Methods 0.000 description 2
- -1 sialon (SiAlON) Chemical compound 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 239000007790 solid phase Substances 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 230000003746 surface roughness Effects 0.000 description 2
- NGDQQLAVJWUYSF-UHFFFAOYSA-N 4-methyl-2-phenyl-1,3-thiazole-5-sulfonyl chloride Chemical compound S1C(S(Cl)(=O)=O)=C(C)N=C1C1=CC=CC=C1 NGDQQLAVJWUYSF-UHFFFAOYSA-N 0.000 description 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- PIGFYZPCRLYGLF-UHFFFAOYSA-N Aluminum nitride Chemical compound [Al]#N PIGFYZPCRLYGLF-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007850 degeneration Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000007731 hot pressing Methods 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 239000002905 metal composite material Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 238000005488 sandblasting Methods 0.000 description 1
- 238000005480 shot peening Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 238000007569 slipcasting Methods 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Landscapes
- Surface Heating Bodies (AREA)
- Resistance Heating (AREA)
Abstract
Description
本発明は、基板加熱装置の製造方法及び基板加熱装置に関する。 The present invention relates to a method for manufacturing a substrate heating apparatus and a substrate heating apparatus.
従来、半導体製造や液晶製造では、基板の加熱にセラミック製のヒータが用いられている。ヒータには、均質な半導体製品を得るために、基板加熱面を均一な温度に保つことが求められている。そのため、均熱性を確保するための様々な技術が提案されている。例えば、セラミックスの基板表面に形成された抵抗発熱体に、切欠や溝を加工により形成する技術が提案されている(例えば、特許文献1〜3参照)。特許文献1〜3には、セラミックスの基板表面に形成された抵抗発熱体の一部を除去する加工を施した後、金属被覆層を形成するヒータの製造方法が開示されている。
しかしながら、切欠や溝の加工だけで抵抗発熱体の抵抗値を調整する方法では、抵抗発熱体の抵抗値を精度良く調整して、基板加熱面の均熱性を確保することが困難な場合があった。又、抵抗発熱体の形状によっては、抵抗値を厳密に調整するための加工が困難な場合もあった。更に、抵抗発熱体形成後の工程内容によっては、抵抗発熱体を形成した時点で抵抗値を調整したとしても、その後の工程において抵抗値が変動してしまい、均熱性を維持できないおそれもあった。 However, in the method of adjusting the resistance value of the resistance heating element only by machining the notch or the groove, it may be difficult to accurately adjust the resistance value of the resistance heating element to ensure the uniformity of the heating surface of the substrate. It was. Further, depending on the shape of the resistance heating element, there is a case where it is difficult to process for strictly adjusting the resistance value. Furthermore, depending on the contents of the process after the formation of the resistance heating element, even if the resistance value is adjusted at the time of forming the resistance heating element, the resistance value may fluctuate in the subsequent processes, and there is a possibility that the heat uniformity cannot be maintained. .
そこで、本発明は、抵抗発熱体の抵抗値を精度良く調整でき、基板加熱面の均熱性を確保することが可能な基板加熱装置の製造方法及び基板加熱面の均熱性が確保された基板加熱装置を提供することを目的とする。 Therefore, the present invention provides a method for manufacturing a substrate heating apparatus capable of accurately adjusting the resistance value of the resistance heating element and ensuring the temperature uniformity of the substrate heating surface, and the substrate heating in which the temperature uniformity of the substrate heating surface is ensured. An object is to provide an apparatus.
本発明の基板加熱装置の製造方法は、抵抗発熱体が形成され、基板加熱面を有する基体を作製する工程と、抵抗発熱体を変質させる変質処理により、抵抗発熱体の抵抗値を調整する工程とを有することを特徴とする。このような製造方法によれば、抵抗発熱体を変質させて抵抗値を調整するため、抵抗発熱体の抵抗値を精度良く調整でき、基板加熱面の均熱性を確保することができる。 The method for manufacturing a substrate heating apparatus according to the present invention includes a step of forming a substrate having a resistance heating element and having a substrate heating surface, and a step of adjusting a resistance value of the resistance heating element by a degeneration process for altering the resistance heating element. It is characterized by having. According to such a manufacturing method, since the resistance value is adjusted by changing the resistance heating element, the resistance value of the resistance heating element can be adjusted with high accuracy, and the heat uniformity of the substrate heating surface can be ensured.
例えば、抵抗値の調整は、レーザー光を照射して抵抗発熱体を変質させる変質処理により行うことができる。これによれば、抵抗発熱体の形状によらず容易に、高精度な抵抗値の調整を行うことができる。 For example, the adjustment of the resistance value can be performed by an alteration process that alters the resistance heating element by irradiating a laser beam. According to this, it is possible to easily adjust the resistance value with high accuracy regardless of the shape of the resistance heating element.
基体は、抵抗発熱体が埋設されたものを作製することが好ましい。従来のように金属被覆層で覆っただけの抵抗発熱体は、酸化や腐食性ガスによる腐食により直ぐに劣化してしまい、耐久性が低かった。これに対して、基体内に抵抗発熱体を埋設することにより、抵抗発熱体の劣化を防止でき、その耐久性を向上させることができる。 It is preferable to produce a substrate in which a resistance heating element is embedded. A resistance heating element simply covered with a metal coating layer as in the past has deteriorated quickly due to oxidation or corrosion by a corrosive gas, and has low durability. On the other hand, by embedding the resistance heating element in the substrate, the resistance heating element can be prevented from being deteriorated and its durability can be improved.
更に、基体作製後に、変質処理を行って抵抗値を調整することが好ましい。これによれば、抵抗発熱体形成後の工程によって抵抗値が変動しまうことを防止でき、抵抗値調整により得られた均熱性を維持できる。 Furthermore, it is preferable to adjust the resistance value by performing an alteration process after the substrate is manufactured. According to this, it can prevent that a resistance value fluctuates by the process after resistance heating element formation, and can maintain the thermal uniformity obtained by resistance value adjustment.
特に、基板加熱面の温度分布を測定し、温度分布の測定結果に応じて変質処理を行って抵抗値を調整することが好ましい。これによれば、実際の基板加熱面の温度分布を考慮して、非常に高精度に抵抗値を調整でき、基板加熱面の均熱性をより適切に確保できる。 In particular, it is preferable to measure the temperature distribution on the substrate heating surface and adjust the resistance value by performing a modification process according to the measurement result of the temperature distribution. According to this, in consideration of the temperature distribution on the actual substrate heating surface, the resistance value can be adjusted with very high accuracy, and the thermal uniformity of the substrate heating surface can be ensured more appropriately.
又、基体を作製する工程において、抵抗発熱体の一部を除去する加工を行ってもよい。これによれば、加工によって抵抗発熱体の抵抗値をある程度調整しておくことができる。そのため、変質処理による抵抗値の調整とあわせて、適切に抵抗値を調整できる。 Further, in the step of manufacturing the base body, processing for removing a part of the resistance heating element may be performed. According to this, the resistance value of the resistance heating element can be adjusted to some extent by processing. Therefore, the resistance value can be appropriately adjusted together with the adjustment of the resistance value by the alteration process.
更に、基体は、窒化アルミニウム焼結体であることが好ましい。これによれば、高い熱伝導率によって更に高い均熱性を実現でき、耐食性も向上させることができる。又、レーザー光の照射により変質処理を行う場合、窒化アルミニウム焼結体は透光性を有するため、抵抗発熱体が基体に埋設されていても、適切に抵抗値を調整できる利点もある。 Furthermore, the substrate is preferably an aluminum nitride sintered body. According to this, higher thermal uniformity can be realized by high thermal conductivity, and corrosion resistance can also be improved. Further, when the alteration treatment is performed by laser beam irradiation, the aluminum nitride sintered body has translucency, so that there is an advantage that the resistance value can be adjusted appropriately even if the resistance heating element is embedded in the base.
本発明に係る基板加熱装置は、基板加熱面を有する基体と、基体に形成され、変質処理により抵抗値が調整された抵抗発熱体とを備えることを特徴とする。このような基板加熱装置によれば、基板加熱面の均熱性を確保することができる。例えば、抵抗発熱体は、レーザー光の照射による変質処理により抵抗値が調整されていることが好ましい。これによれば、基板加熱装置は、レーザー光による高精度な抵抗値の調整を受け、高い均熱性を備えることができる。 A substrate heating apparatus according to the present invention includes a substrate having a substrate heating surface, and a resistance heating element formed on the substrate and having a resistance value adjusted by a modification process. According to such a substrate heating apparatus, it is possible to ensure the thermal uniformity of the substrate heating surface. For example, the resistance value of the resistance heating element is preferably adjusted by an alteration process by irradiation with laser light. According to this, the substrate heating device can be adjusted with a highly accurate resistance value by the laser beam, and can have high thermal uniformity.
抵抗発熱体は、基体に埋設されていることが好ましい。これによれば、抵抗発熱体の劣化を防止でき、その耐久性を向上できる。又、抵抗発熱体は、切欠部又は溝部の少なくとも一つを有するようにしてもよい。これによれば、基板加熱装置は、切欠部や溝部による調整及び変質処理による調整によって、基板加熱面の均熱性を確保できる。 The resistance heating element is preferably embedded in the substrate. According to this, the resistance heating element can be prevented from being deteriorated and its durability can be improved. The resistance heating element may have at least one of a notch or a groove. According to this, the substrate heating apparatus can ensure the thermal uniformity of the substrate heating surface by the adjustment by the notch or the groove and the adjustment by the alteration process.
更に、基体は、窒化アルミニウム焼結体であることが好ましい。これによれば、基板加熱装置は、高い熱伝導率によって更に高い均熱性を実現でき、耐食性も向上できる。又、レーザー光の照射により変質処理を行う場合、窒化アルミニウム焼結体は透光性を有するため、抵抗発熱体が基体に埋設されていても適切な抵抗値の調整を受けることができ、高い均熱性を備えることができる利点もある。 Furthermore, the substrate is preferably an aluminum nitride sintered body. According to this, the substrate heating device can realize higher heat uniformity with high thermal conductivity, and can also improve the corrosion resistance. In addition, when the alteration treatment is performed by laser light irradiation, since the aluminum nitride sintered body has translucency, an appropriate resistance value can be adjusted even if the resistance heating element is embedded in the base body. There is also an advantage of being able to provide soaking.
以上説明したように、本発明によれば、抵抗発熱体の抵抗値を精度良く調整でき、基板加熱面の均熱性を確保することが可能な基板加熱装置の製造方法及び基板加熱面の均熱性が確保された基板加熱装置を提供することができる、 As described above, according to the present invention, the resistance value of the resistance heating element can be adjusted with high accuracy, and the substrate heating apparatus manufacturing method capable of ensuring the temperature uniformity of the substrate heating surface and the temperature uniformity of the substrate heating surface. Can provide a substrate heating apparatus in which
(基板加熱装置)
図1に示すように、基板加熱装置10は、基体11と、抵抗発熱体12と、管状部材13と、端子14とを備える。
(Substrate heating device)
As shown in FIG. 1, the substrate heating apparatus 10 includes a base body 11, a resistance heating element 12, a tubular member 13, and a terminal 14.
