[go: up one dir, main page]

JP2006226231A - Exhaust gas purification device for internal combustion engine - Google Patents

Exhaust gas purification device for internal combustion engine Download PDF

Info

Publication number
JP2006226231A
JP2006226231A JP2005042735A JP2005042735A JP2006226231A JP 2006226231 A JP2006226231 A JP 2006226231A JP 2005042735 A JP2005042735 A JP 2005042735A JP 2005042735 A JP2005042735 A JP 2005042735A JP 2006226231 A JP2006226231 A JP 2006226231A
Authority
JP
Japan
Prior art keywords
exhaust
exhaust gas
purification
temperature
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005042735A
Other languages
Japanese (ja)
Inventor
Tomihisa Oda
富久 小田
Takanobu Ueda
貴宣 植田
Kuniaki Niimi
国明 新美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2005042735A priority Critical patent/JP2006226231A/en
Publication of JP2006226231A publication Critical patent/JP2006226231A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)

Abstract

【課題】並列的な複数の排気通路を有する内燃機関の排気浄化装置において、そのサイズを可及的にコンパクト化するとともに、排気通路に設けられた排気浄化のための触媒の温度維持を容易とする。
【解決手段】内燃機関の排気浄化装置において、内燃機関からの排気が流れる複数の排気通路2、3と、複数の排気通路のそれぞれに設けられ、該排気通路の排気流量を調整する複数の排気調整弁10、11と、複数の排気通路のそれぞれに設けられ、該排気通路を流れる排気の浄化を行う複数の排気浄化手段8、9と、を備え、複数の排気浄化手段において、階層的に一の排気浄化手段8の周囲を他の排気浄化手段9が取り囲み、且つ各排気浄化手段が同心状に配置されている。
【選択図】 図1
In an exhaust gas purification apparatus for an internal combustion engine having a plurality of parallel exhaust passages, the size of the exhaust gas purification device can be made as small as possible, and the temperature of a catalyst for exhaust gas purification provided in the exhaust passage can be easily maintained. To do.
In an exhaust purification device for an internal combustion engine, a plurality of exhaust passages 2 and 3 through which exhaust from the internal combustion engine flows and a plurality of exhaust passages are provided, and a plurality of exhausts for adjusting an exhaust flow rate of the exhaust passages. And a plurality of exhaust gas purifying means 8 and 9 for purifying exhaust gas flowing through the exhaust passages, provided in each of the plurality of exhaust gas passages. Other exhaust purification means 9 surrounds one exhaust purification means 8 and the exhaust purification means are arranged concentrically.
[Selection] Figure 1

Description

本発明は、排気浄化を行う内燃機関の排気浄化装置に関する。   The present invention relates to an exhaust gas purification apparatus for an internal combustion engine that performs exhaust gas purification.

内燃機関において、排気中の粒子状物質が大気に放出されるのを防止するために、排気通路にフィルタが備えられ、そのフィルタによって粒子状物質の捕集が行われる。しかし、フィルタにおける粒子状物質の捕集量には限界容量が存在し、捕集量が過度に多くなると、排気通路における背圧が上昇し、内燃機関の機関負荷を上昇させる結果となる。   In an internal combustion engine, in order to prevent the particulate matter in the exhaust from being released into the atmosphere, a filter is provided in the exhaust passage, and the particulate matter is collected by the filter. However, the trapped amount of particulate matter in the filter has a limit capacity. If the trapped amount is excessively large, the back pressure in the exhaust passage increases, resulting in an increase in the engine load of the internal combustion engine.

従って、フィルタに捕集された粒子状物質を酸化除去する必要がある。この捕集された粒子状物質の酸化除去においては、フィルタに脈動の少ない安定した排気を送り込むことで効率的な酸化除去が可能となる。そこで、内燃機関の排気通路を並列に二本設け、それぞれにフィルタを設置することで、内燃機関の運転状態にかかわらず常に一方のフィルタへ流れ込む排気量を安定的に維持し、効率的な粒子状物質の酸化除去を行う技術が公開されている(例えば、特許文献1を参照。)。
特開平5−59930号公報 特開2004−92512号公報 特開2003−83045号公報
Therefore, it is necessary to oxidize and remove the particulate matter collected by the filter. In the oxidation removal of the collected particulate matter, efficient oxidation removal can be performed by sending stable exhaust gas with less pulsation to the filter. Therefore, two exhaust passages for the internal combustion engine are provided in parallel, and a filter is installed in each, so that the amount of exhaust flowing into one of the filters can be maintained stably regardless of the operating state of the internal combustion engine, and efficient particles A technique for performing oxidation removal of a substance is disclosed (for example, see Patent Document 1).
JP-A-5-59930 JP 2004-92512 A JP 2003-83045 A

内燃機関の排気浄化装置を複数の排気通路で並列的に構成することで、内燃機関の運転状態の影響を受けにくい状態で、一の通路に設けられたフィルタや吸蔵還元型NOx触媒等に目的とする排気流量を供給することが可能となる。しかし、排気通路を並列的に設けることで、排気浄化装置全体のサイズが大きくなり車輌への搭載性が悪化する。また、放熱面積も大きいため各通路に設けられた排気浄化のための触媒の温度上昇、維持も困難となる。   By constructing the exhaust gas purification device of the internal combustion engine in parallel with a plurality of exhaust passages, the object is to be provided with a filter, a NOx storage reduction catalyst, etc. provided in one passage while being hardly affected by the operating state of the internal combustion engine. It becomes possible to supply the exhaust flow rate. However, by providing the exhaust passages in parallel, the overall size of the exhaust emission control device becomes large, and the mountability to the vehicle deteriorates. Further, since the heat radiation area is large, it is difficult to raise and maintain the temperature of the catalyst for exhaust purification provided in each passage.

本発明では、上記した問題に鑑み、並列的な複数の排気通路を有する内燃機関の排気浄化装置において、そのサイズを可及的にコンパクト化するとともに、排気通路に設けられた排気浄化のための触媒の温度上昇、維持を容易とすることを目的とする。   In the present invention, in view of the above-described problems, in an exhaust gas purification apparatus for an internal combustion engine having a plurality of parallel exhaust passages, the size of the exhaust gas purification device can be made as compact as possible, and exhaust purification provided in the exhaust passage can be achieved. The object is to facilitate the temperature rise and maintenance of the catalyst.

本発明は、上記した課題を解決するために、内燃機関からの排気が流れる複数の排気通路に設けられた触媒等の各排気浄化手段の相互位置関係に着目した。各排気浄化手段の配置を工夫することで排気浄化装置全体のサイズをコンパクト化することが可能となるとともに、一の排気浄化手段が他の排気浄化手段の断熱構造の機能を果たすことで排気浄化手段の温度上昇、維持を容易とすることが可能となるからである。   In order to solve the above-described problems, the present invention focuses on the mutual positional relationship between exhaust purification means such as catalysts provided in a plurality of exhaust passages through which exhaust from an internal combustion engine flows. By devising the arrangement of each exhaust purification means, it is possible to reduce the overall size of the exhaust purification device, and one exhaust purification means fulfills the function of the heat insulation structure of the other exhaust purification means, thereby purifying the exhaust. This is because the temperature rise and maintenance of the means can be facilitated.

そこで、本発明は、内燃機関の排気浄化装置であって、内燃機関からの排気が流れる複数の排気通路と、前記複数の排気通路のそれぞれに設けられ、該排気通路の排気流量を調整する複数の排気調整弁と、前記複数の排気通路のそれぞれに設けられ、該排気通路を流れる排気の浄化を行う複数の排気浄化手段と、を備え、前記複数の排気浄化手段において、階層的に一の排気浄化手段の周囲を他の排気浄化手段が取り囲み、且つ各排気浄化手段がほぼ同心状に配置されている。   Therefore, the present invention is an exhaust purification device for an internal combustion engine, and is provided in each of a plurality of exhaust passages through which exhaust from the internal combustion engine flows and the plurality of exhaust passages, and a plurality of exhaust passages for adjusting the exhaust flow rate of the exhaust passages Each of the plurality of exhaust passages, and a plurality of exhaust purification means for purifying the exhaust gas flowing through the exhaust passages. Other exhaust purification means surround the exhaust purification means, and the exhaust purification means are arranged substantially concentrically.

上記の内燃機関の排気浄化装置においては、排気通路が複数設けられ、そして各排気通
路にそれぞれ排気調整弁と排気浄化手段が設けられている。従って、各排気通路を流れる排気流量を、換言すると各排気通路に設けられた排気浄化手段に流れ込む排気流量を、対応する排気調整弁によって任意に調整することが可能である。その結果、一の排気浄化手段に流れ込む排気流量を略一定に維持しながら、他の排気浄化手段に残りの排気を流し込むことで、一の排気浄化手段において内燃機関の運転状態に影響されない排気流量の制御が可能となる。
In the exhaust gas purification apparatus for an internal combustion engine described above, a plurality of exhaust passages are provided, and an exhaust adjustment valve and an exhaust purification means are provided in each exhaust passage. Therefore, the exhaust flow rate flowing through each exhaust passage, in other words, the exhaust flow rate flowing into the exhaust purification means provided in each exhaust passage can be arbitrarily adjusted by the corresponding exhaust adjustment valve. As a result, the exhaust flow rate that is not influenced by the operating state of the internal combustion engine in one exhaust purification unit by flowing the remaining exhaust gas into the other exhaust purification unit while maintaining the exhaust flow rate flowing into one exhaust purification unit substantially constant Can be controlled.

ここで、複数の排気浄化手段において、階層的に一の排気浄化手段の周囲を他の排気浄化手段が取り囲むようにすることで、排気浄化手段の配置に際して空間を効率的に利用することが可能となり、以て排気浄化装置に要する空間、特に排気浄化手段の設置に要する空間の容積を抑制することが可能となりそのダウンサイジングが図られる。また、一の排気浄化手段が他の排気浄化手段によって階層的に取り囲まれることで、他の排気浄化手段が一の排気浄化手段に対する断熱構造体として機能する。その結果、一の排気浄化手段の温度上昇、維持が容易に行われる。   Here, in the plurality of exhaust gas purification means, it is possible to efficiently use the space when arranging the exhaust gas purification means by surrounding the exhaust gas purification means hierarchically with the other exhaust gas purification means. Thus, the volume of the space required for the exhaust purification device, particularly the space required for installation of the exhaust purification means can be suppressed, and downsizing can be achieved. In addition, since one exhaust purification unit is hierarchically surrounded by another exhaust purification unit, the other exhaust purification unit functions as a heat insulating structure for the one exhaust purification unit. As a result, the temperature rise and maintenance of one exhaust purification means can be easily performed.

また、一の排気浄化手段と他の排気浄化手段との配置上の相互関係では、それぞれが同心状に配置されている。このように互いを配置することで、複数の排気浄化手段における熱分布がより均一となるため、熱応力によるひずみの発生等、熱を起因とする各排気浄化手段への負荷が軽減され得る。   Moreover, in the mutual relationship on arrangement | positioning of one exhaust gas purification means and another exhaust gas purification means, each is arrange | positioned concentrically. By arranging each other in this manner, the heat distribution in the plurality of exhaust purification means becomes more uniform, so that the load on each exhaust purification means caused by heat, such as generation of strain due to thermal stress, can be reduced.

