[go: up one dir, main page]

JP2006221986A - Fuel cell system - Google Patents

Fuel cell system Download PDF

Info

Publication number
JP2006221986A
JP2006221986A JP2005034960A JP2005034960A JP2006221986A JP 2006221986 A JP2006221986 A JP 2006221986A JP 2005034960 A JP2005034960 A JP 2005034960A JP 2005034960 A JP2005034960 A JP 2005034960A JP 2006221986 A JP2006221986 A JP 2006221986A
Authority
JP
Japan
Prior art keywords
fuel cell
oxidant
oxygen concentration
fuel
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005034960A
Other languages
Japanese (ja)
Inventor
Koji Matsuda
耕治 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2005034960A priority Critical patent/JP2006221986A/en
Priority to PCT/IB2006/000281 priority patent/WO2006085211A1/en
Publication of JP2006221986A publication Critical patent/JP2006221986A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04225Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04228Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during shut-down
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04302Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04303Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during shut-down
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To suppress the dispersion of a starting voltage in voltage decreasing processing in the starting of a plurality of fuel cells and prevent the deterioration of performance. <P>SOLUTION: The difference between oxygen concentrations in an oxidant electrode 3 of each fuel cell 1 is discriminated based on the oxygen concentration 3 of each fuel cell 1 detected by oxygen concentration sensors 14-17, and when the discriminated difference is a prescribed discrimination value or more, the oxidant electrode 3 of each fuel cell 1 is replaced with air before the starting of a system, and when the difference between oxygen concentrations is not larger than a prescribed value, loads of variable resistors 18, 19 are connected to each fuel cell 1 to decrease a voltage. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、複数の燃料電池の起動時に、酸化剤極の酸素濃度に基づいて起動制御を行う燃料電池システムに関する。   The present invention relates to a fuel cell system that performs start-up control based on the oxygen concentration of an oxidizer electrode when a plurality of fuel cells are started.

燃料電池システムの系統内に残存している可燃ガス、凝縮水を除去する技術としては、例えば以下に示す文献に記載されたものが知られている(特許文献1)。この文献1に記載された技術では、燃料改質器、燃料電池本体ならびに燃料供給系統にパージ運転を行わせる際に、最初に蒸気によるパージ運転を行わせた後、空気によるパージ運転を行い、系統内に残っている可燃ガス、凝縮水を確実に除去するようにしている。   As a technique for removing combustible gas and condensed water remaining in the fuel cell system, for example, a technique described in the following document is known (Patent Document 1). In the technique described in this document 1, when the purge operation is performed on the fuel reformer, the fuel cell main body, and the fuel supply system, the purge operation with steam is first performed, and then the purge operation with air is performed. The flammable gas and condensed water remaining in the system are surely removed.

一方、りん酸型燃料電池における各単電池のマトリックスが保持するりん酸量が発電中に飛散して減少することによって生じるりん酸不足を監視する技術として、例えば以下に示す文献に記載されたものが知られている(特許文献2)。この文献1に記載された技術では、燃料極、酸化剤極の出口から排出されたオフガス中の酸素濃度を検出する酸素濃度センサを設け、この酸素濃度センサで検出された酸素濃度または濃度の増加率が所定レベルを超えたときにりん酸残量の低下を報知するようにしている。
特開2002−231293 特開平03−101061号公報
On the other hand, as a technique for monitoring phosphoric acid deficiency caused by the amount of phosphoric acid retained in the matrix of each unit cell in a phosphoric acid fuel cell being scattered during power generation and decreasing, for example, the technology described in the following documents Is known (Patent Document 2). In the technique described in this document 1, an oxygen concentration sensor that detects the oxygen concentration in the off-gas discharged from the outlet of the fuel electrode and the oxidant electrode is provided, and the oxygen concentration or the increase in concentration detected by the oxygen concentration sensor is provided. When the rate exceeds a predetermined level, a decrease in the remaining amount of phosphoric acid is notified.
JP2002-231293 Japanese Patent Laid-Open No. 03-101061

複数の燃料電池を同時に起動する場合に、それぞれの燃料電池の酸化剤極内の酸素濃度が異なる状態のままで燃料電池を起動すると、起動時の電圧降下処理において、不具合が生じていた。すなわち、各燃料電池の酸化剤極の酸素濃度の違いにより、燃料ガスの水素との反応が行われやすい燃料電池と行われにくい燃料電池とが生じ、それぞれの燃料電池の起動電圧に差異が発生して、一部の燃料電池が起動時に負電圧状態となるおそれがあった。起動時にこのような状態を繰り返すことによって、燃料電池の触媒層の劣化を引き起こすという問題があった。   When starting a plurality of fuel cells at the same time, if the fuel cells are started with the oxygen concentrations in the oxidant electrodes of the respective fuel cells being different, a problem has occurred in the voltage drop process at the time of startup. In other words, due to the difference in oxygen concentration at the oxidant electrode of each fuel cell, a fuel cell that is likely to react with hydrogen of the fuel gas and a fuel cell that is difficult to react are produced, and there is a difference in the starting voltage of each fuel cell. As a result, some fuel cells may be in a negative voltage state at startup. By repeating such a state at the time of start-up, there is a problem that the catalyst layer of the fuel cell is deteriorated.

しかし、上記不具合は、上述した従来の技術のように、可燃ガスや凝縮水のパージ、オフガス中の酸素濃度の検出だけでは、解決するに至っていなかった。   However, the above problems have not been solved only by purging combustible gas or condensed water and detecting the oxygen concentration in the off-gas, as in the prior art described above.

そこで、本発明は、上記に鑑みてなされたものであり、その目的とするところは、複数の燃料電池の起動時の電圧降下処理における起動電圧のばらつきを抑制し、性能低下を防止した燃料電池システムを提供することにある。   Accordingly, the present invention has been made in view of the above, and an object of the present invention is to suppress a variation in start-up voltage in a voltage drop process at the time of start-up of a plurality of fuel cells, and to prevent a decrease in performance. To provide a system.

