[go: up one dir, main page]

JP2006207438A - Supercharging device for engine - Google Patents

Supercharging device for engine Download PDF

Info

Publication number
JP2006207438A
JP2006207438A JP2005019023A JP2005019023A JP2006207438A JP 2006207438 A JP2006207438 A JP 2006207438A JP 2005019023 A JP2005019023 A JP 2005019023A JP 2005019023 A JP2005019023 A JP 2005019023A JP 2006207438 A JP2006207438 A JP 2006207438A
Authority
JP
Japan
Prior art keywords
engine
electric supercharger
supercharging
intake air
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005019023A
Other languages
Japanese (ja)
Inventor
Masaharu Marumoto
真玄 丸本
Jinjiyu Nakamoto
仁寿 中本
Naoyuki Yamagata
直之 山形
Motokimi Fujii
幹公 藤井
Ayumi Ishino
歩 石野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2005019023A priority Critical patent/JP2006207438A/en
Publication of JP2006207438A publication Critical patent/JP2006207438A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Supercharger (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To suppress rise in intake temperature and prevent knocking when an operating condition of an engine is in a pre-rotation region, in a supercharging device for the engine. <P>SOLUTION: This supercharging device for the engine is provided with an electric supercharger provided on an intake passage; a bypass passage communicating upstream and downstream sides of the electric supercharger on the intake passage with each other; a bypass valve opening/closing the bypass passage; and an intake system controller controlling rotational frequency of the electric supercharger and the bypass valve such that predetermined supercharging pressure can be obtained when the operating condition of the engine is in a supercharging region. The supercharging device for the engine is further provided with an engine control device controlling the rotational frequency of the electric supercharger and the bypass valve, such that lower supercharging pressure is obtained compared to the case where the operating condition of the engine is in the supercharging region, when it is determined that the operating condition is in the pre-rotation region set in a low load side of the supercharging region. When the intake temperature exceeds a predetermined value, the control device reduces and corrects the rotational frequency of the electric supercharger. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、過給によりエンジントルクの増大を図るエンジンの過給装置の技術分野に属する。   The present invention belongs to the technical field of an engine supercharging device that increases engine torque by supercharging.

従来より、エンジントルクの増大を図る手段として吸気を過給するスーパーチャージャやターボチャージャが周知であるが、いずれも過給能力がエンジン回転数の影響を大きく受ける結果、低回転領域で過給圧が不足するという欠点がある。これに対し、電気的に駆動される電動過給機は、エンジン回転数の影響を受けることなく回転数を制御できるので、低回転領域でも十分な過給圧を発生し得る利点がある。   Conventionally, superchargers and turbochargers that supercharge intake air as means for increasing engine torque are well known. However, as a result of the supercharging ability being greatly affected by the engine speed, the supercharging pressure is low. There is a drawback of lacking. On the other hand, the electrically driven electric supercharger can control the rotational speed without being affected by the engine rotational speed, and therefore has an advantage that a sufficient supercharging pressure can be generated even in a low rotational speed region.

例えば特許文献1に記載のエンジンの過給装置は、吸気通路上に配置された電動過給機と、該過給機の上、下流側を連通するバイパス通路と、該バイパス通路上に設けられたバイパス弁とを有し、エンジンの運転状態が過給領域にあるときに、過給機を作動させると共にバイパス弁を閉じることにより、過給を行うようになっている。そして、このような構成のエンジンの過給装置において、急加速時等の応答性をさらに高める方法として予回転制御が提案されている。   For example, an engine supercharger described in Patent Document 1 is provided on an electric supercharger disposed on an intake passage, a bypass passage communicating with the upstream side of the supercharger, and a bypass passage. When the engine operating state is in the supercharging region, supercharging is performed by operating the supercharger and closing the bypass valve. In the engine supercharging device having such a configuration, pre-rotation control has been proposed as a method for further improving the responsiveness at the time of rapid acceleration or the like.

この予回転制御としては、例えば、エンジンの運転状態が過給領域に移行する前に予めバイパス弁を開いた状態で電動過給機を作動させておき、予め電動過給機の回転数を高めておくことにより、過給領域に移行した際に速やかに所要の過給圧が得られるようにする回転制御がある。また、エンジンの運転状態が過給領域に移行する前にバイパス弁を閉じ気味にした状態で電動過給機を作動させて、予め電動過給機下流の圧力を高めておくことにより、過給領域に移行した際に速やかに所要の過給圧が得られるようにする予圧制御がある。
特開2003−227342号公報
As this pre-rotation control, for example, the electric supercharger is operated with the bypass valve opened in advance before the engine operating state shifts to the supercharging region, and the number of rotations of the electric supercharger is increased in advance. Therefore, there is a rotation control that allows a required supercharging pressure to be quickly obtained when the supercharging region is entered. In addition, by operating the electric supercharger in a state where the bypass valve is closed and made clear before the operating state of the engine shifts to the supercharging region, the pressure on the downstream side of the electric supercharger is increased in advance. There is a preload control that allows a required supercharging pressure to be obtained quickly when shifting to a region.
JP 2003-227342 A

ところで、上記予回転制御中に吸気温度が上昇し、高温の吸気が燃焼室に導入されてノッキングが発生し易くなるという問題がある。この予回転制御中の吸気温度の上昇の原因は、以下のように考えられる。   However, the intake air temperature rises during the pre-rotation control, and there is a problem that high-temperature intake air is introduced into the combustion chamber and knocking is likely to occur. The cause of the rise in the intake air temperature during the pre-rotation control is considered as follows.

即ち、回転制御時においては、バイパス弁が開いた状態で電動過給機を作動させるので、バイパス通路を介して吸気が循環するが、循環する吸気が電動過給機の作動による発熱等を受けて昇温されることが吸気温度の上昇の主な原因となる。   That is, at the time of rotation control, the electric supercharger is operated with the bypass valve opened, so that intake air circulates through the bypass passage, but the circulated intake air receives heat generated by the operation of the electric supercharger. The main reason for the rise in intake air temperature is that the temperature rises.

