[go: up one dir, main page]

JP2006210119A - Light emitting device - Google Patents

Light emitting device Download PDF

Info

Publication number
JP2006210119A
JP2006210119A JP2005020147A JP2005020147A JP2006210119A JP 2006210119 A JP2006210119 A JP 2006210119A JP 2005020147 A JP2005020147 A JP 2005020147A JP 2005020147 A JP2005020147 A JP 2005020147A JP 2006210119 A JP2006210119 A JP 2006210119A
Authority
JP
Japan
Prior art keywords
light
light incident
area
organic
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005020147A
Other languages
Japanese (ja)
Inventor
Hidenori Niida
英紀 仁井田
Akiyuki Ishikawa
明幸 石川
Hiroyasu Kawachi
浩康 河内
Yoshifumi Kato
祥文 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2005020147A priority Critical patent/JP2006210119A/en
Publication of JP2006210119A publication Critical patent/JP2006210119A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Planar Illumination Modules (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a light emitting device capable of enhancing extraction efficiency of light emitted from an EL element and entered in a transparent substrate. <P>SOLUTION: A lighting system 10 is provided with a transparent substrate 11 and a plurality of organic EL elements 12. In the transparent substrate 11, a plurality of light entering parts 14 are formed on the face opposite to the light emitting face 13, and the organic EL element 12 is provided so that its light emitting sides face each other for every and each light entering part 14. The light entering part 14 is each formed in a truncated cone shape so that its diameter shrinks as it approaches toward the organic EL element 12 side, and the inclination angle θ of the slope 15 of the light entering part 14 is 55-80 degrees. In addition, the ratio of the area S1 of the light emitting face 12a of the organic EL element 12 to the area S2 of the end face 14b opposite to the end face 14a on the organic EL element 12 side of the light entering part 14, S1/S2, is not more than 0.49. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、発光装置に係り、詳しくは出射面と反対側の面に複数の光入射部が形成された透明基板と、前記各光入射部毎に光出射側が対向するように設けられたエレクトロルミネッセンス素子とを備えた発光装置に関する。   The present invention relates to a light emitting device, and more specifically, a transparent substrate in which a plurality of light incident portions are formed on a surface opposite to an emission surface, and an electrometer provided so that the light emission sides face each other. The present invention relates to a light emitting device including a luminescence element.

従来、液晶表示装置のバックライトとして透明基板上にエレクトロルミネッセンス素子(以下、エレクトロルミネッセンス素子をEL素子と記載する場合もある。)を備えた照明装置が提案されている。EL素子から発せられた光はあらゆる方向に向かって放射される。従って、透明基板上にEL素子が形成された照明装置において、EL素子から透明基板に入射する光の角度は様々であり、透明基板に入射された光のうちの一部は透明基板の出射面で全反射して透明基板から出射できない。即ち、EL素子から透明基板に入射された光の透明基板からの取出し効率が低いという問題がある。   2. Description of the Related Art Conventionally, there has been proposed a lighting device including an electroluminescence element (hereinafter, the electroluminescence element may be referred to as an EL element) on a transparent substrate as a backlight of a liquid crystal display device. The light emitted from the EL element is emitted in all directions. Accordingly, in an illuminating device in which an EL element is formed on a transparent substrate, the angle of light incident on the transparent substrate from the EL element varies, and a part of the light incident on the transparent substrate is an emission surface of the transparent substrate. And cannot be emitted from the transparent substrate. That is, there is a problem that the light extraction efficiency from the transparent substrate of the light incident on the transparent substrate from the EL element is low.

この問題を改善する技術として、透明基板の出射面に微小レンズアレイ素子を設けたEL素子が提案されている(特許文献1参照)。図7に示すように、このEL素子50は、透明基板51と、透明基板51の下面に形成された透明電極52と、透明電極52の下面に形成されたEL発光層53と、EL発光層53の下面に形成された裏面電極54とから構成され、透明基板51の出射面に微小レンズアレイ素子55が設けられている。微小レンズアレイ素子55は、隣接して形成された多数の円錐状あるいは四角錐状のレンズ素子55aで構成されている。   As a technique for solving this problem, an EL element in which a microlens array element is provided on the exit surface of a transparent substrate has been proposed (see Patent Document 1). As shown in FIG. 7, the EL element 50 includes a transparent substrate 51, a transparent electrode 52 formed on the lower surface of the transparent substrate 51, an EL light emitting layer 53 formed on the lower surface of the transparent electrode 52, and an EL light emitting layer. The rear surface electrode 54 is formed on the lower surface of 53, and the minute lens array element 55 is provided on the emission surface of the transparent substrate 51. The micro lens array element 55 is composed of a large number of conical or quadrangular pyramidal lens elements 55a formed adjacent to each other.

また、図8(a)に示すように、光透過性材料で形成された基板(基体)61上に、溝62により分離されて四角錐台状に形成された輪郭規定体63を備え、各輪郭規定体63上に発光手段64を備えた照明装置60が提案されている(特許文献2参照)。各輪郭規定体63は、その内部に照射された発光手段64からの光が輪郭規定体63内で斜面(側面)65において全反射されるように構成してもよい旨、あるいは発光手段64としてEL素子を使用してもよい旨が記載されている。   Further, as shown in FIG. 8 (a), on a substrate (base body) 61 formed of a light transmissive material, a contour defining body 63 separated by a groove 62 and formed in a quadrangular pyramid shape is provided. An illuminating device 60 having a light emitting means 64 on a contour defining body 63 has been proposed (see Patent Document 2). Each contour defining body 63 may be configured such that light from the light emitting means 64 irradiated on the inside thereof is totally reflected on the slope (side surface) 65 within the contour defining body 63, or as the light emitting means 64. It describes that an EL element may be used.

また、光の利用効率を向上して明るい画像を得ることができる表示装置用の有機ELパネルが提案されている(特許文献3参照)。図8(b)に示すように、有機ELパネル70は、第1透明基板71上に画素となる有機EL素子72をマトリックス状に成膜し、この有機EL素子72の有機発光膜上に第2透明基板73を配置し、これらを接着層74により固着した構造である。第2透明基板73の第1透明基板71との対向面には、画素部分を除いて格子状にV溝75が形成されており、V溝75の斜面75aには反射膜76が形成されている。第2透明基板73内を側方に進む光は反射膜76で反射して第2透明基板73の表面から出射される。
特開2003−59641号公報 特表2002−510805号公報 特開2003−282255号公報
In addition, an organic EL panel for a display device that can improve the light utilization efficiency and obtain a bright image has been proposed (see Patent Document 3). As shown in FIG. 8B, in the organic EL panel 70, the organic EL elements 72 to be pixels are formed in a matrix on the first transparent substrate 71, and the organic EL elements 72 are formed on the organic light emitting film. In this structure, two transparent substrates 73 are arranged and these are fixed by an adhesive layer 74. On the surface of the second transparent substrate 73 facing the first transparent substrate 71, a V-groove 75 is formed in a lattice shape except for the pixel portion, and a reflective film 76 is formed on the inclined surface 75a of the V-groove 75. Yes. Light traveling sideways in the second transparent substrate 73 is reflected by the reflective film 76 and emitted from the surface of the second transparent substrate 73.
JP 2003-59641 A Special table 2002-510805 gazette JP 2003-282255 A

基板の出射面に微小レンズアレイ素子55を配置した特許文献1の構成では、特定の入射角度の光のみが透明基板51から正面方向(図7の上方)に出射し、特定の入射角度以外の光は出射面での全反射と裏面電極54(金属電極)での反射とを繰り返し、その間に特定の入射角度になれば正面方向に出射する。従って、光取出し効率は裏面電極54の反射率に依存するので、100%ではない反射率である金属電極では光取出し効率が低くなる。   In the configuration of Patent Document 1 in which the microlens array element 55 is arranged on the exit surface of the substrate, only light with a specific incident angle is emitted from the transparent substrate 51 in the front direction (upward in FIG. 7), and other than the specific incident angle. The light repeats total reflection on the emission surface and reflection on the back electrode 54 (metal electrode), and emits in the front direction when a specific incident angle is reached. Therefore, since the light extraction efficiency depends on the reflectance of the back electrode 54, the light extraction efficiency is low with a metal electrode having a reflectance other than 100%.

また、特許文献2又は特許文献3の構成の場合は、EL素子から透明な基板内に入射した光のうち基板内を側方に進む光が斜面において基板の出射面から出射されるように反射されるため、光取出し効率は金属電極の反射率の影響をあまり受けない。しかし、特許文献3の構成では斜面に設けられた反射膜76で光を反射させる構成のため、反射膜76の反射率が光取出し効率に影響を与える。特許文献2に記載されたように斜面で光が全反射するように構成すれば反射膜を設ける構成に比較して反射率は向上する。しかし、基板の出射面から光が出射しても、その出射角が大きくて出射面の正面に向かわなければ正面方向の輝度の向上に寄与しない。   Further, in the case of the configuration of Patent Document 2 or Patent Document 3, the light that travels laterally through the substrate out of the light incident on the transparent substrate from the EL element is reflected so as to be emitted from the exit surface of the substrate on the slope. Therefore, the light extraction efficiency is not significantly affected by the reflectance of the metal electrode. However, in the configuration of Patent Document 3, since the light is reflected by the reflective film 76 provided on the slope, the reflectance of the reflective film 76 affects the light extraction efficiency. As described in Patent Document 2, if the configuration is such that light is totally reflected on the slope, the reflectance is improved as compared with the configuration in which a reflective film is provided. However, even if light is emitted from the emission surface of the substrate, it does not contribute to improvement of the luminance in the front direction unless the emission angle is large and it faces the front of the emission surface.

