[go: up one dir, main page]

JP2006207679A - Method for manufacturing shock absorbing member - Google Patents

Method for manufacturing shock absorbing member Download PDF

Info

Publication number
JP2006207679A
JP2006207679A JP2005019897A JP2005019897A JP2006207679A JP 2006207679 A JP2006207679 A JP 2006207679A JP 2005019897 A JP2005019897 A JP 2005019897A JP 2005019897 A JP2005019897 A JP 2005019897A JP 2006207679 A JP2006207679 A JP 2006207679A
Authority
JP
Japan
Prior art keywords
absorbing member
impact
deformation
load
promoting means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005019897A
Other languages
Japanese (ja)
Inventor
Jogen Yamaki
状元 山木
Daisei Abe
大生 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2005019897A priority Critical patent/JP2006207679A/en
Publication of JP2006207679A publication Critical patent/JP2006207679A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Body Structure For Vehicles (AREA)
  • Vibration Dampers (AREA)

Abstract

【課題】短い変形ストロークと優れたエネルギー吸収効率を両立させ得る衝撃吸収部材を提供する。
【解決手段】長手方向と短手方向とを有し、曲げ変形を行うことにより衝撃を吸収する中空の衝撃吸収部材1であって、前記衝撃を直接受けることにより圧縮応力が発生する圧縮部位10と、この圧縮部位10に対向し引張応力が発生する引張部位12と、これら圧縮部位10と引張部位12との両端側を連結する一対の側方部位14と、を有し、少なくとも前記側方部位14には、所定の曲率半径を有する複数の山部162と谷部164とからなる蛇腹状の変形促進手段16が設けられ、前記変形促進手段16は、繊維強化プラスチック材で形成され、且つ、前記谷部164の頂部が前記長手方向における前記変形促進手段16の両端を結ぶ線よりも内側になる位置に配置される衝撃吸収部材1。
【選択図】図1
An impact absorbing member capable of achieving both a short deformation stroke and excellent energy absorption efficiency is provided.
A hollow impact-absorbing member 1 having a longitudinal direction and a short-side direction and absorbing an impact by bending deformation, wherein a compression site 10 in which a compressive stress is generated by receiving the impact directly. A tensile portion 12 facing the compression portion 10 where a tensile stress is generated, and a pair of side portions 14 connecting both ends of the compression portion 10 and the tensile portion 12, and at least the side portions The part 14 is provided with a bellows-like deformation promoting means 16 composed of a plurality of peaks 162 and valleys 164 having a predetermined radius of curvature, and the deformation promoting means 16 is formed of a fiber reinforced plastic material, and The impact absorbing member 1 is arranged at a position where the top of the trough 164 is inside the line connecting both ends of the deformation promoting means 16 in the longitudinal direction.
[Selection] Figure 1

Description

本発明は、衝撃吸収部材に関し、特に、短い変形ストロークと優れたエネルギー吸収効率を両立させ得る衝撃吸収部材に関する。     The present invention relates to an impact absorbing member, and more particularly to an impact absorbing member capable of achieving both a short deformation stroke and excellent energy absorption efficiency.

従来より、軽量且つ高強度の構造部材として、アルミに加えて、繊維強化材料が用いられている。繊維強化材料は、複合材料を繊維で強化したものであり、繊維強化ゴム(FRR)、繊維強化金属(FRM)、繊維強化セラミックス(FRC)、繊維強化プラスチック(FRP)等が知られている。これらのうち、繊維強化材料として最もよく利用されるFRPは、マトリクス(素地)としてプラスチックを使用したもので、強化材としては一般に、炭素やガラス等の繊維が使用されることが知られている。   Conventionally, a fiber reinforced material is used in addition to aluminum as a lightweight and high-strength structural member. The fiber reinforced material is a composite material reinforced with fibers, and fiber reinforced rubber (FRR), fiber reinforced metal (FRM), fiber reinforced ceramics (FRC), fiber reinforced plastic (FRP), and the like are known. Of these, FRP, which is most often used as a fiber reinforced material, uses plastic as a matrix (substrate), and it is known that fibers such as carbon and glass are generally used as the reinforcing material. .

FRPの強化材として炭素繊維を使用したものは、炭素繊維強化プラスチック(CFRP)とよばれる。CFRPは、先端複合材料の中核に位置し、軽量、高強度、高弾性率材料として、航空分野、宇宙分野等に欠くことのできない構造材料として知られている。CFRP材は、炭素繊維の配向に応じて異なる構造及び性質を持つ、ユニダイレクショナル材(UD材)や、クロス材が知られている。UD材は、炭素繊維をうすく一方向に並べてエポキシ樹脂等により成型した素材形態である。一方、クロス材はカーボン繊維などの繊維を織物又は編物として、エポキシ樹脂等により成型した素材形態である。これらのCFRPは、鉄の約25%の重量と軽量ながら、耐熱性及び耐蝕性に優れる。   A material using carbon fiber as a reinforcing material for FRP is called carbon fiber reinforced plastic (CFRP). CFRP is located at the core of advanced composite materials, and is known as a lightweight, high-strength, high-modulus material that is indispensable for the aviation and space fields. As the CFRP material, a unidirectional material (UD material) and a cloth material having different structures and properties depending on the orientation of carbon fibers are known. The UD material is a material form in which carbon fibers are arranged in one direction and molded with an epoxy resin or the like. On the other hand, the cloth material is a material form in which fibers such as carbon fibers are woven or knitted and are molded with an epoxy resin or the like. These CFRPs are excellent in heat resistance and corrosion resistance while being light and about 25% of the weight of iron.

ところで、従来より、自動車等の衝撃吸収部材として、乗員の保護対策及び燃費向上等の観点から、軽量且つ高強度の構造部材であるアルミニウム材やアルミニウム合金材が用いられている。特に、フロントピラー、センターピラー、リアピラー等の自動車側部に使用されるビーム材においては、衝突時の衝撃から乗員を保護するために、より優れたエネルギー吸収量を有する衝撃吸収部材が望まれている。   Conventionally, aluminum and aluminum alloy materials, which are lightweight and high-strength structural members, are used as impact absorbing members for automobiles and the like from the viewpoints of protecting passengers and improving fuel consumption. In particular, in beam materials used for automobile side parts such as front pillars, center pillars, and rear pillars, in order to protect passengers from impacts at the time of a collision, an impact absorbing member having a better energy absorption amount is desired. Yes.