また、予圧制御時においては、閉じ気味に設定されたバイパス弁前後の圧力差が吸気温度の上昇の主な原因となる。つまり、この圧力差によって、電動過給機下流の高い吸気の位置エネルギが、バイパス弁の隙間を通って過給機上流に流れる際に流速としての運動エネルギに変換されると共に、この運動エネルギが過給機上流で例えば新気との衝突によって流速を失うときに熱エネルギに変換され、この熱エネルギが吸気温度を上昇させることになる。   Further, during the preload control, the pressure difference before and after the bypass valve set to be closed is a main cause of the rise in the intake air temperature. That is, by this pressure difference, the potential energy of the high intake air downstream of the electric supercharger is converted into kinetic energy as a flow velocity when flowing upstream of the turbocharger through the clearance of the bypass valve, and this kinetic energy is When the flow velocity is lost due to, for example, a collision with fresh air upstream of the supercharger, it is converted into thermal energy, which increases the intake air temperature.

そこで、本発明は、エンジンの過給装置において、エンジンの運転状態が予回転領域にあるときに、吸気温度の上昇を抑制し、ノッキングの発生を防止することを課題とする。   Accordingly, an object of the present invention is to suppress an increase in intake air temperature and prevent occurrence of knocking when an engine operating state is in a pre-rotation region in an engine supercharging device.

前記課題を解決するため、本発明は次のように構成したことを特徴とする。   In order to solve the above problems, the present invention is configured as follows.

まず、本願の請求項1に記載の発明は、吸気通路に設けられた電動過給機と、吸気通路における該電動過給機の上、下流側を連通させるバイパス通路と、該バイパス通路を開閉するバイパス弁と、エンジンの運転状態が過給領域にあるときに所定の過給圧が得られるように電動過給機の回転数及びバイパス弁を制御する過給制御手段とが備えられたエンジンの過給装置であって、エンジンの運転状態が前記過給領域の低負荷側に設定された予回転領域にあるか否かを判定する判定手段と、該判定手段によりエンジンの運転状態が予回転領域にあると判定されたときに、運転状態が過給領域にある場合より低い過給圧となるように電動過給機の回転数及びバイパス弁を制御する予回転制御手段と、吸気温度を検出する吸気温度検出手段とが備えられ、前記予回転制御手段は、該吸気温度検出手段により検出された吸気温度が所定値以上のときに、電動過給機の回転数を減少補正することを特徴とする。   First, the invention according to claim 1 of the present application is directed to an electric supercharger provided in an intake passage, a bypass passage communicating with the downstream side of the electric supercharger in the intake passage, and opening and closing the bypass passage. And a supercharging control means for controlling the rotational speed of the electric supercharger and the bypass valve so that a predetermined supercharging pressure is obtained when the operating state of the engine is in the supercharging region. And determining means for determining whether or not the engine operating state is in a pre-rotation region set on the low load side of the supercharging region, and the engine operating state is preliminarily determined by the determining unit. Pre-rotation control means for controlling the rotational speed of the electric supercharger and the bypass valve so that the supercharging pressure is lower than when the operation state is in the supercharging region when it is determined that the engine is in the rotational region; And intake air temperature detecting means for detecting Is, the pre-rotation control means, the intake air temperature detected by the intake air temperature detecting means when the predetermined value or more, characterized in that it reduces compensation for the rotational speed of the electric supercharger.

なお、予回転制御のうち、予圧制御では、過給領域における過給圧よりも低い過給圧が得られるように電動過給機の回転数及びバイパス弁が制御されることになり、回転制御では、予圧は行われないが、電動過給機の直下流の過給圧が過給領域における過給圧よりも低くなるように電動過給機の回転数が制御される。   Of the pre-rotation control, in the pre-pressure control, the rotation speed and bypass valve of the electric supercharger are controlled so that a supercharging pressure lower than the supercharging pressure in the supercharging region is obtained. Then, although the preload is not performed, the rotational speed of the electric supercharger is controlled so that the supercharging pressure immediately downstream of the electric supercharger is lower than the supercharging pressure in the supercharging region.

また、請求項2に記載の発明は、前記請求項1に記載のエンジンの過給装置において、前記予回転制御手段により行われる予回転制御は、バイパス弁を絞り制御すると共に電動過給機を作動させて過給圧を得る予圧制御であると共に、該予圧制御中、前記吸気温度検出手段により検出された吸気温度が所定値以上のときに、電動過給機の回転数の減少補正に加えて、バイパス弁を閉じる方向に制御することを特徴とする。   According to a second aspect of the present invention, in the supercharging device for an engine according to the first aspect, the prerotation control performed by the prerotation control means controls the throttle of the bypass valve and the electric supercharger. In addition to preload control for operating to obtain a supercharging pressure, and during the preload control, when the intake air temperature detected by the intake air temperature detecting means is equal to or higher than a predetermined value, in addition to correcting the decrease in the rotational speed of the electric supercharger The bypass valve is controlled to be closed.

そして、請求項3に記載の発明は、前記請求項1に記載のエンジンの過給装置において、前記予回転制御手段は、ノッキング発生因子に応じて電動過給機の回転数の減少補正量を修正することを特徴とする。   According to a third aspect of the present invention, in the engine supercharging device according to the first aspect, the pre-rotation control means sets a reduction correction amount for the rotational speed of the electric supercharger in accordance with a knocking occurrence factor. It is characterized by correction.

まず、請求項1に記載の発明によれば、エンジンの運転状態が予回転領域にあるときに、電動過給機の回転数が減少補正されるので、過給機の駆動電力が低下されて該過給機の発熱が抑制される。その結果、特に回転制御においては、循環する吸気が受ける熱量が減少され、吸気温度の上昇が抑制される。また、予圧制御においては、電動過給機の回転数を低下させることによって、過給機下流の圧力が減少され、その結果バイパス弁前後の圧力差を低減させることができ、吸気温度の上昇が抑制される。このように、本発明によれば、予回転制御時の吸気温度の上昇が抑制され、ノッキングの発生が防止される。   First, according to the first aspect of the invention, when the engine operating state is in the pre-rotation region, the rotational speed of the electric supercharger is corrected to decrease, so that the driving power of the supercharger is reduced. Heat generation of the supercharger is suppressed. As a result, particularly in rotation control, the amount of heat received by the circulated intake air is reduced, and an increase in intake air temperature is suppressed. Further, in the preload control, the pressure downstream of the supercharger is reduced by lowering the rotational speed of the electric supercharger. As a result, the pressure difference before and after the bypass valve can be reduced, and the intake temperature rises. It is suppressed. Thus, according to the present invention, an increase in the intake air temperature during the pre-rotation control is suppressed, and the occurrence of knocking is prevented.