基体11は、抵抗発熱体12が形成され、基板加熱面10aを有する。基板加熱面10aには、シリコンウエハやガラス基板等の基板が載置される。抵抗発熱体12は、基体11に形成され、変質処理により抵抗値が調整されている。抵抗発熱体12は、例えば、レーザー光の照射による変質処理により抵抗値が調整されている。抵抗発熱体12は、電力供給によって発熱する。そのため、基板加熱面10aに載置された基板が加熱される。図1に示すように、基体11内部に抵抗発熱体12が埋設されていることが好ましい。これによれば、抵抗発熱体12の劣化を防止でき、その耐久性を向上できる。 The base 11 is formed with a resistance heating element 12 and has a substrate heating surface 10a. A substrate such as a silicon wafer or a glass substrate is placed on the substrate heating surface 10a. The resistance heating element 12 is formed on the base 11, and the resistance value is adjusted by the alteration process. The resistance value of the resistance heating element 12 is adjusted by, for example, alteration processing by laser light irradiation. The resistance heating element 12 generates heat when power is supplied. Therefore, the substrate placed on the substrate heating surface 10a is heated. As shown in FIG. 1, it is preferable that a resistance heating element 12 is embedded in the base 11. According to this, deterioration of the resistance heating element 12 can be prevented, and its durability can be improved.
管状部材13は、その管内に端子14を収容する。管状部材13は、基体11の基板加熱面10aと反対側の面10bに接合されている。端子14は、抵抗発熱体12に電力を供給する。端子14は、抵抗発熱体12と接続されている。 The tubular member 13 accommodates the terminal 14 in the tube. The tubular member 13 is bonded to the surface 10b of the base 11 opposite to the substrate heating surface 10a. The terminal 14 supplies power to the resistance heating element 12. The terminal 14 is connected to the resistance heating element 12.
次に、基体11及び抵抗発熱体12について詳細に説明する。基体11は、円盤状等の板状のものを用いることができる。基体11は、セラミックス、金属、セラミックスと金属の複合材料等により構成できる。例えば、基体11は、窒化アルミニウム(AlN)、アルミナ(Al2O3)、窒化珪素(SiN)、炭化珪素(SiC)、サイアロン(SiAlON)等の焼結体、アルミニウム(Al)、アルミニウム合金、アルミニウム合金−窒化アルミニウムコンポジット、アルミニウム合金−SiCコンポジット等により構成できる。基体11は、セラミックスにより構成されることが好ましい。これによれば、耐熱性、耐腐食性に優れた基板加熱装置を提供できる。 Next, the base 11 and the resistance heating element 12 will be described in detail. The substrate 11 can be a plate-shaped member such as a disk. The substrate 11 can be made of ceramic, metal, a composite material of ceramic and metal, or the like. For example, the base 11 is made of a sintered body such as aluminum nitride (AlN), alumina (Al 2 O 3 ), silicon nitride (SiN), silicon carbide (SiC), sialon (SiAlON), aluminum (Al), aluminum alloy, An aluminum alloy-aluminum nitride composite, an aluminum alloy-SiC composite, or the like can be used. The substrate 11 is preferably made of ceramics. According to this, the substrate heating apparatus excellent in heat resistance and corrosion resistance can be provided.
特に、基体11は、窒化アルミニウム焼結体により構成されていることが好ましい。これによれば、基板加熱装置10は、高い熱伝導率によって非常に高い均熱性を有する基板加熱面10aを実現でき、耐食性も向上できる。又、抵抗発熱体12がレーザー光の照射による変質処理を受ける場合に、窒化アルミニウム焼結体は透光性を有するため、図1に示すように抵抗発熱体12が基体に埋設されていても、適切に抵抗値を調整できる利点もある。 In particular, the substrate 11 is preferably made of an aluminum nitride sintered body. According to this, the substrate heating apparatus 10 can realize the substrate heating surface 10a having very high temperature uniformity due to the high thermal conductivity, and can also improve the corrosion resistance. In addition, when the resistance heating element 12 is subjected to an alteration treatment by laser light irradiation, the aluminum nitride sintered body has translucency, so that even if the resistance heating element 12 is embedded in the substrate as shown in FIG. There is also an advantage that the resistance value can be adjusted appropriately.
尚、管状部材13の材質は、基体11の材質と同種とすることが好ましい。これによれば、基体11と管状部材13との接合部分において、熱膨張係数差等に起因する熱応力が発生することを防止でき、強固に管状部材13を接合できる。 The material of the tubular member 13 is preferably the same type as the material of the base 11. According to this, it is possible to prevent occurrence of thermal stress due to a difference in thermal expansion coefficient or the like at the joint portion between the base body 11 and the tubular member 13 and to firmly join the tubular member 13.
又、基板加熱面10aの表面粗さ(Ra)は、0.4〜2.0μmであることが好ましい。これによれば、基板加熱面10aと基板とを適切に接触させて、基板温度を均一に保つことができる。表面粗さ(Ra)は、0.8〜1.2μmであることがより好ましい。又、基板加熱面10aは、エンボス、溝、段差等備えてもよい。 Further, the surface roughness (Ra) of the substrate heating surface 10a is preferably 0.4 to 2.0 μm. According to this, the substrate heating surface 10a and the substrate can be appropriately brought into contact with each other to keep the substrate temperature uniform. The surface roughness (Ra) is more preferably 0.8 to 1.2 μm. Further, the substrate heating surface 10a may be provided with an emboss, a groove, a step, and the like.
特に、基体11をセラミックスで構成する場合、平均粒子径が0.5〜15μmであることが好ましい。これによれば、基体11内に埋設されている抵抗発熱体12に、基体外部から変質処理を施す場合に、均一な処理を施すことができる。例えば、基体11が透光性の窒化アルミニウムや透光性のアルミナ等、透光性セラミックスで構成され、基体11の外部からレーザー光を照射して抵抗発熱体12を変質させる場合に、レーザー光が粒界に当たり、その強度が低下してしまう割合を低減できる。そのため、抵抗発熱体12の目的とする部分に照射されるレーザー光の強度にばらつきが生じることを防止でき、均一にレーザー光照射を施して、均一に変質させることができる。平均粒子径は、1〜10μmであることがより好ましい。 In particular, when the substrate 11 is made of ceramic, the average particle diameter is preferably 0.5 to 15 μm. According to this, uniform processing can be performed when the resistance heating element 12 embedded in the substrate 11 is subjected to alteration processing from the outside of the substrate. For example, when the base 11 is made of a translucent ceramic such as translucent aluminum nitride or translucent alumina, and the resistance heating element 12 is altered by irradiating laser light from the outside of the base 11, laser light is used. Can hit the grain boundary and reduce the rate at which the strength decreases. Therefore, it is possible to prevent variations in the intensity of the laser light applied to the target portion of the resistance heating element 12, and it is possible to uniformly alter the quality by applying the laser light uniformly. The average particle size is more preferably 1 to 10 μm.
又、基体11を窒化アルミニウム焼結体で構成する場合、密度が3.0〜3.5g/cm3であることが好ましい。これによれば、基体11内に埋設されている抵抗発熱体12に、基体外部から変質処理を施す場合に、均一な処理を施すことができる。例えば、基体11の外部からレーザー光を照射して抵抗発熱体12を変質させる場合に、レーザー光が気孔に当たり、その強度が低下してしまう割合を低減できる。そのため、抵抗発熱体12の目的とする部分に照射されるレーザー光の強度にばらつきが生じることを防止でき、均一にレーザー光照射を施して、均一に変質させることができる。密度は、3.2〜3.4g/cm3であることがより好ましい。 Moreover, when the base | substrate 11 is comprised with an aluminum nitride sintered compact, it is preferable that a density is 3.0-3.5 g / cm < 3 >. According to this, uniform processing can be performed when the resistance heating element 12 embedded in the substrate 11 is subjected to alteration processing from the outside of the substrate. For example, when the resistance heating element 12 is altered by irradiating a laser beam from the outside of the substrate 11, the rate at which the laser beam hits the pores and the strength thereof decreases can be reduced. Therefore, it is possible to prevent variations in the intensity of the laser light applied to the target portion of the resistance heating element 12, and it is possible to uniformly alter the quality by applying the laser light uniformly. The density is more preferably 3.2 to 3.4 g / cm 3 .
抵抗発熱体12は、モリブデン(Mo)、タングステン(W)、タングステンカーバイド(WC)等の高融点材料により構成できる。抵抗発熱体12の形態は限定されず、例えば、高融点材料の粉末を含む印刷ペーストを印刷して形成したもの、箔(シート)、物理的蒸着法や化学的蒸着法により形成した薄膜、線状、コイル状、帯状、網目状のバルク体等を用いることができる。 The resistance heating element 12 can be made of a high melting point material such as molybdenum (Mo), tungsten (W), tungsten carbide (WC) or the like. The form of the resistance heating element 12 is not limited. For example, the resistance heating element 12 is formed by printing a printing paste containing a powder of a high melting point material, a foil (sheet), a thin film formed by physical vapor deposition or chemical vapor deposition, a wire , Coiled, belt-like, and mesh-like bulk bodies can be used.
又、抵抗発熱体12のパターン形状も限定されず、図1(b)に示すような同心円上に配列された複数の円弧部12aと、隣接する円弧部12aの端部12cを連結した複数の折り返し部12bを有する形状を用いることができる。各円弧部12aは、自身の内側に隣接する円弧部12aと連結した端部12cと反対の端部12cを、自身の外側に隣接する円弧部12aと連結する。又、円周部の円弧部12dはほぼ一周している。このような折り返し部を有する折り返し形状以外に、抵抗発熱体12のパターン形状として、渦巻形状、同心円形状等を用いることができる。又、抵抗発熱体12は、1つであってもよく、複数に分割されたものであってもよい。例えば、基板加熱面10aの中心部と円周部の2つの領域に分割された抵抗発熱体とすることができる。 The pattern shape of the resistance heating element 12 is not limited, and a plurality of arc portions 12a arranged concentrically as shown in FIG. 1B and a plurality of end portions 12c of adjacent arc portions 12a are connected. A shape having the folded portion 12b can be used. Each arc portion 12a connects an end portion 12c opposite to the end portion 12c connected to the arc portion 12a adjacent to the inside of the arc portion 12a to the arc portion 12a adjacent to the outside of the arc portion 12a. Further, the circular arc portion 12d of the circumferential portion makes a substantially round. In addition to the folded shape having such folded portions, a spiral shape, a concentric circular shape, or the like can be used as the pattern shape of the resistance heating element 12. Further, the resistance heating element 12 may be one, or may be divided into a plurality. For example, the resistance heating element can be divided into two regions, that is, a central portion and a circumferential portion of the substrate heating surface 10a.
抵抗発熱体12の端部は、端子14と接続する。例えば、図1(b)に示すように、抵抗発熱体12は、その2つの端部が基体11のほぼ中央で2つの端子14と接続できるように形成できる。又、抵抗発熱体12が渦巻形状の場合には、抵抗発熱体12は、その一方の端部が基体11のほぼ中央で端子14と接続し、他方の端部が基体11の円周部付近で端子14と接続できるように形成できる。 The end of the resistance heating element 12 is connected to the terminal 14. For example, as shown in FIG. 1B, the resistance heating element 12 can be formed such that its two ends can be connected to the two terminals 14 at the approximate center of the base 11. When the resistance heating element 12 has a spiral shape, one end of the resistance heating element 12 is connected to the terminal 14 at substantially the center of the base 11 and the other end is near the circumference of the base 11. So that it can be connected to the terminal 14.
