[go: up one dir, main page]

JP2006208261A - Inertial sensor element - Google Patents

Inertial sensor element Download PDF

Info

Publication number
JP2006208261A
JP2006208261A JP2005022553A JP2005022553A JP2006208261A JP 2006208261 A JP2006208261 A JP 2006208261A JP 2005022553 A JP2005022553 A JP 2005022553A JP 2005022553 A JP2005022553 A JP 2005022553A JP 2006208261 A JP2006208261 A JP 2006208261A
Authority
JP
Japan
Prior art keywords
vibrating arm
electrodes
sensor element
inertial sensor
arm portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005022553A
Other languages
Japanese (ja)
Inventor
Hideo Outsuka
日出夫 鶯塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Crystal Device Corp
Original Assignee
Kyocera Crystal Device Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Crystal Device Corp filed Critical Kyocera Crystal Device Corp
Priority to JP2005022553A priority Critical patent/JP2006208261A/en
Publication of JP2006208261A publication Critical patent/JP2006208261A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Gyroscopes (AREA)

Abstract

【課題】慣性センサ素子として用いる音叉型屈曲水晶振動素子は、小型化すると等価直列抵抗R1が大きく、且つQ値が小さくなり、高い感度が得られない等の課題が残されていた。又、このような課題を解決するために従来より行われている振動腕部の中央部に一つの貫通穴を設けた構造の素子おいても、励振用振動腕全体の励振振動形態が不良となる恐れがある。
【解決手段】慣性センサ素子において、振動腕部のうち励振用振動腕部に、この励振用振動腕部の長さ方向に開口部長径を配する形態の貫通穴が、励振用振動腕部の長さ方向に沿って複数個配列し形成されている慣性センサ素子。
【選択図】 図1
A tuning fork-type bending crystal resonator element used as an inertial sensor element has a problem that when it is downsized, the equivalent series resistance R1 is large and the Q value is small, so that high sensitivity cannot be obtained. In addition, even in an element having a structure in which a single through hole is provided in the central portion of the vibration arm portion that has been conventionally performed to solve such a problem, the excitation vibration form of the entire vibration arm for excitation is poor. There is a fear.
In the inertial sensor element, a through-hole having a shape in which an opening major axis is arranged in the length direction of the excitation vibrating arm portion is provided in the excitation vibrating arm portion of the vibrating arm portion. An inertial sensor element formed by arranging a plurality of elements along the length direction.
[Selection] Figure 1

Description

本発明は、航空機、船舶、自動車などの姿勢制御や位置検出、カメラの手振れ補正などに用いる慣性センサに関するものである。   The present invention relates to an inertial sensor used for attitude control, position detection, camera shake correction, and the like of an aircraft, a ship, an automobile, and the like.

慣性センサには様々な種類があるが、組み込むために薄く小型にし、かつ軽量にするという要求を満たすものとして、振動型の角速度センサがある。従来よりある振動型の慣性センサは、四角柱を振動させて回転に伴って働くコリオリの力を検出するものである。このような従来の慣性センサに使用されている慣性センサ素子としては、図7に示すように、H型振動素子を用いたものがある(後記特許文献1を参照)。   There are various types of inertial sensors, and there is a vibration type angular velocity sensor that satisfies the requirement of being thin, small and lightweight for incorporation. A conventional vibration type inertial sensor detects a Coriolis force that works with rotation by vibrating a quadrangular prism. As an inertial sensor element used in such a conventional inertial sensor, there is one using an H-type vibration element as shown in FIG. 7 (see Patent Document 1 described later).

図7は、従来の慣性センサに用いる圧電振動センサ素子として、H型センサ素子400の構成例を示す斜視図であり、図8において、(a)は、図7に記載の慣性センサ素子400を同図記載の仮想切断線K−K′で切断した場合の断面図を用いて振動腕部に形成した各電極の電気的接続状態を図示した構成図であり、(b)は、図7に記載の慣性センサ素子400を同図記載の切断線L−L′で切断した場合の断面図を用いて振動腕部の各電極の電気的接続状態を図示した構成図である。図7に示す慣性センサ素子400は、水晶からなり、基部401より一方に延在して配設された2つの振動腕部402,403と、基部401より他方に延在して配設された2つの振動腕部404,405とを形成されている。各振動腕部は、角柱状に形成されている。慣性センサ素子400は、固定部406で固定(支持)される。   FIG. 7 is a perspective view showing a configuration example of an H-type sensor element 400 as a piezoelectric vibration sensor element used in a conventional inertial sensor. FIG. 8A shows the inertial sensor element 400 shown in FIG. FIG. 8 is a configuration diagram illustrating an electrical connection state of each electrode formed on the vibrating arm portion using a cross-sectional view taken along the virtual cutting line KK ′ illustrated in FIG. It is the block diagram which illustrated the electrical connection state of each electrode of a vibrating arm part using sectional drawing at the time of cut | disconnecting the inertial sensor element 400 of description to the cutting line LL 'described to the same figure. The inertial sensor element 400 shown in FIG. 7 is made of crystal, and is provided with two vibrating arm portions 402 and 403 that are arranged to extend from the base 401 to one side, and to the other side from the base 401. Two vibrating arm portions 404 and 405 are formed. Each vibrating arm is formed in a prismatic shape. Inertial sensor element 400 is fixed (supported) by fixing portion 406.

慣性センサ素子400は、水晶結晶体の電気軸、機械軸、光軸に対して所定角度(0〜15°)回転したアングルでカットし研磨加工した水晶板から形成すればよい。図中Xは電気軸より所定角度回転した軸であり、Yは機械軸より所定角度回転した軸であり、Zは光軸より所定角度回転した軸である。   The inertial sensor element 400 may be formed from a quartz plate cut and polished at an angle rotated by a predetermined angle (0 to 15 °) with respect to the electrical axis, mechanical axis, and optical axis of the quartz crystal. In the figure, X is an axis rotated by a predetermined angle from the electric axis, Y is an axis rotated by a predetermined angle from the mechanical axis, and Z is an axis rotated by a predetermined angle from the optical axis.

図8(a)に図示したように、振動腕部402には貫通穴407が形成されており、貫通穴407の内部の長さ方向側面には電極411,412が配置され、これらは同じ電気的極性となるように配置されている。また、振動腕部402の外側面には同じ電気的極性の電極413,414が配置されている。ここで、電極411,412と振動腕402の構造体を挟んで対向している電極413,414は、各々異なる電気的極性となるように構成されている。同様に振動腕403には貫通穴408が供えられており、貫通穴408内部の長さ方向側面には電極415,416が配置され、これらは同じ電気的極性となるように配置されている。また、振動腕403の外側面には同じ電気的極性となる電極417,418が配置されている。ここで、電極415,416と振動腕部403の構造体を挟んで対向している電極417,418は互いに異なる電気的極性となるように構成されている。電極411,412,417,418とは同じ電気的極性となるように配置されている。また、電極413,414,415,416とは同じ電気的極性となるように配置されている。これらの電極411,412,413,414,415,416,417,418は振動子励振電極として配置され、電極端子E41,E42を構成する。   As shown in FIG. 8A, the vibrating arm portion 402 is formed with a through hole 407, and electrodes 411 and 412 are arranged on the side surface in the longitudinal direction inside the through hole 407. It is arranged so as to have a specific polarity. In addition, electrodes 413 and 414 having the same electrical polarity are disposed on the outer surface of the vibrating arm 402. Here, the electrodes 413 and 414 facing each other with the structure of the electrodes 411 and 412 and the vibrating arm 402 are configured to have different electrical polarities. Similarly, the vibrating arm 403 is provided with a through hole 408, and electrodes 415 and 416 are arranged on the side surface in the longitudinal direction inside the through hole 408, and these electrodes are arranged to have the same electrical polarity. In addition, electrodes 417 and 418 having the same electrical polarity are disposed on the outer surface of the vibrating arm 403. Here, the electrodes 417 and 418 that are opposed to each other with the structure of the electrodes 415 and 416 and the vibrating arm 403 interposed therebetween are configured to have different electrical polarities. The electrodes 411, 412, 417, and 418 are arranged to have the same electrical polarity. Further, the electrodes 413, 414, 415, and 416 are arranged so as to have the same electrical polarity. These electrodes 411, 412, 413, 414, 415, 416, 417, and 418 are arranged as vibrator excitation electrodes and constitute electrode terminals E 41 and E 42.