また、請求項2に記載の発明によれば、予圧制御時に電動過給機の回転数を低下させることに加えてバイパス弁の開度をさらに閉方向に制御するので、バイパス弁の隙間から循環する吸気が電動過給機の発熱を受ける度合いが低減され、吸気温度の上昇が効果的に抑制されることになる。   According to the second aspect of the invention, since the opening degree of the bypass valve is further controlled in the closing direction in addition to lowering the rotational speed of the electric supercharger during the preload control, it is circulated from the gap of the bypass valve. The degree of intake air that receives heat generated by the electric supercharger is reduced, and an increase in intake air temperature is effectively suppressed.

そして、請求項3に記載の発明によれば、吸気温度や燃料性状などのノッキング発生因子に応じて、ノッキングが発生し易いと判断されるときは、電動過給機の回転数の減少補正量を増大させることにより確実にノッキングの発生が防止される一方、ノッキングが発生し難いと判断されるときは、電動過給機の回転数の減少補正量を減少させることによりいたずらに電動過給機の回転数を低下させて過給圧の応答性を低下させることが防止される。   According to the third aspect of the present invention, when it is determined that knocking is likely to occur according to knocking factors such as intake air temperature and fuel properties, the reduction correction amount for the rotational speed of the electric supercharger is determined. When it is determined that knocking is unlikely to occur, it is possible to prevent the occurrence of knocking by increasing the value of the electric supercharger. It is possible to prevent the responsiveness of the supercharging pressure from being lowered by reducing the rotational speed of the engine.

以下、本発明の実施の形態について説明する。   Hereinafter, embodiments of the present invention will be described.

まず、本発明の第1の実施の形態について説明すると、図1は、本実施の形態に係るエンジンの吸気系1を示している。この吸気系1において、吸気通路2には、上流側からエアクリーナ3、電動過給機4、スロットルバルブ5、サージタンク6が設けられ、該サージタンク6から各気筒#1〜#4内にそれぞれ通じる複数の独立吸気通路7…7が分岐されている。   First, a first embodiment of the present invention will be described. FIG. 1 shows an engine intake system 1 according to the present embodiment. In this intake system 1, an air cleaner 3, an electric supercharger 4, a throttle valve 5, and a surge tank 6 are provided in the intake passage 2 from the upstream side, and each of the cylinders # 1 to # 4 is provided from the surge tank 6. A plurality of independent intake passages 7...

また、該吸気通路2における電動過給機4の上、下流側を直接連通させるバイパス通路8が設けられており、該バイパス通路8に、該通路8を通過する空気の流量を制御するバイパス弁9が設けられている。   In addition, a bypass passage 8 that directly communicates the upstream side and the downstream side of the electric supercharger 4 in the intake passage 2 is provided, and a bypass valve that controls the flow rate of air passing through the passage 8 is provided in the bypass passage 8. 9 is provided.

前記電動過給機4は、コンプレッサ4aとモータ4bとを備え、モータ4bの駆動によりコンプレッサ4aが空気を吸入して各気筒#1〜#4に圧送することで、空気充填量ないしエンジントルクを増大させる。   The electric supercharger 4 includes a compressor 4a and a motor 4b. When the motor 4b is driven, the compressor 4a sucks air and pumps the air to each of the cylinders # 1 to # 4. Increase.

また、このエンジンを制御するエンジン制御装置100が備えられ、該制御装置100に、運転者によるアクセルペダル10aの踏込量(エンジン負荷)を検出するアクセル開度センサ10からの信号、エンジン回転数を検出するエンジン回転数センサ11からの信号、吸気温度を検出する吸気温度センサ12からの信号等が入力されるようになっている。   Further, an engine control device 100 for controlling the engine is provided, and a signal from the accelerator opening sensor 10 for detecting the amount of depression of the accelerator pedal 10a (engine load) by the driver and the engine speed are controlled by the control device 100. A signal from the engine speed sensor 11 to be detected, a signal from the intake air temperature sensor 12 to detect the intake air temperature, and the like are input.

そして、それらの入力信号に基いてスロットルバルブ5を開閉駆動するスロットルアクチュエータ13、各気筒#1〜#4に備えられた点火プラグ14…14、吸気系1を制御する吸気システムコントローラ101に各種の制御信号を出力する。さらに、前記吸気システムコントローラ101は、バイパス弁9を開閉駆動するバイパスアクチュエータ15、電動過給機4の回転数を制御する電動過給機コントローラ102などに制御信号を出力する。   The throttle actuator 13 that opens and closes the throttle valve 5 based on the input signals, the spark plugs 14... 14 provided in the cylinders # 1 to # 4, and the intake system controller 101 that controls the intake system 1 Output a control signal. Further, the intake system controller 101 outputs control signals to a bypass actuator 15 that opens and closes the bypass valve 9, an electric supercharger controller 102 that controls the rotational speed of the electric supercharger 4, and the like.

また、このエンジンには、該エンジンの駆動により発電を行うオルタネータ20と、該オルタネータ20で発電された電力を蓄えるバッテリ21とが備えられ、該バッテリ21から前記電動過給機コントローラ102に電力が供給されるようになっている。   Further, the engine is provided with an alternator 20 that generates electric power by driving the engine, and a battery 21 that stores electric power generated by the alternator 20, and electric power is supplied from the battery 21 to the electric supercharger controller 102. It comes to be supplied.

なお、前記吸気通路2、電動過給機4、バイパス通路8、及びバイパス弁9は、請求項1に記載の過給装置の前提となる構成要素に相当する。そして、吸気温度センサ12は請求項1に記載の過給装置の吸気温度検出手段に相当し、エンジン制御装置100は請求項1に記載の過給装置の判定手段及び予回転制御手段に相当し、吸気システムコントローラ101は請求項1に記載の過給装置の過給制御手段に相当する。   The intake passage 2, the electric supercharger 4, the bypass passage 8, and the bypass valve 9 correspond to the constituent elements that are the premise of the supercharging device according to claim 1. The intake air temperature sensor 12 corresponds to the intake air temperature detection means of the supercharging device according to claim 1, and the engine control device 100 corresponds to the determination device and the pre-rotation control means of the supercharging device according to claim 1. The intake system controller 101 corresponds to the supercharging control means of the supercharging device according to claim 1.