抵抗発熱体12は、変質処理により抵抗値が調整されている。例えば、抵抗発熱体12の抵抗値のばらつき等に起因して、基板加熱面10aの温度分布(面内温度分布)が不均一であった場合に、抵抗発熱体12は、温度が他の部分に比べて低温であった部分に変質処理を受けており、変質された部分の抵抗値が増加されている。抵抗値が増加された部分は変質処理前に比べて発熱量が増大する。このような抵抗値の調整によって、基板加熱面10aの温度分布は均一になっており、均熱性が確保されている。 The resistance value of the resistance heating element 12 is adjusted by alteration processing. For example, when the temperature distribution (in-plane temperature distribution) of the substrate heating surface 10a is not uniform due to variations in the resistance value of the resistance heating element 12, the resistance heating element 12 has a temperature other than that of the other portion. Compared to the above, the portion that was at a low temperature has been subjected to alteration treatment, and the resistance value of the altered portion has been increased. In the portion where the resistance value is increased, the calorific value is increased as compared with that before the alteration treatment. By adjusting the resistance value as described above, the temperature distribution on the substrate heating surface 10a is uniform, and the thermal uniformity is ensured.
例えば、抵抗発熱体12は、レーザー光の照射による変質処理により抵抗値が調整されている。これによれば、基板加熱装置10は、レーザー光による高精度な抵抗値の調整を受け、高い均熱性を備えることができる。 For example, the resistance value of the resistance heating element 12 is adjusted by an alteration process by irradiation with laser light. According to this, the substrate heating apparatus 10 can be provided with high thermal uniformity by receiving a highly accurate resistance value adjustment by laser light.
例えば、タングステンやタングステンカーバイドの抵抗発熱体12がレーザー光の照射を受けている場合には、照射部分のタングステンやタングステンカーバイドが炭化している。タングステンやタングステンカーバイドは、炭化により抵抗値が炭化前(照射前)よりも増加している。モリブデンの抵抗発熱体12がレーザー光の照射を受けている場合には、照射部分のモリブテンが炭化している。モリブデンは、炭化により抵抗値が炭化前(照射前)よりも増加している。 For example, when the resistance heating element 12 of tungsten or tungsten carbide is irradiated with laser light, tungsten or tungsten carbide in the irradiated portion is carbonized. Tungsten and tungsten carbide have a resistance value higher than that before carbonization (before irradiation) due to carbonization. When the molybdenum resistance heating element 12 is irradiated with laser light, the molybdenum in the irradiated portion is carbonized. Molybdenum has a resistance value higher than that before carbonization (before irradiation) due to carbonization.
抵抗発熱体12は、上記のように局所的に変質処理を受けていてもよく、全体的に変質処理をうけていてもよい。又、抵抗発熱体12は、変質処理前に比べて抵抗値が増加されていてもよく、抵抗値が減少されていてもよい。更に、抵抗発熱体12の厚さは5〜500μmであることが好ましい。抵抗発熱体12のより好ましい厚さは、20〜350μmである。 The resistance heating element 12 may be locally subjected to alteration processing as described above, or may be subjected to alteration processing as a whole. Further, the resistance heating element 12 may have an increased resistance value or a decreased resistance value compared to before the alteration process. Furthermore, the thickness of the resistance heating element 12 is preferably 5 to 500 μm. A more preferable thickness of the resistance heating element 12 is 20 to 350 μm.
更に、抵抗発熱体12は、図2に示すように、切欠部12e又は溝部12fの少なくとも一つを有するようにしてもよい。これによれば、基板加熱装置10は、切欠部12eや溝部12fによる抵抗値の調整及び変質処理による抵抗値の調整によって、基板加熱面10aの均熱性を確保できる。 Furthermore, as shown in FIG. 2, the resistance heating element 12 may have at least one of a notch 12e or a groove 12f. According to this, the substrate heating apparatus 10 can ensure the thermal uniformity of the substrate heating surface 10a by adjusting the resistance value by the notch 12e and the groove 12f and adjusting the resistance value by the alteration process.
切欠部12eや溝部12fの形状は限定されず、抵抗発熱体12の一部が除去されることにより、抵抗値が調整されていればよい。抵抗発熱体12は、特に、印刷により形成されたものやメッシュ状のもの等は、抵抗値のばらつきを生じ易い。そのため、切欠部12eや溝部12fは、それを設けて抵抗値を調整することにより、温度分布の均一化を図ることができる部分を選択し、形成できる。 The shape of the notch 12e and the groove 12f is not limited, and the resistance value only needs to be adjusted by removing a part of the resistance heating element 12. In particular, the resistance heating element 12 is likely to vary in resistance value when it is formed by printing or meshed. Therefore, the notches 12e and the grooves 12f can be selected and formed by adjusting the resistance value by providing the notches 12e and the grooves 12f.
切欠部12eや溝部12fの深さは、抵抗発熱体12の厚さの90%以下であることが好ましい。これによれば、切欠部12eや溝部12fの断線、基体11へのダメージを防止でき、所望の抵抗値調整を行うことができる。 The depth of the notch 12e and the groove 12f is preferably 90% or less of the thickness of the resistance heating element 12. According to this, disconnection of the notch 12e and the groove 12f and damage to the base body 11 can be prevented, and a desired resistance value can be adjusted.
(製造方法)
図1に示した基板加熱装置10の製造方法を図3のフローチャートに従って、図4〜6を用いて説明する。ここでは、基体11及び管状部材13としてセラミックス焼結体を用いた場合を例にとって説明する。
(Production method)
A method for manufacturing the substrate heating apparatus 10 shown in FIG. 1 will be described with reference to FIGS. Here, a case where a ceramic sintered body is used as the base 11 and the tubular member 13 will be described as an example.
まず、図4(a)に示すような円盤状等の板状のセラミックス焼結体11aを作製する(S101)。セラミックス焼結体11aは、主成分のセラミックス原料粉末と、焼結助剤と、バインダーと、水、分散剤等を混合し、スラリーを作製する。得られたスラリーを噴霧造粒法等により造粒して造粒顆粒を得る。得られた造粒顆粒を、金型成形法、CIP(Cold Isostatic Pressing)法、スリップキャスト法等の成形方法により成形する。得られた成形体を、セラミックスの種類に応じた雰囲気、焼成温度、焼成時間、焼成方法で焼成することにより、セラミックス焼結体11aを作製できる。 First, a plate-like ceramic sintered body 11a such as a disk shape as shown in FIG. 4A is produced (S101). The ceramic sintered body 11a is prepared by mixing a ceramic raw material powder as a main component, a sintering aid, a binder, water, a dispersant, and the like. The obtained slurry is granulated by spray granulation or the like to obtain granulated granules. The obtained granulated granules are molded by a molding method such as a mold molding method, a CIP (Cold Isostatic Pressing) method, a slip casting method or the like. The obtained sintered body is fired by an atmosphere, firing temperature, firing time, and firing method according to the type of ceramic, whereby the ceramic sintered body 11a can be produced.
例えば、セラミックス原料粉末として窒化アルミニウム粉末を使用した場合には、ホットプレス法を用いて、窒素ガスやアルゴンガス等の不活性ガス雰囲気中、1600〜2200℃で、約1〜15時間保持することにより焼成できる。焼成中に加える圧力は、20〜1000kg/cm2とできる。焼成温度は1700〜1900℃であることが好ましく、圧力は50kg/cm2以上であることが好ましい。 For example, when aluminum nitride powder is used as the ceramic raw material powder, it is kept at 1600-2200 ° C. for about 1-15 hours in an inert gas atmosphere such as nitrogen gas or argon gas using a hot press method. Can be fired. The pressure applied during firing can be 20 to 1000 kg / cm 2 . The firing temperature is preferably 1700-1900 ° C., and the pressure is preferably 50 kg / cm 2 or more.
次に、図4(a)に示すように、セラミックス焼結体11a上に抵抗発熱体12を形成する(S102)。例えば、モリブデン(Mo)、タングステン(W)、ニオブ(Nb)、タングステンカーバイド(WC)等の高融点材料の粉末を含む印刷ペーストを調整し、セラミックス焼結体11a表面にスクリーン印刷法等により所定のパターン形状となるように印刷して、抵抗発熱体12を形成できる。この場合、印刷ペーストに、セラミックス焼結体11aのセラミックス原料粉末を混合することが好ましい。これによれば、抵抗発熱体12とセラミックス焼結体11aとの熱膨張係数を近づけることができ、両者の密着性を向上できる。 Next, as shown in FIG. 4A, the resistance heating element 12 is formed on the ceramic sintered body 11a (S102). For example, a printing paste containing powder of a high melting point material such as molybdenum (Mo), tungsten (W), niobium (Nb), tungsten carbide (WC) is prepared, and the surface of the ceramic sintered body 11a is predetermined by a screen printing method or the like. The resistance heating element 12 can be formed by printing so as to have the pattern shape. In this case, it is preferable to mix the ceramic raw material powder of the ceramic sintered body 11a with the printing paste. According to this, the coefficient of thermal expansion between the resistance heating element 12 and the ceramic sintered body 11a can be made closer, and the adhesion between them can be improved.
又、セラミックス焼結体11a上に高融点材料の箔、線状、コイル状、帯状のバルク体を載置することによって抵抗発熱体12を形成できる。あるいは、セラミックス焼結体11a表面に物理的蒸着法や化学的蒸着法により、高融点材料の薄膜を形成してもよい。 Further, the resistance heating element 12 can be formed by placing a high melting point material foil, linear, coiled, or strip-shaped bulk body on the ceramic sintered body 11a. Alternatively, a thin film of a high melting point material may be formed on the surface of the ceramic sintered body 11a by physical vapor deposition or chemical vapor deposition.
このとき、図4(a)に示すように、抵抗発熱体12の一部を除去する加工を行ってもよい。例えば、レーザー加工や機械加工により抵抗発熱体12を部分的に除去することができる。具体的には、レーザー照射装置5を用いて、抵抗値を変更させたい部分にレーザー光5aを照射することにより、図2に示したような切欠部12eや溝部12fを形成することができる。例えば、レーザー照射装置5を制御してレーザー光5aの照射位置、強度(照射出力)、照射時間、使用周波数等を調整することにより、所望形状の切欠部12eや溝部12fを形成できる。 At this time, as shown in FIG. 4A, processing for removing a part of the resistance heating element 12 may be performed. For example, the resistance heating element 12 can be partially removed by laser processing or machining. Specifically, the laser irradiation device 5 is used to irradiate the laser beam 5a to the portion whose resistance value is to be changed, thereby forming the notch 12e and the groove 12f as shown in FIG. For example, by controlling the laser irradiation device 5 and adjusting the irradiation position, intensity (irradiation output), irradiation time, operating frequency, and the like of the laser light 5a, the notch 12e and the groove 12f having a desired shape can be formed.