例えば、自動車の側部構造材に設置されるフレームでは、単一材料を押出成型やプレス成型し、断面形状を閉断面化、大断面化して強度及び剛性を上げることにより、衝突時のエネルギー吸収量の増大が図られている。一般に、側面衝突時の変形モードとしては、センターピラーを例に挙げると、上部サイドルーフレールと下部サイドシルを支点として折れ曲がる、3点曲げによる曲げ変形を受ける。従って、側部構造材としては、曲げの荷重に対する耐久力が強く、曲げによるたわみが小さいことが望まれる。   For example, in a frame installed on the side structure material of an automobile, energy absorption at the time of collision is improved by extruding or pressing a single material and making the cross-sectional shape closed and large to increase strength and rigidity. The amount is increased. In general, as a deformation mode at the time of a side collision, if a center pillar is taken as an example, bending deformation by three-point bending, which is bent with an upper side roof rail and a lower side sill as fulcrums, is applied. Therefore, it is desired that the side structure material has a high durability against bending load and a small deflection due to bending.

また、自動車の側部構造部材であるピラーでは、アルミニウム材又はアルミニウム合金材を用いた場合、同じ重量で大きな断面2次モーメントを得るために中空構造が採用されている。このようなアルミニウム等の衝撃吸収部材は、衝撃によって加わる荷重が最大強度に達した直後に荷重強度が急激に減少するという性質がある。これは、加わる荷重が降伏点を越えると、小さな荷重で容易に衝撃吸収部材が変形するため、一旦降伏点を越えると車体の変形量が大きいことを意味する。即ち、降伏点を越えると耐え得る荷重が小さくなり、小さい荷重で大きな車体の変形を生じるため、荷重と変位の積で算出されるエネルギー吸収量は結果的に小さくなる。従って、ピラー等の衝撃吸収部材としては、荷重が最大強度に達して降伏点を越えた後、降伏点近傍の荷重が引き続き加わったとしても、一定の変位に達するまでは荷重強度を保持し続けるものであることが望まれる。   Moreover, in the pillar which is a side structure member of a motor vehicle, when an aluminum material or an aluminum alloy material is used, a hollow structure is employed in order to obtain a large moment of inertia of a cross section with the same weight. Such an impact-absorbing member such as aluminum has a property that the load strength decreases rapidly immediately after the load applied by the impact reaches the maximum strength. This means that when the applied load exceeds the yield point, the shock absorbing member is easily deformed with a small load, and therefore once the yield point is exceeded, the deformation amount of the vehicle body is large. That is, when the yield point is exceeded, the load that can be endured is reduced, and a large deformation of the vehicle body is caused by a small load, so that the amount of energy absorption calculated by the product of the load and the displacement is reduced. Therefore, as a shock absorbing member such as a pillar, even if a load near the yield point continues to be applied after the load reaches the maximum strength and exceeds the yield point, the load strength is maintained until a certain displacement is reached. It is desirable to be a thing.

これに関し、特許文献1には、アルミ中空形材の引張面側にFRP材を隣接して一体化させた部材が開示されている。これは、圧縮面側に塑性変形容易な部材を使用し、引張面側に高強度軽量部材を使用することで、圧縮面側で衝撃吸収を受け持ち、引張面側では面の変化量を少なくすることで大きなエネルギー吸収と小さな変形を実現しようとする技術である。   In this regard, Patent Document 1 discloses a member in which an FRP material is integrated adjacently to the tensile surface side of an aluminum hollow shape. This uses a member that is easily plastically deformed on the compression surface side, and uses a high-strength and lightweight member on the tension surface side, which is responsible for shock absorption on the compression surface side and reduces the amount of surface change on the tension surface side. This is a technology that aims to achieve large energy absorption and small deformation.

また、特許文献2には、軸圧壊してエネルギーを吸収させる車体構造部材において、曲げ変形を受ける箇所に蛇腹状の荷重伝達部材を配置し、山折した蛇腹の稜線を荷重受け面とし、谷折した蛇腹の稜線を構造部材への結合部として、良好な軸圧壊特性の実現と、曲げ入力に対する強度を向上させるという技術が開示されている。
特開平06−101732号公報 特開2004−75021号公報
Further, in Patent Document 2, a bellows-like load transmitting member is disposed at a location subjected to bending deformation in a vehicle body structural member that absorbs energy by axial crushing, and a ridge line of the folded bellows is used as a load receiving surface. A technique has been disclosed in which the ridgeline of the accordion is used as a coupling portion to a structural member to achieve good axial crushing characteristics and to improve the strength against bending input.
Japanese Patent Laid-Open No. 06-101732 JP 2004-75021 A

しかしながら、特許文献1に開示されている衝撃吸収部材は、圧縮側に塑性変形しやすいアルミを使用しているため、衝撃吸収部材の吸収エネルギー量は、圧縮側の降伏応力が支配的要因となってしまう。つまり、引張側の高強度FRP材は、エネルギー吸収材としての寄与が低く、かつ、アルミを使用することで重量効率の向上にも限界がある。また、この衝撃吸収部材においては、アルミとFRPがボルトにより接合された構造を有しているため、荷重による変形に伴ってボルト接合部に応力集中が発生してしまい、この発明特有の利点を発揮する以前に接合部から破断に至る可能性がある。ボルトの代わりとして接着剤を使用したとしても、接着剤の強度で衝撃吸収部材全体の強度の上限値が決まってしまう。   However, since the shock absorbing member disclosed in Patent Document 1 uses aluminum that is easily plastically deformed on the compression side, the amount of energy absorbed by the shock absorbing member is mainly determined by the yield stress on the compression side. End up. That is, the high-strength FRP material on the tension side has a low contribution as an energy absorbing material, and there is a limit to improving the weight efficiency by using aluminum. In addition, since this shock absorbing member has a structure in which aluminum and FRP are joined by bolts, stress concentration occurs at the bolt joints due to deformation due to the load, and this invention has a unique advantage. There is a possibility of breaking from the joint before it can be used. Even if an adhesive is used in place of the bolt, the upper limit of the strength of the entire shock absorbing member is determined by the strength of the adhesive.