一方、前記エンジン制御装置100には、図2に示すエンジンの運転領域を設定したマップが記憶されている。このマップには、エンジン回転数とエンジン負荷とをパラメータとした4つの領域が設定されている。即ち、全エンジン運転領域の高回転側(エンジン回転数がN1以上)には自然吸気領域、低負荷低回転側(エンジン回転数がN1以下、エンジン負荷がα1以下)には予回転領域(予圧領域)、高負荷低回転側(エンジン回転数がN1以下、エンジン負荷がα1以上)には過給領域が設定されていると共に、該過給領域内の低回転側にはサージング領域が設定されている。   On the other hand, the engine control device 100 stores a map in which the engine operating region shown in FIG. 2 is set. In this map, four areas with the engine speed and the engine load as parameters are set. In other words, the natural intake region is on the high rotation side (engine speed is N1 or higher) of the entire engine operation region, and the prerotation region (preload) is on the low load low rotation side (engine speed is N1 or lower and engine load is α1 or lower). Area), a supercharging area is set on the high load low rotation side (engine speed is N1 or less, engine load is α1 or more), and a surging area is set on the low rotation side in the supercharging area. ing.

前記自然吸気領域では、バイパス弁9が開いた状態で電動過給機4を作動させないようにする。そして、吸気通路2に導入された空気は、図1の矢印Aに示すようにバイパス通路8を順方向に流れて、各気筒#1〜#4に供給される。   In the natural intake region, the electric supercharger 4 is not operated with the bypass valve 9 open. The air introduced into the intake passage 2 flows in the forward direction in the bypass passage 8 as indicated by an arrow A in FIG. 1 and is supplied to the cylinders # 1 to # 4.

前記予回転領域では、本実施の形態においては、予回転制御として予圧制御を行う。予圧制御は、バイパス弁9が閉じ気味にされた状態で電動過給機4を作動させる。その結果、吸気通路2における電動過給機4の下流側の圧力を予め高められ、エンジンの運転状態が過給領域に移行した際の過給圧の応答性を向上させる。このとき、同時にスロットルバルブ5の絞り制御を行うことにより各気筒#1〜#4内に導入する吸気量が必要以上に多くならないようにし、吸入空気量を正確に実現させる。   In the pre-rotation region, in the present embodiment, pre-pressure control is performed as pre-rotation control. In the preload control, the electric supercharger 4 is operated in a state in which the bypass valve 9 is closed. As a result, the pressure on the downstream side of the electric supercharger 4 in the intake passage 2 can be increased in advance, and the responsiveness of the supercharging pressure when the engine operating state shifts to the supercharging region is improved. At this time, the throttle control of the throttle valve 5 is performed at the same time so that the intake air amount introduced into the cylinders # 1 to # 4 is not increased more than necessary, and the intake air amount is accurately realized.

前記過給領域では、バイパス弁9を閉じた状態で電動過給機4を作動させる。そして、吸気通路2に導入された空気は図1の矢印Bに示すように吸気通路2を流れる。   In the supercharging region, the electric supercharger 4 is operated with the bypass valve 9 closed. The air introduced into the intake passage 2 flows through the intake passage 2 as shown by an arrow B in FIG.

前記サージング領域では、バイパス弁9を半開とした状態で電動過給機4を作動させる。このサージング領域は、電動過給機4の下流側の圧力が高く、吸気の流量が少ないときに、吸気が電動過給機4を逆流する可能性のある領域であって、ここでは、バイパス弁9を半開にすることにより、図1の矢印Cに示すように吸気の一部をバイパス通路8を逆流させて循環させるようにしている。   In the surging region, the electric supercharger 4 is operated with the bypass valve 9 half open. This surging region is a region in which intake air may flow backward through the electric supercharger 4 when the pressure on the downstream side of the electric supercharger 4 is high and the flow rate of intake air is small. By partially opening 9, a part of the intake air is circulated in the bypass passage 8 as shown by an arrow C in FIG.

一方、図3のマップは、電動過給機4の特性を示すもので、このマップには、吸入空気量を横軸にして、電動過給機4の上、下流側の圧力比が縦軸に示されている。そして、この電動過給機4の使用領域として、図に示す領域Xが設定されている。なお、領域Xの低吸入空気量高圧力比側の領域Yは、電動過給機4の下流側の圧力が高く、空気の流量は少ないので、前述のサージングが起き易い領域となる。   On the other hand, the map of FIG. 3 shows the characteristics of the electric supercharger 4. In this map, the pressure ratio on the upstream and downstream sides of the electric supercharger 4 is plotted on the vertical axis with the intake air amount on the horizontal axis. Is shown in And the area | region X shown to a figure is set as a use area | region of this electric supercharger 4. FIG. Note that the region Y on the low intake air amount / high pressure ratio side of the region X is a region where the above-mentioned surging is likely to occur because the pressure on the downstream side of the electric supercharger 4 is high and the air flow rate is small.

さらに、前記領域Xには、電動過給機4の消費電力に応じた領域a〜pが設定されている。これらの領域a〜pは、吸入空気量の増加に対して圧力比が減少するような複数の曲線で分割されてなる略短冊状の領域であり、低吸入空気量低圧力比側の領域aから順に消費電力は増加する。   Further, in the area X, areas a to p corresponding to the power consumption of the electric supercharger 4 are set. These areas a to p are substantially strip-shaped areas divided by a plurality of curves in which the pressure ratio decreases as the intake air amount increases, and the region a on the low intake air amount / low pressure ratio side The power consumption increases in order.

また、領域Xには、電動過給機4の回転数の特性が示されている。この特性は、領域Xの低吸入空気量低圧力比側に回転数40000rpmの曲線が設定され、高吸入吸気量高圧力比側に移るに従って回転数は増加することが示されている。   Further, in region X, the characteristics of the rotational speed of the electric supercharger 4 are shown. As for this characteristic, a curve with a rotational speed of 40000 rpm is set on the low intake air amount low pressure ratio side in the region X, and it is shown that the rotational speed increases as it moves to the high intake air intake high pressure ratio side.