図8(b)に図示したように、振動腕部404には貫通穴409が備えられており、貫通穴409内部の長さ方向の二つの側面のうち一方の側面に電極419,420が同一側面内に備えられており、互いに異なる電気的極性となるように構成されている。他方の側面には電極421,422が互いに異なる電気的極性となるように構成されている。電極419,421は貫通穴内の空間を介して対向しており、互いに異なる電気的極性であり、電極420,422も貫通穴内の空間を介して対向しており、互いに異なる電気的極性となるように構成されている。振動腕部404の外側面には電極423,424,425,426が振動腕部404の構造体を挟んで対向している貫通穴内の各電極と異なる電気的極性となるように構成されている。   As shown in FIG. 8B, the vibrating arm 404 is provided with a through hole 409, and the electrodes 419 and 420 are the same on one of the two side surfaces in the length direction inside the through hole 409. It is provided in the side surface and is configured to have different electrical polarities. On the other side, the electrodes 421 and 422 are configured to have different electrical polarities. The electrodes 419 and 421 are opposed to each other through the space in the through hole and have different electrical polarities, and the electrodes 420 and 422 are also opposed to each other through the space in the through hole so as to have different electrical polarities. It is configured. The electrodes 423, 424, 425, and 426 are configured on the outer surface of the vibrating arm 404 so as to have different electrical polarities from the electrodes in the through holes facing each other across the structure of the vibrating arm 404. .

同様に振動腕部405には貫通穴410が備えられており、電極427,428,429,430,が貫通穴内部の長さ方向側面に形成されており、振動腕部405の外側面には電極431,432,433及び434が形成されており、同一面内で互いに隣り合う電極間及び振動腕部405の構造体を挟んで対向している電極間では異なる電気的極性となるように構成されている。また、電極419,422,424,425,428,429,431及び434は同じ電気的極性であり、電極420,421,423,426,427,430,432及び433は同じ電気的極性になるように構成されている。これらの電極419,420,421,422,423,424,425,426,427,428,429,430,431,432,433及び434は、角速度検出電極として配置され、電極端子E43,E44を構成する。   Similarly, the vibrating arm portion 405 is provided with a through hole 410, and electrodes 427, 428, 429, and 430 are formed on the side surface in the longitudinal direction inside the through hole, and the vibrating arm portion 405 has an outer surface on the outer surface. Electrodes 431, 432, 433, and 434 are formed, and are configured to have different electrical polarities between electrodes adjacent to each other in the same plane and between electrodes facing each other with the structure of the vibrating arm portion 405 interposed therebetween. Has been. Further, the electrodes 419, 422, 424, 425, 428, 429, 431 and 434 have the same electrical polarity, and the electrodes 420, 421, 423, 426, 427, 430, 432 and 433 have the same electrical polarity. It is configured. These electrodes 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433 and 434 are arranged as angular velocity detection electrodes and constitute electrode terminals E43, E44. To do.

励振電極端子E41−E42間に交流電圧を印加すると、図8(a)に実線と点線の矢印で示したX軸方向に電界Ex41が交互に働き、振動腕部402及び403はX−Y平面内で屈曲振動をする。慣性センサ素子400を励振させているとき、Y軸廻りに角速度Ωを加えると、X−Y平面内に垂直となる方向(Z軸方向)に角速度Ωに応じたコリオリの力が発生しZ軸方向成分を含んだ屈曲振動を引き起こす。振動腕部404,405には図8(b)に実線と点線の矢印で示した電界Ex42が生じる。このときに基部401に発生するZ軸方向に応じた電荷のみを、電極411,412,413,414に誘電すれば、角速度検出端子E43,E44より角速度の大きさと向きを検出することが可能となる。   When an AC voltage is applied between the excitation electrode terminals E41 to E42, the electric field Ex41 works alternately in the X-axis direction indicated by the solid and dotted arrows in FIG. 8A, and the vibrating arms 402 and 403 are in the XY plane. Bends and vibrates inside. When the inertial sensor element 400 is excited, if an angular velocity Ω is applied around the Y axis, a Coriolis force corresponding to the angular velocity Ω is generated in a direction perpendicular to the XY plane (Z axis direction). Causes bending vibrations that include directional components. In the vibrating arm portions 404 and 405, an electric field Ex42 indicated by solid and dotted arrows in FIG. 8B is generated. If only the electric charge corresponding to the Z-axis direction generated at the base 401 at this time is dielectrically generated in the electrodes 411, 412, 413, 414, it is possible to detect the magnitude and direction of the angular velocity from the angular velocity detection terminals E 43, E 44. Become.

前述のような角速度センサ素子を含む慣性センサ素子については、以下のような文献が開示されている。
特開2004−301734号公報
The following documents are disclosed about the inertial sensor element including the angular velocity sensor element as described above.
JP 2004-301734 A

尚、出願人は、前記した先行技術文献情報で特定される先行技術文献以外には本発明に関連する先行技術文献を本件出願時までに発見するに到らなかった。   In addition, the applicant did not come to discover prior art documents related to the present invention by the time of filing of the present application other than the prior art documents specified by the above prior art document information.

慣性センサ素子として用いる音叉型屈曲水晶振動素子は、小型化すると等価直列抵抗R1が大きく、且つ、Q値が小さくなり高い感度が得られない等の課題が残されていた。このようなことから、超小型で等価直列抵抗R1が小さく、Q値が高く、及び大きい角速度検出感度を有する慣性センサ素子が所望されていた。振動腕部の中央部に一つの貫通穴を設けた従来の構造の素子おいて、一つの貫通穴を長くして形成すると励振用振動腕を、屈曲振動させる際に振動の節ができてしまい、電荷を打ち消し合ってしまうため、励振用振動腕部の長さ方向に電極を大きく設けることができず、且つ励振用振動腕全体の励振振動形態が不良となる恐れがある。   When the tuning fork type bending crystal resonator element used as the inertial sensor element is reduced in size, there are still problems such as a large equivalent series resistance R1 and a small Q value, which makes it impossible to obtain high sensitivity. For this reason, there has been a demand for an inertial sensor element that is ultra-small, has a small equivalent series resistance R1, a high Q value, and a high angular velocity detection sensitivity. In an element having a conventional structure in which one through hole is provided in the center of the vibrating arm, if one through hole is formed long, a vibration node is created when the exciting vibrating arm is flexibly vibrated. Since the charges cancel each other, a large electrode cannot be provided in the length direction of the excitation vibrating arm, and the excitation vibration form of the entire excitation vibrating arm may be defective.

上記課題を解決するために、本発明の慣性センサ素子では、基部と、この基部から平行に延びる複数の振動腕部とを備え、この振動腕部に振動腕部の長さ方向に開口部長径を配する形態の貫通穴が形成された慣性センサ素子において、
この振動腕のうち励振用振動腕に、この励振用振動腕の長さ方向に開口部長径を配する形態の貫通穴が、該励振用振動腕の長さ方向に沿って複数個配列形成されていることを特徴とする。
In order to solve the above-described problem, the inertial sensor element of the present invention includes a base and a plurality of vibrating arms extending in parallel from the base, and the opening arm has a long diameter in the length direction of the vibrating arm. In an inertial sensor element in which a through hole in a form of arranging
Among the vibrating arms, a plurality of through-holes having an opening long diameter in the length direction of the exciting vibrating arm are arrayed and formed along the length direction of the exciting vibrating arm. It is characterized by.

又、前記記載の複数個の貫通穴において、各励振用振動腕おいて最も基部に近い貫通穴の開口部長径が、同じ励振用振動腕内の他の貫通穴の開口部長径に比べ長いことをも特徴とする。   Further, in the plurality of through holes described above, the long diameter of the opening of the through hole closest to the base in each excitation vibrating arm is longer than the long diameters of the other through holes in the same vibration vibrating arm. Also features.

更に、上記記載の励振用振動腕に複数個の貫通穴において、この貫通穴内部の長さ方向側面に、同じ電気的極性の電極がそれぞれ形成されてあることをも特徴とする。   Further, the excitation vibrating arm described above is characterized in that, in a plurality of through holes, electrodes of the same electrical polarity are respectively formed on the side surfaces in the longitudinal direction inside the through holes.