又、セラミックス焼結体11aにレーザー光照射による悪影響を及ぼさずに、抵抗発熱体12を加工するために、レーザー照射装置5としては、抵抗発熱体12に吸収されやすく、セラミックス焼結体11aに吸収されにくいレーザー光5aを照射可能なものを用いることが好ましい。例えば、レーザー照射装置5としては、YAGレーザー、炭酸ガスレーザー、エキシマレーザー等を用いることができる。 Further, in order to process the resistance heating element 12 without adversely affecting the ceramic sintered body 11a by the laser light irradiation, the laser irradiation device 5 is easily absorbed by the resistance heating element 12, and the ceramic sintered body 11a It is preferable to use one that can irradiate the laser beam 5a that is difficult to absorb. For example, as the laser irradiation device 5, a YAG laser, a carbon dioxide gas laser, an excimer laser, or the like can be used.
あるいは、図4(a)に示すように、マシニングセンター等の機械加工機6を用いて、研削加工や切削加工により抵抗値を変更させたい部分を除去し、図2に示したような切欠部12eや溝部12fを形成することができる。セラミックス焼結体11aに機械加工による加工液、加工熱等の悪影響を及ぼさずに、抵抗発熱体12を加工するために、サンドブラスト、ショットピーニング等の加工方法を用いることが好ましい。 Alternatively, as shown in FIG. 4A, using a machining machine 6 such as a machining center, a portion whose resistance value is to be changed by grinding or cutting is removed, and a notch 12e as shown in FIG. And the groove 12f can be formed. It is preferable to use a processing method such as sand blasting or shot peening in order to process the resistance heating element 12 without adversely affecting the ceramic sintered body 11a such as machining fluid and machining heat.
更に、抵抗発熱体12の形態、即ち、印刷により形成されたもの、箔、薄膜、バルク体のいずれであるかや、抵抗発熱体12のパターン形状や材質、作製しようとする基板加熱装置10の使用条件、基板加熱面10aの面積や形状等に応じて、基板加熱面10aの温度分布がどのように変化するかを、実際に複数の基板加熱装置10を作製、評価し、その統計をとったり、シミュレーションを行ったりして予め調査しておくことができる。そして、その調査結果に基づいて除去する部分を決定することができる。あるいは、抵抗発熱体12の抵抗値を測定し、その測定結果に基づいて除去部分を決定することができる。例えば、抵抗発熱体12の他の部分よりも抵抗値が低い部分を除去部分に決定できる。これにより、除去部分の抵抗値を増大させることができ、抵抗値のばらつきを是正できる。 Furthermore, the form of the resistance heating element 12, that is, whether it is formed by printing, foil, thin film, or bulk body, the pattern shape and material of the resistance heating element 12, and the substrate heating apparatus 10 to be manufactured According to the use conditions, the area and shape of the substrate heating surface 10a, etc., how the temperature distribution of the substrate heating surface 10a changes is actually produced and evaluated, and statistics thereof are taken. It is possible to investigate in advance by performing a simulation. And the part to remove based on the investigation result can be determined. Alternatively, the resistance value of the resistance heating element 12 can be measured, and the removed portion can be determined based on the measurement result. For example, a part having a lower resistance value than the other part of the resistance heating element 12 can be determined as the removal part. Thereby, the resistance value of a removal part can be increased and the dispersion | variation in resistance value can be corrected.
このように抵抗発熱体12の一部を除去する加工を行っておくことにより、抵抗発熱体12を基体11内に埋設させる前に、その抵抗値をある程度、調整しておくことができる。そのため、抵抗値のばらつきに起因する温度分布の不均一化を最小限に留めることができ、変質処理による抵抗値の調整とあわせて、適切に抵抗値を調整できる。 By performing the process of removing a part of the resistance heating element 12 in this way, the resistance value can be adjusted to some extent before the resistance heating element 12 is embedded in the base 11. Therefore, nonuniform temperature distribution due to resistance value variation can be minimized, and the resistance value can be appropriately adjusted together with the adjustment of the resistance value by the alteration process.
次に、抵抗発熱体12が形成されたセラミックス焼結体11a上に、図4(b)に示すようにセラミックス成形体11bを積層し、セラミックス焼結体11aと、抵抗発熱体12と、セラミックス成形体11bを一体的に焼成する(S103)。例えば、金型等に抵抗発熱体12が形成されたセラミックス焼結体11aをセットする。抵抗発熱体12及びセラミックス焼結体11a上に、セラミックス焼結体11a作製時と同様にして準備した造粒顆粒を充填し、セラミックス成形体11bの成形とその積層を同時に行うことができる。あるいは、上記造粒顆粒を用いて成形体を作製し、セラミックス焼結体11a及び抵抗発熱体12上に載置してプレス成形することにより、セラミックス成形体11bを積層してもよい。 Next, as shown in FIG. 4B, a ceramic molded body 11b is laminated on the ceramic sintered body 11a on which the resistance heating element 12 is formed, and the ceramic sintered body 11a, the resistance heating element 12, and the ceramics are laminated. The molded body 11b is integrally fired (S103). For example, the ceramic sintered body 11a in which the resistance heating element 12 is formed is set in a mold or the like. The resistance heating element 12 and the ceramic sintered body 11a can be filled with granulated granules prepared in the same manner as when the ceramic sintered body 11a is manufactured, and the ceramic molded body 11b can be molded and laminated at the same time. Alternatively, the ceramic molded body 11b may be laminated by preparing a molded body using the granulated granules and placing the molded body on the ceramic sintered body 11a and the resistance heating element 12 and press-molding.
そして、セラミックス焼結体11aと、抵抗発熱体12と、セラミックス成形体11bとを、ホットプレス法や常圧焼結法等の焼成方法により一体に焼成し、図4(c)に示すような一体焼結体の基体11を作製することができる。例えば、得られた成形体を、セラミックスの種類に応じた雰囲気、焼成温度、焼成時間、焼成方法で焼成することができる。 Then, the ceramic sintered body 11a, the resistance heating element 12, and the ceramic molded body 11b are integrally fired by a firing method such as a hot press method or an atmospheric pressure sintering method, as shown in FIG. An integrally sintered body 11 can be produced. For example, the obtained molded body can be fired by an atmosphere, a firing temperature, a firing time, and a firing method according to the type of ceramic.
例えば、セラミックス原料粉末として窒化アルミニウム粉末を使用した場合には、ホットプレス法を用いて、窒素ガスやアルゴンガス等の不活性ガス雰囲気中、1600〜2200℃で、約1〜15時間保持することにより焼成できる。焼成中に加える圧力は、20〜1000kg/cm2とできる。これによれば、基体11と抵抗発熱体12との密着性を良好にできる。焼成温度は、1700〜1900℃であることが好ましく、圧力は50kg/cm2以上であることが好ましい。最後に、得られた基体11に、基板加熱面10aの平坦化加工や、抵抗発熱体12に端子14を接続するための端子用穴の穴あけ加工等を施す。 For example, when aluminum nitride powder is used as the ceramic raw material powder, it is held at 1600-2200 ° C. for about 1-15 hours in an inert gas atmosphere such as nitrogen gas or argon gas using a hot press method. Can be fired. The pressure applied during firing can be 20 to 1000 kg / cm 2 . According to this, the adhesion between the base 11 and the resistance heating element 12 can be improved. The firing temperature is preferably 1700-1900 ° C., and the pressure is preferably 50 kg / cm 2 or more. Finally, the substrate 11 obtained is subjected to flattening of the substrate heating surface 10a, drilling of a terminal hole for connecting the terminal 14 to the resistance heating element 12, and the like.
このような工程(S101)〜(S103)により、抵抗発熱体12が形成され、基板加熱面10aを有する基体11を作製することができる。具体的には、抵抗発熱体12が埋設された基体11を作製することができる。従来のように金属被覆層で覆っただけの抵抗発熱体は、酸化や腐食性ガスによる腐食により直ぐに劣化してしまい、耐久性が低かった。これに対して、基体11内に抵抗発熱体12を埋設することにより、抵抗発熱体12の劣化を防止でき、その耐久性を向上させることができる。 By such steps (S101) to (S103), the resistance heating element 12 is formed, and the base body 11 having the substrate heating surface 10a can be manufactured. Specifically, the base body 11 in which the resistance heating element 12 is embedded can be manufactured. A resistance heating element simply covered with a metal coating layer as in the past has deteriorated quickly due to oxidation or corrosion by a corrosive gas, and has low durability. On the other hand, by embedding the resistance heating element 12 in the base 11, the resistance heating element 12 can be prevented from being deteriorated and its durability can be improved.
工程(S101)、(S103)のように、セラミックス焼結体の作製に関する工程では、セラミックス原料粉末の純度や平均粒子径、焼結助剤の種類、焼成温度や焼成時間、焼成方法等の焼成条件等を調整することにより、得られる基体11の平均粒子径が0.5〜15μmとなるように調整することが好ましい。これによれば、上記したように、基体11内に埋設されている抵抗発熱体12に、外部から変質処理を施す場合に、均一な処理を施すことができる。例えば、透光性セラミックスの基体11の外部からレーザー光を照射して抵抗発熱体12を変質させる場合に、レーザー光が粒界に当たり、その強度が低下してしまう割合を低減できる。そのため、抵抗発熱体12の目的とする部分に、均一にレーザー光照射を施して均一な変質処理を行うことができる。平均粒子径は、1〜10μmに調整することがより好ましい。 As in the steps (S101) and (S103), in the step relating to the production of the ceramic sintered body, the purity of the ceramic raw material powder, the average particle size, the kind of sintering aid, the firing temperature, firing time, firing method, etc. By adjusting conditions and the like, it is preferable to adjust the average particle diameter of the obtained substrate 11 to be 0.5 to 15 μm. According to this, as described above, when the alteration heating process is applied to the resistance heating element 12 embedded in the base body 11 from the outside, a uniform process can be performed. For example, when the resistance heating element 12 is altered by irradiating a laser beam from the outside of the translucent ceramic substrate 11, the rate at which the laser beam hits the grain boundary and the strength thereof decreases can be reduced. Therefore, a uniform alteration process can be performed by uniformly irradiating the target portion of the resistance heating element 12 with laser light. The average particle size is more preferably adjusted to 1 to 10 μm.
又、窒化アルミニウム焼結体を作製する場合、セラミックス原料粉末の純度や平均粒子径、焼結助剤の種類、焼成温度や焼成時間、焼成方法等の焼成条件等を調整することにより、得られる基体11の密度が3.0〜3.5g/cm3となるように調整することが好ましい。これによれば、上記したように、基体11内に埋設されている抵抗発熱体12に、外部から変質処理を施す場合に、均一な処理を施すことができる。例えば、基体11の外部からレーザー光を照射して抵抗発熱体12を変質させる場合に、レーザー光が気孔に当たり、その強度が低下してしまう割合を低減できる。そのため、抵抗発熱体12の目的とする部分に、均一にレーザー光照射を施して均一な変質処理を行うことができる。密度は、3.2〜3.4g/cm3に調整することがより好ましい。 In the case of producing an aluminum nitride sintered body, it can be obtained by adjusting firing conditions such as purity and average particle diameter of ceramic raw material powder, kind of sintering aid, firing temperature and firing time, firing method, etc. It is preferable to adjust the density of the substrate 11 to be 3.0 to 3.5 g / cm 3 . According to this, as described above, when the alteration heating process is applied to the resistance heating element 12 embedded in the base body 11 from the outside, a uniform process can be performed. For example, when the resistance heating element 12 is altered by irradiating a laser beam from the outside of the substrate 11, the rate at which the laser beam hits the pores and the strength thereof decreases can be reduced. Therefore, a uniform alteration process can be performed by uniformly irradiating the target portion of the resistance heating element 12 with laser light. More preferably, the density is adjusted to 3.2 to 3.4 g / cm 3 .