上記目的を達成するために、本発明の課題を解決する手段は、燃料極に供給された燃料ガスと酸化剤極に供給された酸化剤ガスとの電気化学反応により発電する燃料電池を複数備えた燃料電池システムにおいて、前記各燃料電池の酸化剤極の酸素濃度を検出する検出手段と、前記検出手段で検出された酸素濃度に基づいて、各燃料電池の酸化剤極の酸素濃度の差異を判別する判別手段と、前記判別手段で判別された酸素濃度の差異に基づいて、前記燃料電池システムの起動方法を決定して実行する制御手段とを有することを特徴とする。   In order to achieve the above object, means for solving the problems of the present invention comprises a plurality of fuel cells that generate power by an electrochemical reaction between a fuel gas supplied to the fuel electrode and an oxidant gas supplied to the oxidant electrode. In the fuel cell system, the difference in oxygen concentration of the oxidant electrode of each fuel cell is determined based on the oxygen concentration detected by the detection unit and the detection unit that detects the oxygen concentration of the oxidant electrode of each fuel cell. And determining means for determining, and control means for determining and executing a starting method of the fuel cell system based on a difference in oxygen concentration determined by the determining means.

本発明によれば、各燃料電池の酸化剤極の酸素濃度の差異に基づいて、燃料電池システムの起動方法を決定することで、システム起動時の各燃料電池の起動電圧のばらつきを防止することができる。   According to the present invention, the start-up method of the fuel cell system is determined based on the difference in oxygen concentration of the oxidant electrode of each fuel cell, thereby preventing variations in the start-up voltage of each fuel cell at the time of system start-up. Can do.

以下、図面を用いて本発明を実施するための最良の実施例を説明する。   DESCRIPTION OF THE PREFERRED EMBODIMENTS The best embodiment for carrying out the present invention will be described below with reference to the drawings.

図1は本発明の実施例1に係る燃料電池システムの構成を示す図である。図1に示す実施例1のシステムは、2つの燃料電池1を備えており、この2つの燃料電池1の燃料極2ならびに酸化剤極3には並列に燃料ガスならびに酸化剤ガスが供給される。すなわち、燃料タンク4に貯蔵された例えば水素ガスの燃料ガスは、各燃料電池1に並列に設けられた燃料供給配管6ならびに燃料の供給を制御するとともに燃料電池1と外気とを選択的に遮断制御する燃料供給弁10を介して各燃料電池1の燃料極2に供給される。各燃料電池1から排出された燃料オフガスは、各燃料電池1に並列に設けられた燃料排気配管7ならびに燃料排気逆止弁11を介して希釈された後排気される。   FIG. 1 is a diagram showing a configuration of a fuel cell system according to Embodiment 1 of the present invention. The system of Embodiment 1 shown in FIG. 1 includes two fuel cells 1, and fuel gas and oxidant gas are supplied in parallel to the fuel electrode 2 and the oxidant electrode 3 of the two fuel cells 1. . That is, for example, hydrogen gas fuel gas stored in the fuel tank 4 controls the fuel supply pipe 6 provided in parallel to each fuel cell 1 and the fuel supply, and selectively shuts off the fuel cell 1 and the outside air. The fuel is supplied to the fuel electrode 2 of each fuel cell 1 through the fuel supply valve 10 to be controlled. The fuel off-gas discharged from each fuel cell 1 is diluted and exhausted through a fuel exhaust pipe 7 and a fuel exhaust check valve 11 provided in parallel to each fuel cell 1.

一方、酸化剤ガスとなる空気は、空気を圧縮して供給する酸化剤ブロアー5、各燃料電池1に並列に設けられた酸化剤供給配管8ならびに酸化剤の供給を制御するとともに燃料電池1と外気とを選択的に遮断制御する酸化剤供給弁12を介して各燃料電池1の酸化剤極3に供給される。各燃料電池1から排出された酸化剤オフガスは、各燃料電池1に並列に設けられた酸化剤排気配管9ならびに酸化剤排気逆止弁13を介して排気される。   On the other hand, the air serving as the oxidant gas controls the oxidant blower 5 that compresses and supplies the air, the oxidant supply pipe 8 provided in parallel to each fuel cell 1 and the supply of the oxidant and the fuel cell 1. The gas is supplied to the oxidant electrode 3 of each fuel cell 1 via an oxidant supply valve 12 that selectively controls the outside air. The oxidant off-gas discharged from each fuel cell 1 is exhausted through an oxidant exhaust pipe 9 and an oxidant exhaust check valve 13 provided in parallel to each fuel cell 1.

酸化剤供給配管8及び酸化剤排気配管9と酸化剤極3との接合部には、酸素濃度を検出する手段としての酸素濃度センサ14〜17が設けられている。すなわち、酸素濃度センサ14では、一方の燃料電池1の酸化剤極入口側の酸素濃度を検出し、酸素濃度センサ15では、一方の燃料電池1の酸化剤極出口側の酸素濃度を検出し、酸素濃度センサ16では、他方の燃料電池1の酸化剤極入口側の酸素濃度を検出し、酸素濃度センサ17では、他方の燃料電池1の酸化剤極出口側の酸素濃度を検出する。   Oxygen concentration sensors 14 to 17 as means for detecting the oxygen concentration are provided at the junction between the oxidant supply pipe 8 and the oxidant exhaust pipe 9 and the oxidant electrode 3. That is, the oxygen concentration sensor 14 detects the oxygen concentration on the oxidant electrode inlet side of one fuel cell 1, and the oxygen concentration sensor 15 detects the oxygen concentration on the oxidant electrode outlet side of one fuel cell 1, The oxygen concentration sensor 16 detects the oxygen concentration on the oxidant electrode inlet side of the other fuel cell 1, and the oxygen concentration sensor 17 detects the oxygen concentration on the oxidant electrode outlet side of the other fuel cell 1.

各燃料電池1の酸化剤極3の入口から酸化剤供給配管8が合流する合流部までの酸化剤供給配管8の長さ及び配管径は同一に形成され、各燃料電池1の酸化剤極3の出口から酸化剤排気配管9の合流部23までの酸化剤排気配管9の長さ及び配管径は同一に形成され、酸化剤排気逆止弁13により合流部23の下流の酸化剤排気配管9から燃料電池1に外気が浸入のを防止している。   The length and the pipe diameter of the oxidant supply pipe 8 from the inlet of the oxidant electrode 3 of each fuel cell 1 to the junction where the oxidant supply pipe 8 merges are the same, and the oxidant electrode 3 of each fuel cell 1 is formed. The length and the pipe diameter of the oxidant exhaust pipe 9 from the outlet of the oxidant exhaust pipe 9 to the junction part 23 of the oxidant exhaust pipe 9 are formed to be the same, and the oxidant exhaust pipe 9 downstream of the junction part 23 by the oxidant exhaust check valve 13. Thus, outside air is prevented from entering the fuel cell 1.