また、特許文献2に開示されている荷重伝達部材を、荷重を受ける中空長材に採用した場合、荷重伝達部材自身が抵抗となって荷重を発生させるだけで、長材に略直角方向に働く荷重を長手方向に変換することはできない。図10に、特許文献2に開示される荷重伝達部材の荷重受け面301に、衝撃を加えた状況を示す。図10(A)の矢印方向から、山折部分302に衝撃を加えた場合、特許文献2に開示された荷重伝達部は、衝撃により図10(B)に示されるように、断面が潰れるのみとなる。図10(C)は、図10(B)のA−Aにおける構造部材300の断面図を示すものである。即ち、特許文献2に開示された荷重伝達部材は、荷重伝達部材自身が抵抗となって荷重に寄与するのみであり、結局のところ、曲げ荷重により断面が潰れてしまい、曲げモーメントに耐えられなくなるという根本的な問題を解決することができない。   Moreover, when the load transmission member disclosed in Patent Document 2 is adopted as a hollow long material that receives a load, the load transmission member itself acts as a resistance to generate a load, and acts on the long material in a substantially perpendicular direction. The load cannot be converted in the longitudinal direction. FIG. 10 shows a situation in which an impact is applied to the load receiving surface 301 of the load transmitting member disclosed in Patent Document 2. When an impact is applied to the mountain folded portion 302 from the direction of the arrow in FIG. 10 (A), the load transmitting portion disclosed in Patent Document 2 is only crushed in cross section as shown in FIG. 10 (B) due to the impact. Become. FIG. 10C shows a cross-sectional view of the structural member 300 taken along line AA in FIG. In other words, the load transmission member disclosed in Patent Document 2 only contributes to the load by the resistance of the load transmission member itself. After all, the cross-section is crushed by the bending load and cannot withstand the bending moment. Cannot solve the fundamental problem.

また仮に、特許文献2に開示された荷重伝達部材を、接着、溶接等により接続して断面の潰れを防ごうとしても、接続部から破壊が進行する危険性が高まり、且つ、接続範囲の剛性が上がり、圧縮時の荷重変動が大きくなるため、軸圧壊特性の向上を図ることができなくなる可能性がある。また、そもそもこの荷重伝達部材はあくまで軸圧壊エネルギー吸収部材の性能向上を図ったものであり、軸圧壊方向の荷重を受けずに曲げ荷重のみを受ける構造部材を対象としたものではないため、曲げ変形のみに対するエネルギー吸収性能の向上を達成するものではない。   Further, even if the load transmitting member disclosed in Patent Document 2 is connected by bonding, welding, or the like to prevent the cross-section from being crushed, the risk of breakage from the connecting portion increases, and the rigidity of the connection range is increased. As a result, the load fluctuation at the time of compression becomes large, and it may not be possible to improve the shaft crushing characteristics. In addition, this load transmission member is only intended to improve the performance of the axial crushing energy absorbing member, and is not intended for structural members that receive only bending load without receiving load in the axial crushing direction. It does not achieve an improvement in energy absorption performance against deformation alone.

本発明は、以上のような課題に鑑みてなされたものであり、短い変形ストロークと優れたエネルギー吸収効率を両立させ得る衝撃吸収部材を提供することを目的とする。   This invention is made | formed in view of the above subjects, and it aims at providing the impact-absorbing member which can make a short deformation | transformation stroke and the outstanding energy absorption efficiency compatible.

本発明者らは、上記課題を解決するために鋭意研究を重ねた結果、中空の衝撃吸収部材の所定の位置に蛇腹状の変形促進手段を設けることによって、短い変形ストロークと優れたエネルギー吸収効率を両立できることを見出し、本発明を完成するに至った。より具体的には、本発明は以下のような衝撃吸収部材を提供する。   As a result of intensive research to solve the above problems, the present inventors have provided a bellows-like deformation promoting means at a predetermined position of the hollow impact absorbing member, thereby realizing a short deformation stroke and excellent energy absorption efficiency. As a result, the present invention has been completed. More specifically, the present invention provides the following impact absorbing member.

(1) 長手方向と短手方向とを有し、曲げ変形を行うことにより衝撃を吸収する中空の衝撃吸収部材であって、前記衝撃を直接受けることにより圧縮応力が発生する圧縮部位と、この圧縮部位に対向し引張応力が発生する引張部位と、これら圧縮部位と引張部位との両端側を連結する一対の側方部位と、を有し、少なくとも前記側方部位には、所定の曲率半径を有する複数の山部と谷部とからなる蛇腹状の変形促進手段が設けられ、前記変形促進手段は、繊維強化プラスチック材で形成され、且つ、前記谷部の頂部が前記長手方向における前記変形促進手段の両端を結ぶ線よりも内側になる位置に配置された衝撃吸収部材。   (1) A hollow impact absorbing member having a longitudinal direction and a transverse direction and absorbing an impact by bending deformation, and a compression site where a compressive stress is generated by receiving the impact directly, There is a tensile part that is opposed to the compression part and generates a tensile stress, and a pair of side parts that connect both ends of the compression part and the tensile part, and at least the side part has a predetermined radius of curvature. A bellows-like deformation promoting means comprising a plurality of crests and troughs having a shape is provided, the deformation promoting means is formed of a fiber reinforced plastic material, and the top of the trough is the deformation in the longitudinal direction. An impact absorbing member disposed at a position on the inner side of a line connecting both ends of the promoting means.

(1)の衝撃吸収部材は、衝撃を受ける部位の側方に、変形促進手段として、蛇腹状の構造を有するものである。一般に、構造部材が衝撃を受けると、荷重部及び曲げモーメントが極値を取る部分において、構造部材が折れ曲がる。構造部材が曲げ変形を受ける際には、衝撃を直接受ける部分には圧縮応力が発生し、この圧縮応力が発生する部位に対向する部位には引張り応力が発生し、この圧縮応力がある大きさを越えたときに、曲げ荷重が低下して圧縮部位が座屈し、断面が潰れる。   The impact absorbing member (1) has a bellows-like structure as a deformation promoting means on the side of a portion that receives an impact. Generally, when a structural member receives an impact, the structural member is bent at a portion where the load portion and the bending moment take extreme values. When a structural member is subjected to bending deformation, a compressive stress is generated in a portion that receives an impact directly, and a tensile stress is generated in a portion opposite to the portion where the compressive stress is generated. When the value exceeds the bending load, the bending load decreases, the compression site buckles, and the cross section collapses.

この点、(1)の衝撃吸収部材によれば、衝撃を受ける部位の側方に、繊維強化プラスチック材で形成された蛇腹状の変形促進手段を設けたことによって、衝撃吸収部材に対して衝撃による荷重が加わったときに、圧縮応力が発生する部位の蛇腹が座屈する。繊維強化プラスチック材で形成された蛇腹が座屈する際には、一定の荷重が発生するため、圧縮を受ける部位において蛇腹の座屈を安定的に発生させることができる。また、座屈後は干渉により荷重が上昇するため、その力により周囲の蛇腹を更に座屈する。これにより、断面を潰す力を、蛇腹の座屈時の荷重に変換し続けることができ、荷重部の断面形状を維持したままで周囲に変形を拡大することにより、曲げエネルギー吸収効率を向上することができる。   In this respect, according to the impact absorbing member of (1), the bellows-like deformation promoting means formed of the fiber reinforced plastic material is provided on the side of the portion that receives the impact. When a load due to is applied, the bellows of the portion where the compressive stress is generated buckles. When a bellows formed of a fiber reinforced plastic material buckles, a constant load is generated. Therefore, the bellows buckling can be stably generated at a portion subjected to compression. In addition, since the load increases due to interference after buckling, the surrounding bellows are further buckled by the force. As a result, the force for crushing the cross section can be continuously converted into the load at the time of buckling of the bellows, and the bending energy absorption efficiency is improved by expanding the deformation around the load portion while maintaining the cross-sectional shape of the load portion. be able to.