又、工程(S102)において抵抗発熱体12の一部を除去する加工は省略することができる。その場合には、抵抗発熱体12に加工を施す必要がないため、加工コストが削減でき、製造工程を簡略化できる。 Further, the process of removing a part of the resistance heating element 12 in the step (S102) can be omitted. In that case, since it is not necessary to process the resistance heating element 12, a processing cost can be reduced and a manufacturing process can be simplified.
又、造粒顆粒を用いてセラミックス成形体を作製し、成形体上に抵抗発熱体12を形成し、抵抗発熱体12上にセラミックス成形体を積層することにより、抵抗発熱体12が埋設されたセラミックス成形体を作製してもよい。そして、一体に成形されたセラミックス成形体及び抵抗発熱体12を焼成して、抵抗発熱体12が埋設された基体11を作製することができる。 Moreover, the resistance heating element 12 was embedded by producing a ceramic molding using the granulated granules, forming the resistance heating element 12 on the molding, and laminating the ceramic molding on the resistance heating element 12. A ceramic molded body may be produced. And the base | substrate 11 by which the resistance heating element 12 was embed | buried can be produced by baking the ceramic molded object and the resistance heating element 12 which were integrally shape | molded.
このような基体11の作製と並行して、管状部材13を作製する(S104)。管状部材13は、基体11を作製した場合と同様にして、造粒顆粒を準備し、管状の成形体を作製し、得られた成形体を焼成することにより作製できる。管状部材13は、基体11の作製に用いたセラミックス原料粉末と同じ材質の原料粉末を使用して作製することが好ましい。 In parallel with the production of the base body 11, the tubular member 13 is produced (S104). The tubular member 13 can be produced by preparing granulated granules, producing a tubular molded body, and firing the obtained molded body in the same manner as when the substrate 11 is produced. The tubular member 13 is preferably produced using a raw material powder made of the same material as the ceramic raw material powder used for producing the substrate 11.
次に、基体11の基板加熱面10aと反対側の面10bと、管状部材13とを接合する(S105)。例えば、基体11と管状部材13は、固相接合法や液相接合法等によって接合できる。具体的には、基体11の接合面、又は、管状部材13の接合面の少なくとも1つに、基体11や管状部材13の材質に応じた接合剤を塗布する。そして、基体11と管状部材13の接合面同士を貼り合わせ、基体11や管状部材13の材質に応じた雰囲気、温度で熱処理を行うことにより、接合できる。このとき、接合面と垂直な方向から基体11と管状部材13とを押しつけるように加圧してもよい。 Next, the surface 10b opposite to the substrate heating surface 10a of the base 11 is joined to the tubular member 13 (S105). For example, the base body 11 and the tubular member 13 can be bonded by a solid phase bonding method, a liquid phase bonding method, or the like. Specifically, a bonding agent corresponding to the material of the substrate 11 or the tubular member 13 is applied to at least one of the bonding surface of the substrate 11 or the bonding surface of the tubular member 13. And it can join by bonding the joining surfaces of the base | substrate 11 and the tubular member 13, and performing heat processing by the atmosphere and temperature according to the material of the base | substrate 11 or the tubular member 13. FIG. At this time, you may pressurize so that the base | substrate 11 and the tubular member 13 may be pressed from a direction perpendicular | vertical to a joining surface.
例えば、基体11や管状部材13が窒化アルミニウム焼結体の場合、接合剤として希土類化合物等を塗布し、窒素ガスやアルゴンガス等の不活性ガス雰囲気中で、1500〜2000℃で、1〜10時間保持することにより固相接合を行うことができる。又、基体11と管状部材13は、ロウ付け等により接合してもよい。 For example, when the base body 11 and the tubular member 13 are aluminum nitride sintered bodies, a rare earth compound or the like is applied as a bonding agent, and is 1 to 10 at 1500 to 2000 ° C. in an inert gas atmosphere such as nitrogen gas or argon gas. Solid phase bonding can be performed by maintaining the time. The base body 11 and the tubular member 13 may be joined by brazing or the like.
次に、端子14を、管状部材13に挿入し、基体11に形成された端子用穴に挿入する。そして、抵抗発熱体12と端子14とをロウ付け、ねじ込み、溶接等により接続する(S106)。これにより、抵抗発熱体12に給電することが可能となり、変質処理前の基板加熱装置(以下「処理前加熱装置」という)を得ることができる。 Next, the terminal 14 is inserted into the tubular member 13 and inserted into a terminal hole formed in the base 11. Then, the resistance heating element 12 and the terminal 14 are connected by brazing, screwing, welding, or the like (S106). This makes it possible to supply power to the resistance heating element 12 and obtain a substrate heating apparatus before the alteration process (hereinafter referred to as “pre-treatment heating apparatus”).
次に、処理前加熱装置の基板加熱面10aの温度分布を測定する(S107)。具体的には、実際に基板加熱装置10を使用する使用条件において、処理前加熱装置の基板加熱面10aの温度分布を測定する。例えば、基板加熱面10aが設定温度となるように抵抗発熱体12に給電し、抵抗発熱体12を発熱させて温度分布を測定する。温度分布は、赤外線放射温度計、TC(Thermo Couple:熱電対)付きウエハにより測定できる。 Next, the temperature distribution of the substrate heating surface 10a of the pre-treatment heating apparatus is measured (S107). Specifically, the temperature distribution on the substrate heating surface 10a of the pre-treatment heating apparatus is measured under the usage conditions in which the substrate heating apparatus 10 is actually used. For example, power is supplied to the resistance heating element 12 so that the substrate heating surface 10a reaches a set temperature, and the resistance heating element 12 is heated to measure the temperature distribution. The temperature distribution can be measured with an infrared radiation thermometer and a wafer equipped with a TC (Thermo Couple).
次に、抵抗発熱体12を変質させる変質処理を行って、抵抗値を調整する(S108)。具体的には、工程(S107)における温度分布の測定結果に応じて変質処理を行って、抵抗値を調整する。例えば、処理前加熱装置の抵抗発熱体12に設定温度となるように給電したところ、基板加熱面10aの温度分布(面内温度分布)が抵抗発熱体12の抵抗値のばらつき等に起因して不均一となっていた場合、温度分布を均一化させるために、抵抗発熱体12を変質させて抵抗値を調整する部分(以下「変質処理部分」という)を決定する。 Next, an alteration process for altering the resistance heating element 12 is performed to adjust the resistance value (S108). Specifically, alteration processing is performed according to the measurement result of the temperature distribution in the step (S107), and the resistance value is adjusted. For example, when power is supplied to the resistance heating element 12 of the pre-treatment heating apparatus so as to have a set temperature, the temperature distribution (in-plane temperature distribution) of the substrate heating surface 10a is caused by variations in the resistance value of the resistance heating element 12 and the like. In the case of non-uniformity, in order to make the temperature distribution uniform, the resistance heating element 12 is altered to determine a portion for adjusting the resistance value (hereinafter referred to as “altered portion”).
例えば、変質処理により抵抗値を増大させて、発熱量を増大させる場合には、基板加熱面10aにおいて、他の部分よりも低温な部分や、その低温部分の周辺等を変質処理部分に決定できる。この場合、変質処理により抵抗値を増加させた変質処理部分は、変質処理前に比べて発熱量が増大する。その結果、基板加熱面10aの温度分布をほぼ均一にでき、均熱性を確保することができる。 For example, in the case where the resistance value is increased by the alteration process to increase the amount of generated heat, a part of the substrate heating surface 10a that is cooler than other parts, the periphery of the low temperature part, and the like can be determined as the alteration process part. . In this case, the amount of heat generated in the altered portion where the resistance value has been increased by the alteration treatment is greater than that before the alteration treatment. As a result, the temperature distribution on the substrate heating surface 10a can be made substantially uniform, and soaking can be ensured.
又、変質処理により抵抗値を減少させて、発熱量を減少させる場合には、基板加熱面10aにおいて、他の部分よりも高温な部分や、その高温部分の周辺等を変質処理部分に決定できる。この場合、変質処理により抵抗値を減少させた変質処理部分は、変質処理前に比べて発熱量が減少する。その結果、基板加熱面10aの温度分布をほぼ均一にでき、均熱性を確保することができる。 Further, when the resistance value is decreased by the alteration process to reduce the amount of heat generation, a part of the substrate heating surface 10a that is higher in temperature than other parts, the periphery of the high temperature part, etc. can be determined as the alteration process part. . In this case, the calorific value of the altered portion where the resistance value has been reduced by the alteration treatment is reduced as compared with that before the alteration treatment. As a result, the temperature distribution on the substrate heating surface 10a can be made substantially uniform, and soaking can be ensured.
更に、温度分布の測定結果から、基板加熱面10aの最高温度、最低温度、各エリアの温度、エリア間の温度差、面内最大温度差、設定温度との温度差等を求め、これらの情報に基づいて変質処理部分を決定してもよい。更に、抵抗発熱体12の材質や形態、パターン形状、切欠部や溝部による抵抗値の調整状況、作製しようとする基板加熱装置10の使用条件、基板加熱面10aの面積や形状等を考慮して、変質処理部分を決定してもよい。 Further, from the measurement result of the temperature distribution, the maximum temperature and the minimum temperature of the substrate heating surface 10a, the temperature of each area, the temperature difference between the areas, the maximum temperature difference in the surface, the temperature difference from the set temperature, etc. are obtained, and these information The alteration processing portion may be determined based on the above. Further, considering the material and form of the resistance heating element 12, the pattern shape, the adjustment state of the resistance value by the notch or groove, the use conditions of the substrate heating apparatus 10 to be manufactured, the area and shape of the substrate heating surface 10 a, etc. The alteration processing portion may be determined.
例えば、抵抗値の調整は、レーザー光を照射して抵抗発熱体を変質させる変質処理により行うことができる。これによれば、抵抗発熱体12の形状によらず容易に、高精度な抵抗値の調整を行うことができる。具体的には、図5に示すように、抵抗発熱体12が埋設された基体11の外部から、レーザー照射装置5を用いて変質処理部分にレーザー光5aを照射することにより、変質処理部分を変質させることができる。例えば、レーザー照射装置5を制御してレーザー光5aの照射位置、強度(照射出力)、照射時間、使用周波数等を調整することにより、所望の変質処理を施すことができる。 For example, the adjustment of the resistance value can be performed by an alteration process that alters the resistance heating element by irradiating a laser beam. According to this, it is possible to easily adjust the resistance value with high accuracy regardless of the shape of the resistance heating element 12. Specifically, as shown in FIG. 5, the alteration treatment portion is irradiated with the laser beam 5 a from the outside of the base 11 in which the resistance heating element 12 is embedded using the laser irradiation device 5. Can be altered. For example, by controlling the laser irradiation device 5 and adjusting the irradiation position, intensity (irradiation output), irradiation time, operating frequency, and the like of the laser beam 5a, a desired alteration process can be performed.