一方の燃料電池1の発電で得られた電力を取り出す出力端子間には、直列接続された可変抵抗18とスイッチング素子のリレー20が接続され、同様に他方の燃料電池1の発電で得られた電力を取り出す出力端子間には、直列接続された可変抵抗19とスイッチング素子のリレー21が接続されている。この可変抵抗18,19を介して各燃料電池1の出力端子間が選択的に短絡され、起動時に各燃料電池1で電圧降下処理が実施される。可変抵抗18,19は、制御部22の制御の下にその抵抗値が可変される。リレー20,21は、制御部22でスイッチング制御される。   A variable resistor 18 connected in series and a relay 20 of a switching element are connected between output terminals for taking out the power obtained by the power generation of one fuel cell 1, and similarly obtained by the power generation of the other fuel cell 1. A variable resistor 19 connected in series and a relay 21 of a switching element are connected between output terminals for extracting power. The output terminals of each fuel cell 1 are selectively short-circuited through the variable resistors 18 and 19, and a voltage drop process is performed in each fuel cell 1 at the time of startup. The resistance values of the variable resistors 18 and 19 are varied under the control of the control unit 22. The relays 20 and 21 are switching-controlled by the control unit 22.

制御部22は、本システムの運転を制御する制御中枢として機能し、プログラムに基づいて各種動作処理を制御するコンピュータに必要な、CPU、記憶装置、入出力装置等の資源を備えた例えばマイクロコンピュータ等により実現される。制御部22は、酸素濃度センサ14〜17を含む各センサ(図示せず)からの信号を読み込み、読み込んだ各種信号ならびに予め内部に保有する制御ロジック(プログラム)に基づいて、リレー20,21を含む本システムの各構成要素に指令を送り、以下に説明する起動時の動作を含む本システムの運転/停止に必要なすべての動作を統括管理して制御する。   The control unit 22 functions as a control center for controlling the operation of the system, and includes, for example, a microcomputer including resources such as a CPU, a storage device, and an input / output device necessary for a computer that controls various operation processes based on a program. Etc. The control unit 22 reads signals from sensors (not shown) including the oxygen concentration sensors 14 to 17 and controls the relays 20 and 21 based on the read various signals and control logic (program) stored in advance in the inside. A command is sent to each component of the system including this, and all operations necessary for operation / stop of the system including the operation at the time of starting described below are managed and controlled.

図2は実施例1における燃料電池システムの起動制御処理の処理手順を示すフローチャートである。燃料電池システムの起動時に、複数の燃料電池1の酸化剤極3内の酸素濃度に差異がある状態で、燃料極2へ燃料ガスが導入されると、酸素濃度が低い酸化剤極3では起動電圧が立たない一方、酸素濃度が高い酸化剤極3では起動電圧が立つことになる。このような場合に、複数の燃料電池1で負荷を介して出力端子間を短絡する電圧降下処理を行うと、それぞれの燃料電池1の起動電圧に差異が発生する。これを防止するために、図2に示す手順で燃料電池システムの起動制御を行う。   FIG. 2 is a flowchart showing the procedure of the start-up control process for the fuel cell system according to the first embodiment. When the fuel cell system is started, if fuel gas is introduced into the fuel electrode 2 in a state where the oxygen concentrations in the oxidant electrodes 3 of the plurality of fuel cells 1 are different, the fuel cell system is started at the oxidant electrode 3 having a low oxygen concentration. While the voltage does not stand, the starting voltage stands at the oxidant electrode 3 having a high oxygen concentration. In such a case, if a voltage drop process is performed in which a plurality of fuel cells 1 short-circuit between output terminals via a load, a difference occurs in the starting voltage of each fuel cell 1. In order to prevent this, starting control of the fuel cell system is performed according to the procedure shown in FIG.

図2において、先ず燃料電池システムの起動が指令されると、システムを起動させる前に、酸素濃度センサ14〜17にて各燃料電池1の酸化剤極3内の酸素濃度を検出する。検出した酸化剤極3の入口側の酸素濃度と出口側の酸素濃度において、双方の酸素濃度に差異がある場合には濃度が高い方の酸素濃度をその燃料電池1の酸化剤極3の酸素濃度として設定する。その後、燃料電池1の酸化剤極3の酸素濃度の差異を制御部22で算出し、その差異が予め設定された所定の判定値以上であるか否かを判別する(ステップS21)。   In FIG. 2, when the start of the fuel cell system is instructed first, the oxygen concentration in the oxidant electrode 3 of each fuel cell 1 is detected by the oxygen concentration sensors 14 to 17 before the system is started. If the detected oxygen concentration at the inlet side and the oxygen concentration at the outlet side of the oxidant electrode 3 are different from each other, the oxygen concentration at the higher concentration is set to the oxygen concentration at the oxidant electrode 3 of the fuel cell 1. Set as concentration. Thereafter, a difference in oxygen concentration in the oxidant electrode 3 of the fuel cell 1 is calculated by the control unit 22, and it is determined whether or not the difference is greater than or equal to a predetermined determination value set in advance (step S21).

なお、2以上の燃料電池を備えている場合には、すべての組み合わせで燃料電池間での酸素濃度の差異を算出する。 When two or more fuel cells are provided, the difference in oxygen concentration between the fuel cells is calculated for all combinations.

判別の結果、差異が判定値以上である場合には、酸化剤ブロア−5を作動して各燃料電池1に酸化剤ガスの空気を供給し、全ての燃料電池1の酸化剤極3内を空気で置換し、全ての酸化剤極3内の酸素濃度を同一状態とする(ステップS22)。燃料電池間での酸素濃度の差異が判定値以下となるまで上記ステップS21、S22を繰り返し、差異が判定値以下となった場合には、制御部22によりリレー20,21をオンして可変抵抗18,19を介して各燃料電池1の出力端子間を短絡し、電圧降下処理を行った後、システムを起動する(ステップS23)。   As a result of the determination, if the difference is equal to or larger than the determination value, the oxidant blower 5 is operated to supply the oxidant gas air to each fuel cell 1, and the inside of the oxidant electrode 3 of all the fuel cells 1 is supplied. The oxygen concentration in all the oxidant electrodes 3 is set to the same state (step S22). Steps S21 and S22 are repeated until the difference in oxygen concentration between the fuel cells is equal to or less than the determination value. When the difference is equal to or less than the determination value, the control unit 22 turns on the relays 20 and 21 to change the variable resistance. After short-circuiting between the output terminals of each fuel cell 1 via 18 and 19 and performing a voltage drop process, the system is started (step S23).