また、(1)の衝撃吸収部材に設けられた蛇腹状の変形促進手段は、所定の曲率で形成された複数の山部と谷部とを滑らかに繋いだ連続形状を有しており、より安定した蛇腹の座屈を可能としている。さらには、蛇腹状の谷部の頂部が、長手方向における前記変形促進手段の両端を結ぶ直線よりも内側になる位置に配置されることにより、蛇腹の座屈時に蛇腹部分が外側に膨らみ、断面が潰れることを防止できる。   Further, the bellows-like deformation promoting means provided in the shock absorbing member of (1) has a continuous shape in which a plurality of crests and troughs formed with a predetermined curvature are smoothly connected, and more It enables stable bellows buckling. Further, the top of the bellows-shaped valley is disposed at a position inside the straight line connecting both ends of the deformation promoting means in the longitudinal direction, so that the bellows part bulges outward when the bellows buckles, Can be prevented from being crushed.

(2) 前記変形促進手段は、前記山部及び谷部の各稜線が前記長手方向に対して略直交する向きに配置された(1)記載の衝撃吸収部材。   (2) The impact absorbing member according to (1), wherein the deformation promoting means is arranged in a direction in which each ridge line of the peak portion and the valley portion is substantially orthogonal to the longitudinal direction.

(2)の衝撃吸収部材によれば、変形促進手段となる蛇腹状の山部及び谷部の各稜線を前記長手方向に対して略直交する向きに配置することによって、曲げ変形時に圧縮部位及び引張部位の両方に一定荷重を発生させることができ、エネルギー吸収効率を向上させるとともに、変形ストロークを短くすることができる。   According to the shock absorbing member of (2), by arranging the ridge lines of the bellows-like ridges and valleys that serve as the deformation promoting means in a direction substantially perpendicular to the longitudinal direction, A constant load can be generated in both of the tensile parts, energy absorption efficiency can be improved, and the deformation stroke can be shortened.

(3) 前記山部及び谷部の曲率半径は、互いに異なる(1)又は(2)記載の衝撃吸収部材。   (3) The impact absorbing member according to (1) or (2), wherein the radii of curvature of the peaks and valleys are different from each other.

(3)の衝撃吸収部材によれば、山部及び谷部を、互いに異なる曲率半径で形成することによって、蛇腹の座屈時に発生する荷重の強弱を調整することができる。これにより、荷重点から離れた位置であっても座屈し易い領域を形成することができ、変形及び破壊領域を拡大し、コントロールすることができる。山部及び谷部の曲率半径は特に限定されないが、谷部の曲率半径が山部の曲率半径よりも小さい場合には、衝撃吸収部材の曲げ変形時に側方部位がより外側に変形し易いため、断面が部材の外側に膨らみ、断面係数が減少してしまう可能性がある。これに対して、谷部の曲率半径の方が山部の曲率半径よりも大きい場合には、衝撃吸収部材の曲げ変形時に側方部位の蛇腹が効果的に座屈し、断面が部材の外側に膨らむことがないため好ましい。また、異なる曲率半径を有する山部があってもよく、同様に、異なる曲率半径を有する谷部があってもよい。   According to the shock absorbing member of (3), the strength of the load generated during buckling of the bellows can be adjusted by forming the crest and trough with different radii of curvature. Thereby, even if it is a position away from a load point, the area | region which is easy to buckle can be formed, and a deformation | transformation and destruction area | region can be expanded and controlled. Although the curvature radius of a peak part and a trough part is not specifically limited, When the curvature radius of a trough part is smaller than the curvature radius of a peak part, since a side site | part is easy to deform | transform outside at the time of bending deformation of an impact-absorbing member. The cross section swells to the outside of the member, and the section modulus may decrease. On the other hand, when the curvature radius of the trough is larger than the curvature radius of the peak, the bellows of the side part is effectively buckled during bending deformation of the shock absorbing member, and the cross section is outside the member. This is preferable because it does not swell. Moreover, there may be peaks having different radii of curvature, and there may also be valleys having different radii of curvature.

(4) 前記側方部位に設けられた変形促進手段は、前記圧縮部位側から中立軸を跨いで前記圧縮部位側にまで配置された(1)から(3)いずれか記載の衝撃吸収部材。   (4) The impact absorbing member according to any one of (1) to (3), wherein the deformation promoting means provided in the side part is disposed from the compression part side to the compression part side across a neutral axis.

(4)の衝撃吸収部材によれば、蛇腹状の変形促進手段を圧縮部位側から中立軸を跨いで圧縮部位側にまで配置することによって、衝撃が加わったときに蛇腹がより効果的に座屈する。従って、断面を潰す力を、より効果的に蛇腹の座屈時の荷重に変換し続けることができ、さらに短い変形ストロークと優れたエネルギー吸収効率を実現できる。   According to the impact absorbing member of (4), the bellows-like deformation promoting means is disposed from the compression site side to the compression site side across the neutral axis, so that the bellows sits more effectively when an impact is applied. Bow. Therefore, the force for crushing the cross section can continue to be more effectively converted into the load at the time of buckling of the bellows, and a further shorter deformation stroke and excellent energy absorption efficiency can be realized.

なお、本発明でいう中立軸とは、中立面と側方部位との交線をいい、中立面とは、短手方向の各断面における図心を含む面であって、圧縮応力及び引張応力のいずれもが作用しない面である。図心とは、図形の面積の大きさを力と考えてその合力を求めたときに、その作用点に相当するものである。   The neutral axis in the present invention refers to a line of intersection between the neutral surface and the side portion, and the neutral surface is a surface including the centroid in each cross section in the short direction, and includes compressive stress and It is a surface where none of the tensile stress acts. The centroid corresponds to the point of action when the resultant area is obtained by considering the size of the area of the figure as a force.