本発明は、前記従来の問題に鑑みてなされたものであって、その目的はEL素子から出射されて透明基板内に入射した光の取出し効率及び正面方向の輝度を従来装置よりも高めることができる発光装置を提供することにある。   The present invention has been made in view of the above-described conventional problems, and an object of the present invention is to increase the light extraction efficiency and the luminance in the front direction of the light emitted from the EL element and incident on the transparent substrate, as compared with the conventional apparatus. An object of the present invention is to provide a light-emitting device that can be used.

前記の目的を達成するため、請求項1に記載の発明は、出射面と反対側の面に複数の光入射部が形成された透明基板と、前記各光入射部毎に光出射側が対向するように設けられたEL素子とを備えた発光装置である。そして、前記光入射部は、それぞれ円錐台状又は長径と短径の比が2以下の楕円錐台状で、かつ前記EL素子側に向かって縮径となるように形成されており、前記光入射部の斜面の傾斜角度が55〜80度である。また、前記EL素子の発光面の面積S1と、前記光入射部の前記EL素子側の端面と反対側の端面の面積S2との比S1/S2が0.5以下である。ここで、「円錐台状又は楕円錐台状」とは、円錐台又は楕円錐台に限らず、円錐台又は楕円錐台の中心軸を含む平面と、斜面との交線が曲線となるものも含む。また、「斜面の傾斜角度が55〜80度」とは、前記交線が直線の場合、交線と光入射部のエレクトロルミネッセンス素子側の端面と平行な方向に延びる直線との成す角度が55〜80度であることを意味する。また、前記交線が曲線の場合、前記曲線のEL素子側端部と、光入射部の厚さ方向においてEL素子側端部から40%の位置とを結ぶ直線、又は前記40%の位置と、EL素子側端部から80%の位置とを結ぶ直線の少なくともどちらか一方の直線と光入射部のエレクトロルミネッセンス素子側の端面と平行な方向に延びる直線との成す角度が55〜80度であることを意味する。   In order to achieve the above object, according to the first aspect of the present invention, a transparent substrate having a plurality of light incident portions formed on a surface opposite to the light exit surface is opposed to the light output side for each light incident portion. A light emitting device provided with an EL element. Each of the light incident portions has a truncated cone shape or an elliptic frustum shape with a ratio of a major axis to a minor axis of 2 or less, and is formed so as to be reduced in diameter toward the EL element side. The inclination angle of the inclined surface of the incident portion is 55 to 80 degrees. Further, a ratio S1 / S2 between the area S1 of the light emitting surface of the EL element and the area S2 of the end surface on the opposite side of the EL element side of the light incident portion is 0.5 or less. Here, “conical or elliptical truncated cone shape” is not limited to a truncated cone or elliptical truncated cone, and the intersection line between the plane including the central axis of the truncated cone or elliptical truncated cone and the inclined surface is a curve. Including. Further, “the inclination angle of the inclined surface is 55 to 80 degrees” means that when the intersecting line is a straight line, the angle formed by the intersecting line and a straight line extending in a direction parallel to the end surface of the light incident portion on the electroluminescence element side is 55. Means ~ 80 degrees. When the intersecting line is a curve, a straight line connecting the EL element side end of the curve and a position of 40% from the EL element side end in the thickness direction of the light incident part, or the position of 40% The angle formed by at least one of the straight lines connecting the 80% position from the EL element side end portion and the straight line extending in a direction parallel to the end face of the light incident portion on the electroluminescence element side is 55 to 80 degrees. It means that there is.

この発明では、光入射部の形状を四角錐台状とした従来装置に比較して、EL素子から出射されて透明基板内に入射した光の取出し効率が向上し、光の取出し効率及び正面方向の輝度をより高めることができる。   In this invention, the light extraction efficiency of the light emitted from the EL element and incident on the transparent substrate is improved as compared with the conventional device in which the shape of the light incident portion is a quadrangular pyramid shape, and the light extraction efficiency and the front direction are improved. The brightness can be further increased.

請求項2に記載の発明は、請求項1に記載の発明において前記透明基板の出射面の面積に対する、前記各光入射部のエレクトロルミネッセンス素子側の端面と反対側の端面の面積S2の合計面積の割合が52%以上である。この発明では、各光入射部を四角錐台で形成するとともに、隣り合う四角錐台のEL素子側の端面の各辺が互いに接する状態に配置した場合の正面方向の輝度以上の輝度が得られる。   The invention according to claim 2 is the total area of the area S2 of the end face opposite to the end face on the electroluminescence element side of each light incident portion with respect to the area of the exit face of the transparent substrate in the invention according to claim 1. Is 52% or more. According to the present invention, each light incident portion is formed of a quadrangular pyramid, and luminance equal to or higher than the luminance in the front direction when the sides of the EL element side end faces of adjacent quadrangular pyramids are in contact with each other can be obtained. .

請求項3に記載の発明は、出射面と反対側の面に複数の光入射部が形成された透明基板と、前記各光入射部毎に光出射側が対向するように設けられたEL素子とを備えた発光装置である。そして、前記光入射部は、それぞれN角錐台状(Nは6以上の自然数)で、かつ前記EL素子側の端面の面積が反対側の端面の面積より小さくなるように形成されており、前記光入射部の斜面の傾斜角度が55〜80度である。また、前記EL素子の発光面の面積S1と、前記光入射部の前記EL素子側の端面と反対側の端面の面積S2との比S1/S2が0.5以下である。ここで、「N角錐台状」とは、N角錐台に限らず、N角錐台の中心軸を含む平面と、斜面との交線が曲線となるものも含む。また、「斜面の傾斜角度が55〜80度」とは、前記交線が直線の場合、交線と光入射部のエレクトロルミネッセンス素子側の端面と平行な方向に延びる直線との成す角度が55〜80度であることを意味する。また、前記交線が曲線の場合、前記曲線のEL素子側端部と、光入射部の厚さ方向においてEL素子側端部から40%の位置とを結ぶ直線、又は前記40%の位置と、EL素子側端部から80%の位置とを結ぶ直線の少なくともどちらか一方の直線と光入射部のエレクトロルミネッセンス素子側の端面と平行な方向に延びる直線との成す角度が55〜80度であることを意味する。この発明においても、光入射部の形状を四角錐台状とした場合に比較して、EL素子から出射されて透明基板内に入射した光の取出し効率が向上し、光の取出し効率及び正面方向の輝度を従来装置より高めることができる。   According to a third aspect of the present invention, there is provided a transparent substrate having a plurality of light incident portions formed on a surface opposite to the emission surface, and an EL element provided so that the light emission sides face each other. It is the light-emitting device provided with. The light incident portions are each in the shape of a truncated pyramid (N is a natural number of 6 or more), and are formed so that the area of the end face on the EL element side is smaller than the area of the end face on the opposite side, The inclination angle of the inclined surface of the light incident part is 55 to 80 degrees. Further, a ratio S1 / S2 between the area S1 of the light emitting surface of the EL element and the area S2 of the end surface on the opposite side of the EL element side of the light incident portion is 0.5 or less. Here, the “N-pyramidal frustum shape” is not limited to the N-pyramidal frustum, but also includes those in which the intersection line between the plane including the central axis of the N-pyramidal frustum and the inclined surface is a curve. Further, “the inclination angle of the inclined surface is 55 to 80 degrees” means that when the intersecting line is a straight line, the angle formed by the intersecting line and a straight line extending in a direction parallel to the end surface of the light incident portion on the electroluminescence element side is 55. Means ~ 80 degrees. When the intersecting line is a curve, a straight line connecting the EL element side end of the curve and a position of 40% from the EL element side end in the thickness direction of the light incident part, or the position of 40% The angle formed by at least one of the straight lines connecting the 80% position from the EL element side end portion and the straight line extending in a direction parallel to the end face of the light incident portion on the electroluminescence element side is 55 to 80 degrees. It means that there is. Also in this invention, compared with the case where the shape of the light incident part is a quadrangular pyramid, the extraction efficiency of the light emitted from the EL element and incident on the transparent substrate is improved, and the light extraction efficiency and the front direction are improved. The brightness can be increased as compared with the conventional apparatus.

請求項4に記載の発明は、請求項1〜請求項3のいずれか一項に記載の発明において、前記エレクトロルミネッセンス素子の発光面の面積S1と、前記光入射部の前記エレクトロルミネッセンス素子側の端面と反対側の端面の面積S2との比S1/S2が0.25以下である。この発明では、前記比S1/S2が0.25よりも大きい場合と比較して、EL素子から出射されて透明基板内に入射した光の取出し効率及び正面方向の輝度を向上させることができる。   The invention according to claim 4 is the invention according to any one of claims 1 to 3, wherein an area S1 of the light emitting surface of the electroluminescent element and the electroluminescent element side of the light incident portion are arranged. Ratio S1 / S2 with the area S2 of the end surface opposite to the end surface is 0.25 or less. In this invention, compared with the case where the ratio S1 / S2 is larger than 0.25, it is possible to improve the extraction efficiency and the luminance in the front direction of the light emitted from the EL element and incident on the transparent substrate.

請求項5に記載の発明は、請求項1〜請求項4のいずれか一項に記載の発明において、前記光入射部は、その中心軸を含む平面と、前記光入射部の斜面との交線が外側に凸の曲線となるように形成されている。この発明では、前記交線が直線となる場合や交線が内側に凸の曲線となる場合に比較して、光の取出し効率を向上させ易い。   According to a fifth aspect of the present invention, in the invention according to any one of the first to fourth aspects, the light incident portion is an intersection of a plane including a central axis thereof and a slope of the light incident portion. The line is formed to be a convex curve outward. In the present invention, it is easy to improve the light extraction efficiency as compared with the case where the intersecting line is a straight line or the intersecting line is an inwardly convex curve.