ところで、本実施の形態で使用している電動過給機4の定格出力は2kWであり、図4に示すように、電動過給機4の消費電力が定格電力の半分の1kWを超えると、これに応じた吐出圧の上昇により、ノッキングが発生し易くなることがわかっている。このノッキングを抑制するために点火時期のリタード制御を行うので、実際に得られるエンジントルクは穏やかな増加となる。また、電動過給機4の消費電力に応じてオルタネータ20による消費トルクが増加するので、実際に得られるトルクがさらに抑制され、その結果、過給機4の消費電力が1kW以上の領域では過給機4の消費電力をこれ以上増加させても、正味の実トルクはほとんど増加しない。なお、ここではノッキングが起き易くなるときの電動過給機4の消費電力は1kWであるが、この値は電動過給機4の定格や特性等に応じて変更される。   By the way, the rated output of the electric supercharger 4 used in this embodiment is 2 kW, and as shown in FIG. 4, when the power consumption of the electric supercharger 4 exceeds 1 kW, which is half of the rated power, It has been found that knocking is likely to occur due to a corresponding increase in discharge pressure. Since retard control of the ignition timing is performed in order to suppress this knocking, the actually obtained engine torque increases moderately. Further, since the torque consumed by the alternator 20 increases in accordance with the power consumption of the electric supercharger 4, the actually obtained torque is further suppressed. As a result, the power consumption of the supercharger 4 is excessive in the region where the power consumption is 1 kW or more. Even if the power consumption of the feeder 4 is further increased, the net actual torque hardly increases. Here, the electric power consumption of the electric supercharger 4 when knocking is likely to occur is 1 kW, but this value is changed according to the rating and characteristics of the electric supercharger 4.

そして、前記吸気系1は、エンジン制御装置100、吸気システムコントローラ101、及び電動過給機コントローラ102により、図5に示すフローチャートに従って制御される。   The intake system 1 is controlled by the engine control device 100, the intake system controller 101, and the electric supercharger controller 102 according to the flowchart shown in FIG.

まず、ステップS1で、エンジン制御装置100により、各種信号を各センサから読み込むと共に、ステップS2で、これらの信号に基いて吸入空気量を求める。具体的には、アクセル開度センサ10により検出されたエンジン負荷とエンジン回転数センサ11により検出されたエンジン回転数とに基いて吸入空気量を演算する。このとき、センサ等で吸入空気量を検出するようにしてもよい。   First, in step S1, the engine control apparatus 100 reads various signals from each sensor, and in step S2, the intake air amount is obtained based on these signals. Specifically, the intake air amount is calculated based on the engine load detected by the accelerator opening sensor 10 and the engine speed detected by the engine speed sensor 11. At this time, the intake air amount may be detected by a sensor or the like.

そして、ステップS3で、エンジン回転数がN1より大きいか否かを判定し、N1より大きいときは、運転状態は図2のマップに示す自然吸気領域に属するから、ステップS4でバイパス弁9を全開にし、ステップS5で電動過給機4を停止させる。これによって、エアクリーナ3から導入された空気がバイパス通路8を介して各気筒#1〜#4に供給される自然吸気が実行される。   Then, in step S3, it is determined whether or not the engine speed is greater than N1, and if it is greater than N1, the operating state belongs to the natural intake region shown in the map of FIG. 2, and therefore the bypass valve 9 is fully opened in step S4. In step S5, the electric supercharger 4 is stopped. As a result, the natural intake in which the air introduced from the air cleaner 3 is supplied to the cylinders # 1 to # 4 via the bypass passage 8 is executed.

一方、ステップS3で、エンジン回転数がN1以下のときは、ステップS5に進んでエンジン負荷がα1以上か否かを判定する。エンジン負荷がα1より大きいときはエンジンの運転状態が過給領域に属することになるが、このとき、ステップS7で、運転状態がサージング領域に属するか否かを判定する。   On the other hand, when the engine speed is N1 or less in step S3, the process proceeds to step S5 to determine whether the engine load is α1 or more. When the engine load is larger than α1, the engine operating state belongs to the supercharging region. At this time, it is determined whether or not the operating state belongs to the surging region.

そして、ステップS7でエンジンの運転状態がサージング領域に属さないときは、ステップS8に進んでバイパス弁9を閉じ、ステップS9で1kW運転制御を行う。この1kW運転制御では、図3に示した電動過給機4の消費電力に応じた領域a〜pのうち、1kWに相当する領域h上で、ステップS2で求めた吸入空気量が得られる過給機4の回転数を読み出し、過給機4の回転数をこの回転数に制御する。   When the engine operating state does not belong to the surging region in step S7, the process proceeds to step S8 to close the bypass valve 9, and 1 kW operation control is performed in step S9. In the 1 kW operation control, the amount of intake air obtained in step S2 is obtained on the area h corresponding to 1 kW among the areas a to p corresponding to the power consumption of the electric supercharger 4 shown in FIG. The rotational speed of the charger 4 is read out, and the rotational speed of the supercharger 4 is controlled to this rotational speed.

例えばステップS2で求められた吸入空気量が2m/minのときの1kW運転制御では、図3のマップにおいて領域h上の点Zにおける電動過給機4の回転数を読み出す。点Zは、回転数が60000rpmから少し70000rpm寄りの位置にあり、補間によって62000rpmが求められる。そして、エンジン制御装置100が吸気システムコントローラ101を介して電動過給機コントローラ102に信号を送り、過給機4がこの回転数になるように制御し、これによって消費電力が1kWで回転数が62000rpmの運転が実現される。 For example, in the 1 kW operation control when the intake air amount obtained in step S2 is 2 m 3 / min, the rotational speed of the electric supercharger 4 at the point Z on the region h is read in the map of FIG. The point Z is at a position where the rotational speed is slightly closer to 60000 rpm from 60000 rpm, and 62000 rpm is obtained by interpolation. Then, the engine control device 100 sends a signal to the electric supercharger controller 102 via the intake system controller 101 to control the supercharger 4 to have this rotational speed, whereby the power consumption is 1 kW and the rotational speed is Operation of 62000 rpm is realized.

一方、ステップS7で、エンジンの運転状態がサージング領域に属するときは、ステップS10に進んでバイパス弁9を半開にし、ステップS11で前述の1kW運転制御を行う。これによって、電動過給機4から吐出された空気の一部がバイパス通路8を逆流することになり、その結果、過給機4の下流の圧力が下がってサージングの発生が未然に回避される。   On the other hand, when the engine operating state belongs to the surging region in step S7, the process proceeds to step S10, the bypass valve 9 is half-opened, and the above-described 1 kW operation control is performed in step S11. As a result, a part of the air discharged from the electric supercharger 4 flows back through the bypass passage 8, and as a result, the pressure downstream of the supercharger 4 is lowered and the occurrence of surging is avoided in advance. .