そして、上記の内燃機関の排気浄化装置で、前記複数の排気調整弁において、各排気調整弁の開度を制御し、該排気調整弁に対応した排気浄化手段への排気流量を調整する排気調整弁制御手段を、更に備える場合、前記複数の排気浄化手段のうち内側に位置する排気浄化手段の温度を上昇させるとき、前記排気調整弁制御手段は、該内側に位置する排気浄化手段に排気を流入させ、該複数の排気浄化手段のうち外側に位置する排気浄化手段への排気流入を抑制するようにしてもよい。   In the exhaust gas purification apparatus for an internal combustion engine, in the plurality of exhaust gas control valves, the exhaust gas adjustment valve controls the opening degree of each exhaust gas control valve and adjusts the exhaust gas flow rate to the exhaust gas purification unit corresponding to the exhaust gas control valve. In the case of further comprising a valve control means, when the temperature of the exhaust purification means located inside among the plurality of exhaust purification means is raised, the exhaust control valve control means sends exhaust to the exhaust purification means located inside. It is also possible to suppress the inflow of exhaust gas to the exhaust gas purification means located outside of the plurality of exhaust gas purification means.

排気調整弁制御手段は、各排気通路に設けられた排気調整弁の開度を制御して、その排気調整弁が設けられている排気通路の排気の流量、即ち該排気通路に設けられている排気浄化手段に流入する排気の流量を調整する機能を有する。ここで、複数の排気浄化手段のうち、「内側に位置する排気浄化手段」と「外側に位置する排気浄化手段」においては、両者の相対的な関係において、内側と外側が決定されている。即ち、上述したように、複数の排気浄化手段が階層的に取り囲まれるように設けられている内燃機関の排気浄化装置において、そのうち二つの排気浄化手段の関係において、内側に位置する排気浄化手段と外側に位置する排気浄化手段とが決定されるのであり、以下に記載の発明においても同様である。   The exhaust regulating valve control means controls the opening degree of the exhaust regulating valve provided in each exhaust passage, and is provided in the exhaust passage, that is, the exhaust passage provided with the exhaust regulating valve. It has a function of adjusting the flow rate of the exhaust gas flowing into the exhaust gas purification means. Here, among the plurality of exhaust gas purification means, the “exhaust gas purification means positioned inside” and the “exhaust gas purification means positioned outside” determine the inner side and the outer side in a relative relationship between them. That is, as described above, in the exhaust gas purification apparatus for an internal combustion engine provided so that a plurality of exhaust gas purification means are hierarchically surrounded, the exhaust gas purification means located on the inner side in relation to the two exhaust gas purification means, The exhaust purification means located outside is determined, and the same applies to the invention described below.

ここで、排気調整弁制御手段によって外側に位置する排気浄化手段よりも内側に位置する排気浄化手段に優先的に排気を流入させる理由は、内側に位置する排気浄化手段の方が、外側に位置する排気浄化手段と比べて、より多くの排気浄化手段に取り囲まれているため、その放熱が抑制され得る。その結果、上記の内燃機関の排気浄化装置においては、内側に位置する排気浄化手段の方がより暖まりやすいため、優先的に内側に位置する排気浄化手段に排気を流入させることで早期の暖機を達成することが可能となる。   Here, the reason why the exhaust gas is preferentially flowed into the exhaust purification means located inside the exhaust purification means located outside by the exhaust adjustment valve control means is that the exhaust purification means located inside is located outside. Since it is surrounded by more exhaust gas purification means than the exhaust gas purification means, the heat dissipation can be suppressed. As a result, in the exhaust gas purification apparatus for an internal combustion engine described above, the exhaust gas purification means located on the inner side is more likely to be warmed. Therefore, the exhaust gas is preferentially allowed to flow into the exhaust gas purification means located on the inner side. Can be achieved.

また、内側に位置する排気浄化手段に排気を流入させている際、外側に位置する排気浄化手段への排気の流入は、排気調整弁制御手段によって、完全に中断されているか、もしくはその排気流量が内側に位置する排気浄化手段への排気流量より少なく制御されるのが好ましい。   In addition, when exhaust is flowing into the exhaust purification means located on the inner side, the inflow of exhaust gas to the exhaust purification means located on the outer side is completely interrupted by the exhaust control valve control means, or the exhaust flow rate thereof Is preferably controlled to be less than the exhaust gas flow rate to the exhaust gas purification means located inside.

ここで、上記の内燃機関の排気浄化装置において、前記排気調整弁制御手段により前記
内側に位置する排気浄化手段に排気を流入させ、その温度を上昇させているとき、前記複数の排気通路のうちいずれかの排気通路の背圧が所定圧を超える場合、該排気調整弁制御手段は、前記外側に位置する排気浄化手段に対応する排気調整弁の開度を大きくし該外側に位置する排気浄化手段への排気流入量を増加させるようにしてもよい。
Here, in the exhaust gas purification apparatus for an internal combustion engine, when exhaust gas is caused to flow into the exhaust gas purification unit located inside by the exhaust gas control valve control unit and the temperature thereof is increased, among the plurality of exhaust passages When the back pressure of any of the exhaust passages exceeds a predetermined pressure, the exhaust control valve control means increases the opening of the exhaust control valve corresponding to the exhaust purification means located outside and exhausts the exhaust purification valve located outside. The amount of exhaust flowing into the means may be increased.

排気調整弁制御手段によって内側に位置する排気浄化手段に優先的に排気を流入させている場合、内燃機関の運転状態によっては、外側に位置する排気浄化手段に流入する排気流量が減少することで排気通路の背圧が上昇し、内燃機関の機関負荷が上昇する虞がある。そこで、このような場合には、外側に位置する排気浄化手段への排気流入量を増加させて、排気通路の背圧が過度に上昇するのを抑制する。従って、上記の所定圧とは、内燃機関の機関負荷が上昇すると判断されるときの排気通路における背圧と定義される。   When exhaust is preferentially caused to flow into the exhaust purification means located inside by the exhaust control valve control means, depending on the operating state of the internal combustion engine, the exhaust flow rate flowing into the exhaust purification means located outside may decrease. There is a risk that the back pressure of the exhaust passage will increase and the engine load of the internal combustion engine will increase. Therefore, in such a case, the exhaust inflow amount to the exhaust gas purification means located on the outside is increased to suppress an excessive increase in the back pressure of the exhaust passage. Therefore, the predetermined pressure is defined as the back pressure in the exhaust passage when it is determined that the engine load of the internal combustion engine increases.

また、上記の内燃機関の排気浄化装置で、前記複数の排気調整弁において、各排気調整弁の開度を制御し、該排気調整弁に対応した排気浄化手段への排気流量を調整する排気調整弁制御手段を、更に備える場合、前記内燃機関からの排気温度が所定排気温度以下であるとき、前記排気調整弁制御手段は、前記複数の排気浄化手段のうち内側に位置する排気浄化手段への排気流入を抑制し、該複数の排気浄化手段のうち外側に位置する排気浄化手段に排気を流入させるようにしてもよい。   Further, in the exhaust gas purification apparatus for an internal combustion engine, in the plurality of exhaust gas control valves, the exhaust gas adjustment valve is configured to control an opening degree of each exhaust gas control valve and adjust an exhaust gas flow rate to an exhaust gas purification unit corresponding to the exhaust gas control valve. In the case where the valve control means is further provided, when the exhaust temperature from the internal combustion engine is equal to or lower than a predetermined exhaust temperature, the exhaust control valve control means supplies the exhaust purification means positioned inside among the plurality of exhaust purification means. The exhaust inflow may be suppressed, and the exhaust may be allowed to flow into the exhaust purification means located outside of the plurality of exhaust purification means.

ここで、排気調整弁制御手段によって内側に位置する排気浄化手段よりも外側に位置する排気浄化手段に優先的に排気を流入させる理由は、内側に位置する排気浄化手段の温度低下を防止するためである。即ち、内側に位置する排気浄化手段の方が、外側に位置する排気浄化手段と比べて、より多くの排気浄化手段に取り囲まれその放熱が抑制され得る。そこで、排気温度が低い場合は外側に位置する排気浄化手段に優先的に排気を流すことで、内側に位置する排気浄化手段の温度が低下するのを防止し得る。従って、上記の所定排気温度とは、内側に位置する排気浄化手段の温度を低下させる程度に低い排気の温度と定義される。   Here, the reason why the exhaust gas is preferentially caused to flow into the exhaust gas purification unit located outside the exhaust gas purification unit positioned inside by the exhaust gas control valve control unit is to prevent the temperature reduction of the exhaust gas purification unit located inside. It is. That is, the exhaust purification means located on the inner side is surrounded by more exhaust purification means than the exhaust purification means located on the outer side, and the heat radiation can be suppressed. Therefore, when the exhaust gas temperature is low, the exhaust gas is preferentially flowed to the exhaust gas purification unit located outside, so that the temperature of the exhaust gas purification unit located inside can be prevented from decreasing. Therefore, the predetermined exhaust temperature is defined as an exhaust temperature that is low enough to lower the temperature of the exhaust purification means located inside.

また、外側に位置する排気浄化手段に排気を流入させている際、内側に位置する排気浄化手段への排気の流入は、温度低下防止の観点から、排気調整弁制御手段によって、完全に中断されているのが好ましい。しかし、内側に位置する排気浄化手段の温度が比較的高温である場合には、多少その温度が低下しても排気浄化能力に支障がない場合がある。そこで、前記排気調整弁制御手段により前記外側に位置する排気浄化手段に排気を流入させているとき、前記内側に位置する排気浄化手段の温度が所定床温を超える場合、該排気調整弁制御手段は、前記内側に位置する排気浄化手段に対応する排気調整弁の開度を大きくし該内側に位置する排気浄化手段への排気流入量を増加させるようにしてもよい。   Further, when exhaust gas is allowed to flow into the exhaust gas purification means located outside, the inflow of exhaust gas to the exhaust gas purification means located inside is completely interrupted by the exhaust gas control valve control means from the viewpoint of preventing a temperature drop. It is preferable. However, when the temperature of the exhaust purification means located on the inside is relatively high, there is a case where there is no problem in the exhaust purification capability even if the temperature is somewhat lowered. Therefore, when exhaust gas is flowing into the exhaust purification means located outside by the exhaust adjustment valve control means, if the temperature of the exhaust purification means located inside exceeds a predetermined bed temperature, the exhaust adjustment valve control means The exhaust adjustment valve corresponding to the exhaust purification means located inside may be increased in opening to increase the amount of exhaust flowing into the exhaust purification means located inside.