例えば、抵抗発熱体12がタングステンやタングステンカーバイドである場合、レーザー光5aの照射により、変質処理部分のタングステンやタングステンカーバイドを炭化させる変質処理を行う。これにより、変質処理部分の抵抗値を炭化前(照射前)よりも増加させる。又、抵抗発熱体12がモリブデンである場合、レーザー光5aの照射により、変質処理部分のモリブデンを炭化させる変質処理を行う。これにより、変質処理部分の抵抗値を炭化前(照射前)よりも増加させる。 For example, when the resistance heating element 12 is tungsten or tungsten carbide, a modification process is performed to carbonize tungsten or tungsten carbide in the modified process part by irradiation with the laser beam 5a. Thereby, the resistance value of the altered portion is increased more than before carbonization (before irradiation). Further, when the resistance heating element 12 is molybdenum, a modification process for carbonizing the molybdenum in the modified process part is performed by irradiation with the laser beam 5a. Thereby, the resistance value of the altered portion is increased more than before carbonization (before irradiation).
又、基体11を構成するセラミックス焼結体にレーザー光照射による悪影響を及ぼさずに、抵抗発熱体12を変質させるために、レーザー照射装置5としては、抵抗発熱体12に吸収されやすく、セラミックス焼結体に吸収されにくいレーザー光5aを照射可能なものを用いることが好ましい。例えば、レーザー照射装置5としては、YAGレーザー、炭酸ガスレーザー、エキシマレーザー等を用いることができる。又、レーザー光の照射出力を調整することにより、レーザー光が抵抗発熱体12を通過することを低減でき、基体11へのダメージを回避できる。 Further, in order to change the resistance heating element 12 without adversely affecting the ceramic sintered body constituting the substrate 11 by the laser light irradiation, the laser irradiation apparatus 5 is easily absorbed by the resistance heating element 12, and the ceramic heating body It is preferable to use a laser beam that can be irradiated with a laser beam 5a that is not easily absorbed by the body. For example, as the laser irradiation device 5, a YAG laser, a carbon dioxide gas laser, an excimer laser, or the like can be used. Further, by adjusting the laser beam irradiation output, it is possible to reduce the laser beam from passing through the resistance heating element 12 and to avoid damage to the substrate 11.
抵抗発熱体12の変質の程度は、基板加熱面10aの温度分布の測定結果、温度分布の測定結果から求めた最高温度や最低温度、各エリアの温度、エリア間の温度差、面内最大温度差、設定温度との温度差、抵抗発熱体12の材質や形態、パターン形状、切欠部や溝部による抵抗値の調整状況、作製しようとする基板加熱装置10の使用条件、基板加熱面10aの面積や形状等に基づいて調整できる。温度分布調節の観点からは、変質処理前の抵抗発熱体12の変質処理部分の状態から3〜50%変質させることが好ましい。例えば、タングステンやタングステンカーバイドの抵抗発熱体12を炭化させる場合には、炭化前の抵抗発熱体12の炭化度を5%以上増加させることが好ましい。炭化度は、例えば、平均反射率R0(JIS M 8816)やEDS分析(Energy−Dispersive X−ray Spectroscopy:エネルギー分散型X線分光分析)等により評価することができる。又、モリブデンの抵抗発熱体12を炭化させる場合には、炭化前の抵抗発熱体12の炭化度を3%以上増加させることが好ましい。 The degree of alteration of the resistance heating element 12 includes the temperature distribution measurement result of the substrate heating surface 10a, the maximum and minimum temperatures obtained from the temperature distribution measurement result, the temperature of each area, the temperature difference between the areas, and the in-plane maximum temperature. Difference, temperature difference from set temperature, material and form of resistance heating element 12, pattern shape, adjustment state of resistance value by notch or groove, usage condition of substrate heating apparatus 10 to be manufactured, area of substrate heating surface 10a And can be adjusted based on the shape and the like. From the viewpoint of adjusting the temperature distribution, it is preferable to change the quality of the resistance heating element 12 before the alteration treatment by 3 to 50% from the state of the alteration treatment portion. For example, when carbonizing the resistance heating element 12 of tungsten or tungsten carbide, it is preferable to increase the carbonization degree of the resistance heating element 12 before carbonization by 5% or more. The degree of carbonization can be evaluated by, for example, average reflectance R 0 (JIS M 8816) or EDS analysis (Energy-Dispersive X-ray Spectroscopy). When carbonizing the resistance heating element 12 made of molybdenum, it is preferable to increase the carbonization degree of the resistance heating element 12 before carbonization by 3% or more.
又、求められる均熱性は、基板加熱装置10の用途や使用条件等によって異なるが、50〜800℃の温度範囲において、基板加熱面10a内における温度差を±5℃以下とできるように抵抗値を調整することが好ましい。又、基板加熱面10a中央部の温度Tcと基板加熱面10aの円周部付近の温度Toとの温度差(To−Tc)を、±4℃以下とできるように抵抗値を調整してもよい。又、基板加熱面10aの同一円周上の温度差を、±2.5℃以下とできるように抵抗値を調整してもよい。尚、抵抗発熱体12に局所的に変質処理を施してもよく、全体的に変質処理を施してもよい。 Further, the required thermal uniformity varies depending on the application and use conditions of the substrate heating apparatus 10, but the resistance value is set so that the temperature difference within the substrate heating surface 10 a can be ± 5 ° C. or less in the temperature range of 50 to 800 ° C. Is preferably adjusted. Even if the resistance value is adjusted so that the temperature difference (To−Tc) between the temperature Tc at the center of the substrate heating surface 10a and the temperature To near the circumference of the substrate heating surface 10a can be ± 4 ° C. or less. Good. Further, the resistance value may be adjusted so that the temperature difference on the same circumference of the substrate heating surface 10a can be ± 2.5 ° C. or less. It should be noted that the resistance heating element 12 may be locally subjected to an alteration process or may be entirely subjected to an alteration process.
最後に、抵抗発熱体12に変質処理を行って抵抗値を調整して得られた基板加熱装置10の基板加熱面10aの温度分布を測定する(S109)。そして、基板加熱面10aが目標とする均熱性を備えるか否かを確認する。このとき、目標とする均熱性が得られていない場合には、工程(S108)に戻り、再度、変質処理を行って抵抗値を調整する。 Finally, the temperature distribution of the substrate heating surface 10a of the substrate heating apparatus 10 obtained by performing the alteration process on the resistance heating element 12 to adjust the resistance value is measured (S109). And it is confirmed whether the board | substrate heating surface 10a is equipped with the target thermal uniformity. At this time, if the target thermal uniformity is not obtained, the process returns to the step (S108) and the alteration process is performed again to adjust the resistance value.
以上のようにして、基体11作製後に、変質処理を行って抵抗発熱体12の抵抗値を調整することが好ましい。これによれば、抵抗発熱体12形成後の工程によって抵抗値が変動しまうことを防止でき、変質処理による抵抗値調整によって得られた均熱性を維持できる。 As described above, it is preferable to adjust the resistance value of the resistance heating element 12 by performing an alteration process after the substrate 11 is manufactured. According to this, it is possible to prevent the resistance value from fluctuating due to the process after the resistance heating element 12 is formed, and it is possible to maintain the thermal uniformity obtained by adjusting the resistance value by the alteration process.
特に、処理前加熱装置の基板加熱面10aの温度分布を測定し、温度分布の測定結果に応じて変質処理を行って抵抗値を調整する場合には、実際の基板加熱面10aの温度分布を考慮して、非常に高精度に抵抗値を調整でき、基板加熱面10aの均熱性をより適切に確保できる。基板加熱装置10は、使用条件等によって温度分布が異なってくる可能性があるため、実際の使用条件下で測定した温度分布に基づいて変質処理を行って抵抗値を調整することにより、実際の使用においてより確実に均熱性を確保できる。又、製造工程上の種々の条件の相違によって、製品毎に異なる温度分布を有している場合であっても、各製品それぞれに適した変質処理を行って、抵抗値を調整でき、均熱性を確保できる。 In particular, when the temperature distribution of the substrate heating surface 10a of the pre-treatment heating apparatus is measured, and the resistance value is adjusted by performing the alteration process according to the measurement result of the temperature distribution, the actual temperature distribution of the substrate heating surface 10a is changed. In consideration, the resistance value can be adjusted with very high accuracy, and the thermal uniformity of the substrate heating surface 10a can be more appropriately ensured. Since the temperature distribution of the substrate heating apparatus 10 may vary depending on the use conditions and the like, the resistance value is adjusted by performing the alteration process based on the temperature distribution measured under the actual use conditions. It is possible to ensure heat uniformity more reliably during use. In addition, even if the products have different temperature distributions due to various conditions in the manufacturing process, the resistance value can be adjusted by performing a suitable alteration process for each product. Can be secured.
尚、工程(S107)を省略し、処理前加熱装置の抵抗発熱体12に変質処理を施してもよい。又、図3では、基体11作製後に変質処理を行っているが、抵抗発熱体12を形成した際に、即ち、工程(S102)において、変質処理を行ってもよい。これらの場合、抵抗発熱体12の形態や、抵抗発熱体12のパターン形状や材質、作製しようとする基板加熱装置10の使用条件、基板加熱面10aの面積や形状等に応じて、基板加熱面10aの温度分布がどのように変化するかを、実際に複数の基板加熱装置10を作製、評価し、その統計をとったり、シミュレーションを行ったりして予め調査しておく。そして、その調査結果に基づいて変質処理部分を決定することができる。 Note that the step (S107) may be omitted and the resistance heating element 12 of the pre-treatment heating apparatus may be subjected to a modification process. In FIG. 3, the alteration process is performed after the substrate 11 is manufactured. However, the alteration process may be performed when the resistance heating element 12 is formed, that is, in the step (S102). In these cases, the substrate heating surface depends on the form of the resistance heating element 12, the pattern shape and material of the resistance heating element 12, the use conditions of the substrate heating apparatus 10 to be manufactured, the area and shape of the substrate heating surface 10a, and the like. The temperature distribution of 10a changes in advance by actually manufacturing and evaluating a plurality of substrate heating apparatuses 10 and taking statistics or performing simulations. And the alteration process part can be determined based on the investigation result.
例えば、管状部材13を有する基板加熱装置10の場合、一般的に、管状部材13への熱伝導によって、基板加熱面10aの中央部は周辺部に比べて低温になる傾向がある。そのため、例えば、基板加熱面10aの中央部付近の位置を変質処理部分に決定できる。 For example, in the case of the substrate heating apparatus 10 having the tubular member 13, generally, the central portion of the substrate heating surface 10 a tends to be lower in temperature than the peripheral portion due to heat conduction to the tubular member 13. Therefore, for example, the position near the center of the substrate heating surface 10a can be determined as the alteration processing portion.