請求項6に記載の発明は、請求項1〜5のいずれか一項に記載の発明において、前記エレクトロルミネッセンス素子は、有機エレクトロルミネッセンス素子である。この発明では、エレクトロルミネッセンス素子が無機エレクトロルミネッセンス素子で形成されている場合と比較して、低電圧で駆動することができる。   The invention according to claim 6 is the invention according to any one of claims 1 to 5, wherein the electroluminescence element is an organic electroluminescence element. In this invention, it can drive with a low voltage compared with the case where the electroluminescent element is formed with the inorganic electroluminescent element.

本発明によれば、EL素子から出射されて透明基板内に入射した光の取出し効率及び正面方向の輝度を従来装置より高めることができる。   According to the present invention, the extraction efficiency of light emitted from the EL element and incident on the transparent substrate and the luminance in the front direction can be increased as compared with the conventional device.

(第1の実施の形態)
以下、本発明の発光装置を照明装置に具体化した第1の実施の形態を図1〜図4及び表1、2にしたがって説明する。図1(a)は照明装置の部分模式図、(b)は(a)の部分拡大詳細図、図2は光入射部の配置を示す模式図である。図3は相対輝度と斜面の傾斜角度との関係を示す線図、図4は輝度に対する斜面の反射率の影響を示すグラフ。なお、図1(a),(b)は、照明装置及び有機エレクトロルミネッセンス素子(有機EL素子)の構成を模式的に示したものであり、図示の都合上、一部の寸法を誇張して分かり易くしているために、それぞれの部分の幅、長さ、厚さ等の寸法の比は実際の比と異なっている。
(First embodiment)
Hereinafter, a first embodiment in which the light-emitting device of the present invention is embodied in a lighting device will be described with reference to FIGS. FIG. 1A is a partial schematic diagram of a lighting device, FIG. 1B is a partial enlarged detail view of FIG. 1A, and FIG. 2 is a schematic diagram showing the arrangement of light incident portions. FIG. 3 is a diagram showing the relationship between the relative luminance and the inclination angle of the slope, and FIG. 4 is a graph showing the influence of the reflectance of the slope on the luminance. 1A and 1B schematically show the structures of the lighting device and the organic electroluminescence element (organic EL element), and some dimensions are exaggerated for the convenience of illustration. For the sake of clarity, the ratio of dimensions such as the width, length, and thickness of each portion is different from the actual ratio.

図1(a)に示すように、照明装置10は、透明基板11と、複数のEL素子としての有機EL素子12とを備えている。透明基板11は出射面13と反対側の面に複数の光入射部14が形成されており、有機EL素子12は各光入射部14毎に光出射側が対向するように設けられている。この実施の形態では透明基板11としてガラス基板が使用されている。   As shown to Fig.1 (a), the illuminating device 10 is provided with the transparent substrate 11 and the organic EL element 12 as a some EL element. The transparent substrate 11 has a plurality of light incident portions 14 formed on the surface opposite to the exit surface 13, and the organic EL elements 12 are provided so that the light exit sides face each other. In this embodiment, a glass substrate is used as the transparent substrate 11.

各光入射部14は、それぞれ円錐台状に、かつEL素子側に向かって縮径となるように形成されている。光入射部14は、図1(b)に示すように、斜面15の傾斜角度をθ、有機EL素子12の発光面の面積をS1、光入射部14の有機EL素子12側の端面14aと反対側の端面14bの面積をS2としたとき、傾斜角度θが55〜80度で、面積S1と面積S2との比S1/S2が0.5以下、好ましくは0.25以下となるように形成されている。斜面15の傾斜角度θとは、円錐台の中心軸を含む平面と、斜面15との交線が光入射部14の有機EL素子12側の端面14aと平行な方向に延びる直線と成す角度を意味する。光入射部14は、有機EL素子12側の端面14aと反対側の端面14bの直径が200μm以下の大きさが好ましい。   Each light incident portion 14 is formed in a truncated cone shape and has a reduced diameter toward the EL element side. As shown in FIG. 1B, the light incident part 14 has an inclination angle of the slope 15 of θ, an area of the light emitting surface of the organic EL element 12 as S1, and an end face 14a of the light incident part 14 on the organic EL element 12 side. When the area of the opposite end face 14b is S2, the inclination angle θ is 55 to 80 degrees, and the ratio S1 / S2 between the area S1 and the area S2 is 0.5 or less, preferably 0.25 or less. Is formed. The inclination angle θ of the inclined surface 15 is an angle formed by a line extending between the plane including the central axis of the truncated cone and the inclined surface 15 in a direction parallel to the end surface 14a on the organic EL element 12 side of the light incident portion 14. means. The light incident portion 14 preferably has a diameter of 200 μm or less on the end surface 14 b opposite to the end surface 14 a on the organic EL element 12 side.

各光入射部14は、隣接する光入射部14が端面14bの周縁において接するように配置されている。図2に示すように、この実施の形態では各光入射部14は正方格子状に、即ち各光入射部14の中心を結ぶ線が正方格子状となるように配置されている。   Each light incident portion 14 is disposed such that the adjacent light incident portions 14 are in contact with each other at the periphery of the end face 14b. As shown in FIG. 2, in this embodiment, the light incident portions 14 are arranged in a square lattice shape, that is, the lines connecting the centers of the light incident portions 14 are in a square lattice shape.

有機EL素子12は、透明基板11側から第1電極16、有機EL層17及び第2電極18が順に積層されて形成されている。この実施の形態では、第1電極16が陽極を構成し、第2電極18が陰極を構成する。有機EL素子12は、有機EL層17からの光が透明基板11側から取り出される(出射される)所謂ボトムエミッション型の有機EL素子を構成している。この実施の形態では有機EL素子12の発光面12aの面積は、光入射部14のEL素子側の端面14aの面積と同じ面積S1に形成されている。   The organic EL element 12 is formed by sequentially laminating a first electrode 16, an organic EL layer 17, and a second electrode 18 from the transparent substrate 11 side. In this embodiment, the first electrode 16 constitutes an anode and the second electrode 18 constitutes a cathode. The organic EL element 12 constitutes a so-called bottom emission type organic EL element in which light from the organic EL layer 17 is extracted (emitted) from the transparent substrate 11 side. In this embodiment, the area of the light emitting surface 12a of the organic EL element 12 is formed to have the same area S1 as the area of the end surface 14a on the EL element side of the light incident portion 14.

第1電極16は公知の透明な導電性材料で形成されており、例えば、ITO(インジウム錫酸化物)や、IZO(インジウム亜鉛酸化物)、ZnO(酸化亜鉛)、SnO(酸化錫)等を用いることができる。 The first electrode 16 is made of a known transparent conductive material. For example, ITO (indium tin oxide), IZO (indium zinc oxide), ZnO (zinc oxide), SnO 2 (tin oxide), etc. Can be used.

有機EL層17は、公知の有機EL材料を用いて形成され、有機EL素子12の目的とする発光色に応じて構成されている。
第2電極18は、従来用いられている公知の陰極材料や第1電極16と同様の材料等が使用でき、例えば、アルミニウム、金、銀、銅、クロム等の金属やこれらの合金が用いられる。
The organic EL layer 17 is formed using a known organic EL material, and is configured according to the target emission color of the organic EL element 12.
For the second electrode 18, a conventionally known cathode material, a material similar to the first electrode 16, or the like can be used. For example, a metal such as aluminum, gold, silver, copper, or chromium, or an alloy thereof is used. .

なお、有機EL素子12には、有機EL層17を酸素及び水分から保護するための保護部(図示せず)が設けられており、保護部は、公知のパッシベーション膜や封止缶、又はそれらの組み合わせ等で構成される。   The organic EL element 12 is provided with a protective part (not shown) for protecting the organic EL layer 17 from oxygen and moisture. The protective part may be a known passivation film, a sealing can, or the like. It is comprised by the combination etc.

次に前記のように構成された照明装置10の作用を説明する。
照明装置10は、例えば液晶表示装置のバックライトとして使用される。
有機EL素子12の第1電極16及び第2電極18間に直流駆動電圧が印加されると、有機EL層17が発光して、有機EL素子12の光出射側である第1電極16側から光が出射されて光入射部14に入射される。有機EL素子12は等方性のため、光入射部14に入射された光の一部は、透明基板11の出射面13と直交する方向ではなく出射面13に対して斜めに向かって進む。
Next, the operation of the illumination device 10 configured as described above will be described.
The illumination device 10 is used as a backlight of a liquid crystal display device, for example.
When a DC driving voltage is applied between the first electrode 16 and the second electrode 18 of the organic EL element 12, the organic EL layer 17 emits light, and the light is emitted from the first electrode 16 side which is the light emission side of the organic EL element 12. Light is emitted and incident on the light incident portion 14. Since the organic EL element 12 is isotropic, part of the light incident on the light incident portion 14 travels obliquely with respect to the emission surface 13, not in a direction orthogonal to the emission surface 13 of the transparent substrate 11.