即ち、内側に位置する排気浄化手段の温度が低温の排気流入によっても排気浄化能力に支障がないと判定される程度の温度、即ち上記の所定床温である場合は、外側に位置する排気浄化手段だけではなく内側に位置する排気浄化手段にも排気を流し込むことで、外側に位置する排気浄化手段が過度に冷却されないようにするものである。   That is, when the temperature of the exhaust purification means located on the inside is a temperature at which it is determined that there is no problem with the exhaust purification ability even when the low temperature exhaust gas flows, that is, the above-described predetermined floor temperature, the exhaust purification means located on the outside. By exhausting the exhaust gas into not only the means but also the exhaust purification means located inside, the exhaust purification means located outside is prevented from being excessively cooled.

ここで、上記の内燃機関の排気浄化装置において、前記複数の排気浄化手段のそれぞれは、排気中の粒子状物質を捕集するフィルタを有する場合、前記複数のフィルタのうち内側に位置するフィルタから外側に位置するフィルタの順に、各フィルタに捕集された粒子状物質の酸化除去を行うようにしてもよい。   Here, in the exhaust gas purification apparatus for an internal combustion engine, when each of the plurality of exhaust gas purification means has a filter that collects particulate matter in the exhaust gas, from the filter located inside among the plurality of filters. You may make it perform the oxidation removal of the particulate matter collected by each filter in order of the filter located outside.

フィルタに捕集された粒子状物質を酸化除去するためには、フィルタ温度を粒子状物質が酸化除去される温度にまで上昇させる必要がある。そして、温度が上昇させられたフィルタにおいては捕集された粒子状物質が酸化除去されることで、酸化熱が発生する。そこ
で、階層的に形成されているフィルタ(排気浄化手段)において内側から外側に順にフィルタの温度を上昇させていくと、より断熱的な状況の下でフィルタ温度が上昇させられるため、より効率的にフィルタ温度が上昇する。更に、より外側のフィルタはその内側のフィルタの酸化除去における発熱で暖められるため、より容易に外側のフィルタ温度を上昇させることが可能となる。
In order to oxidize and remove the particulate matter collected by the filter, it is necessary to raise the filter temperature to a temperature at which the particulate matter is oxidized and removed. Then, in the filter whose temperature has been raised, the collected particulate matter is oxidized and removed, so that oxidation heat is generated. Therefore, if the temperature of the filter is raised in order from the inside to the outside in the hierarchically formed filter (exhaust gas purification means), the filter temperature is raised under a more adiabatic condition, so that it is more efficient. The filter temperature rises. Furthermore, since the outer filter is warmed by heat generated by oxidation removal of the inner filter, the outer filter temperature can be increased more easily.

また、上記までの内燃機関の排気浄化装置において、前記複数の排気浄化手段のそれぞれは、吸蔵還元型NOx触媒を有する場合、前記複数の吸蔵還元型NOx触媒のうち内側に位置する吸蔵還元型NOx触媒の高温領域でのNOx浄化率は、該複数の吸蔵還元型NOx触媒のうち外側に位置する吸蔵還元型NOx触媒の高温領域でのNOx浄化率と比べて大きくなるようにしてもよい。   Further, in the exhaust gas purification apparatus for an internal combustion engine as described above, when each of the plurality of exhaust gas purification means has a storage reduction type NOx catalyst, the storage reduction type NOx located inside of the plurality of storage reduction type NOx catalysts. The NOx purification rate in the high temperature region of the catalyst may be larger than the NOx purification rate in the high temperature region of the NOx storage reduction catalyst located outside of the plurality of NOx storage reduction catalysts.

上述したように、内側に位置する吸蔵還元型NOx触媒(排気浄化手段)は、外側に位置する吸蔵還元型NOx触媒と比べて、より断熱効果が得られる状況下にある。従って、内側に位置する吸蔵還元型NOx触媒の温度は、外側に位置する吸蔵還元型NOx触媒の温度に比べて、平均的に高くなる。そこで、上記のように内側と外側の吸蔵還元型NOx触媒において高温領域でのNOx浄化率を違えることで、吸蔵還元型NOx触媒における温度分布に応じたNOx浄化を達成することが可能となる。換言すると、高温領域でのNOx浄化率を違えることで、内側と外側の吸蔵還元型NOx触媒のNOx浄化性能が平準化される。   As described above, the NOx storage reduction catalyst (exhaust gas purification means) located on the inner side is in a situation where a more adiabatic effect can be obtained than the NOx storage reduction catalyst located on the outer side. Therefore, the temperature of the NOx storage reduction catalyst located on the inner side becomes higher on average than the temperature of the NOx storage reduction catalyst located on the outer side. Therefore, by changing the NOx purification rate in the high temperature region between the inner and outer storage reduction type NOx catalysts as described above, it is possible to achieve NOx purification according to the temperature distribution in the storage reduction type NOx catalyst. In other words, by changing the NOx purification rate in the high temperature region, the NOx purification performance of the inner and outer NOx storage reduction catalysts is leveled.

また、上記までの内燃機関の排気浄化装置において、前記複数の排気浄化手段のそれぞれは、吸蔵還元型NOx触媒を有する場合、前記複数の吸蔵還元型NOx触媒のうち内側に位置する吸蔵還元型NOx触媒の低温領域でのNOx浄化率は、該複数の吸蔵還元型NOx触媒のうち外側に位置する吸蔵還元型NOx触媒の低温領域でのNOx浄化率と比べて大きくなるようにしてもよい。   Further, in the exhaust gas purification apparatus for an internal combustion engine as described above, when each of the plurality of exhaust gas purification means has a storage reduction type NOx catalyst, the storage reduction type NOx located inside of the plurality of storage reduction type NOx catalysts. The NOx purification rate in the low temperature region of the catalyst may be larger than the NOx purification rate in the low temperature region of the NOx storage reduction catalyst located outside of the plurality of NOx storage reduction catalysts.

上述したように、内側に位置する吸蔵還元型NOx触媒は、外側に位置する吸蔵還元型NOx触媒と比べて、より断熱効果が得られる状況下にあるため、その温度は上昇しやすい。そこで、温度上昇しやすい内側に位置する吸蔵還元型NOx触媒の低温領域でのNOx浄化率をより高めることで、排気浄化装置として、より低い温度の排気の浄化を行い得る。一方で、温度上昇しにくい外側に位置する吸蔵還元型NOx触媒の高温側のNOx浄化率を高めることで、排気浄化装置として、より高い温度の排気の浄化を行い得る。   As described above, the NOx storage reduction catalyst located on the inner side is in a situation where a more adiabatic effect can be obtained as compared to the NOx storage reduction catalyst located on the outer side, and therefore its temperature is likely to rise. Therefore, by increasing the NOx purification rate in the low temperature region of the NOx storage reduction catalyst located on the inner side where the temperature is likely to rise, the exhaust purification device can purify exhaust at a lower temperature. On the other hand, by increasing the NOx purification rate on the high temperature side of the NOx storage reduction catalyst located on the outside where the temperature is unlikely to rise, the exhaust purification device can purify exhaust at a higher temperature.

ここで、上述までの内燃機関の排気浄化装置において、前記排気通路、前記排気調整弁、前記排気浄化手段はそれぞれ二個ずつ設けられてもよい。即ち、内燃機関の排気浄化装置であって、内燃機関からの排気が流れる二つの排気通路と、前記二つの排気通路のそれぞれに設けられ、該排気通路の排気流量を調整する二つの排気調整弁と、前記二つの排気通路のそれぞれに設けられ、該排気通路を流れる排気の浄化を行う二つの排気浄化手段と、を備え、前記二つの排気浄化手段において、階層的に一の排気浄化手段の周囲を他の排気浄化手段が取り囲み、且つ各排気浄化手段が同心状に配置されている。そして、上述した排気調整弁制御手段による排気流量の制御が行われる。   Here, in the exhaust gas purification apparatus for an internal combustion engine described above, two exhaust passages, two exhaust adjustment valves, and two exhaust gas purification means may be provided. That is, an exhaust gas purification apparatus for an internal combustion engine, which is provided in each of two exhaust passages through which exhaust from the internal combustion engine flows and the two exhaust passages, and two exhaust control valves for adjusting the exhaust flow rate of the exhaust passages And two exhaust purification means provided in each of the two exhaust passages for purifying the exhaust gas flowing through the exhaust passage. In the two exhaust purification means, one of the exhaust purification means is hierarchically arranged. Other exhaust purification means surround the periphery, and each exhaust purification means is arranged concentrically. Then, the exhaust flow rate is controlled by the above-described exhaust regulating valve control means.

並列的な複数の排気通路を有する内燃機関の排気浄化装置において、そのサイズを可及的にコンパクト化するとともに、排気通路に設けられた排気浄化のための触媒の温度上昇、維持を容易とすることが可能となる。   In an exhaust gas purification apparatus for an internal combustion engine having a plurality of parallel exhaust passages, the size of the exhaust gas purification device is made as small as possible and the temperature of a catalyst for exhaust gas purification provided in the exhaust passage is easily increased and maintained. It becomes possible.

ここで、本発明に内燃機関の排気浄化装置の実施の形態について図面に基づいて説明す
る。
Here, an embodiment of an exhaust gas purification apparatus for an internal combustion engine according to the present invention will be described based on the drawings.

図1は、本発明に係る内燃機関1の排気浄化装置の概略構成を表す図である。内燃機関1で発生した排気は、排気通路へと送られる。本発明に係る排気浄化装置の排気通路は、先ず内側排気通路2と外側排気通路3との二本の排気通路で構成される。内側排気通路2の途中には、排気浄化を行う内側排気浄化手段が設けられ、それは内側酸化触媒6と内側フィルタ8とで構成されている。内側酸化触媒6は排気中の未燃燃料成分等を酸化する酸化触媒であり、内側フィルタ8は主に排気中の粒子状物質を捕集するフィルタであって吸蔵還元型NOx触媒(以下、「NOx触媒」という。)が担持されているフィルタである。また、内側フィルタ8は内側酸化触媒6の下流側に位置している。一方で、外側排気通路3の途中には、排気浄化を行う外側排気浄化手段が設けられ、それは外側酸化触媒7と外側フィルタ9とで構成されている。外側酸化触媒7は排気中の未燃燃料成分等を酸化する酸化触媒であり、外側フィルタ9は主に排気中の粒子状物質を捕集するフィルタであってNOx触媒が担持されているフィルタである。また、外側フィルタ9は外側酸化触媒7の下流側に位置している。   FIG. 1 is a diagram showing a schematic configuration of an exhaust emission control device for an internal combustion engine 1 according to the present invention. Exhaust gas generated in the internal combustion engine 1 is sent to the exhaust passage. The exhaust passage of the exhaust emission control device according to the present invention is first composed of two exhaust passages, an inner exhaust passage 2 and an outer exhaust passage 3. In the middle of the inner exhaust passage 2, an inner exhaust purification means for performing exhaust purification is provided, which is composed of an inner oxidation catalyst 6 and an inner filter 8. The inner oxidation catalyst 6 is an oxidation catalyst that oxidizes unburned fuel components and the like in the exhaust gas, and the inner filter 8 is a filter that mainly collects particulate matter in the exhaust gas. This is a filter on which “NOx catalyst” is supported. Further, the inner filter 8 is located on the downstream side of the inner oxidation catalyst 6. On the other hand, in the middle of the outer exhaust passage 3, an outer exhaust purification means for performing exhaust purification is provided, which is composed of an outer oxidation catalyst 7 and an outer filter 9. The outer oxidation catalyst 7 is an oxidation catalyst that oxidizes unburned fuel components and the like in the exhaust gas, and the outer filter 9 is a filter that mainly collects particulate matter in the exhaust gas and carries a NOx catalyst. is there. Further, the outer filter 9 is located on the downstream side of the outer oxidation catalyst 7.