本発明の慣性センサ素子では、屈曲振動モードで振動する慣性センサ素子で、励振用振動腕部の幅方向中央に励振用振動腕部の長さ方向に並ぶ複数個の貫通穴を設け、当該貫通穴内部の長さ方向側面に同じ電気的極性となる電極を配置し、振動腕外側面には貫通穴内部側面の電極とは異なる電気的極性の電極を形成したことで、小型で等価直列抵抗R1が小さく、Q値が高く、更に大きい角速度検出感度を得られる作用を成す。   The inertial sensor element of the present invention is an inertial sensor element that vibrates in a flexural vibration mode, and is provided with a plurality of through holes arranged in the longitudinal direction of the vibration arm part for excitation at the center in the width direction of the vibration arm part for excitation. An electrode with the same electrical polarity is arranged on the side surface in the longitudinal direction inside the hole, and an electrode with an electrical polarity different from the electrode on the inner side surface of the through hole is formed on the outer surface of the vibrating arm. R1 is small, the Q value is high, and an even higher angular velocity detection sensitivity can be obtained.

又、各励振用振動腕おいて最も基部に近い貫通穴の開口部長径が、同じ励振用振動腕内の他の貫通穴の開口部長径に比べ長くなるように形成したことにより、励振用振動腕部を屈曲振動させた際に振動の節が生じることなく励振用振動腕全体の励振振動形態が良好になる。このような作用により、本発明では非常に慣性感度が優れた慣性センサ素子を提供できる効果を奏する。   In addition, each excitation vibrating arm is formed so that the opening long diameter of the through hole closest to the base is longer than the opening long diameter of other through holes in the same excitation vibrating arm. When the arm is bent and vibrated, no vibration node is generated, and the excitation vibration form of the entire vibration arm for excitation is improved. By such an action, the present invention has an effect of providing an inertial sensor element having very excellent inertial sensitivity.

以下、本発明の実施の形態について図面を参照しつつ説明する。尚、各図においては、説明を明りょうにするため構造体の一部を図示していない。又、構造体の寸法も一部誇張して図示している。   Embodiments of the present invention will be described below with reference to the drawings. In each figure, a part of the structure is not shown for clarity of explanation. In addition, the dimensions of the structure are also partially exaggerated.

図1は、本発明の実施の一形態におけるH型慣性センサ素子100の構成例を示す斜視図であり、図2において、(a)は、図1に記載の慣性センサ素子100を同図記載の仮想切断線A−A′で切断した場合の断面図を用いて振動腕部に形成した各電極の電気的接続状態を図示した構成図であり、(b)は、図1に記載の慣性センサ素子100を同図記載の切断線B−B′で切断した場合の断面図を用いて振動腕部の各電極の電気的接続状態を図示した構成図であり、(c)は、図1に記載の慣性センサ素子100を同図記載の切断線C−C′で切断した場合の断面図を用いて振動腕部の各電極の電気的接続状態を図示した構成図である。   FIG. 1 is a perspective view showing a configuration example of an H-type inertial sensor element 100 according to an embodiment of the present invention. FIG. 2A shows the inertial sensor element 100 shown in FIG. FIG. 3 is a configuration diagram illustrating an electrical connection state of each electrode formed on the vibrating arm portion using a cross-sectional view taken along the virtual cutting line A-A ′, and (b) is an inertial diagram illustrated in FIG. 1. FIG. 2 is a configuration diagram illustrating an electrical connection state of each electrode of a vibrating arm portion using a cross-sectional view when the sensor element 100 is cut along a cutting line BB ′ illustrated in FIG. 5 is a configuration diagram illustrating an electrical connection state of each electrode of a vibrating arm portion using a cross-sectional view when the inertial sensor element 100 described in FIG. 4 is cut along a cutting line CC ′ illustrated in FIG.

図1に示す慣性センサ素子は、水晶からなり、基部101より一方に延在して配設された2つの振動腕部102及び103と、基部101より他方に延在して配設された2つの振動腕部104及び105とを備える慣性センサ素子100から構成されている。各振動腕部は、角柱状に形成されている。慣性センサ素子100は、固定部106で、慣性センサ素子を搭載するパッケージ等の密閉空間内に固定(支持)される。   The inertial sensor element shown in FIG. 1 is made of quartz, and has two vibrating arm portions 102 and 103 that extend from the base 101 to one side and 2 that extend from the base 101 to the other side. The inertial sensor element 100 includes two vibrating arm portions 104 and 105. Each vibrating arm is formed in a prismatic shape. The inertial sensor element 100 is fixed (supported) in a sealed space such as a package on which the inertial sensor element is mounted by a fixing portion 106.

慣性センサ素子100は、水晶結晶体の電気軸、機械軸、光軸に対して所定角度(0〜15°)で回転したアングルでカットしたのち外形を研磨加工し、光軸から所定角度回転した方向を法線とする厚さ0.110mmの水晶板から切り出すことで形成する。図1中の慣性センサ素子100のX軸は、電気軸より所定角度回転した軸であり、Y軸は、機械軸より所定角度回転した軸であり、Z軸は、光軸より所定角度回転した軸である。慣性センサ素子100は、例えば、厚さ0.110mm程度に形成され、振動腕部102及び103は幅0.080mm、長さ1.50mm程度に形成され、振動腕部104及び105は幅0.160mm、長さ1.40mm程度に形成されている。振動腕部102の延在方向の中心軸と振動腕部104の延在方向の中心軸は一致し、振動腕部103の延在方向の中心軸と振動腕部105の中心軸も一致して形成されている。   The inertial sensor element 100 is cut at an angle rotated at a predetermined angle (0 to 15 °) with respect to the electric axis, the mechanical axis, and the optical axis of the crystal body, and then the outer shape is polished and rotated at a predetermined angle from the optical axis. It is formed by cutting out from a quartz plate with a thickness of 0.110 mm whose direction is normal. The X axis of the inertial sensor element 100 in FIG. 1 is an axis rotated by a predetermined angle from the electrical axis, the Y axis is an axis rotated by a predetermined angle from the mechanical axis, and the Z axis is rotated by a predetermined angle from the optical axis. Is the axis. For example, the inertial sensor element 100 is formed to have a thickness of about 0.110 mm, the vibrating arm portions 102 and 103 are formed to have a width of about 0.080 mm and a length of about 1.50 mm, and the vibrating arm portions 104 and 105 have a width of about 0.1 mm. It is formed with a length of about 160 mm and a length of about 1.40 mm. The central axis in the extending direction of the vibrating arm portion 102 and the central axis in the extending direction of the vibrating arm portion 104 coincide, and the central axis in the extending direction of the vibrating arm portion 103 and the central axis of the vibrating arm portion 105 also match. Is formed.

図1では、振動腕部102及び103の幅方向中央に、振動腕部根元から長さ方向に穴開口部の長径が各々配された貫通穴107,108,109,110,111,112が、振動腕部104,105の幅方向中央には、振動腕部根元から長さ方向に穴開口部の長径を配した貫通穴113,114,が備えられている。センサ素子外形を形成する際に、各貫通穴もウェットエッチング等の方法で形成する。貫通穴107,110は開口部長径が0.350mm、短径が0.040mm程度で、貫通穴108,109,111,112は開口部長径が0.150mm、短径が0.040mm程度に形成されている。   In FIG. 1, through-holes 107, 108, 109, 110, 111, and 112, in which the long diameters of the hole openings are respectively arranged in the center in the width direction of the vibrating arm portions 102 and 103 from the roots of the vibrating arms in the length direction, At the center in the width direction of the vibrating arm portions 104 and 105, there are provided through holes 113 and 114 in which the long diameter of the hole opening portion is arranged in the length direction from the root of the vibrating arm portion. When forming the outer shape of the sensor element, each through hole is also formed by a method such as wet etching. The through holes 107 and 110 have an opening major axis of about 0.350 mm and a minor axis of about 0.040 mm, and the through holes 108, 109, 111 and 112 have an aperture major axis of about 0.150 mm and a minor axis of about 0.040 mm. Has been.