屈折率n1の媒質中の光が屈折率n2(n2<n1)の媒質との界面に入射するとき、入射角が一定の角度より大きいときに光線が全部反射される。このときの、角度を臨界角という。従って、有機EL素子12から透明基板11に入射した光の中で、出射面13に対する入射角(出射面13の垂線とのなす角度)が臨界角θcより大きな光は出射面13で全反射し、透明基板11から出射できない。臨界角θcと屈折率n1,n2とは次式の関係が成立する。   When light in a medium having a refractive index n1 enters an interface with a medium having a refractive index n2 (n2 <n1), all light rays are reflected when the incident angle is larger than a certain angle. This angle is called the critical angle. Therefore, in the light incident on the transparent substrate 11 from the organic EL element 12, light having an incident angle with respect to the emission surface 13 (an angle formed with the perpendicular of the emission surface 13) larger than the critical angle θc is totally reflected by the emission surface 13. The light cannot be emitted from the transparent substrate 11. The relationship of the following formula is established between the critical angle θc and the refractive indexes n1 and n2.

sinθc=n2/n1…(1)
従って、透明基板11をガラス基板(屈折率は約1.5)とした場合、空気の屈折率は約1.0であるため、臨界角θc=sin−1(1/1.5)で臨界角θcは約42度となる。そして、有機EL素子12から透明基板11に入射した光の中で、出射面13に対する入射角が0〜約42度の光がスネルの法則により透明基板11から出射する。入射角が42度より大きな光は出射面13で全反射するため、そのような光は透明基板11が平坦な場合は出射面13から出射することはない。しかし、有機EL素子12の光は、円錐台状の光入射部14から透明基板11に入射される。そして、斜面15の傾斜角度θが55〜80度に形成されているため、出射面13への入射角が42度より大きくなる角度で有機EL素子12から入射された光は、図1(b)に示すように、斜面15に斜めに入射して斜面15で全反射して、透明基板11の出射面13にその入射角が42度未満となるように進み、透明基板11から出射される。
sin θc = n2 / n1 (1)
Therefore, when the transparent substrate 11 is a glass substrate (refractive index is about 1.5), the refractive index of air is about 1.0, so that the critical angle θc = sin −1 (1 / 1.5) is critical. The angle θc is about 42 degrees. Of the light incident on the transparent substrate 11 from the organic EL element 12, light having an incident angle with respect to the emission surface 13 of 0 to about 42 degrees is emitted from the transparent substrate 11 according to Snell's law. Light having an incident angle greater than 42 degrees is totally reflected at the exit surface 13, so that such light does not exit from the exit surface 13 when the transparent substrate 11 is flat. However, the light from the organic EL element 12 is incident on the transparent substrate 11 from the truncated cone-shaped light incident portion 14. Since the inclination angle θ of the inclined surface 15 is 55 to 80 degrees, the light incident from the organic EL element 12 at an angle that makes the incident angle on the emission surface 13 larger than 42 degrees is shown in FIG. ), The light is incident obliquely on the inclined surface 15, totally reflected by the inclined surface 15, travels to the emission surface 13 of the transparent substrate 11 so that the incident angle is less than 42 degrees, and is emitted from the transparent substrate 11. .

光が出射面13から外部に出射されてもその出射角(出射面13の垂線との成す角度)が大きいと、出射面13の正面方向に出射しないため、正面方向の輝度の向上にほとんど寄与しない。斜面15で反射して出射面13へ向かって進んだ光が輝度に有効に寄与する方向に出射面13から出射するためには、斜面15の傾斜角度θを特定の範囲にする必要がある。また、傾斜角度θだけでなく、有機EL素子12の発光面12aの面積S1と、光入射部14のEL素子側の端面14aと反対側の端面14bの面積S2との比S1/S2も照明装置10の輝度に大きく影響することが分かった。図3に前記比S1/S2を変化させた場合における相対輝度と傾斜角度θとの関係を示す。本発明では、有機EL素子12の発光面の面積S1と、光入射部14の有機EL素子12側の端面14aと反対側の端面14bの面積S2の比S1/S2を変化させてモンテカルロ法を使用した光線追跡シミュレーションにより出射面13より出射される光の輝度を調べた。なお、相対輝度は、特許文献1で提案された構成、即ち出射面13に四角錐状のレンズ素子を有する構成において、頂角が90度の四角錐状のレンズ素子を有するEL素子の輝度に対する値で、前記EL素子と同じ輝度の場合を相対輝度1とした。図3から、比S1/S2が0.49以下で、傾斜角度θが55〜80度であれば、特許文献1の構成の場合より輝度が高くなることが確認された。また、比S1/S2が0.25以下で、傾斜角度θが60〜75度であれば、特許文献1の構成に比較して輝度が約2倍以上となり、比S1/S2が0.25以下で、傾斜角度θが60〜70度であれば、特許文献1の構成に比較して輝度が約2.3倍以上となることが確認される。さらに、比S1/S2が0.09で、傾斜角度θが60〜70度であれば、特許文献1の場合より輝度が約2.6倍以上となることが確認される。   Even if light is emitted from the emission surface 13 to the outside, if the emission angle (angle formed with the perpendicular of the emission surface 13) is large, the light is not emitted in the front direction of the emission surface 13, and thus contributes to improvement of the luminance in the front direction. do not do. In order for the light reflected from the inclined surface 15 and traveling toward the emitting surface 13 to be emitted from the emitting surface 13 in a direction that effectively contributes to luminance, the inclination angle θ of the inclined surface 15 needs to be in a specific range. Further, not only the inclination angle θ, but also the ratio S1 / S2 between the area S1 of the light emitting surface 12a of the organic EL element 12 and the area S2 of the end surface 14b on the opposite side of the EL element side of the light incident portion 14 is illuminated. It has been found that the brightness of the device 10 is greatly affected. FIG. 3 shows the relationship between the relative luminance and the inclination angle θ when the ratio S1 / S2 is changed. In the present invention, the Monte Carlo method is performed by changing the ratio S1 / S2 between the area S1 of the light emitting surface of the organic EL element 12 and the area S2 of the end face 14b opposite to the end face 14a of the light incident portion 14 on the organic EL element 12 side. The brightness of the light emitted from the emission surface 13 was examined by the used ray tracing simulation. The relative luminance is relative to the luminance of the EL element having a quadrangular pyramid-shaped lens element whose apex angle is 90 degrees in the configuration proposed in Patent Document 1, that is, the configuration having a quadrangular pyramid-shaped lens element on the emission surface 13. The relative luminance was 1 when the luminance was the same as that of the EL element. From FIG. 3, it was confirmed that when the ratio S1 / S2 is 0.49 or less and the inclination angle θ is 55 to 80 degrees, the luminance is higher than that in the configuration of Patent Document 1. Further, when the ratio S1 / S2 is 0.25 or less and the inclination angle θ is 60 to 75 degrees, the luminance is about twice or more compared to the configuration of Patent Document 1, and the ratio S1 / S2 is 0.25. In the following, it is confirmed that if the inclination angle θ is 60 to 70 degrees, the luminance is about 2.3 times or more compared to the configuration of Patent Document 1. Furthermore, when the ratio S1 / S2 is 0.09 and the inclination angle θ is 60 to 70 degrees, it is confirmed that the luminance is about 2.6 times or more that in the case of Patent Document 1.

光入射部14を比S1/S2が0.09で端面14bの直径が100μmの円錐台とした場合の輝度と、光入射部14を同じ面積比で四角錐台とした場合の輝度との比に対する、傾斜角度θの影響を、光線追跡シミュレーションを行って調べた。結果を表1に示す。表1から傾斜角度θが55度以上のときは、照明装置10の輝度が光入射部14を四角錐台とした場合より高くなることが確認される。また、傾斜角度θが65〜80度であれば、光入射部14を四角錐台とした場合よりも輝度が1.4倍以上となることが確認された。   The ratio between the luminance when the light incident portion 14 is a truncated cone having a ratio S1 / S2 of 0.09 and the diameter of the end face 14b being 100 μm, and the luminance when the light incident portion 14 is a quadrangular pyramid with the same area ratio. The effect of the inclination angle θ on the above was investigated by performing a ray tracing simulation. The results are shown in Table 1. From Table 1, it is confirmed that when the inclination angle θ is 55 degrees or more, the luminance of the illumination device 10 is higher than that when the light incident portion 14 is a quadrangular pyramid. In addition, when the inclination angle θ is 65 to 80 degrees, it has been confirmed that the luminance is 1.4 times or more than that when the light incident portion 14 is a quadrangular pyramid.

Figure 2006210119
光入射部14の斜面15における光の反射を全反射ではなく、斜面15に反射膜を設けて反射させる構成とした場合の輝度に対する反射率Rの影響を、比S1/S2が0.25で、傾斜角度θが60度のモデルについて光線追跡シミュレーションを行った結果を図4に示す。なお、反射率95%の反射膜は、例えば、銀の膜で得られ、反射率90%の反射膜は、例えば、アルミニウムの膜で得られる。図4から、反射率が90%でも、輝度が全反射(反射率100%)に比較して8割に低下することが分かった。即ち、光入射部14に入射された光を斜面15で反射させる構成を採る場合、反射膜で反射させる構成に比較して全反射で反射させる方が、効果が高く構造も簡単となる。
Figure 2006210119
The ratio S1 / S2 is 0.25 with respect to the influence of the reflectance R on the luminance when the reflection of the light on the inclined surface 15 of the light incident portion 14 is not totally reflected, but a reflection film is provided on the inclined surface 15. FIG. 4 shows the result of ray tracing simulation for a model having an inclination angle θ of 60 degrees. The reflective film having a reflectivity of 95% is obtained by, for example, a silver film, and the reflective film having a reflectivity of 90% is obtained by, for example, an aluminum film. FIG. 4 shows that even when the reflectance is 90%, the luminance is reduced to 80% compared to the total reflection (reflectance 100%). That is, in the case of adopting a configuration in which the light incident on the light incident portion 14 is reflected by the inclined surface 15, it is more effective and simpler to reflect by total reflection than the configuration of reflecting by the reflective film.