このように、上記実施例1では、電気化学反応によって発電する燃料電池1を複数備える燃料電池システムにおいて、各燃料電池1内の酸化剤極3の入口側と出口側に設置された酸素濃度センサ14〜17で検出された酸素濃度に基づいて、各燃料電池1の酸化剤極3内の酸素濃度を略均一化することで、システム起動時の電圧降下処理におけるそれぞれの燃料電池1の起動電圧のばらつきを防止することができる。   As described above, in the first embodiment, in the fuel cell system including a plurality of fuel cells 1 that generate electric power by electrochemical reaction, oxygen concentration sensors installed on the inlet side and the outlet side of the oxidant electrode 3 in each fuel cell 1. Based on the oxygen concentration detected in 14 to 17, the oxygen concentration in the oxidant electrode 3 of each fuel cell 1 is made substantially uniform, so that the start-up voltage of each fuel cell 1 in the voltage drop process at the time of system start-up Can be prevented.

酸化剤供給配管8と燃料電池1の酸化剤ガス入口との接合部、及び酸化剤排気配管9と燃料電池1の酸化剤オフガスの出口との接合部に酸素濃度センサ14〜17を備えることで、直接に計測が出来ない酸化剤極3内の酸素濃度を高い精度で検出することができる。   Oxygen concentration sensors 14 to 17 are provided at the junction between the oxidant supply pipe 8 and the oxidant gas inlet of the fuel cell 1 and at the junction between the oxidant exhaust pipe 9 and the oxidant offgas outlet of the fuel cell 1. The oxygen concentration in the oxidant electrode 3 that cannot be directly measured can be detected with high accuracy.

複数の燃料電池1の酸化剤供給配管8が分岐し、それぞれの燃料電池1の酸化剤極3に分配されるまでの酸化剤供給配管8の長さ及び配管径を同一とし、また複数の燃料電池1の酸化剤排気配管9において、酸化剤極3から合流するまでの酸化剤排気配管9の長さ及び配管径を同一とすることで、配管を介して各燃料電池1に外気の浸入があった場合でも、それぞれの燃料電池1の酸化剤極3内の酸素濃度をほぼ同じ状態に保ちやすくなり、またまた酸化剤供給系を空気でパージした場合に、それぞれの燃料電池1の酸化剤極3内の酸素濃度を概ね同一状態とすることが可能となる。   The lengths and pipe diameters of the oxidant supply pipes 8 until the oxidant supply pipes 8 of the plurality of fuel cells 1 branch and are distributed to the oxidant electrodes 3 of the respective fuel cells 1 are the same, and the plurality of fuel cells 1 In the oxidant exhaust pipe 9 of the battery 1, the length and the pipe diameter of the oxidant exhaust pipe 9 from the oxidant electrode 3 to the oxidant electrode 3 are made the same, so that outside air can enter each fuel cell 1 through the pipe. Even if it exists, it becomes easy to keep the oxygen concentration in the oxidant electrode 3 of each fuel cell 1 almost in the same state, and when the oxidant supply system is purged with air, the oxidant electrode of each fuel cell 1 It becomes possible to make the oxygen concentration in 3 almost the same state.

酸化剤供給配管8に酸化剤供給弁12を設け、酸化剤排気配管9に酸化剤排気逆止弁13を設置し、同様に燃料供給配管6に燃料供給弁10を設け、燃料排気配管7に燃料排気逆止弁11を設置することで、各弁を閉弁することで外部から酸化剤極3内に侵入する外気を遮断し、それぞれの酸化剤極3内の酸素濃度を低い状態に保つことができる。   An oxidant supply valve 12 is provided in the oxidant supply pipe 8, an oxidant exhaust check valve 13 is provided in the oxidant exhaust pipe 9, a fuel supply valve 10 is similarly provided in the fuel supply pipe 6, and a fuel exhaust pipe 7 is provided. By installing the fuel exhaust check valve 11, each valve is closed to block outside air entering the oxidant electrode 3 from the outside, and the oxygen concentration in each oxidant electrode 3 is kept low. be able to.

酸素濃度センサ14〜17で複数の燃料電池1の酸化剤供給配管8内及び酸化剤排気配管9内の酸素濃度を検出することにより、複数の燃料電池1間の酸素濃度の差異を的確に把握することができる。   By detecting the oxygen concentrations in the oxidant supply pipes 8 and the oxidant exhaust pipes 9 of the plurality of fuel cells 1 with the oxygen concentration sensors 14 to 17, the difference in oxygen concentration among the plurality of fuel cells 1 can be accurately grasped. can do.

複数の燃料電池1内の酸化剤極3の酸素濃度の差異が所定の判定値以上の場合にのみ燃料電池システム起動前に複数の燃料電池1の酸化剤極3の空気置換を行うことで、それぞれの酸化剤極3内の酸素濃度をほぼ同一状態にすることができる。   By performing air replacement of the oxidant electrodes 3 of the plurality of fuel cells 1 before starting the fuel cell system only when the difference in oxygen concentration of the oxidant electrodes 3 in the plurality of fuel cells 1 is greater than or equal to a predetermined determination value, The oxygen concentration in each oxidant electrode 3 can be made substantially the same.

図3はこの実施例2を適用した燃料電池システムの起動制御処理の処理手順を示すフローチャートであり、構成は先の図1に示す実施例1と同様である。図3において、先ず燃料電池システムの起動が指令されると、システムを起動する前に、酸素濃度センサ14〜17にて各燃料電池1の酸化剤極内の酸素濃度を検出する。検出した酸化剤極3の入口側の酸素濃度と出口側の酸素濃度において、双方の酸素濃度に差異がある場合には濃度が高い方の酸素濃度をその燃料電池1の酸化剤極3の酸素濃度とする。その後、各燃料電池1の酸化剤極の酸素濃度の差異を制御部22で算出し、その差異が予め設定された所定の判定値以上であるか否かを判別する(ステップS31)。   FIG. 3 is a flowchart showing the processing procedure of the start control process of the fuel cell system to which the second embodiment is applied, and the configuration is the same as that of the first embodiment shown in FIG. In FIG. 3, when the start of the fuel cell system is first commanded, the oxygen concentration in the oxidant electrode of each fuel cell 1 is detected by the oxygen concentration sensors 14 to 17 before the system is started. If the detected oxygen concentration at the inlet side and the oxygen concentration at the outlet side of the oxidant electrode 3 are different from each other, the oxygen concentration at the higher concentration is set to the oxygen concentration at the oxidant electrode 3 of the fuel cell 1. Concentration. Thereafter, a difference in oxygen concentration of the oxidant electrode of each fuel cell 1 is calculated by the control unit 22, and it is determined whether or not the difference is greater than or equal to a predetermined determination value set in advance (step S31).