図2(a)及び(b)は、図1に記載の仮想切断線A−A′及びB−B′で切断した場合の断面図を用いて振動腕部に形成した各電極の電気的接続状態を図示した構成図を各々示す。振動腕部102には貫通穴107,108及び109が形成されており、貫通穴107,108及び109内部の長さ方向の二側面のうち、それぞれ貫通穴の一方の側面には電極115が、他方の側面には電極116が、同じ電気的極性で形成されている。また、振動腕部102の外側面には同じ電気的極性となる電極117及び118が、各々の貫通穴107,108及び109内に形成した電極115又は116に振動腕部103の構造体を挟んで対向する形態で形成されている。ここで、それぞれの電極115及び116と対向しているそれぞれの電極117,118は互いに異なる電気的極性となるように構成されている。   2 (a) and 2 (b) show the electrical connection of each electrode formed on the vibrating arm using the cross-sectional view taken along the virtual cutting lines AA 'and BB' shown in FIG. Each of the configuration diagrams illustrating the state is shown. Through holes 107, 108, and 109 are formed in the vibrating arm portion 102. Of the two side surfaces in the length direction inside the through holes 107, 108, and 109, an electrode 115 is provided on one side surface of each through hole, An electrode 116 is formed on the other side surface with the same electrical polarity. Further, electrodes 117 and 118 having the same electrical polarity are disposed on the outer surface of the vibrating arm portion 102, and the structure of the vibrating arm portion 103 is sandwiched between the electrodes 115 or 116 formed in the respective through holes 107, 108 and 109. Are formed in the form of facing each other. Here, the electrodes 117 and 118 facing the electrodes 115 and 116 are configured to have different electrical polarities.

同様に振動腕部103には貫通穴110,111及び112が形成されており、貫通穴110,111及び112内部の長さ方向の二側面のうち、それぞれの貫通穴の一方の側面には電極119が、他方の側面には電極120が、同じ電気的極性で形成されている。また、振動腕部103の外側面には同じ電気的極性となる電極121及び122が、各々の貫通穴110,111及び112内に形成した電極119又は120と振動腕部103の構造体を挟んで対向する形態で形成されている。ここで、電極119又は120と対向している電極121及び122は、互いに異なる電気的極性となるように形成されている。電極115,116,121及び122は同じ電気的極性になるように形成されている。また、電極117,118,119及び120は同じ電気的極性となるように形成されている。これらの電極115,116,117,118,119,120,121及び122は振動子励振電極として用いられ、電極端子E11,E12を構成する。   Similarly, the vibrating arm portion 103 is formed with through holes 110, 111, and 112. Of the two side surfaces in the length direction inside the through holes 110, 111, and 112, an electrode is provided on one side surface of each through hole. 119, and the electrode 120 is formed on the other side surface with the same electrical polarity. Further, electrodes 121 and 122 having the same electrical polarity are sandwiched between the electrodes 119 or 120 formed in the respective through holes 110, 111 and 112 and the structure of the vibrating arm 103 on the outer surface of the vibrating arm 103. Are formed in the form of facing each other. Here, the electrodes 121 and 122 facing the electrode 119 or 120 are formed to have different electrical polarities. The electrodes 115, 116, 121 and 122 are formed to have the same electrical polarity. The electrodes 117, 118, 119 and 120 are formed to have the same electrical polarity. These electrodes 115, 116, 117, 118, 119, 120, 121 and 122 are used as vibrator excitation electrodes, and constitute electrode terminals E11 and E12.

図2(c)は図1に記載の仮想切断線C−C′で切断した場合の断面図を用いて振動腕部に形成した各電極の電気的接続状態を図示した構成図を示す。振動腕部104には貫通穴113が形成されており、貫通穴113内部の長さ方向の二側面のうち一方の側面には電極123及び124が、互いに異なる電気的極性となるように形成されている。他方の側面には電極125及び126が互いに異なる電気的極性となるように形成されている。電極123及び125は貫通穴113内空間を介して対向しており、互いに異なる電気的極性であり、電極124及び126も貫通穴113内空間を介して対向しており、互いに異なる電気的極性となるように形成されている。振動腕部104の外側の二側面のうち、一方の側面には電極127及び128が、貫通穴113内に形成した電極123及び124に対し振動腕部104の構造体を挟んで対向し、且つ対向する電極間で異なる電気的極性となるように形成されており、他方の側面には電極129及び130が、貫通穴113内に形成した電極125又は126に対し振動腕部104の構造体を挟んで対向し、且つ対向する電極間で異なる電気的極性となるように形成されている。   FIG. 2C is a configuration diagram illustrating the electrical connection state of each electrode formed on the vibrating arm using a cross-sectional view taken along the virtual cutting line CC ′ illustrated in FIG. 1. A through-hole 113 is formed in the vibrating arm 104, and electrodes 123 and 124 are formed on one of the two side surfaces in the length direction inside the through-hole 113 so as to have different electrical polarities. ing. The electrodes 125 and 126 are formed on the other side so as to have different electrical polarities. The electrodes 123 and 125 are opposed to each other through the internal space of the through hole 113 and have different electrical polarities, and the electrodes 124 and 126 are also opposed to each other via the internal space of the through hole 113 and have different electrical polarities. It is formed to become. Of the two outer side surfaces of the vibrating arm portion 104, electrodes 127 and 128 are opposed to the electrodes 123 and 124 formed in the through hole 113 on one side surface with the structure of the vibrating arm portion 104 interposed therebetween, and The electrodes 129 and 130 are formed on the other side so that the electrodes 125 or 126 formed in the through hole 113 have a structure of the vibrating arm 104. The electrodes are opposed to each other and have different electrical polarities between the opposed electrodes.

同様に振動腕部105には貫通穴114が形成されており、貫通穴114内部の長さ方向の二側面のうち一方の側面には電極131及び132が、互いに異なる電気的極性となるように形成されている。他方の側面には電極133及び134が互いに異なる電気的極性となるように形成されている。電極131及び133は貫通穴114内空間を介して対向しており、互いに異なる電気的極性であり、電極132及び134も貫通穴114内空間を介して対向しており、互いに異なる電気的極性となるように形成されている。振動腕部105の外側の二側面のうち、一方の側面には電極135及び136が、貫通穴114内に形成した電極131及び132に対し振動腕部105の構造体を挟んで対向し、且つ対向する電極間で異なる電気的極性となるように形成されており、他方の側面には電極137及び138が、貫通穴114内に形成した電極133又は134に対し振動腕部105の構造体を挟んで対向し、且つ対向する電極間で異なる電気的極性となるように形成されている。これら電極123,126,128,129,132,133,135及び138は同じ電気的極性であり、電極124,125,127,130,131,134,136及び137とは同じ電気的極性になるように形成されている。これら電極123,124,125,126,127,128,129,130,131,132,133,134,135,136,137及び138は角速度検出電極として用い、電極端子E13,E14を構成する。   Similarly, a through-hole 114 is formed in the vibrating arm 105 so that the electrodes 131 and 132 have different electrical polarities on one of the two side surfaces in the longitudinal direction inside the through-hole 114. Is formed. The electrodes 133 and 134 are formed on the other side so as to have different electrical polarities. The electrodes 131 and 133 are opposed to each other through the inner space of the through hole 114 and have different electrical polarities, and the electrodes 132 and 134 are also opposed to each other via the inner space of the through hole 114 and have different electrical polarities. It is formed to become. Of the two outer side surfaces of the vibrating arm unit 105, electrodes 135 and 136 are opposed to the electrodes 131 and 132 formed in the through hole 114 on one side surface with the structure of the vibrating arm unit 105 interposed therebetween, and The electrodes 137 and 138 are formed on the other side so as to have different electrical polarities between the opposing electrodes, and the structure of the vibrating arm portion 105 is formed with respect to the electrode 133 or 134 formed in the through hole 114. The electrodes are opposed to each other and have different electrical polarities between the opposed electrodes. These electrodes 123, 126, 128, 129, 132, 133, 135, and 138 have the same electrical polarity, and the electrodes 124, 125, 127, 130, 131, 134, 136, and 137 have the same electrical polarity. Is formed. These electrodes 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, and 138 are used as angular velocity detection electrodes, and constitute electrode terminals E13, E14.