光入射部14の充填率、即ち透明基板11の出射面13の面積に対する、各光入射部14の端面14bの面積S2の合計面積の割合を変えた場合の影響について、比S1/S2が0.09、端面14bの直径が100μmで傾斜角度θが65度のモデルについて光線追跡シミュレーションを行った結果を表2に示す。表2において相対輝度は、円錐台の光入射部14を正方格子状に配置した場合の輝度を1とした場合の値を示す。光入射部14を四角錐台で形成するとともに、隣り合う四角錐台の有機EL素子12側の端面の各辺が互いに接する状態に配置した場合の相対輝度の値は0.65である。表2から、充填率がほぼ50%(正確には52%)以上のときに、四角錐台の光入射部を正方格子状に配置した場合以上の輝度が得られることが分かる。即ち、光入射部14を円錐台に形成した場合、四角錐台に形成した場合に比較して、有機EL素子12の発光面12aの面積がほぼ1/2で同じ輝度が得られる。   Regarding the influence of changing the ratio of the total area of the area S2 of the end face 14b of each light incident portion 14 to the filling rate of the light incident portion 14, that is, the area of the exit surface 13 of the transparent substrate 11, the ratio S1 / S2 is 0. Table 2 shows the result of ray tracing simulation for a model having a diameter of 0.09 and an end face 14b of 100 μm and an inclination angle θ of 65 degrees. In Table 2, the relative luminance indicates a value when the luminance is 1 when the light incident portions 14 of the truncated cone are arranged in a square lattice shape. When the light incident portion 14 is formed of a quadrangular pyramid and the sides of the end faces of the adjacent quadrangular pyramids on the organic EL element 12 side are in contact with each other, the relative luminance value is 0.65. From Table 2, it can be seen that when the filling rate is approximately 50% (more precisely 52%) or higher, the luminance higher than that obtained when the light incident portions of the square pyramid are arranged in a square lattice shape can be obtained. In other words, when the light incident portion 14 is formed in a truncated cone, the area of the light emitting surface 12a of the organic EL element 12 is approximately ½ and the same luminance can be obtained as compared with the case where the light incident portion 14 is formed in a quadrangular truncated cone.

Figure 2006210119
この実施の形態では以下の効果を有する。
Figure 2006210119
This embodiment has the following effects.

(1)照明装置10は、出射面13と反対側の面に複数の光入射部14が形成された透明基板11と、各光入射部14毎に光出射側が対向するように設けられたEL素子とを備えている。光入射部14は、それぞれ円錐台状に、かつEL素子側に向かって縮径となるように形成され、光入射部14の斜面15の傾斜角度θが55〜80度である。また、EL素子の発光面の面積S1と、光入射部14のEL素子側の端面14aと反対側の端面14bの面積S2との比S1/S2が0.5以下である。このような構成により、光入射部14の形状を四角錐台状とした場合に比較して、EL素子から出射されて透明基板11内に入射した光の取出し効率が向上し、光の取出し効率を従来装置より高めることができる。   (1) The illuminating device 10 includes an EL provided with a transparent substrate 11 having a plurality of light incident portions 14 formed on the surface opposite to the emission surface 13 and the light emission sides facing each light incidence portion 14. Device. The light incident portions 14 are each formed in a truncated cone shape and have a diameter reduced toward the EL element side, and the inclination angle θ of the inclined surface 15 of the light incident portion 14 is 55 to 80 degrees. Further, the ratio S1 / S2 between the area S1 of the light emitting surface of the EL element and the area S2 of the end face 14b on the opposite side of the EL element side of the light incident portion 14 is 0.5 or less. With such a configuration, the light extraction efficiency of the light emitted from the EL element and incident into the transparent substrate 11 is improved as compared with the case where the light incident portion 14 has a quadrangular pyramid shape, and the light extraction efficiency is improved. Can be increased as compared with the conventional apparatus.

(2)光入射部14の斜面15の傾斜角度θは、EL素子から光入射部14に入射した光が斜面15に入射した場合、出射面13に向かって進むように全反射する角度に設定されているため、斜面15に反射膜を設ける構成に比較して出射面13の輝度が高くなる。   (2) The inclination angle θ of the inclined surface 15 of the light incident portion 14 is set to an angle that totally reflects the light incident on the light incident portion 14 from the EL element so as to travel toward the exit surface 13 when incident on the inclined surface 15. Therefore, the luminance of the emission surface 13 is higher than that in the configuration in which the reflective film is provided on the inclined surface 15.

(3)比S1/S2を0.25以下とすれば、前記比S1/S2が0.25よりも大きい場合に比較して、正面方向の輝度を高くすることができる。
(4)比S1/S2を0.25以下、かつ傾斜角度θを60〜75度とすれば、特許文献1の構成に比較して輝度が約2倍以上となり、前記比S1/S2を0.09、かつ傾斜角度θを60〜70度とすれば、特許文献1の構成に比較して輝度が約2.5倍以上となる。
(3) If the ratio S1 / S2 is 0.25 or less, the luminance in the front direction can be increased as compared with the case where the ratio S1 / S2 is greater than 0.25.
(4) If the ratio S1 / S2 is 0.25 or less and the inclination angle θ is 60 to 75 degrees, the luminance is about twice or more compared to the configuration of Patent Document 1, and the ratio S1 / S2 is set to 0. 0.09 and the inclination angle θ of 60 to 70 degrees, the luminance is about 2.5 times or more compared to the configuration of Patent Document 1.

(5)光入射部14の斜面15の傾斜角度θを55度以上とすれば、照明装置10の輝度が光入射部14を四角錐台として正方格子状に配置した場合より高くなる。
(6)光入射部14の充填率を52%以上とした場合、照明装置10の輝度が光入射部14を四角錐台として正方格子状に配置した場合より高くなる。
(5) If the inclination angle θ of the inclined surface 15 of the light incident portion 14 is 55 degrees or more, the luminance of the illumination device 10 becomes higher than when the light incident portion 14 is arranged in a square lattice shape with a quadrangular pyramid.
(6) When the filling factor of the light incident part 14 is set to 52% or more, the luminance of the lighting device 10 is higher than that in the case where the light incident part 14 is arranged in a square lattice shape with the quadrangular pyramid.

(7)EL素子は有機EL素子12で構成されている。従って、無機EL素子を使用する場合に比較して低電圧で駆動することができる。
(第2の実施の形態)
次に第2の実施の形態を説明する。この実施の形態では光入射部14を円錐台ではなく、それぞれN角錐台(Nは6以上の自然数)に形成した点が前記第1の実施の形態と異なっている。前記実施の形態と同一部分は同一符号を付して詳しい説明を省略する。光入射部14は、有機EL素子12側の端面14aの面積が反対側の端面14bの面積より小さくなるように形成されており、光入射部14の斜面15の傾斜角度が55〜80度である。有機EL素子12の発光面12aの面積S1と、光入射部14の有機EL素子12側の端面14aと反対側の端面14bの面積S2との比S1/S2が0.5以下である。
(7) The EL element is composed of the organic EL element 12. Therefore, it can be driven at a lower voltage than when an inorganic EL element is used.
(Second Embodiment)
Next, a second embodiment will be described. This embodiment is different from the first embodiment in that the light incident portion 14 is formed not on a truncated cone but on an N pyramid (N is a natural number of 6 or more). The same parts as those in the above embodiment are given the same reference numerals, and detailed description thereof is omitted. The light incident portion 14 is formed such that the area of the end surface 14a on the organic EL element 12 side is smaller than the area of the opposite end surface 14b, and the inclination angle of the inclined surface 15 of the light incident portion 14 is 55 to 80 degrees. is there. The ratio S1 / S2 between the area S1 of the light emitting surface 12a of the organic EL element 12 and the area S2 of the end face 14b opposite to the end face 14a on the organic EL element 12 side of the light incident portion 14 is 0.5 or less.

光入射部14の形状を角錐台として角数を変更した場合の影響について、比S1/S2が0.09、端面14bが1辺100μmの正方形に内接する正多角形、傾斜角度θが65度のモデルについて光線追跡シミュレーションを行った結果を表3に示す。表3において相対輝度は、四角錐台の光入射部14を正方格子状に配置した場合の輝度を1とした場合の値を示す。なお、光入射部14を比S1/S2が0.09で端面14bの直径が100μmの円錐台とし、正方格子状に配置した場合の相対輝度の値は1.52である。表3から角数を増やすほど輝度は向上するが、その向上割合は角数が6より多くなると、角数の増加の割に輝度の増加割合が増えないことが分かる。   Regarding the influence of changing the number of angles with the shape of the light incident portion 14 being a truncated pyramid, a regular polygon inscribed in a square having a ratio S1 / S2 of 0.09 and an end face 14b of 100 μm on one side, and an inclination angle θ of 65 degrees Table 3 shows the result of the ray tracing simulation for this model. In Table 3, the relative luminance indicates a value when the luminance is set to 1 when the light incident portions 14 of the truncated pyramid are arranged in a square lattice shape. When the light incident portion 14 is a truncated cone having a ratio S1 / S2 of 0.09 and a diameter of the end face 14b of 100 μm, the relative luminance value is 1.52. From Table 3, it can be seen that the luminance is improved as the number of corners is increased. However, when the number of corners is larger than 6, the increase rate of the luminance is not increased for the increase of the number of corners.