判別の結果、差異が判定値以上である場合には、各燃料電池1の酸素濃度値を認識し(ステップS32)、各酸素濃度値に応じて電圧降下処理を行う(ステップS33)。すなわち、制御部22では、各燃料電池1に対応した可変抵抗18,19を酸素濃度値に応じた抵抗値に調整設定し、調整設定された可変抵抗18,19でもって実施例1と同様に電圧降下処理を行う。酸化剤極3の酸素濃度値と負荷(可変抵抗18,19の抵抗値)との関係は、実験や机上検討により予め取得し、テーブル化等して制御部22に記憶される。   If the difference is equal to or larger than the determination value as a result of determination, the oxygen concentration value of each fuel cell 1 is recognized (step S32), and a voltage drop process is performed according to each oxygen concentration value (step S33). That is, the control unit 22 adjusts and sets the variable resistors 18 and 19 corresponding to each fuel cell 1 to a resistance value corresponding to the oxygen concentration value, and uses the adjusted and set variable resistors 18 and 19 as in the first embodiment. Perform voltage drop processing. The relationship between the oxygen concentration value of the oxidant electrode 3 and the load (resistance values of the variable resistors 18 and 19) is acquired in advance through experiments and desk studies, and stored in the control unit 22 as a table.

一方、先のステップS31で酸素濃度の差異が判定値以下である場合には、予め設定された抵抗値の可変抵抗18,19でもって先の実施例1と同様にして電圧降下処理を行った後、システムを起動する(ステップS34)。   On the other hand, if the difference in oxygen concentration is equal to or less than the determination value in the previous step S31, the voltage drop process is performed in the same manner as in the first embodiment with the variable resistors 18 and 19 having preset resistance values. Thereafter, the system is activated (step S34).

このような実施例2においては、先の実施例1と同様の効果を得ることができることに加えて、燃料電池システム起動時の複数の燃料電池1の起動電圧を概ね同一状態とすることができる。   In the second embodiment, the same effects as those of the first embodiment can be obtained, and the start-up voltages of the plurality of fuel cells 1 at the start of the fuel cell system can be made substantially the same. .

図4はこの実施例3を適用した燃料電池システムの起動制御処理の処理手順を示すフローチャートであり、構成は先の図1に示す実施例1と同様である。図4において、先ず燃料電池システムの起動が指令されると、システムを起動する前に、酸素濃度センサ14〜17にて各燃料電池1の酸化剤極3内の酸素濃度を検出する。検出した酸化剤極3の入口側の酸素濃度と出口側の酸素濃度において、双方の酸素濃度に差異がある場合には濃度が高い方の酸素濃度をその燃料電池1の酸化剤極3の酸素濃度とする。その後、各燃料電池1の酸化剤極3の酸素濃度の差異を制御部22で算出し、その差異が予め設定された所定の判定値以上であるか否かを判別する(ステップS41)。   FIG. 4 is a flowchart showing the processing procedure of the start control process of the fuel cell system to which the third embodiment is applied, and the configuration is the same as that of the first embodiment shown in FIG. In FIG. 4, when the start of the fuel cell system is instructed, the oxygen concentration in the oxidant electrode 3 of each fuel cell 1 is detected by the oxygen concentration sensors 14 to 17 before the system is started. If the detected oxygen concentration at the inlet side and the oxygen concentration at the outlet side of the oxidant electrode 3 are different from each other, the oxygen concentration at the higher concentration is set to the oxygen concentration at the oxidant electrode 3 of the fuel cell 1. Concentration. Thereafter, a difference in oxygen concentration of the oxidant electrode 3 of each fuel cell 1 is calculated by the control unit 22, and it is determined whether or not the difference is greater than or equal to a predetermined determination value set in advance (step S41).

判別の結果、差異が判定値以上である場合には、酸素濃度が最も低い燃料電池1を特定する(ステップS42)。続いて、最も低い酸素濃度値に応じてすべての燃料電池1の電圧降下処理を同様に行う(ステップS43)。すなわち、制御部22では、各燃料電池1に対応した可変抵抗18,19を最も低い酸素濃度値に対応した抵抗値に調整設定し、調整設定された可変抵抗18,19でもって実施例1と同様に電圧降下処理を行う。ここで、可変抵抗18,19の抵抗値は、最も低い酸素濃度の燃料電池1で電圧降下処理を行っても、燃料電池1の出力電圧が負電圧とならないように選択される。酸化剤極3の酸素濃度値と負荷(可変抵抗18,19の抵抗値)との関係は、実験や机上検討により予め取得し、テーブル化等して制御部22に記憶される。   If the difference is equal to or greater than the determination value as a result of determination, the fuel cell 1 with the lowest oxygen concentration is specified (step S42). Subsequently, the voltage drop processing of all the fuel cells 1 is similarly performed according to the lowest oxygen concentration value (step S43). That is, the control unit 22 adjusts and sets the variable resistors 18 and 19 corresponding to each fuel cell 1 to the resistance value corresponding to the lowest oxygen concentration value, and with the adjusted variable resistors 18 and 19 in the first embodiment, Similarly, a voltage drop process is performed. Here, the resistance values of the variable resistors 18 and 19 are selected so that the output voltage of the fuel cell 1 does not become a negative voltage even when the voltage drop process is performed in the fuel cell 1 having the lowest oxygen concentration. The relationship between the oxygen concentration value of the oxidant electrode 3 and the load (resistance values of the variable resistors 18 and 19) is acquired in advance through experiments and desk studies, and stored in the control unit 22 as a table.

一方、先のステップS41で酸素濃度の差異が判定値以下である場合には、予め設定された抵抗値の可変抵抗18,19でもって先の実施例1と同様にして電圧降下処理を行った後、システムを起動する(ステップS44)。   On the other hand, if the difference in oxygen concentration is equal to or less than the determination value in the previous step S41, the voltage drop process is performed in the same manner as in the first embodiment with the variable resistors 18 and 19 having preset resistance values. Thereafter, the system is activated (step S44).