励振電極端子E11−E12間に交流電圧を印加すると、図2(a)及び(b)に図示した実線と点線の矢印で表したように、X軸方向に電界Ex11が交互に働き、振動腕部102及び103はX−Y平面内で屈曲振動をする。上記に示した励振電極構成では、X軸方向に電界Ex11が電気軸方向に平行にかけることが可能であり、根元付近のみでなく先端方向でも振動腕部全範囲に電界を分布させることができるので、効率良く電界をかけることができる。慣性センサ素子100を励振させているとき、Y軸廻りに角速度Ωを加えると、X−Y平面内に垂直となる方向(Z軸方向)に角速度Ωに応じたコリオリの力が発生し、Z軸方向成分を含んだ屈曲振動を引き起こす。このとき、振動腕部104及び105には図2(c)に図示した実線と点線の矢印で表した電界Ex12が生じる。この場合、X軸方向の電界Ex12とその和が非常に大きくなり、慣性センサ素子を小型化した場合でも高い角速度検出感度が得られる。   When an AC voltage is applied between the excitation electrode terminals E11 and E12, the electric field Ex11 works alternately in the X-axis direction as shown by the solid and dotted arrows shown in FIGS. The parts 102 and 103 bend and vibrate in the XY plane. In the excitation electrode configuration described above, the electric field Ex11 can be applied in parallel to the electric axis direction in the X-axis direction, and the electric field can be distributed over the entire range of the vibrating arm not only near the root but also in the tip direction. Therefore, an electric field can be applied efficiently. When the inertial sensor element 100 is excited, if an angular velocity Ω is applied around the Y-axis, a Coriolis force corresponding to the angular velocity Ω is generated in a direction perpendicular to the XY plane (Z-axis direction). Causes bending vibrations that include axial components. At this time, an electric field Ex12 represented by a solid line and a dotted line arrow shown in FIG. In this case, the electric field Ex12 in the X-axis direction and the sum thereof become very large, and high angular velocity detection sensitivity can be obtained even when the inertial sensor element is downsized.

図3は本発明の実施の他の形態におけるH型慣性センサ素子200の構成例を示す斜視図であり、図4において、(a)は、図3に記載の慣性センサ素子200を同図記載の仮想切断線D−D′で切断した場合の断面図を用いて振動腕部に形成した各電極の電気的接続状態を図示した構成図であり、(b)は、図3に記載の慣性センサ素子200を同図記載の切断線E−E′で切断した場合の断面図を用いて振動腕部の各電極の電気的接続状態を図示した構成図であり、(c)は、図3に記載の慣性センサ素子200を同図記載の切断線F−F′で切断した場合の断面図を用いて振動腕部の各電極の電気的接続状態を図示した構成図である。図1に示した実施例1の形状の慣性センサ素子100と角速度検出振動腕部の構造が異なる構成である。   FIG. 3 is a perspective view showing a configuration example of an H-type inertial sensor element 200 according to another embodiment of the present invention. FIG. 4A shows the inertial sensor element 200 shown in FIG. FIG. 4 is a configuration diagram illustrating an electrical connection state of each electrode formed on the vibrating arm portion using a cross-sectional view taken along a virtual cutting line DD ′, and FIG. 3B is an inertial diagram illustrated in FIG. 3. FIG. 6 is a configuration diagram illustrating an electrical connection state of each electrode of a vibrating arm portion using a cross-sectional view when the sensor element 200 is cut along a cutting line EE ′ illustrated in FIG. 5 is a configuration diagram illustrating an electrical connection state of each electrode of the vibrating arm portion using a cross-sectional view when the inertial sensor element 200 described in 1 is cut along a cutting line FF ′ illustrated in FIG. The structure of the inertial sensor element 100 having the shape of the first embodiment shown in FIG. 1 and the structure of the angular velocity detection vibrating arm portion are different.

図3に示すように、慣性センサ素子200は振動腕部202,203,204及び205を基部201に各々接続した一体構造であり、振動腕部202の幅方向中央に、振動腕部202の根元から振動腕部202の長さ方向に穴開口部の長径を配した貫通穴207,208及び209が形成されている。又、振動腕部203の幅方向中央には、振動腕部203の根元から振動腕部203の長さ方向に穴開口部の長径を配した貫通穴210,211及び212が形成されている。この場合、例えば、振動腕部202及び203を振動子励振部とし、振動腕部204及び205を角速度検出部とすればよい。図3に示すような構成においても、図1に示したように振動子励振部、角速度検出部各々に、必要な電極を各々形成するようにすればよい。   As shown in FIG. 3, the inertial sensor element 200 has an integral structure in which the vibrating arm portions 202, 203, 204, and 205 are connected to the base portion 201, and the root of the vibrating arm portion 202 is located at the center in the width direction of the vibrating arm portion 202. Through holes 207, 208 and 209 are formed in the length direction of the vibrating arm portion 202 to have the long diameter of the hole opening. In addition, through holes 210, 211, and 212 are formed at the center in the width direction of the vibrating arm portion 203, with the long diameters of the hole openings extending from the base of the vibrating arm portion 203 in the length direction of the vibrating arm portion 203. In this case, for example, the vibrating arm portions 202 and 203 may be vibrator excitation portions, and the vibrating arm portions 204 and 205 may be angular velocity detection portions. Also in the configuration shown in FIG. 3, as shown in FIG. 1, the necessary electrodes may be formed in each of the vibrator excitation unit and the angular velocity detection unit.

例えば、図4(a)及び(b)に示すように、振動腕部202には貫通穴207,208及び209が形成されており、貫通穴207,208及び209内部の長さ方向の二側面のうち、それぞれ貫通穴の一方の側面には電極213が、他方の側面には電極214が、同じ電気的極性で形成されている。また、振動腕部202の外側面には同じ電気的極性となる電極215及び216が、各々の貫通穴207,208及び209内に形成した電極213又は214に振動腕部203の構造体を挟んで対向する形態でそれぞれ形成されている。ここで、それぞれの電極213及び214と、その電極213及び214にそれぞれ対向している電極215及び216とは、互いに異なる電気的極性となるように形成されている。又、振動腕部203には貫通穴210,211及び212が形成されており、貫通穴210,211及び212内部の長さ方向の二側面のうち、それぞれ貫通穴の一方の側面には電極220が、他方の側面には電極221が、同じ電気的極性で形成されている。また、振動腕部203の外側面には同じ電気的極性となる電極219及び222が、各々の貫通穴210,211及び212内に形成した電極220又は221に振動腕部203の構造体を挟んで対向する形態でそれぞれ形成されている。ここで、それぞれの電極220及び221と、その電極220及び221にそれぞれ対向している電極219及び222とは、互いに異なる電気的極性となるように形成されている。これら電極213,214,215,216,219,220,221及び222を振動子励振電極とする。   For example, as shown in FIGS. 4A and 4B, through-holes 207, 208, and 209 are formed in the vibrating arm 202, and two side surfaces in the length direction inside the through-holes 207, 208, and 209 are formed. Of these, an electrode 213 is formed on one side surface of the through hole, and an electrode 214 is formed on the other side surface with the same electrical polarity. Further, electrodes 215 and 216 having the same electrical polarity are sandwiched between the electrodes 213 or 214 formed in the respective through holes 207, 208 and 209 on the outer surface of the vibrating arm 202. Are formed in the form facing each other. Here, the electrodes 213 and 214 and the electrodes 215 and 216 facing the electrodes 213 and 214 are formed to have different electrical polarities. In addition, through holes 210, 211, and 212 are formed in the vibrating arm portion 203. Of the two side surfaces in the length direction inside the through holes 210, 211, and 212, an electrode 220 is provided on one side surface of each through hole. However, the electrode 221 is formed on the other side surface with the same electrical polarity. Further, electrodes 219 and 222 having the same electrical polarity are sandwiched between the electrodes 220 or 221 formed in the respective through holes 210, 211, and 212 on the outer surface of the vibrating arm portion 203. Are formed in the form facing each other. Here, the electrodes 220 and 221 and the electrodes 219 and 222 facing the electrodes 220 and 221 are formed to have different electrical polarities. These electrodes 213, 214, 215, 216, 219, 220, 221 and 222 are used as vibrator excitation electrodes.