Figure 2006210119
光入射部14をN角錐台(Nは6以上の自然数)に形成することにより、四角錐台の場合に比較して輝度が1.27倍以上となり、円錐台の場合の輝度の1/2以上となる。第1の実施の形態の図3の結果から、傾斜角度θが65度の場合、光入射部14が円錐台では、前記比S1/S2が0.49のときの輝度は、比S1/S2が0.09のときの輝度のほぼ半分である。従って、多角錐台の場合でもほぼ同様な割合で比S1/S2が0.49のときの輝度が得られるとすれば、比S1/S2が0.49のときの輝度は特許文献1の構成の場合より高くなると推定される。
Figure 2006210119
By forming the light incident portion 14 on an N-pyramidal frustum (N is a natural number of 6 or more), the luminance is 1.27 times or more as compared with the case of a quadrangular frustum, and ½ of the luminance in the case of a frustum. That's it. From the result of FIG. 3 of the first embodiment, when the tilt angle θ is 65 degrees, the light incident part 14 is a truncated cone, and the luminance when the ratio S1 / S2 is 0.49 is the ratio S1 / S2. Is about half of the luminance when. Therefore, even in the case of a polygonal frustum, if the luminance when the ratio S1 / S2 is 0.49 can be obtained at a substantially similar ratio, the luminance when the ratio S1 / S2 is 0.49 is the configuration of Patent Document 1. Is estimated to be higher than

従って、この第2の実施の形態では、前記第1の実施の形態の効果(2)、(5)、(7)と同様の効果を有する他に次の効果を有する。
(8)光入射部14をそれぞれ有機EL素子12側の端面14aの面積が端面14bの面積より小さなN角錐台(Nは6以上の自然数)で、斜面15の傾斜角度θを55〜80度、有機EL素子12の発光面12aの面積S1と、端面14bの面積S2との比S1/S2が0.5以下としている。このような構成により、光入射部14の形状を四角錐台とした場合に比較して、EL素子から出射されて透明基板11内に入射した光の取出し効率が向上し、光の取出し効率を従来装置より高めることができる。
Therefore, the second embodiment has the following effects in addition to the effects (2), (5), and (7) of the first embodiment.
(8) The light incident portion 14 is an N-pyramidal frustum (N is a natural number of 6 or more) where the area of the end surface 14a on the organic EL element 12 side is smaller than the area of the end surface 14b, and the inclination angle θ of the inclined surface 15 is 55 to 80 degrees. The ratio S1 / S2 between the area S1 of the light emitting surface 12a of the organic EL element 12 and the area S2 of the end surface 14b is 0.5 or less. With such a configuration, the light extraction efficiency of the light emitted from the EL element and incident into the transparent substrate 11 is improved as compared with the case where the shape of the light incident portion 14 is a quadrangular pyramid, and the light extraction efficiency is improved. It can be higher than the conventional device.

(9)Nを8、即ち光入射部14を8角錐台に形成すると、加工が比較的容易で輝度が高い照明装置10が得られる。
(第3の実施の形態)
次に第3の実施の形態を説明する。この実施の形態では光入射部14を円錐台ではなく、長径と短径の比(長径/短径)が2以下の楕円錐台に形成した点が前記第1の実施の形態と異なっている。第1の実施の形態と同一部分は同一符号を付して詳しい説明を省略する。光入射部14は、有機EL素子12側の端面14aの面積が反対側の端面14bの面積より小さくなるように形成されており、光入射部14の斜面15の傾斜角度が55〜80度である。有機EL素子12の発光面12aの面積S1と、光入射部14の有機EL素子12側の端面14aと反対側の端面14bの面積S2との比S1/S2が0.5以下である。
(9) When N is 8, that is, when the light incident portion 14 is formed in an octagonal truncated pyramid, the illumination device 10 that is relatively easy to process and has high luminance is obtained.
(Third embodiment)
Next, a third embodiment will be described. This embodiment is different from the first embodiment in that the light incident portion 14 is not a truncated cone but an elliptical truncated cone having a major axis / minor axis ratio (major axis / minor axis) of 2 or less. . The same parts as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted. The light incident portion 14 is formed such that the area of the end surface 14a on the organic EL element 12 side is smaller than the area of the opposite end surface 14b, and the inclination angle of the inclined surface 15 of the light incident portion 14 is 55 to 80 degrees. is there. The ratio S1 / S2 between the area S1 of the light emitting surface 12a of the organic EL element 12 and the area S2 of the end face 14b opposite to the end face 14a on the organic EL element 12 side of the light incident portion 14 is 0.5 or less.

光入射部14の端面14bの長径と短径の比を変更した場合の影響について、比S1/S2が0.09、傾斜角度θが65度のモデルについて光線追跡シミュレーションを行った結果を表4に示す。表4において相対輝度は、長径と短径の長さが等しい(比が1)場合、即ち円錐台の光入射部14の輝度を1とした場合の値を示す。なお、光入射部14を四角錐台で形成するとともに、隣り合う四角錐台の有機EL素子12側の端面の各辺が互いに接する状態に配置した場合の相対輝度の値は0.65である。表4から長径と短径の比(長径/短径)が大きくなるほど輝度は低下し、前記比が2以下の楕円錐台に形成した場合に輝度が四角錐台の場合より高くなることが確認された。即ち、光入射部14が円錐台ではなく楕円錐台であっても、長径と短径の比が2以下であれば、光入射部14の形状を四角錐台とした場合に比較して、有機EL素子12から出射されて透明基板11内に入射した光の取出し効率が向上し、光の取出し効率を従来装置より高めることができる。   Table 4 shows the effect of changing the ratio of the major axis to the minor axis of the end face 14b of the light incident part 14 on the ray tracing simulation for a model having a ratio S1 / S2 of 0.09 and an inclination angle θ of 65 degrees. Shown in In Table 4, the relative luminance indicates a value when the length of the major axis and the minor axis are equal (ratio is 1), that is, when the luminance of the light incident portion 14 of the truncated cone is 1. Note that the relative luminance value is 0.65 when the light incident portion 14 is formed with a quadrangular pyramid and the sides of the adjacent end faces of the quadrangular pyramid on the organic EL element 12 side are in contact with each other. . From Table 4, it is confirmed that the luminance decreases as the ratio of the major axis to the minor axis (major axis / minor axis) increases, and when the ratio is formed on an elliptical truncated cone having a ratio of 2 or less, the luminance is higher than in the case of a quadrangular pyramid. It was done. That is, even if the light incident portion 14 is not a truncated cone but an elliptical truncated cone, if the ratio of the major axis to the minor axis is 2 or less, compared to the case where the shape of the light incident unit 14 is a quadrangular pyramid, The extraction efficiency of light emitted from the organic EL element 12 and incident on the transparent substrate 11 is improved, and the extraction efficiency of light can be increased as compared with the conventional apparatus.

Figure 2006210119
実施の形態は前記に限定されるものではなく、例えば、次のように構成してもよい。
Figure 2006210119
The embodiment is not limited to the above, and may be configured as follows, for example.

○ 光入射部14はそれぞれ厳密に円錐台、楕円錐台、多角錐台である必要はなく、円錐台状、楕円錐台状、多角錐台状であればよく、例えば、光入射部14はその中心軸を含む平面と、斜面15との交線が曲線となるように形成されていてもよい。前記曲線は図5(a)に示すように外側に凸の曲線であっても、図5(b)に示すように内側に凸の曲線であってもよい。光入射部14がこれらの形状の場合、斜面15の傾斜角度θが55〜80度とは、前記曲線が次の要件を満たすことを意味する。即ち、曲線の有機EL素子12側端部CEと、光入射部14の厚さ方向において有機EL素子12側端部から40%の位置P1とを結ぶ直線L1、又は前記40%の位置P1と、有機EL素子12側端部から80%の位置P2とを結ぶ直線L2の少なくともどちらか一方の直線と光入射部14の有機EL素子12側の端面14aと平行な方向に延びる直線Lとの成す角度が55〜80度であることを意味する。これらの場合、図5(a)に示すように、光入射部14の斜面15との交線が外側に凸の曲線となるように形成されている方が、図5(b)に示すように、前記交線が内側に凸の曲線となる場合あるいは交線が直線の場合に比較して、光の取出し効率を向上させ易い。   The light incident part 14 does not have to be strictly a truncated cone, an elliptical truncated cone, or a polygonal truncated cone, but may be a truncated cone shape, an elliptical truncated cone shape, or a polygonal truncated cone shape. The intersection line between the plane including the central axis and the inclined surface 15 may be a curved line. The curve may be an outwardly convex curve as shown in FIG. 5 (a) or an inwardly convex curve as shown in FIG. 5 (b). When the light incident portion 14 has these shapes, the inclination angle θ of the inclined surface 15 of 55 to 80 degrees means that the curve satisfies the following requirements. That is, the straight line L1 connecting the curved edge portion CE of the organic EL element 12 and the position P1 of 40% from the edge portion of the organic EL element 12 in the thickness direction of the light incident portion 14, or the position P1 of 40%. , And at least one of the straight lines L2 connecting the 80% position P2 from the end portion on the organic EL element 12 side and the straight line L extending in a direction parallel to the end surface 14a on the organic EL element 12 side of the light incident portion 14 It means that the formed angle is 55 to 80 degrees. In these cases, as shown in FIG. 5 (a), as shown in FIG. 5 (b), the line of intersection with the inclined surface 15 of the light incident portion 14 is a convex curve outward. In addition, it is easy to improve the light extraction efficiency as compared with the case where the intersecting line is an inwardly convex curve or the intersecting line is a straight line.

○ 照明装置10は、出射面13と反対側の面に複数の光入射部14が形成された透明基板11と、各光入射部14毎に光出射側が対向するように設けられた有機EL素子12とを備えた構成であればよく、光入射部14の端面14a上に直接有機EL素子12が積層形成される構成に限らない。例えば、図6に示すように、基板20上に、透明基板11の光入射部14の端面14aと対向する位置に複数の有機EL素子12を形成した後、その基板20の有機EL素子12側を図示しない接着剤を介して透明基板11の光入射部14側に、有機EL素子12と光入射部14とが対向する状態で接着する構成としてもよい。接着剤には可視光の波長領域で透明基板11の屈折率と同じ又は近い屈折率を有する紫外線硬化型接着剤や高分子系接着剤等が使用される。「近い屈折率」とは、屈折率の差が数%以内であることを意味する。基板20は透明で無くてもよい。この構成では、接着剤が保護部の機能を有する場合は、有機EL層17を酸素及び水分から保護するための保護部を特に設ける必要がない。   The illumination device 10 includes a transparent substrate 11 having a plurality of light incident portions 14 formed on the surface opposite to the emission surface 13 and an organic EL element provided so that the light emission sides face each other. 12, and the organic EL element 12 is not limited to the configuration in which the organic EL element 12 is directly formed on the end surface 14 a of the light incident portion 14. For example, as shown in FIG. 6, after a plurality of organic EL elements 12 are formed on the substrate 20 at positions facing the end face 14a of the light incident portion 14 of the transparent substrate 11, the organic EL element 12 side of the substrate 20 is formed. The organic EL element 12 and the light incident portion 14 may be bonded to the light incident portion 14 side of the transparent substrate 11 via an adhesive (not shown). As the adhesive, an ultraviolet curable adhesive or a polymer adhesive having the same or close refractive index as that of the transparent substrate 11 in the visible light wavelength region is used. “Near refractive index” means that the difference in refractive index is within several percent. The substrate 20 may not be transparent. In this configuration, when the adhesive has a function of a protective part, it is not necessary to provide a protective part for protecting the organic EL layer 17 from oxygen and moisture.