このような実施例3においては、先の実施例1と同様の効果を得ることができることに加えて、各燃料電池1の起動電圧が負電圧となることを防止することができる。   In the third embodiment, in addition to obtaining the same effects as those of the first embodiment, it is possible to prevent the starting voltage of each fuel cell 1 from becoming a negative voltage.

図5はこの実施例4を適用した燃料電池システムの起動制御処理の処理手順を示すフローチャートであり、構成は先の図1に示す実施例1と同様である。図5において、先ず燃料電池システムの起動が指令されると、システムを起動する前に、酸素濃度センサ14〜17にて各燃料電池1の酸化剤極3内の酸素濃度を検出する。検出した酸化剤極3の入口側の酸素濃度と出口側の酸素濃度において、双方の酸素濃度に差異がある場合には濃度が高い方の酸素濃度をその燃料電池1の酸化剤極3の酸素濃度とする。続いて、すべての燃料電池1の酸化剤極3の酸素濃度が予め設定された所定の判定値(先の実施例1〜3の判定値とは異なる)以下であるか否かを判別する(ステップS51)。   FIG. 5 is a flowchart showing the processing procedure of the startup control process of the fuel cell system to which the fourth embodiment is applied, and the configuration is the same as that of the first embodiment shown in FIG. In FIG. 5, when the start of the fuel cell system is instructed first, the oxygen concentration in the oxidant electrode 3 of each fuel cell 1 is detected by the oxygen concentration sensors 14 to 17 before the system is started. If the detected oxygen concentration at the inlet side and the oxygen concentration at the outlet side of the oxidant electrode 3 are different from each other, the oxygen concentration at the higher concentration is set to the oxygen concentration at the oxidant electrode 3 of the fuel cell 1. Concentration. Subsequently, it is determined whether or not the oxygen concentration of the oxidizer electrode 3 of all the fuel cells 1 is equal to or lower than a predetermined determination value (which is different from the determination values of the first to third embodiments). Step S51).

判別の結果、すべての燃料電池1の酸化剤極3の酸素濃度が判定値以下である場合には、燃料電池システムの起動時に電圧降下処理を実施せずに起動を開始する(ステップS52)。これにより、燃料電池システム起動時の電圧降下処理により、酸素濃度が低い燃料電池1の起動電圧が負電圧になることを防止することができる。   As a result of the determination, when the oxygen concentration of the oxidant electrode 3 of all the fuel cells 1 is equal to or less than the determination value, the start-up is started without performing the voltage drop process at the start-up of the fuel cell system (step S52). Thereby, it is possible to prevent the start-up voltage of the fuel cell 1 having a low oxygen concentration from becoming a negative voltage by the voltage drop process at the start-up of the fuel cell system.

一方、先のステップS51の判別結果において、少なくとも1つの酸素濃度が判定値以上である場合には、燃料電池システムの起動時に予め設定された抵抗値の可変抵抗18,19でもって先の実施例1と同様に電圧降下処理を行った後、システムを起動する(ステップS53)。   On the other hand, if at least one oxygen concentration is equal to or higher than the determination value in the determination result of the previous step S51, the previous embodiment is provided with the variable resistors 18 and 19 having resistance values set in advance when the fuel cell system is started. After performing the voltage drop process in the same manner as 1, the system is started (step S 53).

このような実施例4においては、酸素濃度が少なく起動電圧が立たない状態での電圧降下処理による燃料電池1への負荷を回避することができる。また、システムの起動時に選択的に電圧降下処理を実施しないので、システムの起動制御に掛かる時間を短縮することができる。   In the fourth embodiment, it is possible to avoid a load on the fuel cell 1 due to the voltage drop process in a state where the oxygen concentration is low and the starting voltage is not established. Further, since the voltage drop process is not selectively performed at the time of starting the system, it is possible to reduce the time required for starting the system.

なお、上記実施例1〜4では、燃料電池が2つの場合で説明したが、燃料電池が2以上であっても同様に実施して同様の効果を得ることができ、また上記実施例1〜4を適宜組み合わせて実施してもよい。   In addition, in the said Examples 1-4, although the case where there were two fuel cells was demonstrated, even if there are two or more fuel cells, it can carry out similarly and can acquire the same effect, and the said Examples 1- You may implement combining 4 suitably.

本発明の実施例1に係る燃料電池システムの構成を示す図である。It is a figure which shows the structure of the fuel cell system which concerns on Example 1 of this invention. 本発明の実施例1に係るシステムの動作手順を示すフローチャートである。It is a flowchart which shows the operation | movement procedure of the system which concerns on Example 1 of this invention. 本発明の実施例2に係るシステムの動作手順を示すフローチャートである。It is a flowchart which shows the operation | movement procedure of the system which concerns on Example 2 of this invention. 本発明の実施例3に係るシステムの動作手順を示すフローチャートである。It is a flowchart which shows the operation | movement procedure of the system which concerns on Example 3 of this invention. 本発明の実施例4に係るシステムの動作手順を示すフローチャートである。It is a flowchart which shows the operation | movement procedure of the system which concerns on Example 4 of this invention.

符号の説明Explanation of symbols

1…燃料電池
2…燃料極
3…酸化剤極
4…燃料タンク
5…酸化剤ブロアー
6…燃料供給配管
7…燃料排気配管
8…酸化剤供給配管
9…酸化剤排気配管
10…燃料供給弁
11…燃料排気逆止弁
12…酸化剤供給弁
13…酸化剤排気逆止弁
14〜17…酸素濃度センサ
18,19…可変抵抗
20,21…リレー
22…制御部
23…合流部
DESCRIPTION OF SYMBOLS 1 ... Fuel cell 2 ... Fuel electrode 3 ... Oxidant electrode 4 ... Fuel tank 5 ... Oxidant blower 6 ... Fuel supply piping 7 ... Fuel exhaust piping 8 ... Oxidant supply piping 9 ... Oxidant exhaust piping 10 ... Fuel supply valve 11 ... Fuel exhaust check valve 12 ... Oxidant supply valve 13 ... Oxidant exhaust check valve 14-17 ... Oxygen concentration sensor 18,19 ... Variable resistance 20,21 ... Relay 22 ... Control part 23 ... Joint part