又、図4(c)に図示したように、振動腕部204の長さ方向の二側面のうち一方の側面には電極223及び224が,他方の側面には電極225及び226が、それぞれ隣り合う電極及び振動腕部204の構造体を挟んで対向する電極において、互いに異なる電気的極性となるように形成されている。又、振動腕部205の長さ方向の二側面のうち一方の側面には電極227及び228が、他方の側面には電極229及び230が、それぞれ同一側面で隣り合う電極及び振動腕205の構造体を挟んで対向する電極において、互いに異なる電気的極性となるように形成されている。電極221,222,223,224,225,226,227及び228を角速度検出電極とする。   As shown in FIG. 4C, electrodes 223 and 224 are adjacent to one of the two side surfaces of the vibrating arm 204 in the length direction, and electrodes 225 and 226 are adjacent to the other side. The electrodes facing each other across the structure of the matching electrode and the vibrating arm portion 204 are formed to have different electrical polarities. Further, the electrodes 227 and 228 are formed on one side surface of the two side surfaces in the length direction of the vibrating arm portion 205, and the electrodes 229 and 230 are formed on the other side surface. The electrodes facing each other across the body are formed to have different electrical polarities. The electrodes 221, 222, 223, 224, 225, 226, 227, and 228 are angular velocity detection electrodes.

電極端子E21−E22に交流電圧を印加すると、図4(a)及び(b)に図示した実線と点線の矢印で表したX軸方向に電界Ex21が交互に働き、振動腕部202及び203はX−Y平面内で屈曲振動をする。この時Y軸廻りで角速度Ωを加えると、X−Y平面内に垂直となる方向(Z軸方向)に角速度Ωに応じたコリオリの力が発生し、Z軸方向成分を含んだ屈曲振動を引き起こす。このとき、振動腕部204及び205には図4(c)に図示した実線と点線の矢印で表した電界Ex22が生じる。この場合においても、慣性センサ素子を小型化した場合でも高い角速度検出感度が得られる。   When an AC voltage is applied to the electrode terminals E21 to E22, the electric field Ex21 works alternately in the X-axis direction indicated by the solid line and the dotted line arrows shown in FIGS. Flexural vibration is performed in the XY plane. At this time, when an angular velocity Ω is applied around the Y axis, Coriolis force corresponding to the angular velocity Ω is generated in a direction perpendicular to the XY plane (Z axis direction), and bending vibration including a Z axis direction component is generated. cause. At this time, an electric field Ex22 represented by the solid and dotted arrows shown in FIG. Also in this case, high angular velocity detection sensitivity can be obtained even when the inertial sensor element is downsized.

図5は本発明の実施の他の形態におけるH型慣性センサ素子300の構成例を示す斜視図であり、図6において、(a)は、図5に記載の慣性センサ素子300を同図記載の仮想切断線G−G′で切断した場合の断面図を用いて振動腕部に形成した各電極の電気的接続状態を図示した構成図であり、(b)は、図5に記載の慣性センサ素子300を同図記載の仮想切断線H−H′で切断した場合の断面図を用いて振動腕部の各電極の電気的接続状態を図示した構成図であり、(c)は、図5に記載の慣性センサ素子300を同図記載の仮想切断線J−J′で切断した場合の断面図を用いて振動腕部の各電極の電気的接続状態を図示した構成図である。図1に示した実施例1の形状の慣性センサ素子100とは角速度検出電極構造が異なる構成である。   FIG. 5 is a perspective view showing a configuration example of an H-type inertial sensor element 300 according to another embodiment of the present invention. FIG. 6A shows the inertial sensor element 300 shown in FIG. FIG. 6 is a configuration diagram illustrating an electrical connection state of each electrode formed on the vibrating arm portion using a cross-sectional view taken along the virtual cutting line GG ′, and (b) is an inertial diagram illustrated in FIG. 5. It is the block diagram which illustrated the electrical connection state of each electrode of a vibrating arm part using sectional drawing at the time of cut | disconnecting the sensor element 300 by the virtual cutting line HH 'described in the figure, (c) is a figure. 6 is a configuration diagram illustrating an electrical connection state of each electrode of a vibrating arm portion using a cross-sectional view when the inertial sensor element 300 described in FIG. 5 is cut along a virtual cutting line JJ ′ illustrated in FIG. The configuration of the angular velocity detection electrode structure is different from that of the inertial sensor element 100 having the shape of the first embodiment shown in FIG.

図5に示すように、慣性センサ素子300は振動腕部302,303,304及び305を基部301に各々接続した一体構造であり、振動腕部302の幅方向中央には、振動腕部302の根元から振動腕部302の長さ方向に穴開口部の長径を配した貫通穴307,308及び309が、振動腕部303の幅方向中央には、振動腕部303の根元から振動腕部303の長さ方向に穴開口部の長径を配した貫通穴310,311及び312が、振動腕部304の幅方向中央には、振動腕部304の根元から振動腕部304の長さ方向に穴開口部の長径を配した貫通穴313が、振動腕部305の幅方向中央には、振動腕部305の根元から振動腕部305の長さ方向に穴開口部の長径を配した貫通穴314がそれぞれ形成されている。この場合、例えば、振動腕部302及び303を振動子励振部とし、振動腕部304及び303を角速度検出部とする。図5に示すような構成においても、図1に示したように振動子励振部、角速度検出部各々に、必要な電極をそれぞれ形成する。   As shown in FIG. 5, the inertial sensor element 300 has an integrated structure in which the vibrating arm portions 302, 303, 304, and 305 are connected to the base portion 301. Through holes 307, 308, and 309 in which the long diameter of the hole opening portion is arranged in the length direction of the vibrating arm portion 302 from the root, in the center in the width direction of the vibrating arm portion 303, the vibrating arm portion 303 extends from the root of the vibrating arm portion 303. Through holes 310, 311, and 312 in which the long diameter of the hole opening is arranged in the length direction of the vibration arm 304, the hole extends from the root of the vibration arm 304 to the length direction of the vibration arm 304 at the center in the width direction of the vibration arm 304. A through-hole 313 having a long diameter of the opening is provided at the center in the width direction of the vibrating arm 305. A through-hole 314 having a long diameter of the hole opening from the base of the vibrating arm 305 to the length of the vibrating arm 305. Are formed respectively. In this case, for example, the vibrating arm portions 302 and 303 are vibrator excitation portions, and the vibrating arm portions 304 and 303 are angular velocity detection portions. Also in the configuration as shown in FIG. 5, as shown in FIG. 1, necessary electrodes are respectively formed on the vibrator excitation unit and the angular velocity detection unit.

例えば、図6(a)及び(b)に示すように、貫通穴307,308及び309それぞれの内部の長さ方向の二側面のうち一方の側面に電極315が、他方の側面に電極316が、同じ電気的極性で形成されており、振動腕部302の外側面には、電極315又は316と振動腕部302の構造体を介して対向する形態に、電極315及び316とは異なる電気的極性の電極317及び318が形成されている。又、貫通穴310,311及び312それぞれの内部に長さ方向の二側面のうち一方の側面に電極319が,他方の側面には電極320が、同じ電気的極性で形成されており、振動腕部303の外側面には、電極319又は320と振動腕部303の構造体を介して対向する形態に、電極319及び320とは異なる電気的極性の電極321及び322が形成されている。電極315,316,317,318,319,320,321,322を振動子励振電極とする。   For example, as shown in FIGS. 6A and 6B, the electrode 315 is provided on one side surface and the electrode 316 is provided on the other side surface among the two side surfaces in the longitudinal direction inside each of the through holes 307, 308 and 309. The electrodes 315 and 316 are opposed to the outer surface of the vibrating arm 302 via the structure of the vibrating arm 302, and are electrically different from the electrodes 315 and 316. Polar electrodes 317 and 318 are formed. Each of the through holes 310, 311 and 312 has an electrode 319 formed on one of the two side surfaces in the length direction and an electrode 320 formed on the other side with the same electrical polarity. Electrodes 321 and 322 having different electrical polarities from those of the electrodes 319 and 320 are formed on the outer surface of the portion 303 so as to face the electrode 319 or 320 via the structure of the vibrating arm portion 303. The electrodes 315, 316, 317, 318, 319, 320, 321, 322 are used as vibrator excitation electrodes.