本発明の衝撃吸収部材によれば、衝撃による曲げ荷重が加わった際に、衝撃吸収部材の側方に設けられた蛇腹状の変形促進手段が座屈することによって、曲げ荷重を長手方向の圧縮荷重に変換し、断面の潰れを回避して曲げ荷重の低下を防止することができる結果、曲げエネルギー吸収効率を向上させることが可能となる。従って、本発明の衝撃吸収部材は、従来よりも短い変形ストロークと優れたエネルギー吸収効率を両立させることができる。   According to the impact absorbing member of the present invention, when a bending load due to impact is applied, the bellows-like deformation promoting means provided on the side of the impact absorbing member buckles, so that the bending load is compressed in the longitudinal direction. As a result of avoiding the collapse of the cross section and preventing the bending load from being lowered, the bending energy absorption efficiency can be improved. Therefore, the impact absorbing member of the present invention can achieve both a shorter deformation stroke and superior energy absorption efficiency than conventional ones.

以下、本発明の実施形態について、図面を参照しながら説明する。なお、共通する構成要素については、同一符号を付し、その説明を省略若しくは簡略化する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, about the same component, the same code | symbol is attached | subjected and the description is abbreviate | omitted or simplified.

本発明の一実施形態である衝撃吸収部材1の斜視図を図1に示す。この衝撃吸収部材1は、衝撃を直接受けることにより圧縮応力が発生する圧縮部位10と、この圧縮部位10に対向し引張応力が発生する引張部位12と、これら圧縮部位10と引張部位12との両端側を連結する一対の側方部位14を有する。側方部位14には、蛇腹状の変形促進手段16が設けられており、蛇腹状の変形促進手段16は、同じ曲率半径を有する複数の山部162と谷部164とを滑らかに繋いだ連続形状を有している。なお、この変形促進手段16が設けられている領域は、側方部位14であれば特に限定されない。   The perspective view of the impact-absorbing member 1 which is one Embodiment of this invention is shown in FIG. The shock absorbing member 1 includes a compression part 10 where a compressive stress is generated by directly receiving an impact, a tensile part 12 where a tensile stress is generated opposite to the compression part 10, and the compression part 10 and the tensile part 12. It has a pair of side part 14 which connects both ends. The side portion 14 is provided with a bellows-like deformation promoting means 16, and the bellows-like deformation promoting means 16 is a continuous connecting a plurality of peaks 162 and valleys 164 having the same radius of curvature. It has a shape. In addition, if the area | region where this deformation | transformation promotion means 16 is provided is the side part 14, it will not be specifically limited.

衝撃吸収部材1の平面図を図2及び3に示す。図2に示すように、谷部164の頂部は、長手方向における変形促進手段16の両端を結ぶ直線mよりも内側になる位置に配置されている。また、図3に示すように、変形促進手段16は、山部162の曲率半径r1と谷部164の曲率半径r2が同じ長さである。この場合には、座屈時に各々の山部162及び谷部164が安定した一定の荷重を発生する。これに対して、図4に示すように、本実施形態の変形例として、山部162’の曲率半径r1よりも谷部164’の曲率半径r2の方が大きい変形促進手段を設けた衝撃吸収部材が挙げられる。この変形例では、曲率半径の大きい谷部164’が山部162’よりも座屈し易く、優先的に一定の荷重を発生する。   Plan views of the shock absorbing member 1 are shown in FIGS. As shown in FIG. 2, the top of the valley 164 is disposed at a position on the inner side of the straight line m connecting both ends of the deformation promoting means 16 in the longitudinal direction. Further, as shown in FIG. 3, in the deformation promoting means 16, the curvature radius r1 of the peak 162 and the curvature radius r2 of the valley 164 are the same length. In this case, each peak 162 and valley 164 generates a stable and constant load during buckling. On the other hand, as shown in FIG. 4, as a modification of the present embodiment, shock absorbing means provided with a deformation promoting means in which the curvature radius r2 of the valley portion 164 ′ is larger than the curvature radius r1 of the peak portion 162 ′. Member. In this modification, the valley 164 ′ having a large curvature radius is more likely to buckle than the peak 162 ′, and a certain load is preferentially generated.

[衝撃吸収機構]
図5は、本発明の衝撃吸収部材1における衝撃吸収機構を表す図である。一般に、構造部材が衝撃により曲げ変形を受ける際には、側方部位14の衝撃加圧部9付近には、矢印方向の圧縮応力が発生し、側方部位14の衝撃加圧部9の反対側には、圧縮応力と反対方向の引張応力が発生する。構造部材が曲がってしまうのは、構造部材の曲げ荷重が低下するためであり、曲げ荷重の低下は、前記圧縮応力により、衝撃加圧部9および側方部位14が座屈し、断面が潰れてしまうためである。本発明においては、側方部位14に設けられた変形促進手段16により、この圧縮応力を利用して、曲げ荷重を長手方向の圧縮荷重に変換し、断面の潰れを回避することにより曲げ荷重の低下を防ぐことが可能となり、その結果、曲げエネルギー吸収効率を向上することができる。
[Shock absorbing mechanism]
FIG. 5 is a diagram showing an impact absorbing mechanism in the impact absorbing member 1 of the present invention. In general, when the structural member is subjected to bending deformation due to an impact, compressive stress in the direction of the arrow is generated in the vicinity of the impact pressurizing portion 9 in the side portion 14, opposite to the impact pressurizing portion 9 in the side portion 14. A tensile stress in the direction opposite to the compressive stress is generated on the side. The reason why the structural member is bent is that the bending load of the structural member is reduced. The decrease in the bending load is caused by the impact pressure portion 9 and the side portion 14 buckling due to the compressive stress, and the cross section is crushed. It is because it ends. In the present invention, the deformation promoting means 16 provided in the side portion 14 uses this compressive stress to convert the bending load into a longitudinal compressive load, and avoids the collapse of the cross section, thereby reducing the bending load. It is possible to prevent the decrease, and as a result, the bending energy absorption efficiency can be improved.

[衝撃吸収部材の形状]
本発明の衝撃吸収部材1は、長手方向と短手方向を有し、衝撃時には、長手方向に対して略直角に曲げ変形がなされることにより衝撃の吸収を行うものである。本発明に係る衝撃吸収部材1の形状は、中空の衝撃吸収部材となるものであれば特に限定されるものではない。例えば、四角柱などの断面多角形形状、円筒形状を挙げることができ、場所によって断面形状が異なっていてもよい。
[Shape of shock absorbing member]
The impact absorbing member 1 of the present invention has a longitudinal direction and a transverse direction, and absorbs the impact by being bent and deformed substantially perpendicular to the longitudinal direction at the time of impact. The shape of the shock absorbing member 1 according to the present invention is not particularly limited as long as it is a hollow shock absorbing member. For example, a cross-sectional polygonal shape such as a quadrangular prism and a cylindrical shape can be given, and the cross-sectional shape may differ depending on the location.