また、このように空気の一部を循環させるので、実際に吸入される空気量が要求されたものより少なくなる。これに対して、バイパス通路8を循環させる空気量をβとすると、1kW運転制御の際には空気量βを補うために、β相当分増大された吸入空気量が要求されたものとして図3のマップを適用することになる。例えばステップS1で演算された吸入空気量が2m/minのときは、循環させる空気量βを加えた2+βm/minを吸入空気量の値として、この吸入空気量に対応する領域h上の点Z′の回転数(約58000rpm)を読み出すことになる。 Further, since a part of the air is circulated in this way, the amount of air actually sucked becomes smaller than that required. On the other hand, if the amount of air circulating through the bypass passage 8 is β, it is assumed that the intake air amount increased by the amount corresponding to β is required in order to supplement the air amount β during the 1 kW operation control. Will apply the map. For example, when the intake air amount calculated in step S1 is 2 m 3 / min, 2 + βm 3 / min obtained by adding the amount of air to be circulated 2 + βm 3 / min is set as the value of the intake air amount and the region h corresponding to this intake air amount The rotational speed (about 58000 rpm) at the point Z ′ is read out.

ところで、前記ステップS6でエンジン負荷がα1以下のときは、運転状態が予回転領域(予圧領域)に属するから、ステップS12でバイパス弁9をほぼ閉じるように制御し、ステップS13で電動過給機4の回転数を予め設定された予圧制御用の回転数に制御し、ステップS14に進む。なお、予圧制御用の電動過給機4の回転数は、例えば過給領域における回転数よりも低くなるように設定され、得られる過給圧も低くなっている。   By the way, when the engine load is α1 or less in step S6, since the operating state belongs to the pre-rotation region (preload region), control is performed so that the bypass valve 9 is substantially closed in step S12, and the electric supercharger in step S13. The rotational speed of 4 is controlled to a preset rotational speed for preload control, and the process proceeds to step S14. Note that the rotational speed of the electric supercharger 4 for preload control is set to be lower than the rotational speed in the supercharging region, for example, and the obtained supercharging pressure is also low.

そして、ステップS14では、吸気温度センサ12により検出された吸気温度がT1より高いか否かを判定する。吸気温度がT1以下のときは前記予圧制御を継続し、吸気温度がT1より高いときは、ステップS15に進んでノッキング発生因子(吸気温度、燃料性状等)に応じて電動過給機4の回転数を低下させる。このとき、図6のマップに示すように、電動過給機4の回転数低下補正量は、吸気温度がT1以下のときにゼロであり、T1以上では吸気温度の上昇に伴って大きくなるように制御されると共に、図7のマップに示すように、使用燃料のオクタン価が高いときは、ノッキングが起こり難いので小さくなるように制御される。   In step S14, it is determined whether or not the intake air temperature detected by the intake air temperature sensor 12 is higher than T1. When the intake air temperature is equal to or lower than T1, the preload control is continued. When the intake air temperature is higher than T1, the routine proceeds to step S15, where the rotation of the electric supercharger 4 is rotated according to knocking factors (intake air temperature, fuel properties, etc.). Reduce the number. At this time, as shown in the map of FIG. 6, the rotational speed reduction correction amount of the electric supercharger 4 is zero when the intake air temperature is equal to or lower than T1, and increases as the intake air temperature increases above T1. In addition, as shown in the map of FIG. 7, when the octane number of the fuel used is high, knocking is unlikely to occur, so control is performed so as to decrease.

次に、ステップS16でノッキング発生因子に応じてバイパス弁9の閉制御を行う。このとき、図8のマップに示すように、バイパス弁9の閉制御量は、吸気温度がT1以下のときにゼロであり、T1以上では吸気温度の上昇に伴って大きくなるように制御されると共に、図9のマップに示すように、使用燃料のオクタン価が高いときは小さくなるように制御される。   Next, in step S16, the bypass valve 9 is controlled to be closed according to the knocking occurrence factor. At this time, as shown in the map of FIG. 8, the closed control amount of the bypass valve 9 is zero when the intake air temperature is equal to or lower than T1, and is controlled so as to increase as the intake air temperature increases above T1. At the same time, as shown in the map of FIG. 9, when the octane number of the fuel used is high, the fuel is controlled to be small.

なお、ステップS15が、請求項1、3に記載の発明の主旨に相当し、ステップS16が請求項2に記載の発明の主旨に相当する。   Step S15 corresponds to the gist of the invention described in claims 1 and 3, and step S16 corresponds to the gist of the invention described in claim 2.

次に、本発明の第2の実施の形態として、図10のマップに示すように各運転領域が設定されている場合について説明する。このマップは、図2のマップの低負荷低回転領域に設定された予回転領域の予圧領域を回転領域に変更したものである。   Next, as a second embodiment of the present invention, a case where each operation region is set as shown in the map of FIG. 10 will be described. This map is obtained by changing the preload area of the prerotation area set in the low load low rotation area of the map of FIG. 2 to the rotation area.

この予回転領域で行われる回転制御は、バイパス弁9を開いた状態で電動過給機4を作動させ、空気をバイパス通路8に循環させて、運転状態が過給領域に移行したときの過給圧の応答性を向上させる。なお、この回転領域では、バイパス弁9が開いた状態とされるため、予圧は行われない状態となるが、電動過給機4の直下流における過給圧は、過給領域における過給圧よりも小さくなるように設定されている。   The rotation control performed in this pre-rotation region is performed when the electric supercharger 4 is operated with the bypass valve 9 opened, and air is circulated through the bypass passage 8 so that the operation state is shifted to the supercharging region. Improves responsiveness of supply pressure. In this rotation region, since the bypass valve 9 is opened, no preload is performed. However, the supercharging pressure immediately downstream of the electric supercharger 4 is the supercharging pressure in the supercharging region. It is set to be smaller.