又、抵抗発熱体12形成時の場合には、その抵抗発熱体12の抵抗値を測定し、その測定結果に基づいて変質処理部分を決定することができる。例えば、抵抗発熱体12の他の部分よりも抵抗値が低い部分を変質処理部分に決定できる。尚、抵抗発熱体12をレーザー光により加工、変質させる場合、レーザー光の強度(照射出力)、照射時間、使用周波数等を調整することにより、変質に留めるか、除去加工するかを調整できる。 Further, when the resistance heating element 12 is formed, the resistance value of the resistance heating element 12 is measured, and the alteration processing portion can be determined based on the measurement result. For example, a part having a lower resistance value than the other part of the resistance heating element 12 can be determined as the alteration processing part. When the resistance heating element 12 is processed and altered by the laser beam, it is possible to adjust whether it is to be altered or removed by adjusting the intensity (irradiation output), irradiation time, operating frequency, etc. of the laser beam.
尚、図3では、基体11及び管状部材13としてセラミックス焼結体を用いた場合を例にとって説明したが、基体11や管状部材13を、金属や、セラミックスと金属の複合材料等により作製する場合には、研削加工やプレス加工等によって基体11や管状部材13を作製できる。 In FIG. 3, the case where a ceramic sintered body is used as the base 11 and the tubular member 13 has been described as an example. However, the base 11 and the tubular member 13 are made of a metal, a ceramic-metal composite material, or the like. In this case, the substrate 11 and the tubular member 13 can be manufactured by grinding or pressing.
以上説明したように、基板加熱装置10の製造方法によれば、抵抗発熱体12を変質させる変質処理により抵抗値を調整するため、加工だけで抵抗値を調整する方法に比べて、抵抗発熱体12の抵抗値を精度良く調整できる。そのため、基板加熱面10aの均熱性が確保された基板加熱装置10を提供することができる。又、抵抗発熱体12の形状が抵抗値を厳密に調整するための加工が困難なものであっても、抵抗発熱体12を変質させることによって、その抵抗値を適切に調整できる。 As described above, according to the method for manufacturing the substrate heating apparatus 10, the resistance value is adjusted by the alteration process for altering the resistance heating element 12, so that the resistance heating element is compared with the method of adjusting the resistance value only by processing. The resistance value of 12 can be adjusted with high accuracy. Therefore, it is possible to provide the substrate heating apparatus 10 in which the temperature uniformity of the substrate heating surface 10a is ensured. Even if the shape of the resistance heating element 12 is difficult to process for strictly adjusting the resistance value, the resistance value can be appropriately adjusted by altering the resistance heating element 12.
よって、基板加熱装置10は、CVD(Chemical Vapor Deposition)装置やエッチング装置等の半導体製造装置や液晶製造装置に好適に使用できる。又、厳しい均熱性の要求にも対応でき、基板の大口径化にも対応できる。 Therefore, the substrate heating apparatus 10 can be suitably used for a semiconductor manufacturing apparatus or a liquid crystal manufacturing apparatus such as a CVD (Chemical Vapor Deposition) apparatus or an etching apparatus. In addition, it can respond to severe heat uniformity requirements and can respond to the increase in the substrate diameter.
尚、本発明は上記実施形態に限定されるものではなく、種々の変更が可能である。例えば、基板加熱装置は、静電チャックとして機能するための電極を備えていてもよい。この場合、電極は抵抗発熱体と同様に基体内に埋設させることができる。 In addition, this invention is not limited to the said embodiment, A various change is possible. For example, the substrate heating device may include an electrode for functioning as an electrostatic chuck. In this case, the electrode can be embedded in the substrate in the same manner as the resistance heating element.
次に、本発明を実施例により更に詳細に説明するが、本発明は下記の実施例に何ら限定されるものではない。 EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited to the following Example at all.
まず、窒化アルミニウム粉末95重量%に、焼結助剤として酸化イットリウム5重量%を加え、ボールミルを用いて混合した。得られた混合粉末に、バインダーを添加し、噴霧造粒法により造粒した。得られた造粒顆粒を金型成形法により、基体11用の円盤状に成形した。又、造粒顆粒をCIP法により、管状部材13用の管状に成形した。得られた円盤状の成形体を窒素ガス中でホットプレス法により、管状の成形体を窒素ガス中で常圧焼成により、1860℃で6時間焼成した。 First, 5% by weight of yttrium oxide as a sintering aid was added to 95% by weight of aluminum nitride powder and mixed using a ball mill. A binder was added to the obtained mixed powder and granulated by a spray granulation method. The obtained granulated granules were formed into a disk shape for the substrate 11 by a mold forming method. Further, the granulated granules were formed into a tubular shape for the tubular member 13 by the CIP method. The obtained disk-shaped molded body was fired at 1860 ° C. for 6 hours by hot pressing in nitrogen gas and the tubular molded body was fired at normal pressure in nitrogen gas.
次に、タングステン粉末80重量%と窒化アルミニウム粉末20重量%の混合粉末にバインダーを混合して印刷ペーストを作製した。円盤状の窒化アルミニウム焼結体上にスクリーン印刷法により、抵抗発熱体12を形成し、乾燥させた。金型に抵抗発熱体12が形成された窒化アルミニウム焼結体をセットし、窒化アルミニウム焼結体、抵抗発熱体12上に、上記造粒顆粒を充填してプレス成形を行った。 Next, a binder was mixed with a mixed powder of 80 wt% tungsten powder and 20 wt% aluminum nitride powder to prepare a printing paste. A resistance heating element 12 was formed on a disk-shaped aluminum nitride sintered body by screen printing and dried. The aluminum nitride sintered body in which the resistance heating element 12 was formed was set in a mold, and the granulated granule was filled on the aluminum nitride sintered body and the resistance heating element 12 to perform press molding.
そして、一体に成形された窒化アルミニウム焼結体、抵抗発熱体12、窒化アルミンニウム成形体をカーボン製のサヤにセットし、ホットプレス法により焼成した。具体的には、50kg/cm2で加圧しながら、窒素加圧雰囲気(窒素150kPa)で、2000℃で15時間保持して一体に焼成した。 Then, the integrally formed aluminum nitride sintered body, resistance heating element 12, and aluminum nitride formed body were set in a carbon sheath and fired by a hot press method. Specifically, while pressing at 50 kg / cm 2 , firing was carried out integrally by holding at 2000 ° C. for 15 hours in a nitrogen pressure atmosphere (nitrogen 150 kPa).
得られた窒化アルミニウム焼結体に、基板加熱面10aの平坦化加工や、端子用穴の穴あけ加工等を施した。基体11の大きさは、直径350mm、厚さ20mmとした。管状部材13の大きさは、外径70mm、内径60mm、長さ180mmとした。 The obtained aluminum nitride sintered body was subjected to flattening processing of the substrate heating surface 10a, drilling of terminal holes, and the like. The size of the substrate 11 was 350 mm in diameter and 20 mm in thickness. The tubular member 13 had an outer diameter of 70 mm, an inner diameter of 60 mm, and a length of 180 mm.
基体11と管状部材13の接合面に接合剤として硝酸イットリウム水溶液を塗布し、両者を貼り合わせて、窒素雰囲気中で、1800℃、2時間、熱処理し、基体11と管状部材13とを接合した。抵抗発熱体12に端子14をロウ付けにより接合し、処理前加熱装置を得た。 An aqueous solution of yttrium nitrate was applied as a bonding agent to the bonding surface of the substrate 11 and the tubular member 13, and both were bonded together and heat-treated in a nitrogen atmosphere at 1800 ° C. for 2 hours to bond the substrate 11 and the tubular member 13. . The terminal 14 was joined to the resistance heating element 12 by brazing to obtain a pre-treatment heating device.
処理前加熱装置の基板加熱面10aの温度が、設定温度650℃となるように、抵抗発熱体12に給電した。そして、基板加熱面10aの温度分布を、赤外線放射温度計(サーモビュア)を用いて測定した。温度分布の測定結果を図6(a)に示す。 Power was supplied to the resistance heating element 12 so that the temperature of the substrate heating surface 10a of the pre-treatment heating apparatus was a set temperature of 650 ° C. And the temperature distribution of the substrate heating surface 10a was measured using the infrared radiation thermometer (thermoviewer). A measurement result of the temperature distribution is shown in FIG.
基板加熱面10aの温度分布は、大きく4つの温度のエリアに分けられていた。具体的には、基板加熱面10aは、設定温度と等しい650℃のエリア3と、設定温度よりも低く、基板加熱面10a内において最も低温なエリア(以下「クールエリア」という)1と、設定温度よりも高く、基板加熱面10a内において最も高温なエリア(以下「ホットエリア」という)4と、クールエリア1とエリア3の間の温度のエリア2を有していた。クールエリア1、エリア2は、基体11のほぼ中央に位置し、基体11中央付近が低温になっていた。ホットエリア4は、基体11の円周部付近に位置し、基体11円周部付近が高温になっていた。又、面内最大温度差(クールエリア1とホットエリア4との温度差)は、5.1℃であった。更に、同一円周上の温度差の最大値は、2.5℃となっていた。 The temperature distribution on the substrate heating surface 10a was roughly divided into four temperature areas. Specifically, the substrate heating surface 10a has an area 3 of 650 ° C. equal to the set temperature, an area 1 lower than the set temperature and the lowest temperature (hereinafter referred to as “cool area”) 1 in the substrate heating surface 10a, and a set value. It has an area 4 that is higher than the temperature and is the hottest area (hereinafter referred to as “hot area”) 4 in the substrate heating surface 10 a and a temperature area 2 between the cool area 1 and the area 3. The cool area 1 and the area 2 are located substantially at the center of the base body 11, and the vicinity of the center of the base body 11 has a low temperature. The hot area 4 is located in the vicinity of the circumferential portion of the base 11, and the vicinity of the peripheral portion of the base 11 is at a high temperature. The in-plane maximum temperature difference (temperature difference between the cool area 1 and the hot area 4) was 5.1 ° C. Furthermore, the maximum value of the temperature difference on the same circumference was 2.5 ° C.
図6(a)に示す測定結果に基づいて、図6(b)に示すように、エリア3のうち、ホットエリア4と向かい合い、低温であるクールエリア1やエリア2を囲むエリア3aと、クールエリア1とを、変質処理部分に決定した。決定した変質処理部分(エリア3aとクールエリア1)に、レーザー照射装置として炭酸ガスレーザー(レーザー加工装置)を用い、照射出力500W、照射時間20秒で照射した。このようにして、抵抗発熱体12の変質処理部分(エリア3aとクールエリア1)を変質させる変質処理を行って、抵抗値を調整した。具体的には、タングステンの抵抗発熱体12を炭化させ、変質処理部分(エリア3aとクールエリア1)の抵抗値を増加させることにより、抵抗値が調整された基板加熱装置10を作製した。 Based on the measurement result shown in FIG. 6 (a), as shown in FIG. 6 (b), the area 3a that faces the hot area 4 and surrounds the cool area 1 and the area 2 that are low in temperature, as shown in FIG. Area 1 was determined as the alteration processing portion. Using the carbon dioxide laser (laser processing apparatus) as a laser irradiation apparatus, the determined alteration processing part (area 3a and cool area 1) was irradiated with an irradiation output of 500 W and an irradiation time of 20 seconds. In this way, the resistance value was adjusted by performing the alteration process of altering the alteration process portion (area 3a and cool area 1) of the resistance heating element 12. Specifically, the resistance heating element 12 made of tungsten was carbonized, and the resistance value of the altered portion (area 3a and cool area 1) was increased, so that the substrate heating apparatus 10 with the adjusted resistance value was manufactured.