[衝撃吸収部材、変形促進手段の材料]
本実施形態に係る変形促進手段16は、繊維強化プラスチック材により形成される。例えば、強化繊維としては、炭素繊維、ガラス繊維、アラミド繊維、玄武岩繊維などが使用でき、母材プラスチックとしては、エポキシ樹脂、ポリプロピレン、不飽和ポリエステル、ビニルエステルなどが使用できる。
[Material of shock absorbing member and deformation promoting means]
The deformation promoting means 16 according to this embodiment is formed of a fiber reinforced plastic material. For example, carbon fiber, glass fiber, aramid fiber, basalt fiber and the like can be used as the reinforcing fiber, and epoxy resin, polypropylene, unsaturated polyester, vinyl ester and the like can be used as the base plastic.

繊維強化プラスチック材のうち、強化材として炭素繊維を用いた炭素繊維強化プラスチック(CFRP)は、軽量、高強度、高弾性率材料であるため、本実施形態に係る変形促進手段16の形成に好適に用いられる。具体的には、CFRPのUD材やクロス材等を積層したものを用いることができる。例えば、積層するシート同士の繊維方向が一定の角度を有するように、積層されるシート状UD材同士の繊維方向を変えて積層させたものを用いることができる。また、一のシート状UD材と他のシート状UD材とを、繊維配向角が45度と−45度となるように積層して形成されたもの(以下、CFRPのUD材[45/−45]とする)等を用いることができる。ここで、「繊維配向角」とは、衝撃吸収部材の重心を通って長手方向に延びる中心軸と繊維方向から定まる角度である。また、「繊維方向」とは、UD材やクロス材等の繊維強化材を形成する際に、繊維を一方向に揃えることにより決定される繊維の向きである。繊維強化材を用いた衝撃吸収構造体の荷重特性は、繊維配向角に影響されるため、繊維配向角を適宜設定することにより、高いエネルギー吸収効率を有する衝撃吸収部材を提供することができる。なお、積層回数や繊維配向角については特に限定されない。   Among the fiber reinforced plastic materials, carbon fiber reinforced plastic (CFRP) using carbon fibers as a reinforcing material is a lightweight, high strength, high elastic modulus material, and therefore suitable for forming the deformation promoting means 16 according to the present embodiment. Used for. Specifically, a laminate of CFRP UD material, cloth material, or the like can be used. For example, what laminated | stacked by changing the fiber direction of the sheet-like UD materials laminated | stacked so that the fiber direction of the sheet | seats to laminate | stack may have a fixed angle can be used. In addition, one sheet-like UD material and another sheet-like UD material are laminated to have a fiber orientation angle of 45 degrees and −45 degrees (hereinafter referred to as CFRP UD material [45 / − 45]) and the like can be used. Here, the “fiber orientation angle” is an angle determined from the central axis extending in the longitudinal direction through the center of gravity of the impact absorbing member and the fiber direction. The “fiber direction” is the fiber direction determined by aligning the fibers in one direction when forming a fiber reinforcing material such as a UD material or a cloth material. Since the load characteristics of the impact absorbing structure using the fiber reinforcing material are affected by the fiber orientation angle, an impact absorbing member having high energy absorption efficiency can be provided by appropriately setting the fiber orientation angle. The number of laminations and the fiber orientation angle are not particularly limited.

また、本実施形態に係る変形促進手段16の形成に、プリプレグを用いることができる。例えば、シート状UD材の繊維方向を一方向に揃えて複数枚積層した一方向UD材により形成されたプリプレグ等を用いることができる。   Moreover, a prepreg can be used for formation of the deformation | transformation promotion means 16 which concerns on this embodiment. For example, a prepreg formed of a unidirectional UD material in which a plurality of sheet-like UD materials are aligned with the fiber direction aligned in one direction can be used.

なお、変形促進手段16以外の部位における材料としては、特に限定されるものではなく、例えば、繊維強化プラスチック、繊維強化金属などの繊維強化材料、鉄やアルミニウムなどの金属、樹脂単体等を挙げることができる。   The material other than the deformation promoting means 16 is not particularly limited, and examples thereof include fiber reinforced plastics such as fiber reinforced plastics and fiber reinforced metals, metals such as iron and aluminum, and single resins. Can do.

<製造方法>
本実施形態に係る衝撃吸収部材1の製造方法の一例を図6に示す。図6に示すように、本実施形態に係る衝撃吸収部材1に設けられる変形促進手段16は、予め所定の曲率半径を有する複数の山部と谷部からなる連続形状を設けた上型22と下型24の間に、繊維強化プラスチック材をすし巻き状にしたプリプレグ100を挿入し、これらの型2を閉じて内圧成形することにより得られる。次いで、得られた変形促進手段16を、中空の鉄材やアルミニウム材等の側方部位に配置することにより、衝撃吸収部材1が得られる。このように、変形促進手段16のみを繊維強化プラスチック材で成形し、その他の部分を金属等で成形することができる他、繊維強化プラスチック材の内圧成形のみでも衝撃吸収部材1の成形が可能である。
<Manufacturing method>
An example of the manufacturing method of the impact absorbing member 1 according to the present embodiment is shown in FIG. As shown in FIG. 6, the deformation promoting means 16 provided in the impact absorbing member 1 according to the present embodiment includes an upper mold 22 provided with a continuous shape composed of a plurality of crests and troughs having a predetermined radius of curvature in advance. It is obtained by inserting a prepreg 100 in which a fiber-reinforced plastic material is wound into a squeeze shape between the lower dies 24, and closing these dies 2 and performing internal pressure molding. Subsequently, the impact-absorbing member 1 is obtained by arranging the obtained deformation promoting means 16 in a side portion such as a hollow iron material or aluminum material. In this way, only the deformation promoting means 16 can be molded with a fiber reinforced plastic material, and other portions can be molded with metal or the like, and the impact absorbing member 1 can be molded only by internal pressure molding of the fiber reinforced plastic material. is there.

<用途>
本発明の衝撃吸収部材は、短い変形ストロークと大きなエネルギー吸収効率を実現できることから、優れた衝撃エネルギー吸収が必要となる部材に用いることができる。そのような部材としては、例えば、自動車のフロントピラー、センターピラー、リアピラー等の自動車側部に使用されるビーム材を挙げることが可能である。本発明の衝撃吸収部材を構造部材に用いた自動車は、追突事故等により車体に衝撃が加わった際に、曲げ荷重に対する耐久性に優れることから、優れた衝撃エネルギーの吸収が期待でき、乗員の保護に寄与しうる。
<Application>
Since the impact absorbing member of the present invention can realize a short deformation stroke and a large energy absorption efficiency, it can be used for a member that requires excellent impact energy absorption. As such a member, for example, a beam material used for an automobile side part such as a front pillar, a center pillar, and a rear pillar of an automobile can be cited. The automobile using the impact absorbing member of the present invention as a structural member is excellent in durability against bending load when an impact is applied to the vehicle body due to a rear-end collision or the like. Can contribute to protection.