又、図6(c)に示すように、振動腕部304の貫通穴313内部の二側面のうち一方の側面に電極323が、他方の側面に電極324が、同じ電気的極性で形成されており、振動腕部304の外側の二側面にのうち一方の側面に電極325及び326が,他方の側面に電極327及び328が、それぞれ隣り合う電極と、振動腕部304の構造体及び貫通穴313を介して対向する電極で、互いに異なる電気的極性となるように形成されている。振動腕部305の貫通穴314内部の二側面のうち一方の側面に電極329が、他方の側面に電極330が、同じ電気的極性で形成されており、振動腕部305の外側の二側面にのうち一方の側面に電極331及び332が,他方の側面に電極333及び334が、それぞれ隣り合う電極、及び振動腕部305の構造体及び貫通穴314を介して対向する電極で、互いに異なる電気的極性となるように形成されている。電極323,324,325,326,327,328,329,330,331,332,333及び334を角速度検出電極とする。   Further, as shown in FIG. 6C, the electrode 323 is formed on one side surface and the electrode 324 is formed on the other side surface with the same electrical polarity among the two side surfaces inside the through hole 313 of the vibrating arm portion 304. The electrodes 325 and 326 on one side of the two outer sides of the vibrating arm 304, the electrodes 327 and 328 on the other side, the adjacent electrode, the structure of the vibrating arm 304, and the through hole The electrodes facing each other via 313 are formed to have different electrical polarities. The electrode 329 is formed on one side surface of the two side surfaces inside the through-hole 314 of the vibrating arm portion 305, and the electrode 330 is formed on the other side surface with the same electrical polarity. Electrodes 331 and 332 on one side, and electrodes 333 and 334 on the other side, respectively, are adjacent electrodes, and electrodes facing each other through the structure of the vibrating arm 305 and the through hole 314. It is formed so as to have a specific polarity. The electrodes 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, and 334 are angular velocity detection electrodes.

電極端子E31−E32に交流電圧を印加すると、図6(a)及び(b)に図示した実線と点線の矢印で表したX軸方向に電界Ex31が交互に働き、振動腕部302及び303はX−Y平面内で屈曲振動をする。この時Y軸廻りで角速度Ωを加えると、X−Y平面内に垂直となる方向(Z軸方向)に角速度Ωに応じたコリオリの力が発生しZ軸方向成分を含んだ屈曲振動を引き起こす。電極323,324,329及び330をアナロググランドとすると、振動腕部304及び305には図6(c)に図示した実線と点線の矢印で表した電界Ex32が生じる。この場合においても、X軸方向の電界Ex32とその和が非常に大きくなり、慣性センサ素子を小型化した場合でも高い角速度検出感度が得られる。   When an AC voltage is applied to the electrode terminals E31 to E32, the electric field Ex31 works alternately in the X-axis direction indicated by the solid and dotted arrows shown in FIGS. 6A and 6B, and the vibrating arms 302 and 303 Flexural vibration is performed in the XY plane. At this time, if an angular velocity Ω is added around the Y axis, a Coriolis force corresponding to the angular velocity Ω is generated in a direction perpendicular to the XY plane (Z axis direction), causing a bending vibration including a Z axis direction component. . When the electrodes 323, 324, 329, and 330 are analog grounds, an electric field Ex32 represented by solid and dotted arrows shown in FIG. Even in this case, the electric field Ex32 in the X-axis direction and the sum thereof become very large, and high angular velocity detection sensitivity can be obtained even when the inertial sensor element is downsized.

尚、上述した各実施例では励振用の振動腕部に形成する貫通穴の数がそれぞれ3つの場合を例示したが、本発明における励振用振動腕部に形成された貫通穴の数は、各実施例開示の数に限定するものではなく、励振用振動腕部の長さや励振用振動腕部の屈曲振動特性などにより最適な複数個に設定するものである。   In each of the above-described embodiments, the number of through holes formed in the vibrating arm portion for excitation is illustrated as three, but the number of through holes formed in the vibrating arm portion for excitation in the present invention is The number is not limited to the number disclosed in the embodiment, and the optimal number is set depending on the length of the vibrating arm portion for excitation and the bending vibration characteristics of the vibrating arm portion for excitation.

図1は、本発明の実施の一形態における慣性センサ素子の構成例を示す外観斜視図である。FIG. 1 is an external perspective view showing a configuration example of an inertial sensor element according to an embodiment of the present invention. 図2において、(a)は、図1に記載の慣性センサ素子を同図記載の仮想切断線A−A′で切断した場合の断面図を用いて振動腕部に形成した各電極の電気的接続状態を図示した構成図であり、(b)は、図1に記載の慣性センサ素子を同図記載の仮想切断線B−B′で切断した場合の断面図を用いて振動腕部の各電極の電気的接続状態を図示した構成図であり、(c)は、図1に記載の慣性センサ素子を同図記載の仮想切断線C−C′で切断した場合の断面図を用いて振動腕部の各電極の電気的接続状態を図示した構成図である。2A is an electrical diagram of each electrode formed on the vibrating arm using a cross-sectional view when the inertial sensor element shown in FIG. 1 is cut along a virtual cutting line AA ′ shown in FIG. FIG. 2B is a configuration diagram illustrating a connection state, and FIG. 4B is a cross-sectional view when the inertial sensor element illustrated in FIG. 1 is cut along a virtual cutting line BB ′ illustrated in FIG. It is the block diagram which illustrated the electrical connection state of the electrode, (c) is vibration using sectional drawing at the time of cut | disconnecting the inertial sensor element of FIG. 1 with the virtual cutting line CC 'of the figure description. It is the block diagram which illustrated the electrical connection state of each electrode of an arm part. 図3は、本発明の実施の他の形態における慣性センサ素子の構成例を示す外観斜視図である。FIG. 3 is an external perspective view showing a configuration example of an inertial sensor element according to another embodiment of the present invention. 図4において、(a)は、図3に記載の慣性センサ素子を同図記載の仮想切断線D−D′で切断した場合の断面図を用いて振動腕部に形成した各電極の電気的接続状態を図示した構成図であり、(b)は、図3に記載の慣性センサ素子を同図記載の切断線E−E′で切断した場合の断面図を用いて振動腕部の各電極の電気的接続状態を図示した構成図であり、(c)は、図3に記載の慣性センサ素子を同図記載の仮想切断線F−F′で切断した場合の断面図を用いて振動腕部の各電極の電気的接続状態を図示した構成図である。4A is an electrical diagram of each electrode formed on the vibrating arm using a cross-sectional view when the inertial sensor element shown in FIG. 3 is cut along a virtual cutting line DD ′ shown in FIG. FIG. 4B is a configuration diagram illustrating a connection state, and FIG. 4B is a cross-sectional view when the inertial sensor element illustrated in FIG. 3 is cut along a cutting line EE ′ illustrated in FIG. FIG. 4C is a configuration diagram illustrating the electrical connection state of FIG. 3C, and FIG. 4C is a vibration arm using a cross-sectional view when the inertial sensor element illustrated in FIG. 3 is cut along a virtual cutting line FF ′ illustrated in FIG. It is the block diagram which illustrated the electrical connection state of each electrode of a part. 図5は、本発明の実施の他の形態における慣性センサ素子の構成例を示す外観斜視図である。FIG. 5 is an external perspective view showing a configuration example of an inertial sensor element according to another embodiment of the present invention. 図6において、(a)は、図5に記載の慣性センサ素子を同図記載の仮想切断線G−G′で切断した場合の断面図を用いて振動腕部に形成した各電極の電気的接続状態を図示した構成図であり、(b)は、図5に記載の慣性センサ素子を同図記載の切断線H−H′で切断した場合の断面図を用いて振動腕部の各電極の電気的接続状態を図示した構成図であり、(c)は、図5に記載の慣性センサ素子を同図記載の仮想切断線J−J′で切断した場合の断面図を用いて振動腕部の各電極の電気的接続状態を図示した構成図である。6A is an electrical diagram of each electrode formed on the vibrating arm using a cross-sectional view when the inertial sensor element shown in FIG. 5 is cut along a virtual cutting line GG ′ shown in FIG. FIG. 6B is a configuration diagram illustrating a connection state, and FIG. 5B is a cross-sectional view when the inertial sensor element illustrated in FIG. 5 is cut along a cutting line HH ′ illustrated in FIG. FIG. 6C is a configuration diagram illustrating the electrical connection state of FIG. 5C, and FIG. 5C is a vibration arm using a cross-sectional view when the inertial sensor element illustrated in FIG. 5 is cut along a virtual cutting line JJ ′ illustrated in FIG. It is the block diagram which illustrated the electrical connection state of each electrode of a part. 図7は、従来の慣性センサ素子の構成例を示す外観斜視図である。FIG. 7 is an external perspective view showing a configuration example of a conventional inertial sensor element. 図8において、(a)は、図7に記載の慣性センサ素子を同図記載の仮想切断線K−K′で切断した場合の断面図を用いて振動腕部に形成した各電極の電気的接続状態を図示した構成図であり、(b)は、図7に記載の慣性センサ素子を同図記載の切断線L−L′で切断した場合の断面図を用いて振動腕部の各電極の電気的接続状態を図示した構成図である。8A is an electrical diagram of each electrode formed on the vibrating arm using a cross-sectional view when the inertial sensor element shown in FIG. 7 is cut along a virtual cutting line KK ′ shown in FIG. FIG. 8B is a configuration diagram illustrating a connection state, and FIG. 7B is a cross-sectional view when the inertial sensor element illustrated in FIG. 7 is cut along a cutting line LL ′ illustrated in FIG. It is the block diagram which illustrated the electrical connection state of these.