ここで、内側排気浄化手段は、外側排気浄化手段にその周囲を取り囲まれるように配置されている。具体的には、内側酸化触媒6の周囲には外側酸化触媒7がそれを取り囲むように同心状に配置され、内側フィルタ8の周囲には外側フィルタ9がそれを取り囲むように同心状に配置されている。また、内側フィルタ8に担持されたNOx触媒の高温領域でのNOx浄化率は、外側フィルタ9に担持されたNOx触媒の高温領域でのNOx浄化率より大きくなるように設定されている。   Here, the inner exhaust purification means is disposed so as to be surrounded by the outer exhaust purification means. Specifically, the outer oxidation catalyst 7 is arranged concentrically around the inner oxidation catalyst 6 so as to surround it, and the outer filter 9 is arranged concentrically around the inner filter 8 so as to surround it. ing. Further, the NOx purification rate in the high temperature region of the NOx catalyst supported on the inner filter 8 is set to be larger than the NOx purification rate in the high temperature region of the NOx catalyst supported on the outer filter 9.

更に、内側酸化触媒6の上流側の内側排気通路2には、排気中に燃料を添加する内側燃料添加弁4が設けられ、外側酸化触媒7の上流側の外側排気通路3には、排気中に燃料を添加する外側燃料添加弁5が設けられている。更に、内側フィルタ8の下流側の内側排気通路2には、該内側排気通路2を流れる排気の流量を調整する内側排気調整弁10が設けられ、外側フィルタ9の下流側の外側排気通路3には、該外側排気通路3を流れる排気の流量を調整する外側排気調整弁11が設けられている。そして、内側排気調整弁10と外側排気調整弁11との下流側で、内側排気通路2と外側排気通路3とは合流し、排気通路12となる。   Further, the inner exhaust passage 2 upstream of the inner oxidation catalyst 6 is provided with an inner fuel addition valve 4 for adding fuel to the exhaust, and the outer exhaust passage 3 upstream of the outer oxidation catalyst 7 is in the middle of exhaust. An outer fuel addition valve 5 for adding fuel is provided. Further, the inner exhaust passage 2 on the downstream side of the inner filter 8 is provided with an inner exhaust adjustment valve 10 that adjusts the flow rate of the exhaust gas flowing through the inner exhaust passage 2, and is provided in the outer exhaust passage 3 on the downstream side of the outer filter 9. Is provided with an outer exhaust adjustment valve 11 for adjusting the flow rate of the exhaust gas flowing through the outer exhaust passage 3. The inner exhaust passage 2 and the outer exhaust passage 3 merge at the downstream side of the inner exhaust adjustment valve 10 and the outer exhaust adjustment valve 11 to form an exhaust passage 12.

また、図1に示す内燃機関1の排気浄化装置には、該内燃機関1や排気浄化装置の各要素を制御するための電子制御ユニット(以下、「ECU」という)20が併設されている。このECU20は、CPUの他、後述する各種のプログラム及びマップを記憶するROM、RAM等を備えており、内燃機関1の運転条件や運転者の要求に応じて内燃機関1の運転状態等を制御するユニットである。   1 is provided with an electronic control unit (hereinafter referred to as “ECU”) 20 for controlling each element of the internal combustion engine 1 and the exhaust purification device. The ECU 20 includes a CPU, a ROM, a RAM, and the like for storing various programs and maps to be described later, and controls the operating conditions of the internal combustion engine 1 according to the operating conditions of the internal combustion engine 1 and the driver's request. Unit.

ここで、内側排気調整弁10および外側排気調整弁11は、ECU20からの制御信号によってその開度が調整される。即ち、ECU20からの指令によって、各排気調整弁の開度が調整され、各排気通路を流れる排気の流量、即ち各酸化触媒や各フィルタに流れ込む排気の流量が調整される。   Here, the opening degree of the inner exhaust adjustment valve 10 and the outer exhaust adjustment valve 11 is adjusted by a control signal from the ECU 20. That is, the opening degree of each exhaust adjustment valve is adjusted by a command from the ECU 20, and the flow rate of exhaust gas flowing through each exhaust passage, that is, the flow rate of exhaust gas flowing into each oxidation catalyst or each filter is adjusted.

更に、内側酸化触媒6と内側フィルタ8との間、外側酸化触媒7と外側フィルタ9との間、内側フィルタ8の下流側、および外側フィルタ9の下流側にそれぞれ排気温度を検出する排気温度センサ30、31、32、33が設けられている。そして、それぞれの排気温度センサはECU20と電気的に接続されており、ECU20各部位における排気温度を検出し、それより各フィルタに流れ込む排気温度や各フィルタの温度等を推定することが可能となる。   Further, exhaust temperature sensors that detect exhaust temperatures between the inner oxidation catalyst 6 and the inner filter 8, between the outer oxidation catalyst 7 and the outer filter 9, downstream of the inner filter 8, and downstream of the outer filter 9. 30, 31, 32, and 33 are provided. Each exhaust temperature sensor is electrically connected to the ECU 20, and it is possible to detect the exhaust temperature at each part of the ECU 20 and to estimate the exhaust temperature flowing into each filter, the temperature of each filter, and the like. .

このように構成される内燃機関1の排気浄化装置は、内側排気通路2が外側排気通路3に取り囲まれている構造となっているため、そのサイズは可及的にコンパクト化されている。即ち、内側排気通路2と外側排気通路3を単純に並列に並べるよりも、排気浄化装置のサイズをより小さくし、車輌等への搭載性が向上する。尚、本実施例においては、内側排気通路2と外側排気通路3の二本だが、三本以上の排気通路を本実施例のごとく階層的に設けてもよい。   The exhaust emission control device for the internal combustion engine 1 configured as described above has a structure in which the inner exhaust passage 2 is surrounded by the outer exhaust passage 3, and thus the size thereof is made as compact as possible. That is, it is possible to reduce the size of the exhaust purification device and to improve the mountability to a vehicle or the like, rather than simply arranging the inner exhaust passage 2 and the outer exhaust passage 3 in parallel. In the present embodiment, the inner exhaust passage 2 and the outer exhaust passage 3 are two, but three or more exhaust passages may be provided hierarchically as in the present embodiment.

また、内燃機関1から排出された排気は、内側排気通路2および外側排気通路3に流れ込み、それぞれの設けられた内側排気浄化手段と外側排気浄化手段によって排気の浄化が行われる。例えば、内側酸化触媒6や外側酸化触媒7によって排気中の未燃燃料成分が酸化されたり、内側フィルタ8および外側フィルタ9によって排気中の粒子状物質が捕集されるとともに、それぞれに担持されているNOx触媒によってNOxの還元浄化が行われたりする。   Further, the exhaust discharged from the internal combustion engine 1 flows into the inner exhaust passage 2 and the outer exhaust passage 3, and the exhaust is purified by the provided inner exhaust purification means and outer exhaust purification means. For example, the unburned fuel component in the exhaust is oxidized by the inner oxidation catalyst 6 and the outer oxidation catalyst 7, or the particulate matter in the exhaust is collected by the inner filter 8 and the outer filter 9, and is supported on each of them. NOx reduction purification is performed by the NOx catalyst.

ここで、各酸化触媒や各フィルタによる排気浄化を効率的に行うためには、酸化触媒やNOx触媒が触媒機能を発揮し得る活性温度に達している必要があり、またフィルタに捕集された粒子状物質を酸化除去するためにはフィルタ温度を目的とする温度まで上昇させる必要がある。そこで、内燃機関1の排気浄化装置におけるフィルタの温度上昇の制御に関する一例を図2に示す。図2は、フィルタの温度上昇のための排気調整弁の制御(以下、「排気調整弁制御」という。)に関するフローチャートである。尚、本実施例における排気調整弁制御は、ECU20によって一定のサイクルで繰り返し実行されるルーチンである。   Here, in order to efficiently perform exhaust purification using each oxidation catalyst or each filter, the oxidation catalyst or the NOx catalyst needs to reach an activation temperature at which the catalytic function can be exhibited, and is collected by the filter. In order to oxidize and remove particulate matter, it is necessary to raise the filter temperature to a target temperature. An example relating to the control of the temperature rise of the filter in the exhaust emission control device of the internal combustion engine 1 is shown in FIG. FIG. 2 is a flowchart regarding control of the exhaust adjustment valve (hereinafter referred to as “exhaust adjustment valve control”) for increasing the temperature of the filter. The exhaust gas control valve control in this embodiment is a routine that is repeatedly executed by the ECU 20 at a constant cycle.

S101では、内燃機関1が運転状態にあるか否かが判定される。即ち、内燃機関1から排気の排出が行われているか否かが判定される。内燃機関1が運転状態にあると判定されるとS102へ進み、内燃機関1が運転状態にないと判定されると本制御を終了する。   In S101, it is determined whether or not the internal combustion engine 1 is in an operating state. That is, it is determined whether or not exhaust gas is discharged from the internal combustion engine 1. If it is determined that the internal combustion engine 1 is in the operating state, the process proceeds to S102, and if it is determined that the internal combustion engine 1 is not in the operating state, this control is terminated.

S102では、内側フィルタ8の温度がライトオフ温度より低いか否かが判定される。内側フィルタ8の温度は、排気温度センサ32によって検出される、内側フィルタ8から排出される排気の温度に基づいて推定される。ここで、ライトオフ温度とは、内側フィルタ8に担持されたNOx触媒が活性状態となる温度である。従って、S102では内側フィルタ8に担持されたNOx触媒の活性状態が判定される。内側フィルタ8の温度がライトオフ温度より低いとき、即ちNOx触媒が活性状態にないときはS103へ進む。一方で、内側フィルタ8の温度がライトオフ温度より低くないときは本制御を終了する。   In S102, it is determined whether or not the temperature of the inner filter 8 is lower than the light-off temperature. The temperature of the inner filter 8 is estimated based on the temperature of the exhaust exhausted from the inner filter 8 detected by the exhaust temperature sensor 32. Here, the light-off temperature is a temperature at which the NOx catalyst supported on the inner filter 8 is activated. Therefore, in S102, the active state of the NOx catalyst carried on the inner filter 8 is determined. When the temperature of the inner filter 8 is lower than the light-off temperature, that is, when the NOx catalyst is not in the active state, the process proceeds to S103. On the other hand, when the temperature of the inner filter 8 is not lower than the light-off temperature, this control is terminated.