Claims (9)

燃料極に供給された燃料ガスと酸化剤極に供給された酸化剤ガスとの電気化学反応により発電する燃料電池を複数備えた燃料電池システムにおいて、
前記各燃料電池の酸化剤極の酸素濃度を検出する検出手段と、
前記検出手段で検出された酸素濃度に基づいて、各燃料電池の酸化剤極の酸素濃度の差異を判別する判別手段と、
前記判別手段で判別された酸素濃度の差異に基づいて、前記燃料電池システムの起動方法を決定して実行する制御手段と
を有することを特徴とする燃料電池システム。
In a fuel cell system including a plurality of fuel cells that generate electricity by an electrochemical reaction between a fuel gas supplied to a fuel electrode and an oxidant gas supplied to an oxidant electrode,
Detecting means for detecting the oxygen concentration of the oxidant electrode of each fuel cell;
Discriminating means for discriminating the difference in oxygen concentration of the oxidant electrode of each fuel cell based on the oxygen concentration detected by the detecting means;
And a control unit that determines and executes a starting method of the fuel cell system based on a difference in oxygen concentration determined by the determination unit.
前記各燃料電池の酸化剤極に酸化剤ガスを供給する酸化剤供給配管と、
前記各燃料電池の酸化剤極から酸化剤オフガスを排出する酸化剤排気配管とを備え、
前記検出手段は、前記酸化剤供給配管内の酸素濃度を検出する第1の酸素濃度センサと、前記酸化剤排気配管内の酸素濃度を検出する第2の酸素濃度センサとで構成されている
ことを特徴とする請求項1に記載の燃料電池システム。
An oxidant supply pipe for supplying an oxidant gas to the oxidant electrode of each fuel cell;
An oxidant exhaust pipe for discharging oxidant off-gas from the oxidant electrode of each fuel cell,
The detection means includes a first oxygen concentration sensor that detects an oxygen concentration in the oxidant supply pipe and a second oxygen concentration sensor that detects an oxygen concentration in the oxidant exhaust pipe. The fuel cell system according to claim 1.
前記酸化剤供給配管において、前記酸化剤供給配管の分岐部からそれぞれの酸化剤極に分配される間の前記酸化剤供給配管の長さ及び配管径を同一とし、
前記酸化剤排気配管において、それぞれの酸化剤極から合流するまでの間の前記酸化剤排気配管の長さ及び配管径を同一とした
ことを特徴とする請求項2に記載の燃料電池システム。
In the oxidant supply pipe, the length and the pipe diameter of the oxidant supply pipe are the same while being distributed from the branch part of the oxidant supply pipe to each oxidant electrode,
3. The fuel cell system according to claim 2, wherein, in the oxidant exhaust pipe, the length and the pipe diameter of the oxidant exhaust pipe until the oxidant exhaust pipes merge from each other are the same.
前記各燃料電池の酸化剤極に酸化剤ガスを供給する酸化剤供給配管と、
前記酸化剤供給配管に設けられて、酸化剤極と外気とを選択的に遮断する弁体と、
前記各燃料電池の酸化剤極から酸化剤オフガスを排出する酸化剤排気配管と、
前記酸化剤排気配管に設けられて、前記酸化剤排気配管で酸化剤オフガスが外部に流通する方向が常時開となる逆止弁と、
前記各燃料電池の燃料極に燃料ガスを供給する燃料供給配管と、
前記燃料供給配管に設けられて、燃料極と外気とを選択的に遮断する弁体と、
前記各燃料電池の燃料極から燃料オフガスを排出する燃料排気配管と、
前記燃料排気配管に設けられて、前記燃料排気配管で燃料オフガスが外部に流通する方向が常時開となる逆止弁と
を有することを特徴とする請求項2または3に記載の燃料電池システム。
An oxidant supply pipe for supplying an oxidant gas to the oxidant electrode of each fuel cell;
A valve body provided in the oxidant supply pipe for selectively blocking the oxidant electrode and outside air;
An oxidant exhaust pipe for discharging oxidant off-gas from the oxidant electrode of each fuel cell;
A check valve that is provided in the oxidant exhaust pipe and in which the direction in which the oxidant off-gas flows through the oxidant exhaust pipe is normally open;
Fuel supply piping for supplying fuel gas to the fuel electrode of each fuel cell;
A valve body provided in the fuel supply pipe to selectively shut off the fuel electrode and outside air;
A fuel exhaust pipe for discharging fuel off-gas from the fuel electrode of each fuel cell;
4. The fuel cell system according to claim 2, further comprising a check valve that is provided in the fuel exhaust pipe and is normally open in a direction in which fuel off-gas flows to the outside through the fuel exhaust pipe. 5.
前記第1の酸素濃度センサで検出された酸素濃度と、前記第2の酸素濃度センサで検出された酸素濃度とに基づいて、各燃料電池の酸化剤極の酸素濃度を設定し、
前記判別手段は、前記設定された酸素濃度に基づいて各燃料電池の酸化剤極の酸素濃度の差異を判定する
ことを特徴とする請求項2,3及び4のいずれか1項に記載の燃料電池システム。
Based on the oxygen concentration detected by the first oxygen concentration sensor and the oxygen concentration detected by the second oxygen concentration sensor, the oxygen concentration of the oxidant electrode of each fuel cell is set,
5. The fuel according to claim 2, wherein the determination unit determines a difference in oxygen concentration of an oxidant electrode of each fuel cell based on the set oxygen concentration. Battery system.
前記判別手段で各燃料電池の酸化剤極の酸素濃度の差異が、予め設定された所定の第1の判定値以上であると判別された場合には、前記燃料電池システムの起動前に各燃料電池の酸化剤極へ空気を供給する手段を備えた
ことを特徴とする請求項1,2,3,4及び5のいずれか1項に記載の燃料電池システム。
If the determination means determines that the difference in oxygen concentration of the oxidant electrode of each fuel cell is greater than or equal to a preset first determination value, each fuel cell system is started before the fuel cell system is started. The fuel cell system according to any one of claims 1, 2, 3, 4 and 5, further comprising means for supplying air to an oxidant electrode of the battery.
前記判別手段で各燃料電池の酸化剤極の酸素濃度の差異が、予め設定された所定の第1の判定値以上であると判別された場合には、前記制御手段は、前記燃料電池システムの起動前に、前記検出手段で検出された前記各燃料電池のそれぞれの酸化剤極の酸素濃度に応じた負荷を用いて各燃料電池で電圧降下処理を行う
ことを特徴とする請求項1,2,3,4及び5のいずれか1項に記載の燃料電池システム。
When the determination means determines that the difference in oxygen concentration of the oxidant electrode of each fuel cell is greater than or equal to a predetermined first determination value set in advance, the control means 3. The voltage drop process is performed in each fuel cell using a load corresponding to the oxygen concentration of each oxidant electrode of each fuel cell detected by the detection means before starting. , 3, 4 and 5. The fuel cell system according to claim 1.
前記判別手段で各燃料電池の酸化剤極の酸素濃度の差異が、予め設定された所定の判定値以上であると判別された場合には、前記制御手段は、前記燃料電池システムの起動前に、前記検出手段で検出された前記各燃料電池のそれぞれの酸化剤極の酸素濃度の内、最も濃度が低い酸素濃度に応じた負荷を用いて各燃料電池で電圧降下処理を行う
ことを特徴とする請求項1,2,3,4及び5のいずれか1項に記載の燃料電池システム。
If the determination means determines that the difference in oxygen concentration of the oxidant electrode of each fuel cell is equal to or greater than a predetermined determination value set in advance, the control means may The voltage drop process is performed in each fuel cell using a load corresponding to the lowest oxygen concentration among the oxygen concentrations of the respective oxidant electrodes of each fuel cell detected by the detecting means. The fuel cell system according to any one of claims 1, 2, 3, 4, and 5.
前記判別手段は、前記検出手段で検出された各燃料電池の酸化剤極の酸素濃度と予め設定された所定の第2の判定値とを比較し、
前記制御手段は、前記判別手段の比較結果において、各燃料電池の酸化剤極の酸素濃度のすべてが前記第2の判定値以下となった場合には、前記各燃料電池で電圧降下処理を実施せずに前記燃料電池システムの起動を開始する
ことを特徴とする請求項1,2,3,4及び5のいずれか1項に記載の燃料電池システム。
The determination means compares the oxygen concentration of the oxidant electrode of each fuel cell detected by the detection means with a predetermined second determination value set in advance,
The control means performs a voltage drop process in each fuel cell when all of the oxygen concentration of the oxidant electrode of each fuel cell is equal to or less than the second judgment value in the comparison result of the discrimination means. The fuel cell system according to any one of claims 1, 2, 3, 4 and 5, wherein the fuel cell system is started without being started.
JP2005034960A 2005-02-10 2005-02-10 Fuel cell system Pending JP2006221986A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005034960A JP2006221986A (en) 2005-02-10 2005-02-10 Fuel cell system
PCT/IB2006/000281 WO2006085211A1 (en) 2005-02-10 2006-02-10 Fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005034960A JP2006221986A (en) 2005-02-10 2005-02-10 Fuel cell system