そして、この実施の形態では、吸気系1は、図11に示すフローチャートに従って制御される。なお、このフローチャートにおいて、ステップS21〜S31は前記第1の実施の形態における図5のフローチャートのステップS1〜S11と同様の制御であるので、これらの説明は省略し、ここでは回転制御に係るステップS32〜35についてのみ説明する。   In this embodiment, the intake system 1 is controlled according to the flowchart shown in FIG. In this flowchart, steps S21 to S31 are the same controls as steps S1 to S11 in the flowchart of FIG. 5 in the first embodiment, so that description thereof is omitted, and here, steps related to rotation control are omitted. Only S32 to 35 will be described.

即ち、ステップS32で、バイパス弁を全開に制御し、ステップS33で、電動過給機4の回転数を回転制御用の回転数に制御する。そして、ステップS34で、吸気温度がT1より高いと判定されたとき、ステップS35に進んで、ノッキング発生因子(吸気温度、燃料性状等)に応じて電動過給機4の回転数を低下させる。このとき、図5のフローチャートのステップS15と同様に、吸気温度及びオクタン価に応じた電動過給機4の回転数の減少補正を行う。なお、前記ステップS34で吸気温度がT1以下のときは回転制御を継続する。   That is, in step S32, the bypass valve is controlled to be fully opened, and in step S33, the rotational speed of the electric supercharger 4 is controlled to the rotational speed for rotational control. When it is determined in step S34 that the intake air temperature is higher than T1, the process proceeds to step S35, and the rotational speed of the electric supercharger 4 is decreased according to the knocking factor (intake air temperature, fuel properties, etc.). At this time, similarly to step S15 in the flowchart of FIG. 5, the reduction correction of the rotational speed of the electric supercharger 4 according to the intake air temperature and the octane number is performed. If the intake air temperature is equal to or lower than T1 in step S34, the rotation control is continued.

以上のように、エンジンの運転状態が予回転領域にあるときに、電動過給機4の回転数が減少補正されるので、過給機4の駆動電力が低下されて該過給機4の発熱が抑制される。その結果、特に回転制御においては、循環する吸気が受ける熱量が減少され、吸気温度の上昇が抑制される。また、予圧制御においては、電動過給機4の回転数を低下させることによって、過給機4の下流の圧力が減少され、その結果バイパス弁9の前後の圧力差を低減させることができ、吸気温度の上昇が抑制される。このように、本発明によれば、予回転制御時の吸気温度の上昇が抑制され、ノッキングの発生が防止される。   As described above, when the engine operating state is in the pre-rotation region, the rotational speed of the electric supercharger 4 is corrected to decrease, so that the driving power of the supercharger 4 is reduced and the supercharger 4 Heat generation is suppressed. As a result, particularly in rotation control, the amount of heat received by the circulated intake air is reduced, and an increase in intake air temperature is suppressed. Further, in the preload control, the pressure downstream of the supercharger 4 is reduced by reducing the rotational speed of the electric supercharger 4, and as a result, the pressure difference before and after the bypass valve 9 can be reduced. An increase in intake air temperature is suppressed. Thus, according to the present invention, an increase in the intake air temperature during the pre-rotation control is suppressed, and the occurrence of knocking is prevented.

また、予圧制御時に電動過給機4の回転数を低下させることに加えてバイパス弁9の開度をさらに閉方向に制御するので、バイパス弁9の隙間から循環する吸気が電動過給機4の発熱を受ける度合いが低減され、吸気温度の上昇が効果的に抑制されることになる。   Further, since the opening degree of the bypass valve 9 is further controlled in the closing direction in addition to lowering the rotational speed of the electric supercharger 4 during the preload control, the intake air circulating through the gap of the bypass valve 9 is driven by the electric supercharger 4. The degree of receiving the heat is reduced, and the rise of the intake air temperature is effectively suppressed.

そして、吸気温度や燃料性状などのノッキング発生因子に応じて、ノッキングが発生し易いと判断されるときは、電動過給機4の回転数の減少補正量を増大させることにより確実にノッキングの発生が防止される一方、ノッキングが発生し難いと判断されるときは、電動過給機4の回転数の減少補正量を減少させることによりいたずらに電動過給機4の回転数を低下させて過給圧の応答性を低下させることが防止される。   When it is determined that knocking is likely to occur according to knocking factors such as intake air temperature and fuel properties, knocking is reliably generated by increasing the reduction correction amount of the rotational speed of the electric supercharger 4. On the other hand, when it is determined that knocking is unlikely to occur, the rotational speed of the electric supercharger 4 is reduced by reducing the rotational speed reduction correction amount of the electric supercharger 4 and excessively reduced. It is prevented that the responsiveness of the supply pressure is lowered.

本発明は、エンジンの過給装置において、エンジンの運転状態が予回転領域にあるときに、吸気温度の上昇を抑制し、ノッキングの発生を防止することを目的とする。本発明は、過給によりエンジントルクの増大を図るエンジンの過給装置の技術分野に広く好適である。   An object of the present invention is to suppress an increase in intake air temperature and prevent knocking when an engine operating state is in a pre-rotation region in an engine supercharging device. INDUSTRIAL APPLICABILITY The present invention is widely suitable for the technical field of an engine supercharging device that increases engine torque by supercharging.

本発明の実施の形態に係るエンジンの吸気系である。1 is an engine intake system according to an embodiment of the present invention. エンジンの運転領域を示すマップである。It is a map which shows the driving | operation area | region of an engine. 電動過給機の特性を示すマップである。It is a map which shows the characteristic of an electric supercharger. 電動過給機の消費電力に応じたエンジントルク特性のグラフである。It is a graph of the engine torque characteristic according to the power consumption of an electric supercharger. 吸気系の制御に係るフローチャートである。It is a flowchart which concerns on control of an intake system. 吸気温度に応じた電動過給機の回転数増加量のマップである。It is a map of the rotation speed increase amount of the electric supercharger according to the intake air temperature. オクタン価に応じた電動過給機の回転数増加量のマップである。It is a map of the rotation speed increase amount of the electric supercharger according to an octane number. 吸気温度に応じたバイパス弁閉制御量のマップである。It is a map of the bypass valve closing control amount according to intake air temperature. オクタン価に応じたバイパス弁閉制御量のマップである。It is a map of the bypass valve closing control amount according to the octane number. 本発明の第2の実施の形態に係るエンジンの運転領域を示すマップである。It is a map which shows the driving | operation area | region of the engine which concerns on the 2nd Embodiment of this invention. 同吸気系の制御に係るフローチャートである。It is a flowchart concerning control of the same intake system.