S103では、外側排気調整弁11を全閉することが可能か否かが判定される。後述するように、内側フィルタ8の昇温は内燃機関1からの排気を優先的に内側フィルタ8に流し込むことで行われる。このとき、外側排気調整弁11を全閉とすることで、排気通路の背圧が上昇し内燃機関の機関負荷が大きく上昇するのは好ましくない。そこで、内燃機関1の運転状態が、外側排気調整弁11を全閉することが可能な運転状態であるか、換言すると外側排気調整弁11を全閉することで排出される排気量が、機関負荷が大きく上昇しない程度の量であるかが判定される。外側排気調整弁11を全閉することが可能であると判定されるとS104へ進み、外側排気調整弁11を全閉することが可能でないと判定されるとS107へ進む。   In S103, it is determined whether or not the outer exhaust adjustment valve 11 can be fully closed. As will be described later, the temperature of the inner filter 8 is increased by preferentially flowing the exhaust from the internal combustion engine 1 into the inner filter 8. At this time, it is not preferable that the outer exhaust adjustment valve 11 be fully closed to increase the back pressure of the exhaust passage and greatly increase the engine load of the internal combustion engine. Therefore, the operating state of the internal combustion engine 1 is an operating state in which the outer exhaust adjustment valve 11 can be fully closed, in other words, the exhaust amount discharged by fully closing the outer exhaust adjustment valve 11 is the engine exhaust amount. It is determined whether the amount is such that the load does not increase significantly. If it is determined that the outer exhaust adjustment valve 11 can be fully closed, the process proceeds to S104. If it is determined that the outer exhaust adjustment valve 11 cannot be fully closed, the process proceeds to S107.

S104では、内側フィルタ8の温度が、内側フィルタ8に流れ込む排気温度より低いか否かが判定される。即ち、内側フィルタ8の温度を排気温度によって上昇させることが可能か否かが判定される。ここで、該排気温度として、排気温度センサ30によって検出された排気温度が用いられる。内側フィルタ8の温度が排気温度より低いと判定されると
S105へ進み、内側フィルタ8の温度が排気温度より低くないと判定されるとS108へ進む。
In S104, it is determined whether or not the temperature of the inner filter 8 is lower than the exhaust temperature flowing into the inner filter 8. That is, it is determined whether or not the temperature of the inner filter 8 can be raised by the exhaust temperature. Here, the exhaust temperature detected by the exhaust temperature sensor 30 is used as the exhaust temperature. If it is determined that the temperature of the inner filter 8 is lower than the exhaust temperature, the process proceeds to S105, and if it is determined that the temperature of the inner filter 8 is not lower than the exhaust temperature, the process proceeds to S108.

S105では、内側排気調整弁10の開度を全開とし、その後S106へ進み、外側排気調整弁11の開度を全閉として、本制御を終了する。また、S107では、内側排気調整弁10および外側排気調整弁11の開度をともに全開として、本制御を終了する。また、S108では、外側排気調整弁11の開度を全開として、本制御を終了する。   In S105, the opening degree of the inner exhaust adjustment valve 10 is fully opened, and then the process proceeds to S106, the opening degree of the outer exhaust adjustment valve 11 is fully closed, and this control is finished. Further, in S107, both the opening degree of the inner exhaust adjustment valve 10 and the outer exhaust adjustment valve 11 are fully opened, and this control is finished. Further, in S108, the opening degree of the outer exhaust regulating valve 11 is fully opened, and this control is finished.

本制御においては、先ず、S105およびS106の処理によって、内側フィルタ8の昇温を図るときは、内燃機関1からの排気を外側フィルタ9には流さずに、内側フィルタ8に優先的に流す。内側フィルタ8は外側フィルタ9に取り囲まれるように配置されているため、外側フィルタ9に比べて放熱量が少ない。従って、外側フィルタ9に比べて早期に温度が上昇しやすく、温度維持も容易である。そこで、内側フィルタ8に排気を優先的に流すことで、排気浄化装置の排気浄化能力を早期に立ち上げることが可能となる。また、また、内側フィルタ8に担持されたNOx触媒の高温領域でのNOx浄化率は、外側フィルタ9に担持されたNOx触媒の高温領域でのNOx浄化率より大きくなるように設定されているため、内側フィルタ8と外側フィルタ9における温度分布に応じたNOx浄化を行うことが可能となる。   In this control, first, when the temperature of the inner filter 8 is increased by the processes of S105 and S106, the exhaust from the internal combustion engine 1 is preferentially flown to the inner filter 8 without flowing to the outer filter 9. Since the inner filter 8 is disposed so as to be surrounded by the outer filter 9, the heat dissipation amount is smaller than that of the outer filter 9. Accordingly, the temperature is likely to rise earlier than the outer filter 9 and the temperature can be easily maintained. Therefore, the exhaust gas purification ability of the exhaust gas purification device can be quickly raised by preferentially flowing the exhaust gas through the inner filter 8. Further, the NOx purification rate in the high temperature region of the NOx catalyst supported on the inner filter 8 is set to be larger than the NOx purification rate in the high temperature region of the NOx catalyst supported on the outer filter 9. Further, NOx purification according to the temperature distribution in the inner filter 8 and the outer filter 9 can be performed.

次に、S107の処理によっては、内燃機関1の排気通路における背圧上昇を回避するべく、内側排気調整弁10と外側排気調整弁11の開度が全開にされる。この際は、内側フィルタ8と外側フィルタ9の温度上昇を図りつつ、背圧上昇の回避が行われる。また、S108の処理が行われる場合は、内側フィルタ8の温度は十分に上昇していることを意味しているため、S108の処理によっては外側フィルタ9の温度上昇が行われる。このとき、外側フィルタ9は排気の熱によって温度上昇されるとともに、内包している内側フィルタ8から伝播する熱によっても温度上昇される。   Next, depending on the processing of S107, the opening degree of the inner exhaust adjustment valve 10 and the outer exhaust adjustment valve 11 is fully opened in order to avoid an increase in the back pressure in the exhaust passage of the internal combustion engine 1. At this time, an increase in the back pressure is avoided while increasing the temperature of the inner filter 8 and the outer filter 9. Further, when the process of S108 is performed, it means that the temperature of the inner filter 8 is sufficiently increased. Therefore, the temperature of the outer filter 9 is increased depending on the process of S108. At this time, the temperature of the outer filter 9 is increased by the heat of the exhaust gas, and the temperature is also increased by the heat propagated from the inner filter 8 included therein.

本制御によると、並列的に設けられた内側排気通路2と外側排気通路3を有する内燃機関1の排気浄化装置において、NOx触媒の担持された内側フィルタ8および外側フィルタ9の温度上昇、維持が容易となる。   According to this control, in the exhaust purification device of the internal combustion engine 1 having the inner exhaust passage 2 and the outer exhaust passage 3 provided in parallel, the temperature rise and maintenance of the inner filter 8 and the outer filter 9 carrying the NOx catalyst are prevented. It becomes easy.

また、本実施例においては、内側フィルタ8に担持されたNOx触媒の高温領域でのNOx浄化率は、外側フィルタ9に担持されたNOx触媒の高温領域でのNOx浄化率より大きくなるように設定されているが、これに代えて、内側フィルタ8に担持されたNOx触媒の低温領域でのNOx浄化率を、外側フィルタ9に担持されたNOx触媒の低温領域でのNOx浄化率より大きくなるように設定してもよい。このようにすることで、内側フィルタ8と外側フィルタ9によってより幅広い温度領域で排気中のNOx浄化が可能となる。   In the present embodiment, the NOx purification rate in the high temperature region of the NOx catalyst supported on the inner filter 8 is set to be larger than the NOx purification rate in the high temperature region of the NOx catalyst supported on the outer filter 9. However, instead of this, the NOx purification rate in the low temperature region of the NOx catalyst supported on the inner filter 8 is made larger than the NOx purification rate in the low temperature region of the NOx catalyst supported on the outer filter 9. May be set. By doing so, the inner filter 8 and the outer filter 9 can purify NOx in the exhaust gas in a wider temperature range.

次に、図1に示す内燃機関1の排気浄化装置において行う排気調整弁制御の別の実施例について、図3に基づいて説明する。尚、本実施例における排気調整弁制御は、ECU20によって一定のサイクルで繰り返し実行されるルーチンである。また、図3において、図2に示す排気調整弁制御と同一の処理については、同一の参照番号を付することで詳細な説明は省略する。   Next, another embodiment of the exhaust regulating valve control performed in the exhaust purification device of the internal combustion engine 1 shown in FIG. 1 will be described based on FIG. The exhaust gas control valve control in this embodiment is a routine that is repeatedly executed by the ECU 20 at a constant cycle. In FIG. 3, the same processing as that in the exhaust control valve control shown in FIG. 2 is denoted by the same reference numeral, and detailed description thereof is omitted.

本実施例においては、S103の処理に代わってS201の処理が行われる。S201では、外側排気調整弁11の限界開度が算出される。ここで、限界開度とは、仮に内側排気調整弁10を全開とし外側排気調整弁11を全閉としたときに発生する排気通路の背圧が、機関負荷が比較的高くなる所定圧より高くなると判定される場合に、その背圧を所定
圧まで低下させるために必要な外側排気調整弁11の開度をいう。従って、この限界開度は、内燃機関1から排出される排気量に関連する内燃機関1の運転状態に基づいて決定される。S201の処理が終了すると、S104へ進む。尚、S103の処理が無くなるため、併せてS107の処理も無くなる。
In the present embodiment, the process of S201 is performed instead of the process of S103. In S201, the limit opening of the outer exhaust control valve 11 is calculated. Here, the limit opening is that the back pressure of the exhaust passage generated when the inner exhaust adjustment valve 10 is fully opened and the outer exhaust adjustment valve 11 is fully closed is higher than a predetermined pressure at which the engine load becomes relatively high. In the case where it is determined, the opening degree of the outer exhaust adjustment valve 11 necessary for reducing the back pressure to a predetermined pressure. Therefore, the limit opening is determined based on the operating state of the internal combustion engine 1 related to the exhaust amount discharged from the internal combustion engine 1. When the process of S201 ends, the process proceeds to S104. Since the process of S103 is eliminated, the process of S107 is also eliminated.

また、本制御においては、S105の処理が終了すると、S202へ進む。S202では、S201で算出された限界開度に基づいて、外側排気調整弁11の開度が調整される。S202の処理後、本制御を終了する。   In this control, when the process of S105 is completed, the process proceeds to S202. In S202, the opening degree of the outer exhaust adjustment valve 11 is adjusted based on the limit opening degree calculated in S201. After the process of S202, this control is terminated.

本制御においては、内側フィルタ8の温度上昇を行うとき、S105およびS202の処理によって、排気浄化装置の排気浄化能力を早期に立ち上げることが可能となるとともに、排気通路における背圧の過度な上昇も回避することが可能となる。   In this control, when the temperature of the inner filter 8 is increased, the processing of S105 and S202 makes it possible to start up the exhaust gas purification capacity of the exhaust gas purification device at an early stage, and excessively increase the back pressure in the exhaust passage. Can also be avoided.