Publications (1)

Publication Number Publication Date
JP2006221986A true JP2006221986A (en) 2006-08-24

Family

ID=36274497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005034960A Pending JP2006221986A (en) 2005-02-10 2005-02-10 Fuel cell system

Country Status (2)

Country Link
JP (1) JP2006221986A (en)
WO (1) WO2006085211A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009123559A (en) * 2007-11-15 2009-06-04 Honda Motor Co Ltd Fuel cell system

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8215520B2 (en) 2003-10-17 2012-07-10 Rock-Tenn Shared Services, Llc Secure merchandising system
US7641072B1 (en) 2003-10-17 2010-01-05 Rock-Tenn Shared Services, Llc Theft deterrent system
US7533784B2 (en) 2006-06-12 2009-05-19 Rock-Tenn Shared Services, Llc Theft deterrent system hook
US9119488B2 (en) 2009-09-25 2015-09-01 Rock-Tenn Shared Services, Llc Secure merchandising display with blocker mechanisms
US8646650B2 (en) 2010-05-19 2014-02-11 Rock-Tenn Shared Services, Llc Product dispensing system
US8910827B2 (en) 2011-05-10 2014-12-16 Rock-Tenn Shared Services, Llc Secure merchandising display with tunnel feature

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4859545A (en) * 1988-05-05 1989-08-22 International Fuel Cells Corporation Cathode flow control for fuel cell power plant
DE19620501C1 (en) * 1996-05-22 1997-06-19 Mtu Friedrichshafen Gmbh Fuel cell device operating method
US6461751B1 (en) * 1999-12-06 2002-10-08 Ballard Power Systems Inc. Method and apparatus for operating a fuel cell
US7582371B2 (en) * 2003-06-09 2009-09-01 Panasonic Corporation Fuel cell system having fuel and water controlling means

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009123559A (en) * 2007-11-15 2009-06-04 Honda Motor Co Ltd Fuel cell system

Also Published As

Publication number Publication date
WO2006085211A1 (en) 2006-08-17

Similar Documents

Publication Publication Date Title
EP1339125B1 (en) Purging control of fuel cell anode effluent
US11362354B2 (en) Fuel cell system and fuel cell system control method
JP5228835B2 (en) Fuel cell system
JP4804507B2 (en) Fuel cell system and control method thereof
JP5391226B2 (en) Fuel cell system and control method thereof
JP7074591B2 (en) Fuel cell system and method for estimating the wet state of the fuel cell
JP4406938B2 (en) Fuel cell system and compressor rotation speed control method
WO2006085211A1 (en) Fuel cell system
JP4758707B2 (en) Fuel cell system
JP2008112597A (en) Fuel cell system
JP5304863B2 (en) Fuel cell system
JP6861548B2 (en) Fuel cell system and how to operate the fuel cell system
JP4632055B2 (en) Fuel cell system and liquid discharge method thereof
JP5735606B2 (en) Stopping storage method of fuel cell system
JP2007179786A (en) Fuel cell system
JP4982977B2 (en) Fuel cell system
JP5250294B2 (en) Method for starting fuel cell system and fuel cell system
JP2007035436A (en) Fuel cell system and starting method thereof
JP2007095434A (en) Fuel cell system
JP2006128030A (en) Fuel cell system
JP2006221987A (en) Fuel cell system
JP5412780B2 (en) FUEL CELL SYSTEM AND CONTROL METHOD FOR FUEL CELL SYSTEM
JP2010123427A (en) Fuel cell system
JP5279005B2 (en) Fuel cell system
JP5282398B2 (en) Fuel cell system