図7は、本発明の衝撃吸収部材を自動車センターピラーのビーム材として適用した例を示す図である。自動車センターピラーとは、図7(A)にて示される部分であり、センターピラーには、図7(B)に示されるように、内部構造材としてのビーム材が存在している。図7(B)に示されるビーム材のY−Yにおける断面図が図7(C)である。一般に、自動車の側方からの衝突時の荷重は、矢印に示される方向から受ける。このため、矢印方向を受ける面を荷重受け面(圧縮部位)とし、その側方部位に対して変形促進手段を設けるのが効果的である。   FIG. 7 is a diagram showing an example in which the impact absorbing member of the present invention is applied as a beam material for an automobile center pillar. The automobile center pillar is a portion shown in FIG. 7A, and a beam material as an internal structural material exists in the center pillar as shown in FIG. 7B. FIG. 7C is a cross-sectional view taken along the line YY of the beam material shown in FIG. Generally, the load at the time of a collision from the side of the automobile is received from the direction indicated by the arrow. For this reason, it is effective to use the surface receiving the arrow direction as a load receiving surface (compressed portion) and to provide deformation promoting means for the side portion.

次に、本発明を実施例に基づいてさらに詳細に説明するが、本発明はこれに限定されるものではない。   Next, the present invention will be described in more detail based on examples, but the present invention is not limited thereto.

<実施例1>
[衝撃吸収部材の全体構成]
図8に示されるような、蛇腹状の変形促進手段を備える中空の衝撃吸収部材を作成した。図8中の長さの数値の単位はmmであり、衝撃吸収部材は、長手方向の長さ600mm、断面が50mm×50mmの中空部材である。この衝撃吸収部材の長手方向の略中心部分のP部に、90mmの領域で、蛇腹状の変形促進手段を設けた。尚、図8における矢印を衝撃加圧方向とした。
<Example 1>
[Overall configuration of shock absorbing member]
A hollow impact absorbing member having bellows-like deformation promoting means as shown in FIG. 8 was prepared. The unit of the numerical value of the length in FIG. 8 is mm, and the impact absorbing member is a hollow member having a length of 600 mm in the longitudinal direction and a cross section of 50 mm × 50 mm. A bellows-like deformation promoting means is provided in a 90 mm region at the P portion at the substantially central portion in the longitudinal direction of the shock absorbing member. In addition, the arrow in FIG.

衝撃吸収部材の製造は、次の通りに行った。先ず、東邦テナックス(株)製の炭素繊維HTAにマトリクスとしてエポキシ樹脂(#112)を用いたUD材を、積層構成が[0/90/0/90/0]sとなるように積層した後、すし巻き状にしてすし巻き状プリプレグを作成した。次いで、予め曲率半径25mmを有する複数の山部と谷部からなる連続形状を設けた上型と下型の間に、このすし巻き状プリプレグを挿入し、これらの型を閉じて内圧成形することにより、変形促進手段を得た。そして、全面をUD材[0/90]10plyで成形した中空部材の側方部位に、この変形促進手段を配置することにより、衝撃吸収部材を得た。   The impact absorbing member was manufactured as follows. First, a UD material using an epoxy resin (# 112) as a matrix is laminated on a carbon fiber HTA manufactured by Toho Tenax Co., Ltd. so that the laminated structure is [0/90/0/90/0] s. A sushi-wound prepreg was made in a sushi-wound shape. Next, this spirally wound prepreg is inserted between an upper mold and a lower mold, which are provided with a continuous shape consisting of a plurality of crests and troughs having a curvature radius of 25 mm in advance, and these molds are closed and subjected to internal pressure molding. Thus, a deformation promoting means was obtained. And the impact-absorbing member was obtained by arrange | positioning this deformation | transformation promotion means in the side part of the hollow member shape | molded the whole surface by UD material [0/90] 10ply.

<比較例1>
中空の部材に変形促進手段を設けなかった以外は実施例1と同様に、全面をUD材[0/90]10plyで成形したものを比較例1とした。
<Comparative Example 1>
Comparative Example 1 was obtained by molding the entire surface with UD material [0/90] 10 ply in the same manner as in Example 1 except that the hollow member was not provided with deformation promoting means.

<評価>
実施例1及び比較例1により得られた衝撃吸収部材について、3点曲げの荷重変位試験を行なった。試験機としては、島津製作所製オートグラフを用い、試験速度を5mm/minとして、押子に設置したロードセルにより測定を実施した。
<Evaluation>
The impact absorbing member obtained in Example 1 and Comparative Example 1 was subjected to a three-point bending load displacement test. As a tester, Shimadzu Autograph was used, and the test speed was 5 mm / min. The measurement was performed with a load cell installed on the presser.

試験の結果、得られた応力−歪曲線を図9に示す。図9に示すように、実施例は比較例と比べ、降伏点(最大荷重)後の荷重(応力)低下が少なく、より衝撃エネルギー吸収効率が高いことが示された。   The stress-strain curve obtained as a result of the test is shown in FIG. As shown in FIG. 9, compared to the comparative example, the example showed less load (stress) reduction after the yield point (maximum load) and higher impact energy absorption efficiency.

一実施形態に係る衝撃吸収部材の斜視図である。It is a perspective view of the impact-absorbing member which concerns on one Embodiment. 一実施形態に係る衝撃吸収部材の変形促進手段の拡大図である。It is an enlarged view of the deformation | transformation promotion means of the impact-absorbing member which concerns on one Embodiment. 一実施形態に係る衝撃吸収部材の変形促進手段の拡大図である。It is an enlarged view of the deformation | transformation promotion means of the impact-absorbing member which concerns on one Embodiment. 変形例に係る衝撃吸収部材の変形促進手段の拡大図である。It is an enlarged view of the deformation | transformation promotion means of the impact-absorbing member which concerns on a modification. 衝撃吸収機構を説明するための図面である。It is drawing for demonstrating an impact-absorbing mechanism. 一実施形態に係る衝撃吸収部材の製造方法を説明するための図面である。It is drawing for demonstrating the manufacturing method of the impact-absorbing member which concerns on one Embodiment. 本発明に係る衝撃吸収部材を自動車センターピラーのビーム材に適用した例を示す図面である。It is drawing which shows the example which applied the impact-absorbing member which concerns on this invention to the beam material of a motor vehicle center pillar. 実施例1の衝撃吸収部材の側面図である。It is a side view of the impact-absorbing member of Example 1. 実施例及び比較例における応力−歪曲線を示す図である。It is a figure which shows the stress-strain curve in an Example and a comparative example. 特許文献2の構造部材を説明するための図面である。It is drawing for demonstrating the structural member of patent document 2. FIG.