次に、図1に示す内燃機関1の排気浄化装置において行う排気調整弁制御の別の実施例について、図4に基づいて説明する。尚、本実施例における排気調整弁制御は、ECU20によって一定のサイクルで繰り返し実行されるルーチンである。また、図4において、図2および図3に示す排気調整弁制御と同一の処理については、同一の参照番号を付することで詳細な説明は省略する。   Next, another embodiment of the exhaust regulating valve control performed in the exhaust purification device of the internal combustion engine 1 shown in FIG. 1 will be described based on FIG. The exhaust gas control valve control in this embodiment is a routine that is repeatedly executed by the ECU 20 at a constant cycle. In FIG. 4, the same processing as that of the exhaust control valve control shown in FIGS. 2 and 3 is denoted by the same reference numeral, and detailed description thereof is omitted.

本実施例においては、S108の処理に代わってS301からS303の処理が行われる。本制御では、S104で内側フィルタ8の温度が排気温度より低くないと判定されると、S301に進む。S301では、内側フィルタ8に流入する排気温度が所定排気温度TEXより低いか否かが判定される。ここで、所定排気温度TEXとは、排気が温度上昇した内側フィルタ8に流れ込んだとき、それに担持されたNOx触媒の活性が弱まる程度の低温の排気温度である。従って、S301では、低温の排気を内側フィルタ8に流し込むことで、フィルタ8の活性が低下するか否かを判定する。該排気温度が所定排気温度TEXより低いと判定されると、S302へ進む。一方で、排気温度が所定排気温度TEXより低くないと判定されると、本制御を終了する。   In the present embodiment, the processes from S301 to S303 are performed instead of the process of S108. In this control, if it is determined in S104 that the temperature of the inner filter 8 is not lower than the exhaust temperature, the process proceeds to S301. In S301, it is determined whether or not the exhaust temperature flowing into the inner filter 8 is lower than a predetermined exhaust temperature TEX. Here, the predetermined exhaust temperature TEX is a low exhaust temperature at which the activity of the NOx catalyst carried thereon is weakened when the exhaust flows into the inner filter 8 whose temperature has increased. Therefore, in S301, it is determined whether or not the activity of the filter 8 is reduced by flowing low temperature exhaust gas into the inner filter 8. If it is determined that the exhaust temperature is lower than the predetermined exhaust temperature TEX, the process proceeds to S302. On the other hand, when it is determined that the exhaust temperature is not lower than the predetermined exhaust temperature TEX, this control is terminated.

S302では、内側排気調整弁10の開度が調整される。即ち、排気温度が比較的低いため、この排気が内側フィルタ8に流れ込んで内側フィルタ8の温度が低下しないように、内側フィルタ8への排気の流入量を抑制すべく内側排気調整弁10の開度が調整される。S302の処理が終了すると、S303へ進む。S303では、外側排気調整弁11の開度を全開とし、本制御を終了する。   In S302, the opening degree of the inner exhaust control valve 10 is adjusted. That is, since the exhaust temperature is relatively low, the inner exhaust adjustment valve 10 is opened so as to suppress the amount of exhaust flowing into the inner filter 8 so that the exhaust does not flow into the inner filter 8 and the temperature of the inner filter 8 decreases. The degree is adjusted. When the process of S302 ends, the process proceeds to S303. In S303, the opening degree of the outer exhaust control valve 11 is fully opened, and this control is finished.

本制御においては、内側フィルタ8の温度上昇を行うとき、S105およびS202の処理によって、排気浄化装置の排気浄化能力を早期に立ち上げることが可能となるとともに、排気通路における背圧の過度な上昇も回避することが可能となる。更に、排気温度が比較的低いとき、外側フィルタ9に優先的に排気を流すことで内側フィルタ8の温度低下を抑制することも可能となる。   In this control, when the temperature of the inner filter 8 is increased, the processing of S105 and S202 makes it possible to quickly raise the exhaust purification capacity of the exhaust purification device, and excessively increase the back pressure in the exhaust passage. Can also be avoided. Further, when the exhaust gas temperature is relatively low, it is possible to suppress the temperature drop of the inner filter 8 by flowing the exhaust gas preferentially through the outer filter 9.

次に、図1に示す内燃機関1の排気浄化装置において行う排気調整弁制御の別の実施例について、図5に基づいて説明する。尚、本実施例における排気調整弁制御は、ECU20によって一定のサイクルで繰り返し実行されるルーチンである。また、図5において、図2、図3および図4に示す排気調整弁制御と同一の処理については、同一の参照番号を付することで詳細な説明は省略する。   Next, another embodiment of the exhaust regulating valve control performed in the exhaust purification device of the internal combustion engine 1 shown in FIG. 1 will be described based on FIG. The exhaust gas control valve control in this embodiment is a routine that is repeatedly executed by the ECU 20 at a constant cycle. In FIG. 5, the same reference numerals are assigned to the same processes as those in the exhaust adjustment valve control shown in FIGS. 2, 3, and 4, and detailed description thereof is omitted.

本制御では、S102で内側フィルタ8の温度がライトオフ温度より低くないと判定さ
れると、S401に進む。S401では、内側フィルタ8の温度が所定床温TFより高いか否かが判定される。ここで、所定床温TFとは、内側フィルタ8に担持されたNOx触媒の活性が低下しない温度であって、具体的にはライトオフ温度より若干高い温度である。内側フィルタ8の温度が所定床温TFより高いと判定されるとS402へ進み、一方で内側フィルタ8の温度が所定床温TFより高くないと判定されると本制御を終了する。
In this control, if it is determined in S102 that the temperature of the inner filter 8 is not lower than the light-off temperature, the process proceeds to S401. In S401, it is determined whether or not the temperature of the inner filter 8 is higher than a predetermined bed temperature TF. Here, the predetermined bed temperature TF is a temperature at which the activity of the NOx catalyst carried on the inner filter 8 does not decrease, and is specifically a temperature slightly higher than the light-off temperature. If it is determined that the temperature of the inner filter 8 is higher than the predetermined bed temperature TF, the process proceeds to S402. On the other hand, if it is determined that the temperature of the inner filter 8 is not higher than the predetermined bed temperature TF, this control is terminated.

S402では、外側フィルタ9の温度がライトオフ温度より低いか否かが判定される。外側フィルタ9の温度は、排気温度センサ33によって検出される、外側フィルタ9から排出される排気の温度に基づいて推定される。よって、S402では外側フィルタ9に担持されたNOx触媒の活性状態が判定される。外側フィルタ9の温度がライトオフ温度より低いとき、即ちNOx触媒が活性状態にないときはS403へ進む。一方で、外側フィルタ9の温度がライトオフ温度より低くないときは本制御を終了する。   In S402, it is determined whether or not the temperature of the outer filter 9 is lower than the light-off temperature. The temperature of the outer filter 9 is estimated based on the temperature of the exhaust discharged from the outer filter 9 detected by the exhaust temperature sensor 33. Therefore, in S402, the active state of the NOx catalyst carried on the outer filter 9 is determined. When the temperature of the outer filter 9 is lower than the light-off temperature, that is, when the NOx catalyst is not in an active state, the process proceeds to S403. On the other hand, when the temperature of the outer filter 9 is not lower than the light-off temperature, this control is terminated.

S403では、内側フィルタ8の低下可能温度dTが算出される。低下可能温度dTとは、内側フィルタ8に比較的低温の排気が流れ込んでもその床温がライトオフ温度より高い温度を維持し得る場合における、内側フィルタ8の有する温度のマージンである。即ち、比較的低温の排気が流れ込んでもdT分の温度マージンが内側フィルタ8にはあるため、内側フィルタ8は活性を失わないことになる。S403の処理が終了すると、S404へ進む。   In S403, the temperature dT that can be lowered of the inner filter 8 is calculated. The lowerable temperature dT is a margin of the temperature of the inner filter 8 when the bed temperature can be maintained higher than the light-off temperature even when relatively low temperature exhaust gas flows into the inner filter 8. That is, even if a relatively low temperature exhaust gas flows, the inner filter 8 has a temperature margin corresponding to dT, so that the inner filter 8 does not lose its activity. When the process of S403 ends, the process proceeds to S404.

S404では、S403で算出された低下可能温度dTに対応する内側排気調整弁10の開度が算出される。この開度算出にあたっては、内側フィルタ8に流入する排気温度や排気流量が考慮される。例えば、排気温度が低くなるほど、もしくは排気流量が多くなるほど、一定の低下可能温度dTに対応する内側排気調整弁10の開度は小さくなる。S404の処理が終了すると、S405へ進む。   In S404, the opening degree of the inner exhaust adjustment valve 10 corresponding to the lowerable temperature dT calculated in S403 is calculated. In calculating the opening, the exhaust temperature and the exhaust flow rate flowing into the inner filter 8 are taken into consideration. For example, the lower the exhaust temperature or the greater the exhaust flow rate, the smaller the opening of the inner exhaust adjustment valve 10 corresponding to a certain lowerable temperature dT. When the process of S404 ends, the process proceeds to S405.

S405では、S404で算出された開度に基づいて、内側排気調整弁10の開度が調整される。その後、S405へ進み、外側排気調整弁11の開度が全開にされ、本制御を終了する。   In S405, the opening of the inner exhaust adjustment valve 10 is adjusted based on the opening calculated in S404. Thereafter, the process proceeds to S405, the opening degree of the outer exhaust adjustment valve 11 is fully opened, and this control is finished.

本制御によると、図4に示した排気調整弁制御の効果に加えて、内側フィルタ8の温度をライトオフ温度より低下させずに、外側フィルタ9の温度が過度に低下するのを回避することが可能となる。   According to this control, in addition to the effect of the exhaust regulating valve control shown in FIG. 4, it is possible to avoid the temperature of the outer filter 9 from being excessively lowered without lowering the temperature of the inner filter 8 below the light-off temperature. Is possible.

次に、図1に示す内燃機関1の排気浄化装置において行う排気調整弁制御の別の実施例について、図6に基づいて説明する。尚、本実施例における排気調整弁制御は、ECU20によって一定のサイクルで繰り返し実行されるルーチンである。   Next, another embodiment of the exhaust regulating valve control performed in the exhaust purification device of the internal combustion engine 1 shown in FIG. 1 will be described based on FIG. The exhaust gas control valve control in this embodiment is a routine that is repeatedly executed by the ECU 20 at a constant cycle.

S501では、S101と同様に、内燃機関1が運転状態にあるか否かが判定される。内燃機関1が運転状態にあると判定されるとS502へ進み、内燃機関1が運転状態にないと判定されると本制御を終了する。   In S501, as in S101, it is determined whether or not the internal combustion engine 1 is in an operating state. When it is determined that the internal combustion engine 1 is in the operating state, the process proceeds to S502, and when it is determined that the internal combustion engine 1 is not in the operating state, this control is terminated.