変質処理による抵抗値調整後の基板加熱装置10の基板加熱面10aの温度分布の測定結果を図6(c)に示す。変質処理部分の抵抗値が増加し、その発熱量が変質前(炭化前)に比べて増大した結果、基板加熱面10aの温度分布はほぼ均一になっていた。具体的には、クールエリア1がほぼ除去され、設定温度と等しいエリア3が大部分を占める基板加熱面10aを得ることができた。又、面内最大温度差(エリア2とホットエリア4との温度差)は、3.2℃であった。更に、同一円周上の温度差の最大値は、2.0℃となっていた。即ち、面内最大温度差を1.9℃、同一円周上の温度差を0.5℃改善することができた。このように、極めて高い均熱性を備えた基板加熱装置10を作製することができた。 FIG. 6C shows the measurement result of the temperature distribution of the substrate heating surface 10a of the substrate heating apparatus 10 after the resistance value adjustment by the alteration process. As a result of an increase in the resistance value of the altered portion and an increase in the amount of heat generated before the alteration (before carbonization), the temperature distribution on the substrate heating surface 10a was almost uniform. Specifically, it was possible to obtain the substrate heating surface 10a in which the cool area 1 is almost removed and the area 3 equal to the set temperature occupies most of the area. The in-plane maximum temperature difference (temperature difference between area 2 and hot area 4) was 3.2 ° C. Furthermore, the maximum value of the temperature difference on the same circumference was 2.0 ° C. That is, the in-plane maximum temperature difference was improved by 1.9 ° C., and the temperature difference on the same circumference could be improved by 0.5 ° C. Thus, the substrate heating apparatus 10 having extremely high heat uniformity could be produced.
5…レーザー照射装置
6…機械加工機
10…基板加熱装置
11…基体
12…抵抗発熱体
12e…切欠部
12f…溝部
13…管状部材
14…端子
DESCRIPTION OF SYMBOLS 5 ... Laser irradiation apparatus 6 ... Machine tool 10 ... Substrate heating apparatus 11 ... Base | substrate 12 ... Resistance heating element 12e ... Notch part 12f ... Groove part 13 ... Tubular member 14 ... Terminal
Claims (12)
前記抵抗発熱体を変質させる変質処理により、前記抵抗発熱体の抵抗値を調整する工程と
を有することを特徴とする基板加熱装置の製造方法。 Forming a substrate having a resistance heating element and having a substrate heating surface;
And a step of adjusting a resistance value of the resistance heating element by a modification process for changing the quality of the resistance heating element.
前記温度分布の測定結果に応じて前記変質処理を行って前記抵抗値を調整することを特徴とする請求項4に記載の基板加熱装置の製造方法。 Measuring the temperature distribution of the substrate heating surface,
The method for manufacturing a substrate heating apparatus according to claim 4, wherein the resistance value is adjusted by performing the alteration process according to a measurement result of the temperature distribution.
該基体に形成され、変質処理により抵抗値が調整された抵抗発熱体と
を備えることを特徴とする基板加熱装置。 A substrate having a substrate heating surface;
A substrate heating apparatus, comprising: a resistance heating element formed on the substrate and having a resistance value adjusted by an alteration process.
The substrate heating apparatus according to claim 8, wherein the base body is an aluminum nitride sintered body.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005043133A JP2006228633A (en) | 2005-02-18 | 2005-02-18 | Manufacturing method of substrate heater, and the substrate heater |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005043133A JP2006228633A (en) | 2005-02-18 | 2005-02-18 | Manufacturing method of substrate heater, and the substrate heater |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006228633A true JP2006228633A (en) | 2006-08-31 |
Family
ID=36989809
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005043133A Pending JP2006228633A (en) | 2005-02-18 | 2005-02-18 | Manufacturing method of substrate heater, and the substrate heater |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006228633A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020153218A1 (en) * | 2019-01-25 | 2020-07-30 | 日本碍子株式会社 | Ceramic heater and method for manufacturing same |
WO2020213368A1 (en) * | 2019-04-16 | 2020-10-22 | 日本特殊陶業株式会社 | Production method for holding device, production method for structure for holding devices, and holding device |
JPWO2021172261A1 (en) * | 2020-02-26 | 2021-09-02 | ||
WO2021172262A1 (en) * | 2020-02-26 | 2021-09-02 | 日本碍子株式会社 | Ceramic heater and production method for same |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6433084A (en) * | 1987-07-29 | 1989-02-02 | Tdk Corp | Partial modification method for oxide ceramic surface |
JPH06275368A (en) * | 1993-03-19 | 1994-09-30 | Murata Mfg Co Ltd | Ceramic heater |
JP2000340345A (en) * | 1999-05-31 | 2000-12-08 | Kyocera Corp | Heating body |
JP2002203666A (en) * | 2000-12-28 | 2002-07-19 | Ibiden Co Ltd | Ceramic heater and manufacturing method of the same |
JP2002529905A (en) * | 1998-11-11 | 2002-09-10 | ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング | Manufacturing method of ceramic layered system and ceramic heating device |
-
2005
- 2005-02-18 JP JP2005043133A patent/JP2006228633A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6433084A (en) * | 1987-07-29 | 1989-02-02 | Tdk Corp | Partial modification method for oxide ceramic surface |
JPH06275368A (en) * | 1993-03-19 | 1994-09-30 | Murata Mfg Co Ltd | Ceramic heater |
JP2002529905A (en) * | 1998-11-11 | 2002-09-10 | ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング | Manufacturing method of ceramic layered system and ceramic heating device |
JP2000340345A (en) * | 1999-05-31 | 2000-12-08 | Kyocera Corp | Heating body |
JP2002203666A (en) * | 2000-12-28 | 2002-07-19 | Ibiden Co Ltd | Ceramic heater and manufacturing method of the same |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2020153218A1 (en) * | 2019-01-25 | 2021-09-30 | 日本碍子株式会社 | Ceramic heater and its manufacturing method |
JP7169376B2 (en) | 2019-01-25 | 2022-11-10 | 日本碍子株式会社 | Ceramic heater and its manufacturing method |
TWI841664B (en) * | 2019-01-25 | 2024-05-11 | 日商日本碍子股份有限公司 | Ceramic heater and its manufacturing method |
KR102581101B1 (en) * | 2019-01-25 | 2023-09-20 | 엔지케이 인슐레이터 엘티디 | Ceramic heater and its manufacturing method |
KR20210066917A (en) * | 2019-01-25 | 2021-06-07 | 엔지케이 인슐레이터 엘티디 | Ceramic heater and its manufacturing method |
CN113170536A (en) * | 2019-01-25 | 2021-07-23 | 日本碍子株式会社 | Ceramic heater and method for manufacturing the same |
CN113170536B (en) * | 2019-01-25 | 2023-06-09 | 日本碍子株式会社 | Ceramic heater and method for manufacturing the same |
WO2020153218A1 (en) * | 2019-01-25 | 2020-07-30 | 日本碍子株式会社 | Ceramic heater and method for manufacturing same |
WO2020213368A1 (en) * | 2019-04-16 | 2020-10-22 | 日本特殊陶業株式会社 | Production method for holding device, production method for structure for holding devices, and holding device |
KR102495415B1 (en) | 2019-04-16 | 2023-02-06 | 니뽄 도쿠슈 도교 가부시키가이샤 | Method for manufacturing a holding device, method for manufacturing a structure for a holding device, and holding device |
JPWO2020213368A1 (en) * | 2019-04-16 | 2021-05-06 | 日本特殊陶業株式会社 | Manufacturing method of holding device, manufacturing method of structure for holding device and holding device |
KR20210008522A (en) | 2019-04-16 | 2021-01-22 | 니뽄 도쿠슈 도교 가부시키가이샤 | Manufacturing method of holding device, manufacturing method of structure for holding device, and holding device |
US12120781B2 (en) | 2019-04-16 | 2024-10-15 | Niterra Co., Ltd. | Method of manufacturing holding device, method of manufacturing structure for holding device, and holding device |
JPWO2021172262A1 (en) * | 2020-02-26 | 2021-09-02 | ||
WO2021172261A1 (en) * | 2020-02-26 | 2021-09-02 | 日本碍子株式会社 | Ceramic heater and method for manufacturing same |
TWI768726B (en) * | 2020-02-26 | 2022-06-21 | 日商日本碍子股份有限公司 | Ceramic heater and method of making the same |
WO2021172262A1 (en) * | 2020-02-26 | 2021-09-02 | 日本碍子株式会社 | Ceramic heater and production method for same |
JP7284339B2 (en) | 2020-02-26 | 2023-05-30 | 日本碍子株式会社 | Ceramic heater and its manufacturing method |
JPWO2021172261A1 (en) * | 2020-02-26 | 2021-09-02 | ||
JP7349010B2 (en) | 2020-02-26 | 2023-09-21 | 日本碍子株式会社 | Ceramic heater and its manufacturing method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4476701B2 (en) | Manufacturing method of sintered body with built-in electrode | |
JP4467453B2 (en) | Ceramic member and manufacturing method thereof | |
US7247818B2 (en) | Substrate heating apparatus and manufacturing method for the same | |
KR101470046B1 (en) | Ceramic heater and method for making the same | |
US7800029B2 (en) | Heating device | |
US8394199B2 (en) | Processing device | |
JP2005064497A (en) | Manufacturing method for heating material with built-in electrode | |
KR100634182B1 (en) | Substrate heater and fabrication method for the same | |
JP3631614B2 (en) | Ceramic heater | |
KR20080091072A (en) | Wafer holder, its manufacturing method and semiconductor manufacturing apparatus | |
US6806443B2 (en) | Ceramic susceptor | |
US7173220B2 (en) | Heating device | |
JP2006228633A (en) | Manufacturing method of substrate heater, and the substrate heater | |
US7401399B2 (en) | Method of manufacturing a substrate heating device | |
JPH11162620A (en) | Ceramic heater and method of soaking | |
JP2004128232A (en) | Ceramic bonded body, wafer holder, and semiconductor manufacturing device | |
JP2007250644A (en) | Heating member and substrate heating device using the same | |
JP2009067662A (en) | Aluminum nitride sintered compact, and substrate mounting device using the same | |
JP7507019B2 (en) | Aluminum nitride sintered body, its manufacturing method, and semiconductor manufacturing equipment parts using aluminum nitride sintered body | |
JP7628358B2 (en) | Electrode-embedding member, its manufacturing method, and substrate holding member | |
JP7312631B2 (en) | heating element | |
JP7184652B2 (en) | holding device | |
JP2005056759A (en) | Heating device | |
JP4199604B2 (en) | Aluminum nitride ceramic heater | |
JP2006286646A (en) | Ceramic heater |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20071114 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20090629 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20090715 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20091207 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091215 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20100511 |