○ 有機EL素子12の発光面12aは平面に限らず、曲面であってもよい。発光面12aを曲面とする場合は、第1の実施の形態のように有機EL素子12を直接光入射部14の端面14a上に積層形成する場合は、端面14aを曲面に形成してその上に有機EL素子12を形成する。図6に示す別の実施の形態のように基板20上に有機EL素子12を形成する構成では、基板20の有機EL素子12が形成される部分が曲面に形成される。   The light emitting surface 12a of the organic EL element 12 is not limited to a flat surface but may be a curved surface. When the light emitting surface 12a is a curved surface, the organic EL element 12 is directly stacked on the end surface 14a of the light incident portion 14 as in the first embodiment. Then, the organic EL element 12 is formed. In the configuration in which the organic EL element 12 is formed on the substrate 20 as in another embodiment shown in FIG. 6, the portion of the substrate 20 where the organic EL element 12 is formed is formed in a curved surface.

○ 光入射部14の配置は正方格子状に限らず、六方最密格子状の配置あるいは各光入射部14の端面14bが互いに接しない規則的な配置やランダムな配置としてもよい。
○ 有機EL素子12の発光面12aの大きさは、光入射部14の端面14aと同じ大きさに限らず、発光面12aが光入射部14の端面14aより小さくてもよい。
The arrangement of the light incident portions 14 is not limited to a square lattice shape, and may be a hexagonal close-packed lattice arrangement, a regular arrangement in which the end faces 14b of the light incident portions 14 do not contact each other, or a random arrangement.
The size of the light emitting surface 12 a of the organic EL element 12 is not limited to the same size as the end surface 14 a of the light incident portion 14, and the light emitting surface 12 a may be smaller than the end surface 14 a of the light incident portion 14.

○ 光入射部14は全ての光入射部14が同じに形成される必要はなく、異なる形状の光入射部14が混在する構成としてもよい。
○ 照明装置によっては、出射面13全体が同じ輝度ではなく、中央部分の輝度が高いものや所定の領域の輝度が高いもの等の要求もある。その場合、光入射部14として円錐台状、楕円錐台状あるいは多角錐台状のように異なる形状の光入射部14を積極的に混在させる構成や、同じ種類の錐台状で比S1/S2の値や傾斜角度θの値が異なる光入射部14を混在させることで所望の輝度状態の照明装置を製造することができる。
The light incident part 14 does not have to be formed in the same manner, and may have a configuration in which light incident parts 14 having different shapes are mixed.
Depending on the illuminating device, there is also a demand for the entire emission surface 13 not to have the same luminance, such that the luminance of the central portion is high or the luminance of a predetermined region is high. In such a case, the light incident portion 14 may have a configuration in which differently shaped light incident portions 14 such as a truncated cone shape, an elliptical truncated cone shape, or a polygonal truncated cone shape are actively mixed, or the ratio S1 / An illumination device having a desired luminance state can be manufactured by mixing the light incident portions 14 having different values of S2 and the inclination angle θ.

○ 照明装置10はバックライト用に限らず、他の照明装置に使用したり、照明装置に限らずディスプレイ(表示装置)用の発光装置に適用したりしてもよい。ディスプレイ用の発光装置とするためには、各有機EL素子12を選択的に駆動させる配線パターンが必要となる。その場合、図6に示すような基板20上に有機EL素子12を形成したものを、透明基板11の光入射部14側に接着する製造方法を採用する方が配線パターンの形成が容易になる。   The lighting device 10 is not limited to the backlight, but may be used for other lighting devices, or may be applied not only to the lighting device but also to a light emitting device for a display (display device). In order to obtain a light emitting device for display, a wiring pattern for selectively driving each organic EL element 12 is required. In that case, it is easier to form a wiring pattern by adopting a manufacturing method in which an organic EL element 12 formed on a substrate 20 as shown in FIG. 6 is bonded to the light incident portion 14 side of the transparent substrate 11. .

○ EL素子として有機EL素子12に代えて無機EL素子を用いてもよい。
○ 有機EL素子12はボトムエミッション型に限らず、トップエミッション型に形成されていてもよい。即ち、有機EL素子12は、基板上に第1電極としての陰極、有機EL層、第2電極としての陽極とが順に形成されており、有機EL層からの光が第2電極から取出される。この場合、基板及び第1電極は光に対する透過性があってもなくてもよい。しかし、第2電極は透明である必要がある。
An inorganic EL element may be used instead of the organic EL element 12 as the EL element.
The organic EL element 12 is not limited to the bottom emission type, and may be formed in a top emission type. That is, in the organic EL element 12, a cathode as a first electrode, an organic EL layer, and an anode as a second electrode are sequentially formed on a substrate, and light from the organic EL layer is extracted from the second electrode. . In this case, the substrate and the first electrode may or may not be transparent to light. However, the second electrode needs to be transparent.

以下の技術的思想(発明)は前記実施の形態から把握できる。
(1)請求項1〜請求項5のいずれか一項に記載の発明において、前記傾斜角度θが60〜70度である。
The following technical idea (invention) can be understood from the embodiment.
(1) In the invention according to any one of claims 1 to 5, the inclination angle θ is 60 to 70 degrees.

(2)請求項3に記載の発明において、前記Nは8である。
(3)出射面と反対側の面に複数の光入射部が形成された透明基板と、前記各光入射部毎に光出射側が対向するように設けられたエレクトロルミネッセンス素子とを備えた発光装置であって、前記光入射部は、円錐台状、長径と短径の比が2以下の楕円錐台状及びN角錐台状(nは6以上の自然数)の少なくとも2種類の錐台状のものが混在し、かつ前記エレクトロルミネッセンス素子側の端面の面積が反対側の端面の面積より小さくなるように形成されており、前記光入射部の斜面の傾斜角度が55〜80度であり、前記エレクトロルミネッセンス素子の発光面の面積S1と、前記光入射部の前記エレクトロルミネッセンス素子側の端面と反対側の端面の面積S2との比S1/S2が0.49以下である発光装置。
(2) In the invention described in claim 3, the N is 8.
(3) A light emitting device comprising: a transparent substrate having a plurality of light incident portions formed on a surface opposite to the light exit surface; and an electroluminescence element provided so that the light exit sides face each other. The light incident portion has a truncated cone shape, an elliptical truncated cone shape whose ratio of major axis to minor axis is 2 or less, and an N truncated pyramid shape (n is a natural number of 6 or more). Are mixed and formed such that the area of the end face on the electroluminescence element side is smaller than the area of the end face on the opposite side, the inclination angle of the slope of the light incident part is 55 to 80 degrees, A light emitting device in which a ratio S1 / S2 between an area S1 of a light emitting surface of an electroluminescent element and an area S2 of an end surface on the opposite side of the electroluminescent element side of the light incident portion is 0.49 or less.

(4)前記技術的思想(3)に記載の発明において、前記光入射部の形状が異なるものの配置がエレクトロルミネッセンス素子の発光状態において所定の領域の輝度が高くなるように設定されている。   (4) In the invention described in the technical idea (3), the arrangement of the light incident portions having different shapes is set so that the luminance of a predetermined region is high in the light emission state of the electroluminescence element.

(a)は照明装置の部分模式図、(b)は(a)の部分拡大詳細図。(A) is the partial schematic diagram of an illuminating device, (b) is the elements on larger scale of (a). 光入射部の配置を示す模式図。The schematic diagram which shows arrangement | positioning of a light-incidence part. 相対輝度と斜面の傾斜角度との関係を示す線図。The diagram which shows the relationship between relative brightness | luminance and the inclination-angle of a slope. 輝度に対する斜面の反射率の影響を示すグラフ。The graph which shows the influence of the reflectance of the slope with respect to a brightness | luminance. (a),(b)は別の実施の形態における光入射部の形状を示す模式図。(A), (b) is a schematic diagram which shows the shape of the light-incidence part in another embodiment. 別の実施の形態における照明装置の分解部分模式図。The decomposition | disassembly partial schematic diagram of the illuminating device in another embodiment. 従来技術の模式図。The schematic diagram of a prior art. (a),(b)はそれぞれ別の従来技術の模式図。(A), (b) is a schematic diagram of another prior art, respectively.

符号の説明Explanation of symbols

θ…傾斜角度、10…照明装置、11…透明基板、12…EL素子としての有機EL素子、12a…発光面、13…出射面、14…光入射部、14a,14b…端面、15…斜面。   θ ... tilt angle, 10 ... illuminating device, 11 ... transparent substrate, 12 ... organic EL element as EL element, 12a ... light emitting surface, 13 ... light emitting surface, 14 ... light incident portion, 14a, 14b ... end surface, 15 ... slope .