符号の説明Explanation of symbols

100,200,300…慣性センサ素子
101,201,301…基部
102,103,104,105,202,203,204,205,302,303,304,305…振動腕部
106,206,306…固定部
107,108,109,110,111,112,113,114,207,208,209,210,211,212,307,308,309,310,311,312,313,314…貫通穴
115,116,117,118,119,120,121,122,213,214,215,216,219,220,221,222,315,316,317,318,319,320,321,322…振動子励振用電極
123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,223,224,225,226,227,228,229,230,323,324,325,326,327,328,329,330,331,332,333,334…角速度検出用電極
100, 200, 300 ... inertial sensor elements 101, 201, 301 ... base 102, 103, 104, 105, 202, 203, 204, 205, 302, 303, 304, 305 ... vibrating arm 106, 206, 306 ... fixed Parts 107, 108, 109, 110, 111, 112, 113, 114, 207, 208, 209, 210, 211, 212, 307, 308, 309, 310, 311, 312, 313, 314 ... through holes 115, 116 , 117, 118, 119, 120, 121, 122, 213, 214, 215, 216, 219, 220, 221, 222, 315, 316, 317, 318, 319, 320, 321, 322... 123, 124, 125, 126, 127, 128, 129, 130, 131, 32, 133, 134, 135, 136, 137, 138, 223, 224, 225, 226, 227, 228, 229, 230, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332 333, 334... Angular velocity detection electrode

Claims (3)

基部と、この基部から平行に延びる複数の振動腕部とを備え、該振動腕部に該振動腕部の長さ方向に開口部長径を配する形態の貫通穴が形成された慣性センサ素子において、
該振動腕部のうち励振用振動腕部に、該励振用振動腕部の長さ方向に開口部長径を配する形態の貫通穴が、該励振用振動腕部の長さ方向に沿って複数個配列し形成されていることを特徴とする慣性センサ素子。
In an inertial sensor element comprising a base and a plurality of vibrating arm portions extending in parallel from the base portion, and having a through hole in a form in which an opening major axis is arranged in the length direction of the vibrating arm portion in the vibrating arm portion ,
A plurality of through-holes having an opening major axis in the length direction of the excitation vibration arm portion are provided in the vibration vibration arm portion of the vibration arm portion along the length direction of the excitation vibration arm portion. An inertial sensor element characterized by being arranged and formed individually.
請求項1記載の該励振用振動腕部に形成された複数個の該貫通穴において、各々の該励振用振動腕部で最も該基部に近い該貫通穴の開口部長径が、同じ該励振用振動腕部内の他の貫通穴の開口部長径に比べ長いことを特徴とする請求項1記載の慣性センサ素子。   2. The plurality of through holes formed in the excitation vibrating arm portion according to claim 1, wherein each of the excitation vibration arm portions has the same opening major axis that is closest to the base portion. The inertial sensor element according to claim 1, wherein the inertial sensor element is longer than an opening major axis of another through hole in the vibrating arm. 請求項1及び請求項2に記載の該励振用振動腕部に複数個の該貫通穴において、該貫通穴内部の長さ方向側面に同じ電気的極性の電極がそれぞれ形成されていることを特徴とする請求項1及び請求項2に記載の慣性センサ素子。   3. A plurality of the through holes in the excitation vibrating arm portion according to claim 1 and 2, wherein electrodes having the same electrical polarity are respectively formed on the side surfaces in the longitudinal direction inside the through holes. The inertial sensor element according to claim 1 and 2.
JP2005022553A 2005-01-31 2005-01-31 Inertial sensor element Pending JP2006208261A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005022553A JP2006208261A (en) 2005-01-31 2005-01-31 Inertial sensor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005022553A JP2006208261A (en) 2005-01-31 2005-01-31 Inertial sensor element

Publications (1)

Publication Number Publication Date
JP2006208261A true JP2006208261A (en) 2006-08-10

Family

ID=36965282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005022553A Pending JP2006208261A (en) 2005-01-31 2005-01-31 Inertial sensor element

Country Status (1)

Country Link
JP (1) JP2006208261A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007064746A (en) * 2005-08-30 2007-03-15 Kyocera Kinseki Corp Inertial sensor element
JP2015179933A (en) * 2014-03-19 2015-10-08 セイコーエプソン株式会社 Vibration element, gyro sensor element, electronic device, electronic apparatus and moving body

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002261576A (en) * 2001-03-02 2002-09-13 Seiko Epson Corp Vibrating piece, vibrator, oscillator and portable telephone device
JP2004260593A (en) * 2003-02-26 2004-09-16 Seiko Epson Corp Crystal vibrating reed, method of manufacturing the same, crystal device using crystal vibrating reed, mobile phone device using crystal device, and electronic device using crystal device
JP2004301734A (en) * 2003-03-31 2004-10-28 Kyocera Kinseki Corp Inertial sensor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002261576A (en) * 2001-03-02 2002-09-13 Seiko Epson Corp Vibrating piece, vibrator, oscillator and portable telephone device
JP2004260593A (en) * 2003-02-26 2004-09-16 Seiko Epson Corp Crystal vibrating reed, method of manufacturing the same, crystal device using crystal vibrating reed, mobile phone device using crystal device, and electronic device using crystal device
JP2004301734A (en) * 2003-03-31 2004-10-28 Kyocera Kinseki Corp Inertial sensor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007064746A (en) * 2005-08-30 2007-03-15 Kyocera Kinseki Corp Inertial sensor element
JP2015179933A (en) * 2014-03-19 2015-10-08 セイコーエプソン株式会社 Vibration element, gyro sensor element, electronic device, electronic apparatus and moving body
US9534894B2 (en) 2014-03-19 2017-01-03 Seiko Epson Corporation Resonator element, gyro sensor element, electronic device, electronic apparatus, and moving object

Similar Documents

Publication Publication Date Title
JP4415382B2 (en) Vibration gyro element, support structure of vibration gyro element, and gyro sensor
CN110177996B (en) Sensor element, angular velocity sensor, and multiaxial angular velocity sensor
JP6620243B2 (en) Angular velocity sensor, sensor element and multi-axis angular velocity sensor
JP2008058062A (en) Angular velocity sensor
JP4702942B2 (en) Vibrating gyro element and vibrating gyro
KR100527351B1 (en) Vibrating gyroscope and angular velocity sensor
US20050061073A1 (en) Vibratory gyroscope and electronic apparatus
WO2019044696A1 (en) Angular velocity sensor and sensor element
JP2006201118A (en) Piezoelectric vibration gyro element and gyro sensor
JP2009074996A (en) Piezoelectric vibration gyro
JP2006208261A (en) Inertial sensor element
JP4667858B2 (en) Inertial sensor element
JP2005291937A (en) Inertial sensor element
US20210247187A1 (en) Sensor element and angular velocity sensor
JP2016118497A (en) Angular velocity sensor and sensor element
JP2007163248A (en) Piezoelectric vibration gyro
JP4044519B2 (en) Tuning fork type piezoelectric vibration gyro
JP4309814B2 (en) Method for adjusting vibrator for piezoelectric vibration gyro
JP3371609B2 (en) Vibrating gyro
JP2000283765A (en) Tripod tuning fork vibrator and angular velocity sensor
JP2001215122A (en) Angular velocity sensor
JPH1062179A (en) Vibration gyro
JP2000249556A (en) Triangular prism tripod tuning fork vibrator and angular velocity sensor
JPH07239235A (en) Supporting member of piezoelectric vibration gyro and assembling method using the same
JPH02228518A (en) Support structure of vibrator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101005

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110215