符号の説明Explanation of symbols

2 吸気通路
4 電動過給機
8 バイパス通路
9 バイパス弁
12 吸気温度センサ
100 エンジン制御装置
101 吸気システムコントローラ
2 Intake passage 4 Electric supercharger 8 Bypass passage 9 Bypass valve 12 Intake temperature sensor 100 Engine control device 101 Intake system controller

Claims (3)

吸気通路に設けられた電動過給機と、吸気通路における該電動過給機の上、下流側を連通させるバイパス通路と、該バイパス通路を開閉するバイパス弁と、エンジンの運転状態が過給領域にあるときに所定の過給圧が得られるように電動過給機の回転数及びバイパス弁を制御する過給制御手段とが備えられたエンジンの過給装置であって、
エンジンの運転状態が前記過給領域の低負荷側に設定された予回転領域にあるか否かを判定する判定手段と、
該判定手段によりエンジンの運転状態が予回転領域にあると判定されたときに、運転状態が過給領域にある場合より低い過給圧となるように電動過給機の回転数及びバイパス弁を制御する予回転制御手段と、
吸気温度を検出する吸気温度検出手段とが備えられ、
前記予回転制御手段は、該吸気温度検出手段により検出された吸気温度が所定値以上のときに、電動過給機の回転数を減少補正することを特徴とするエンジンの過給装置。
An electric supercharger provided in the intake passage, a bypass passage communicating the upstream side and the downstream side of the electric supercharger in the intake passage, a bypass valve that opens and closes the bypass passage, and an engine operating state is a supercharging region And a supercharging control means for controlling the rotational speed of the electric supercharger and the bypass valve so that a predetermined supercharging pressure is obtained when
Determination means for determining whether or not the operating state of the engine is in a pre-rotation region set on the low load side of the supercharging region;
When it is determined by the determination means that the engine operating state is in the pre-rotation region, the rotational speed of the electric supercharger and the bypass valve are set so that the supercharging pressure is lower than when the operating state is in the supercharging region. Pre-rotation control means for controlling;
An intake air temperature detecting means for detecting the intake air temperature,
The engine supercharging device, wherein the pre-rotation control means corrects the rotational speed of the electric supercharger to decrease when the intake air temperature detected by the intake air temperature detection means is equal to or higher than a predetermined value.
請求項1に記載のエンジンの過給装置において、
前記予回転制御手段により行われる予回転制御は、バイパス弁を絞り制御すると共に電動過給機を作動させて過給圧を得る予圧制御であると共に、
該予圧制御中、前記吸気温度検出手段により検出された吸気温度が所定値以上のときに、電動過給機の回転数の減少補正に加えて、バイパス弁を閉じる方向に制御することを特徴とするエンジンの過給装置。
The engine supercharging device according to claim 1,
The pre-rotation control performed by the pre-rotation control means is a pre-pressure control for obtaining a supercharging pressure by controlling the throttle of the bypass valve and operating the electric supercharger,
During the preload control, when the intake air temperature detected by the intake air temperature detecting means is equal to or higher than a predetermined value, the bypass valve is controlled to be closed in addition to the reduction correction of the rotational speed of the electric supercharger. The engine supercharger.
請求項1に記載のエンジンの過給装置において、
前記予回転制御手段は、ノッキング発生因子に応じて電動過給機の回転数の減少補正量を修正することを特徴とする記載のエンジンの過給装置。
The engine supercharging device according to claim 1,
The supercharger for an engine according to claim 1, wherein the pre-rotation control means corrects the reduction correction amount of the rotational speed of the electric supercharger according to a knocking occurrence factor.
JP2005019023A 2005-01-27 2005-01-27 Supercharging device for engine Pending JP2006207438A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005019023A JP2006207438A (en) 2005-01-27 2005-01-27 Supercharging device for engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005019023A JP2006207438A (en) 2005-01-27 2005-01-27 Supercharging device for engine

Publications (1)

Publication Number Publication Date
JP2006207438A true JP2006207438A (en) 2006-08-10

Family

ID=36964575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005019023A Pending JP2006207438A (en) 2005-01-27 2005-01-27 Supercharging device for engine

Country Status (1)

Country Link
JP (1) JP2006207438A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200022955A (en) * 2018-08-24 2020-03-04 엘지전자 주식회사 Heat pump system and method for controlling the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200022955A (en) * 2018-08-24 2020-03-04 엘지전자 주식회사 Heat pump system and method for controlling the same
KR102679835B1 (en) * 2018-08-24 2024-07-01 엘지전자 주식회사 Heat pump system and method for controlling the same

Similar Documents

Publication Publication Date Title
US20050172628A1 (en) Boost pressure estimation apparatus for internal combustion engine with supercharger
JP5018975B2 (en) Supercharger control device for internal combustion engine
JPWO2007055094A1 (en) Control device for internal combustion engine
KR101951613B1 (en) Exhaust recirculation control method and exhaust recirculation control device
JP2010048104A (en) Engine
WO2013118263A1 (en) Control device for internal combustion engine
JP2013185540A (en) Control device of diesel engine with turbocharger
JP4710666B2 (en) EGR system control method and EGR system
JP4601695B2 (en) Electric supercharger control device for internal combustion engine
JP4492377B2 (en) Engine supercharger
EP3351773B1 (en) Control device for internal combustion engine and control method for internal combustion engine
JP2008255896A (en) Control device for variable valve gear
JP4389799B2 (en) Engine supercharger
JP2019015185A (en) Control device for internal combustion engine
JP6005543B2 (en) Control device for supercharged engine
JP4548122B2 (en) Engine supercharger
WO2018212088A1 (en) Air intake/exhaust structure for compressed natural gas engine
JP2007278066A (en) Control device for internal combustion engine
JP5245470B2 (en) Control device for an internal combustion engine with a supercharger
JP2006207438A (en) Supercharging device for engine
CN114341475B (en) EGR control method and EGR control device
JP5263249B2 (en) Variable valve timing control device for an internal combustion engine with a supercharger
JP2003322038A (en) Internal combustion engine control device
JP4591289B2 (en) Engine supercharger
JP2014231821A (en) Controller for internal combustion engine equipped with supercharger