S502では、内側フィルタ8および外側フィルタ9において、捕集された粒子状物質量が所定量を超えて粒子状物質の酸化除去を行うフィルタの再生が必要か否かが判定される。具体的には、内燃機関1で消費された燃料量や内燃機関1の運転履歴、各フィルタを流れた排気流量等に基づいて、内側フィルタ8および外側フィルタ9に捕集された粒子状物質量を推定し、それらが基準値である所定量を上回った場合には各フィルタの再生が必要であると判定される。フィルタの再生が必要であると判定されるとS503へ進み、フィルタの再生が必要ではないと判定されると本制御を終了する。   In S502, in the inner filter 8 and the outer filter 9, it is determined whether or not the collected particulate matter amount exceeds a predetermined amount and it is necessary to regenerate the filter for removing the particulate matter by oxidation. Specifically, the amount of particulate matter collected by the inner filter 8 and the outer filter 9 based on the amount of fuel consumed in the internal combustion engine 1, the operation history of the internal combustion engine 1, the exhaust flow rate flowing through each filter, and the like. When these values exceed a predetermined amount that is a reference value, it is determined that regeneration of each filter is necessary. If it is determined that the filter needs to be regenerated, the process proceeds to S503. If it is determined that the filter needs not be regenerated, this control is terminated.

S503では、内側フィルタ8の再生が実行される。具体的には、内側燃料添加弁4より排気中に燃料が添加されるとともに、内側排気調整弁10を内側フィルタ8の温度が過度に昇温しない程度に閉じる。このようにすることで、内側酸化触媒6や内側フィルタ8における排気流量が極めて低い状態となり、効率的に、捕集された粒子状物質の酸化除去が行われる。S503の処理が終了すると、S504へ進む。   In S503, regeneration of the inner filter 8 is executed. Specifically, fuel is added to the exhaust from the inner fuel addition valve 4 and the inner exhaust adjustment valve 10 is closed to such an extent that the temperature of the inner filter 8 does not rise excessively. By doing in this way, the exhaust flow volume in the inner side oxidation catalyst 6 or the inner side filter 8 will be in a very low state, and the collected particulate matter is efficiently oxidized and removed. When the processing of S503 ends, the process proceeds to S504.

S504では、外側フィルタ9が再生可能状態にあるか否か、即ち、外側フィルタ9に捕集された粒子状物質が酸化除去可能程度に、外側フィルタ9の温度が上昇しているか否かが判定される。具体的には、排気温度センサ33によって検出される、外側フィルタ9から排出される排気温度に基づいて外側フィルタ9が再生可能状態にあるか否かが判定される。外側フィルタ9が再生可能状態にあると判定されるとS507へ進み、外側フィルタ9が再生可能状態にないと判定されるとS505へ進む。   In S504, it is determined whether or not the outer filter 9 is in a reproducible state, that is, whether or not the temperature of the outer filter 9 has increased to such an extent that particulate matter collected by the outer filter 9 can be removed by oxidation. Is done. Specifically, it is determined whether or not the outer filter 9 is in a reproducible state based on the exhaust temperature discharged from the outer filter 9 detected by the exhaust temperature sensor 33. If it is determined that the outer filter 9 is in a reproducible state, the process proceeds to S507. If it is determined that the outer filter 9 is not in a reproducible state, the process proceeds to S505.

S505では、内側フィルタ8に流れ込む排気流量を減らし、外側フィルタ9に流れ込む排気流量を増やすべく内側排気調整弁10と外側排気調整弁11の開度が調整される。S505の処理が終了すると、S506へ進む。   In S505, the opening amounts of the inner exhaust adjustment valve 10 and the outer exhaust adjustment valve 11 are adjusted so as to reduce the exhaust flow rate flowing into the inner filter 8 and increase the exhaust flow rate flowing into the outer filter 9. When the process of S505 ends, the process proceeds to S506.

S506では、外側フィルタ9の昇温が実行される。具体的には、外側燃料添加弁5から排気中に燃料が添加されて外側酸化触媒7で酸化熱を発生させ排気温度を上昇させる。これにより、外側フィルタ9に流れ込む排気温度を上昇させて、外側フィルタ9の温度上昇を行う。   In S506, the temperature of the outer filter 9 is increased. Specifically, fuel is added into the exhaust gas from the outer fuel addition valve 5 to generate oxidation heat in the outer oxidation catalyst 7 to raise the exhaust gas temperature. Thereby, the temperature of the exhaust gas flowing into the outer filter 9 is increased, and the temperature of the outer filter 9 is increased.

S507では、内側フィルタ8の場合と同じように、外側フィルタ9の再生を実行する。具体的には、外側燃料添加弁5より排気中に燃料が添加されるとともに、外側排気調整弁11を外側フィルタ9の温度が過度に昇温しない程度に閉じる。S507の処理後、本制御を終了する。   In S507, as in the case of the inner filter 8, regeneration of the outer filter 9 is executed. Specifically, fuel is added to the exhaust gas from the outer fuel addition valve 5 and the outer exhaust adjustment valve 11 is closed to such an extent that the temperature of the outer filter 9 does not rise excessively. After the processing of S507, this control is terminated.

本制御によると、図1に示す内燃機関1の排気浄化装置におけるフィルタの再生にあたって、外側フィルタ9より内側フィルタ8を優先的に再生させる。内側フィルタ8は外側フィルタ9に取り囲まれるように設けられているため放熱量が少なくなり、効率的に内側フィルタ8の再生が行われる。また、内側フィルタ8の再生時に発生した熱によって外側フィルタ9が暖められるため、その後の外側フィルタ9の再生も円滑に行われる。   According to this control, the inner filter 8 is preferentially regenerated over the outer filter 9 when the filter is regenerated in the exhaust emission control device of the internal combustion engine 1 shown in FIG. Since the inner filter 8 is provided so as to be surrounded by the outer filter 9, the amount of heat radiation is reduced, and the inner filter 8 is efficiently regenerated. Further, since the outer filter 9 is warmed by the heat generated during the regeneration of the inner filter 8, the subsequent regeneration of the outer filter 9 is performed smoothly.

本発明の実施例に係る内燃機関の排気浄化装置の概略構成を表す図である。It is a figure showing schematic structure of the exhaust gas purification device of the internal combustion engine which concerns on the Example of this invention. 本発明の第一実施例に係る内燃機関の排気浄化装置において行われる、フィルタの温度上昇を行うための排気調整弁制御に関するフローチャートである。It is a flowchart regarding the exhaust gas control valve control for performing the temperature rise of the filter performed in the exhaust gas purification apparatus of the internal combustion engine according to the first embodiment of the present invention. 本発明の第二実施例に係る内燃機関の排気浄化装置において行われる、フィルタの温度上昇を行うための排気調整弁制御に関するフローチャートである。It is a flowchart regarding the exhaust gas control valve control for performing the temperature rise of the filter performed in the exhaust gas purification apparatus of the internal combustion engine according to the second embodiment of the present invention. 本発明の第三実施例に係る内燃機関の排気浄化装置において行われる、フィルタの温度上昇を行うための排気調整弁制御に関するフローチャートである。It is a flowchart regarding the exhaust gas control valve control for performing the temperature rise of the filter performed in the exhaust gas purification apparatus of the internal combustion engine according to the third embodiment of the present invention. 本発明の第四実施例に係る内燃機関の排気浄化装置において行われる、フィルタの温度上昇を行うための排気調整弁制御に関するフローチャートである。It is a flowchart regarding the exhaust adjustment valve control for performing the temperature rise of the filter performed in the exhaust gas purification apparatus of the internal combustion engine according to the fourth embodiment of the present invention. 本発明の第五実施例に係る内燃機関の排気浄化装置において行われる、フィルタの再生を行うための排気調整弁制御に関するフローチャートである。It is a flowchart regarding the exhaust gas control valve control for performing regeneration of the filter performed in the exhaust gas purification apparatus of the internal combustion engine according to the fifth embodiment of the present invention.

符号の説明Explanation of symbols

1・・・・内燃機関
2・・・・内側排気通路
3・・・・外側排気通路
4・・・・内側燃料添加弁
5・・・・外側燃料添加弁
6・・・・内側酸化触媒
7・・・・外側酸化触媒
8・・・・内側フィルタ
9・・・・外側フィルタ
10・・・・内側排気調整弁
11・・・・外側排気調整弁
12・・・・排気通路
20・・・・ECU
30・・・・排気温度センサ
31・・・・排気温度センサ
32・・・・排気温度センサ
33・・・・排気温度センサ
DESCRIPTION OF SYMBOLS 1 .... Internal combustion engine 2 .... Inside exhaust passage 3 .... Outside exhaust passage 4 .... Inside fuel addition valve 5 .... Outside fuel addition valve 6 .... Inside oxidation catalyst 7 ··· Outside oxidation catalyst 8 ··· Inside filter 9 ··· Outside filter 10 ··· Inside exhaust adjustment valve 11 ··· Outside exhaust adjustment valve 12 ··· Exhaust passage 20 ···・ ECU
30 ... Exhaust temperature sensor 31 ... Exhaust temperature sensor 32 ... Exhaust temperature sensor 33 ... Exhaust temperature sensor

Claims (9)