Claims (6)

出射面と反対側の面に複数の光入射部が形成された透明基板と、前記各光入射部毎に光出射側が対向するように設けられたエレクトロルミネッセンス素子とを備えた発光装置であって、
前記光入射部は、それぞれ円錐台状又は長径と短径の比が2以下の楕円錐台状で、かつ前記エレクトロルミネッセンス素子側に向かって縮径となるように形成されており、前記光入射部の斜面の傾斜角度が55〜80度であり、前記エレクトロルミネッセンス素子の発光面の面積S1と、前記光入射部の前記エレクトロルミネッセンス素子側の端面と反対側の端面の面積S2との比S1/S2が0.5以下である発光装置。
A light emitting device comprising: a transparent substrate having a plurality of light incident portions formed on a surface opposite to an emission surface; and an electroluminescence element provided so that the light emission sides face each other. ,
Each of the light incident portions has a truncated cone shape or an elliptic frustum shape having a major axis / minor axis ratio of 2 or less, and is formed so as to be reduced in diameter toward the electroluminescence element side. The slope angle of the slope of the portion is 55 to 80 degrees, and the ratio S1 between the area S1 of the light emitting surface of the electroluminescent element and the area S2 of the end surface on the opposite side of the electroluminescent element side of the light incident portion / S2 is 0.5 or less.
前記透明基板の出射面の面積に対する、前記各光入射部のエレクトロルミネッセンス素子側の端面と反対側の端面の面積S2の合計面積の割合が52%以上である請求項1に記載の発光装置。   2. The light-emitting device according to claim 1, wherein a ratio of a total area of an area S <b> 2 of the end surface on the opposite side of the electroluminescent element side of each light incident portion to the area of the emission surface of the transparent substrate is 52% or more. 出射面と反対側の面に複数の光入射部が形成された透明基板と、前記各光入射部毎に光出射側が対向するように設けられたエレクトロルミネッセンス素子とを備えた発光装置であって、
前記光入射部は、それぞれN角錐台状(Nは6以上の自然数)で、かつ前記エレクトロルミネッセンス素子側の端面の面積が反対側の端面の面積より小さくなるように形成されており、前記光入射部の斜面の傾斜角度が55〜80度であり、前記エレクトロルミネッセンス素子の発光面の面積S1と、前記光入射部の前記エレクトロルミネッセンス素子側の端面と反対側の端面の面積S2との比S1/S2が0.5以下である発光装置。
A light emitting device comprising: a transparent substrate having a plurality of light incident portions formed on a surface opposite to an emission surface; and an electroluminescence element provided so that the light emission sides face each other. ,
Each of the light incident portions has an N-pyramidal shape (N is a natural number of 6 or more), and is formed such that the area of the end face on the electroluminescence element side is smaller than the area of the end face on the opposite side. The inclination angle of the inclined surface of the incident portion is 55 to 80 degrees, and the ratio between the area S1 of the light emitting surface of the electroluminescent element and the area S2 of the end surface on the opposite side of the electroluminescent element side of the light incident portion. A light emitting device having S1 / S2 of 0.5 or less.
前記エレクトロルミネッセンス素子の発光面の面積S1と、前記光入射部の前記エレクトロルミネッセンス素子側の端面と反対側の端面の面積S2との比S1/S2が0.25以下であることを特徴とする請求項1〜請求項3のいずれか一項に記載の発光装置。   The ratio S1 / S2 between the area S1 of the light emitting surface of the electroluminescent element and the area S2 of the end surface on the opposite side of the electroluminescent element side of the light incident portion is 0.25 or less. The light emitting device according to any one of claims 1 to 3. 前記光入射部は、その中心軸を含む平面と、前記光入射部の斜面との交線が外側に凸の曲線となるように形成されている請求項1〜請求項4のいずれか一項に記載の発光装置。   The said light-incidence part is formed so that the intersection line of the plane containing the center axis | shaft and the slope of the said light-incidence part may become an outward convex curve. The light emitting device according to 1. 前記エレクトロルミネッセンス素子は、有機エレクトロルミネッセンス素子であることを特徴とする請求項1〜請求項5のいずれか一項に記載の発光装置。   The light emitting device according to any one of claims 1 to 5, wherein the electroluminescence element is an organic electroluminescence element.
JP2005020147A 2005-01-27 2005-01-27 Light emitting device Pending JP2006210119A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005020147A JP2006210119A (en) 2005-01-27 2005-01-27 Light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005020147A JP2006210119A (en) 2005-01-27 2005-01-27 Light emitting device

Publications (1)

Publication Number Publication Date
JP2006210119A true JP2006210119A (en) 2006-08-10

Family

ID=36966723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005020147A Pending JP2006210119A (en) 2005-01-27 2005-01-27 Light emitting device

Country Status (1)

Country Link
JP (1) JP2006210119A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009044616A1 (en) * 2007-10-01 2009-04-09 Rohm Co., Ltd. Illuminating apparatus
JP2011060552A (en) * 2009-09-09 2011-03-24 Fujifilm Corp Organic el element
JP2011510526A (en) * 2007-12-06 2011-03-31 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Enhanced display configuration
JPWO2010058755A1 (en) * 2008-11-18 2012-04-19 株式会社クラレ Surface light source element and image display device and illumination device using the same
JP2013200486A (en) * 2012-03-26 2013-10-03 Dainippon Printing Co Ltd Optical element and light emission panel
WO2014083972A1 (en) * 2012-11-28 2014-06-05 コニカミノルタ株式会社 Illumination device
WO2014132603A1 (en) * 2013-03-01 2014-09-04 パナソニック株式会社 Illumination device
JP2018073492A (en) * 2016-10-25 2018-05-10 株式会社ギバル Organic EL module and organic EL lighting device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002510805A (en) * 1998-02-05 2002-04-09 ツムトーベル シュタッフ ゲゼルシャフト ミット ベシュレンクテル ハフツング Lighting arrangement
JP2004146122A (en) * 2002-10-22 2004-05-20 Matsushita Electric Works Ltd Organic electroluminescent element, and light extraction body for organic electroluminescent element
JP2004521475A (en) * 2001-06-25 2004-07-15 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Substrate for electroluminescent display device and method of manufacturing the substrate
JP2004241214A (en) * 2003-02-05 2004-08-26 Stanley Electric Co Ltd EL element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002510805A (en) * 1998-02-05 2002-04-09 ツムトーベル シュタッフ ゲゼルシャフト ミット ベシュレンクテル ハフツング Lighting arrangement
JP2004521475A (en) * 2001-06-25 2004-07-15 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Substrate for electroluminescent display device and method of manufacturing the substrate
JP2004146122A (en) * 2002-10-22 2004-05-20 Matsushita Electric Works Ltd Organic electroluminescent element, and light extraction body for organic electroluminescent element
JP2004241214A (en) * 2003-02-05 2004-08-26 Stanley Electric Co Ltd EL element

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009044616A1 (en) * 2007-10-01 2009-04-09 Rohm Co., Ltd. Illuminating apparatus
JP2009087830A (en) * 2007-10-01 2009-04-23 Rohm Co Ltd Lighting device
EP2204605A4 (en) * 2007-10-01 2013-01-23 Rohm Co Ltd Illuminating apparatus
US8556459B2 (en) 2007-10-01 2013-10-15 Rohm Co., Ltd. Lighting device having surface light source panels
JP2011510526A (en) * 2007-12-06 2011-03-31 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Enhanced display configuration
JPWO2010058755A1 (en) * 2008-11-18 2012-04-19 株式会社クラレ Surface light source element and image display device and illumination device using the same
JP2011060552A (en) * 2009-09-09 2011-03-24 Fujifilm Corp Organic el element
JP2013200486A (en) * 2012-03-26 2013-10-03 Dainippon Printing Co Ltd Optical element and light emission panel
WO2014083972A1 (en) * 2012-11-28 2014-06-05 コニカミノルタ株式会社 Illumination device
JP5598633B1 (en) * 2012-11-28 2014-10-01 コニカミノルタ株式会社 Lighting device
WO2014132603A1 (en) * 2013-03-01 2014-09-04 パナソニック株式会社 Illumination device
JP2018073492A (en) * 2016-10-25 2018-05-10 株式会社ギバル Organic EL module and organic EL lighting device

Similar Documents

Publication Publication Date Title
KR102793985B1 (en) Photoluminescence device and display panel including the same
CN106486523B (en) Organic Light Emitting Diode Display Device
US9634289B2 (en) Transparent display panel and manufacturing method thereof, and transparent display device
CN111048689B (en) Organic light emitting display device
KR100978078B1 (en) Prism sheet and liquid crystal display device having same
JP2005063926A (en) Light emitting device
TWI711864B (en) Light source module and display device
JP2003059641A (en) Electroluminescent element
JP2009259559A (en) Organic electroluminescent light-emitting device and liquid crystal display device
JP2004296215A (en) Transparent substrate for planar light source, method for manufacturing transparent substrate, planar light source, and liquid crystal display device
CN101341438B (en) Display device and liquid crystal display device
JP5803506B2 (en) Light emitting device and lighting apparatus
CN1504774A (en) Optical element, planar lighting unit and liquid crystal display unit
JP5481825B2 (en) EL element and display device
JP2006210119A (en) Light emitting device
US20230047445A1 (en) Display device
JP5703180B2 (en) Lens optical element and display device
WO2012161212A1 (en) Planar light-source device and manufacturing method for same, display device, and lighting device
JP2016136484A (en) Surface light-emitting device
JP5177899B2 (en) Organic EL light source
JP6626570B2 (en) Organic light emitting device
CN1836469A (en) EL device, manufacturing method of same, and liquid crystal display device using EL device
CN1836468A (en) EL device, manufacturing method of same, and liquid crystal display device using el device
KR102657295B1 (en) Organic Light Emitting Display Device
JP2006100257A (en) Organic electroluminescent element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100330