符号の説明Explanation of symbols

1、3 衝撃吸収部材
10、10’ 圧縮部位
12 引張部位
13 中立軸
14 側方部位
16 変形促進手段
162、162’ 山部
164、164’ 谷部
2 型
22 上型
24 下型
30 ピラー材
100 プリプレグ
300 構造部材
301 荷重受け面
302 山折部分
303 結合部
DESCRIPTION OF SYMBOLS 1, 3 Shock-absorbing member 10, 10 'Compression part 12 Tensile part 13 Neutral shaft 14 Lateral part 16 Deformation promotion means 162, 162' Mountain part 164, 164 'Valley part 2 Type 22 Upper mold 24 Lower mold 30 Pillar material 100 Prepreg 300 Structural member 301 Load receiving surface 302 Folded part 303 Joint part

Claims (4)

長手方向と短手方向とを有し、曲げ変形を行うことにより衝撃を吸収する中空の衝撃吸収部材であって、
前記衝撃を直接受けることにより圧縮応力が発生する圧縮部位と、この圧縮部位に対向し引張応力が発生する引張部位と、これら圧縮部位と引張部位との両端側を連結する一対の側方部位と、を有し、
少なくとも前記側方部位には、所定の曲率半径を有する複数の山部と谷部とからなる蛇腹状の変形促進手段が設けられ、
前記変形促進手段は、繊維強化プラスチック材で形成され、且つ、前記谷部の頂部が前記長手方向における前記変形促進手段の両端を結ぶ線よりも内側になる位置に配置された衝撃吸収部材。
A hollow impact absorbing member that has a longitudinal direction and a transverse direction and absorbs impact by bending deformation,
A compression site where compressive stress is generated by receiving the impact directly; a tensile site where tensile stress is generated opposite to the compression site; and a pair of side sites connecting both ends of the compression site and the tensile site; Have
At least the side portion is provided with bellows-like deformation promoting means composed of a plurality of peaks and valleys having a predetermined radius of curvature,
The said deformation | transformation promotion means is an impact-absorbing member arrange | positioned in the position which the top part of the said trough part becomes inside from the line | wire which connects the both ends of the said deformation | transformation promotion means in the said longitudinal direction.
前記変形促進手段は、前記山部及び谷部の各稜線が前記長手方向に対して略直交する向きに配置された請求項1記載の衝撃吸収部材。   The impact absorbing member according to claim 1, wherein the deformation promoting means is arranged in a direction in which each ridge line of the peak portion and the valley portion is substantially orthogonal to the longitudinal direction. 前記山部及び谷部の曲率半径は、互いに異なる請求項1又は2記載の衝撃吸収部材。   The impact absorbing member according to claim 1 or 2, wherein the radii of curvature of the ridges and valleys are different from each other. 前記側方部位に設けられた変形促進手段は、前記圧縮部位側から中立軸を跨いで前記引張部位側にまで配置された請求項1から3いずれか記載の衝撃吸収部材。   The impact absorbing member according to any one of claims 1 to 3, wherein the deformation promoting means provided in the side part is disposed from the compression part side to the tension part side across a neutral axis.
JP2005019897A 2005-01-27 2005-01-27 Method for manufacturing shock absorbing member Pending JP2006207679A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005019897A JP2006207679A (en) 2005-01-27 2005-01-27 Method for manufacturing shock absorbing member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005019897A JP2006207679A (en) 2005-01-27 2005-01-27 Method for manufacturing shock absorbing member

Publications (1)

Publication Number Publication Date
JP2006207679A true JP2006207679A (en) 2006-08-10

Family

ID=36964776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005019897A Pending JP2006207679A (en) 2005-01-27 2005-01-27 Method for manufacturing shock absorbing member

Country Status (1)

Country Link
JP (1) JP2006207679A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008100548A (en) * 2006-10-17 2008-05-01 Toyota Motor Corp Body side structure
JP2017527492A (en) * 2014-07-10 2017-09-21 姜立平JIANG, Liping Anti-collision frame body with elastic structure
WO2020085381A1 (en) 2018-10-24 2020-04-30 日本製鉄株式会社 Automobile frame member and electric vehicle
WO2020085385A1 (en) 2018-10-24 2020-04-30 日本製鉄株式会社 Automobile structural member

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008100548A (en) * 2006-10-17 2008-05-01 Toyota Motor Corp Body side structure
JP2017527492A (en) * 2014-07-10 2017-09-21 姜立平JIANG, Liping Anti-collision frame body with elastic structure
WO2020085381A1 (en) 2018-10-24 2020-04-30 日本製鉄株式会社 Automobile frame member and electric vehicle
WO2020085385A1 (en) 2018-10-24 2020-04-30 日本製鉄株式会社 Automobile structural member
CN112867637A (en) * 2018-10-24 2021-05-28 日本制铁株式会社 Automobile framework component and electric automobile
US11208150B2 (en) 2018-10-24 2021-12-28 Nippon Steel Corporation Automotive frame member and electric vehicle
US11465687B2 (en) 2018-10-24 2022-10-11 Nippon Steel Corporation Automobile structural member

Similar Documents

Publication Publication Date Title
JP4118264B2 (en) Shock absorbing member
JP6080243B2 (en) Automotive bumper
US9598035B2 (en) Impact absorber
WO2019146789A1 (en) Shock-absorbing member
JP6120460B2 (en) Automotive bumper
WO2009107670A1 (en) Bumper beam
JPH06101732A (en) Shock absorbing member for composite structure
JP4583775B2 (en) Shock absorber for automobile
JP4118263B2 (en) Shock absorber for automobile
US9340171B2 (en) Deformation element, in particular for bumpers on motor vehicles
JP4420830B2 (en) Shock absorbing member
JP2007237944A (en) Composite material
JP4462978B2 (en) Energy absorption structure of automobile
JP4196746B2 (en) Center pillar structure of automobile
JP2006200702A (en) Shock absorbing member
JP2006207679A (en) Method for manufacturing shock absorbing member
JP2005247096A (en) Vehicular impact absorbing body and vehicular impact absorbing device
CN217804733U (en) Hexagonal high-performance composite material anti-creeper
JP2006046481A (en) Method for manufacturing shock absorbing member
JP2006214481A (en) Shock absorbing member
JP4467378B2 (en) Shock absorbing structure
JP2023013373A (en) bumper reinforcement
JP5328401B2 (en) Shock absorbing member
JP4422674B2 (en) Energy absorbing structural member
JPWO2015076096A1 (en) Automotive bumper