内燃機関からの排気が流れる複数の排気通路と、
前記複数の排気通路のそれぞれに設けられ、該排気通路の排気流量を調整する複数の排気調整弁と、
前記複数の排気通路のそれぞれに設けられ、該排気通路を流れる排気の浄化を行う複数の排気浄化手段と、を備え、
前記複数の排気浄化手段において、階層的に一の排気浄化手段の周囲を他の排気浄化手段が取り囲み、且つ各排気浄化手段がほぼ同心状に配置されていることを特徴とする内燃機関の排気浄化装置。
A plurality of exhaust passages through which exhaust from the internal combustion engine flows;
A plurality of exhaust adjustment valves provided in each of the plurality of exhaust passages for adjusting the exhaust flow rate of the exhaust passages;
A plurality of exhaust gas purification means provided in each of the plurality of exhaust passages for purifying exhaust gas flowing through the exhaust passage;
The exhaust gas of the internal combustion engine characterized in that, in the plurality of exhaust gas purification means, one exhaust gas purification means is hierarchically surrounded by other exhaust gas purification means, and each of the exhaust gas purification means is arranged substantially concentrically. Purification equipment.
前記複数の排気調整弁において、各排気調整弁の開度を制御し、該排気調整弁に対応した排気浄化手段への排気流量を調整する排気調整弁制御手段を、更に備え、
前記複数の排気浄化手段のうち内側に位置する排気浄化手段の温度を上昇させるとき、前記排気調整弁制御手段は、該内側に位置する排気浄化手段に排気を流入させ、該複数の排気浄化手段のうち外側に位置する排気浄化手段への排気流入を抑制することを特徴とする請求項1に記載の内燃機関の排気浄化装置。
In the plurality of exhaust gas control valves, the exhaust gas control valve further includes an exhaust gas control valve control unit that controls an opening degree of each exhaust gas control valve and adjusts an exhaust gas flow rate to an exhaust gas purification unit corresponding to the exhaust gas control valve,
When the temperature of the exhaust purification means located inside among the plurality of exhaust purification means is raised, the exhaust control valve control means causes the exhaust to flow into the exhaust purification means located inside, and the plurality of exhaust purification means 2. The exhaust gas purification apparatus for an internal combustion engine according to claim 1, wherein exhaust gas flowing into an exhaust gas purification unit located outside is suppressed.
前記排気調整弁制御手段により前記内側に位置する排気浄化手段に排気を流入させ、その温度を上昇させているとき、前記複数の排気通路のうちいずれかの排気通路の背圧が所定圧を超える場合、該排気調整弁制御手段は、前記外側に位置する排気浄化手段に対応する排気調整弁の開度を大きくし該外側に位置する排気浄化手段への排気流入量を増加させることを特徴とする請求項2に記載の内燃機関の排気浄化装置。   When exhaust is caused to flow into the exhaust purification means located inside by the exhaust adjustment valve control means and its temperature is raised, the back pressure of any of the plurality of exhaust passages exceeds a predetermined pressure In this case, the exhaust adjustment valve control means increases the opening of the exhaust adjustment valve corresponding to the exhaust purification means located outside and increases the amount of exhaust flowing into the exhaust purification means located outside. The exhaust emission control device for an internal combustion engine according to claim 2. 前記複数の排気調整弁において、各排気調整弁の開度を制御し、該排気調整弁に対応した排気浄化手段への排気流量を調整する排気調整弁制御手段を、更に備え、
前記内燃機関からの排気温度が所定排気温度以下であるとき、前記排気調整弁制御手段は、前記複数の排気浄化手段のうち内側に位置する排気浄化手段への排気流入を抑制し、該複数の排気浄化手段のうち外側に位置する排気浄化手段に排気を流入させることを特徴とする請求項1に記載の内燃機関の排気浄化装置。
In the plurality of exhaust gas control valves, the exhaust gas control valve further includes an exhaust gas control valve control unit that controls an opening degree of each exhaust gas control valve and adjusts an exhaust gas flow rate to an exhaust gas purification unit corresponding to the exhaust gas control valve,
When the exhaust gas temperature from the internal combustion engine is equal to or lower than a predetermined exhaust gas temperature, the exhaust gas control valve control unit suppresses the inflow of exhaust gas to the exhaust gas purification unit located inside of the plurality of exhaust gas purification units, and The exhaust gas purification apparatus for an internal combustion engine according to claim 1, wherein the exhaust gas is caused to flow into an exhaust gas purification means located outside of the exhaust gas purification means.
前記排気調整弁制御手段により前記外側に位置する排気浄化手段に排気を流入させているとき、前記内側に位置する排気浄化手段の温度が所定床温を超える場合、該排気調整弁制御手段は、前記内側に位置する排気浄化手段に対応する排気調整弁の開度を大きくし該内側に位置する排気浄化手段への排気流入量を増加させることを特徴とする請求項4に記載の内燃機関の排気浄化装置。   When exhaust is flowing into the exhaust purification means positioned outside by the exhaust control valve control means, if the temperature of the exhaust purification means positioned inside exceeds a predetermined bed temperature, the exhaust control valve control means, 5. The internal combustion engine according to claim 4, wherein an opening degree of an exhaust gas control valve corresponding to the exhaust gas purification unit located inside is increased to increase an exhaust inflow amount to the exhaust gas purification unit located inside the exhaust gas control unit. Exhaust purification device. 前記複数の排気浄化手段のそれぞれは、排気中の粒子状物質を捕集するフィルタを有し、
前記複数のフィルタのうち内側に位置するフィルタから外側に位置するフィルタの順に、各フィルタに捕集された粒子状物質の酸化除去を行うことを特徴とする請求項1に記載の内燃機関の排気浄化装置。
Each of the plurality of exhaust purification means has a filter that collects particulate matter in the exhaust,
2. The exhaust gas of an internal combustion engine according to claim 1, wherein oxidation removal of particulate matter collected by each filter is performed in the order of the filter located inside from the filter located inside among the plurality of filters. Purification equipment.
前記複数の排気浄化手段のそれぞれは、吸蔵還元型NOx触媒を有し、
前記複数の吸蔵還元型NOx触媒のうち内側に位置する吸蔵還元型NOx触媒の高温領域でのNOx浄化率は、該複数の吸蔵還元型NOx触媒のうち外側に位置する吸蔵還元型NOx触媒の高温領域でのNOx浄化率と比べて大きいことを特徴とする請求項1から請求項6の何れかに記載の内燃機関の排気浄化装置。
Each of the plurality of exhaust purification means has an NOx storage reduction catalyst,
Of the plurality of NOx storage reduction catalysts, the NOx purification rate in the high temperature region of the NOx storage reduction catalyst located inside is the high temperature of the NOx storage reduction catalyst located outside of the NOx storage reduction catalyst. The exhaust gas purification apparatus for an internal combustion engine according to any one of claims 1 to 6, wherein the exhaust gas purification ratio is larger than a NOx purification rate in a region.
前記複数の排気浄化手段のそれぞれは、吸蔵還元型NOx触媒を有し、
前記複数の吸蔵還元型NOx触媒のうち内側に位置する吸蔵還元型NOx触媒の低温領域でのNOx浄化率は、該複数の吸蔵還元型NOx触媒のうち外側に位置する吸蔵還元型NOx触媒の低温領域でのNOx浄化率と比べて大きいことを特徴とする請求項1から請求項6の何れかに記載の内燃機関の排気浄化装置。
Each of the plurality of exhaust purification means has an NOx storage reduction catalyst,
Among the plurality of NOx storage reduction catalysts, the NOx purification rate in the low temperature region of the NOx storage reduction catalyst located inside is the low temperature of the NOx storage reduction catalyst located outside of the NOx storage reduction catalyst. The exhaust gas purification apparatus for an internal combustion engine according to any one of claims 1 to 6, wherein the exhaust gas purification ratio is larger than a NOx purification rate in a region.
前記排気通路、前記排気調整弁、前記排気浄化手段はそれぞれ二個ずつ設けられていることを特徴とする請求項1から請求項8の何れかに記載の内燃機関の排気浄化装置。   The exhaust purification device for an internal combustion engine according to any one of claims 1 to 8, wherein two each of the exhaust passage, the exhaust adjustment valve, and the exhaust purification means are provided.
JP2005042735A 2005-02-18 2005-02-18 Exhaust gas purification device for internal combustion engine Pending JP2006226231A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005042735A JP2006226231A (en) 2005-02-18 2005-02-18 Exhaust gas purification device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005042735A JP2006226231A (en) 2005-02-18 2005-02-18 Exhaust gas purification device for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2006226231A true JP2006226231A (en) 2006-08-31

Family

ID=36987804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005042735A Pending JP2006226231A (en) 2005-02-18 2005-02-18 Exhaust gas purification device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2006226231A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010048112A (en) * 2008-08-19 2010-03-04 Isuzu Motors Ltd Exhaust emission control system and exhaust emission control method
JP2010048111A (en) * 2008-08-19 2010-03-04 Isuzu Motors Ltd Exhaust emission control system and exhaust emission control method
JP2016061156A (en) * 2014-09-12 2016-04-25 株式会社デンソー Intake and exhaust device for internal combustion engine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58187511A (en) * 1982-04-28 1983-11-01 Toyota Motor Corp Purifying device for particles in exhaust gas of diesel engine
JPH03294614A (en) * 1990-04-09 1991-12-25 Riken Corp Exhaust emission purifier
JPH0561418U (en) * 1992-01-24 1993-08-13 三菱自動車工業株式会社 Exhaust gas treatment device
JPH07279646A (en) * 1994-04-01 1995-10-27 Isuzu Ceramics Kenkyusho:Kk Diesel particulate filter
JP2004267843A (en) * 2003-03-06 2004-09-30 Mazda Motor Corp Exhaust gas purifying catalyst

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58187511A (en) * 1982-04-28 1983-11-01 Toyota Motor Corp Purifying device for particles in exhaust gas of diesel engine
JPH03294614A (en) * 1990-04-09 1991-12-25 Riken Corp Exhaust emission purifier
JPH0561418U (en) * 1992-01-24 1993-08-13 三菱自動車工業株式会社 Exhaust gas treatment device
JPH07279646A (en) * 1994-04-01 1995-10-27 Isuzu Ceramics Kenkyusho:Kk Diesel particulate filter
JP2004267843A (en) * 2003-03-06 2004-09-30 Mazda Motor Corp Exhaust gas purifying catalyst

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010048112A (en) * 2008-08-19 2010-03-04 Isuzu Motors Ltd Exhaust emission control system and exhaust emission control method
JP2010048111A (en) * 2008-08-19 2010-03-04 Isuzu Motors Ltd Exhaust emission control system and exhaust emission control method
JP2016061156A (en) * 2014-09-12 2016-04-25 株式会社デンソー Intake and exhaust device for internal combustion engine

Similar Documents

Publication Publication Date Title
JP6036855B2 (en) Exhaust gas purification device for internal combustion engine
JP5429286B2 (en) Exhaust gas purification device for internal combustion engine
JP4910932B2 (en) Exhaust gas purification device for internal combustion engine
CN101052787B (en) Internal combustion engine exhaust gas purification system
JP2005098130A (en) Method for suppressing filter overheating of internal combustion engine
EP2921665B1 (en) Exhaust gas purification system for internal-combustion engine
JP4449947B2 (en) Control device for internal combustion engine
JP2008069769A (en) Exhaust gas purification device for internal combustion engine
JP2014514491A (en) Exhaust purification device for watercraft and method of operating the exhaust purification device
JP2008115775A (en) Exhaust gas purification system for internal combustion engine
JP5915516B2 (en) Exhaust gas purification device for internal combustion engine
KR20090027666A (en) Exhaust purification system for internal combustion engines
JP2014148908A (en) Exhaust emission control device for internal combustion engine
JP2006226231A (en) Exhaust gas purification device for internal combustion engine
JPH10121948A (en) Exhaust emission control device for internal combustion engine
JP6179572B2 (en) Exhaust gas purification system for internal combustion engine
JP2008261302A (en) Exhaust gas purification device for internal combustion engine
JP5347372B2 (en) Exhaust gas purification system and exhaust gas purification method
JP4645297B2 (en) Exhaust particulate purification equipment
JP2008088926A (en) Exhaust gas purification system for internal combustion engine
JP6963968B2 (en) Vehicles, cargo handling vehicles, and exhaust gas treatment systems
JP4320584B2 (en) Exhaust gas purification device for internal combustion engine
JP4349096B2 (en) Exhaust gas purification device for internal combustion engine
JP6705294B2 (en) Exhaust gas purification system for internal combustion engine and exhaust gas purification method for internal combustion engine
JP2996004B2 (en) Exhaust gas purification device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100928