[go: up one dir, main page]

JP2006202586A - Bonding method and bonding structure - Google Patents

Bonding method and bonding structure Download PDF

Info

Publication number
JP2006202586A
JP2006202586A JP2005012394A JP2005012394A JP2006202586A JP 2006202586 A JP2006202586 A JP 2006202586A JP 2005012394 A JP2005012394 A JP 2005012394A JP 2005012394 A JP2005012394 A JP 2005012394A JP 2006202586 A JP2006202586 A JP 2006202586A
Authority
JP
Japan
Prior art keywords
metal
metal portion
bonding
circuit
nanopaste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005012394A
Other languages
Japanese (ja)
Inventor
Masanori Yamagiwa
正憲 山際
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2005012394A priority Critical patent/JP2006202586A/en
Publication of JP2006202586A publication Critical patent/JP2006202586A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29339Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/3205Shape
    • H01L2224/32052Shape in top view
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/3205Shape
    • H01L2224/32057Shape in side view
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/818Bonding techniques
    • H01L2224/8184Sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8338Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/83385Shape, e.g. interlocking features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8384Sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Die Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a bonding method and a bonding structure advantageous to bonding a large area. <P>SOLUTION: In this bonding method for bonding a first metal portion 11 of Ag in a semiconductor device 1 to a second metal portion 21a of Cu in a ceramic insulating substrate 2 with a Cu circuit by interposing metal nano paste 3 formed by dissipating ultra-fine particles of Ag each having an average diameter of 100 nm or less in an organic solvent and by heating it, recesses 4a or 4b reaching the end of the bonded surface of the first metal portion 11 and the second metal portion 21a is formed on the surface of the bonding side of the second metal portion 21a which is bonded to the semiconductor device 1. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、第一の物体と第二の物体とを接合する接合方法及び接合構造に関する。   The present invention relates to a joining method and a joining structure for joining a first object and a second object.

従来のはんだに代えて、金属ナノ粒子を用いて2つの部材を接合する電極配設基体とその接合方法に関する技術が下記特許文献1に記載されている。この技術では、平均直径100nm以下の金属超微粒子の周囲を有機化合物で被覆することによって生成された金属ナノ粒子を、2つの部材の接合部に介在させ、加熱・焼成して接合させる。
また、下記非特許文献1においては、有機溶媒でコーティングしたAgナノ粒子からなるAgナノペーストを用いてCuの試験片同士を面で接合し、その接合強度の測定と接合部の断面組織の観察を行っている。接合条件である温度と時間と加圧力を変化させて、接合部の強度を検討している。
Japanese Patent Application Laid-Open Publication No. 2003-228667 describes a technique related to an electrode-arranged base for joining two members using metal nanoparticles instead of conventional solder and a joining method thereof. In this technique, metal nanoparticles generated by coating the periphery of metal ultrafine particles having an average diameter of 100 nm or less with an organic compound are interposed in a joint between two members, and heated and fired to bond them.
Moreover, in the following nonpatent literature 1, the test piece of Cu is joined on the surface using the Ag nano paste which consists of Ag nanoparticle coated with the organic solvent, the measurement of the joint strength, and observation of the cross-sectional structure | tissue of a junction part It is carried out. The strength of the joint is examined by changing the joining conditions of temperature, time and applied pressure.

特開2004−128357号公報JP 2004-128357 A Mate 2004にて発表された論文集P.213「銀ナノ粒子を用いた接合プロセス」大阪大学大学院工学研究科Proceedings of Mate 2004, P.213 “Joint process using silver nanoparticles”, Graduate School of Engineering, Osaka University

しかしながら、上記の方法を用いて2つの部材を大面積で接合する場合、金属ナノ粒子を被覆する有機保護膜やペースト化するための有機溶媒を揮発させることが接合面の中央付近では難しく、その結果、炭化物が接合層に残存し、接合部の強度劣化や電気的熱的特性の劣化を招いていた。すなわち、上記の方法は、従来のはんだやろう付けに比べ、大面積の接合には不向きであった。
本発明の目的は、大面積の接合に有利な接合方法及び接合構造を提供することにある。
However, when joining two members in a large area using the above method, it is difficult to volatilize the organic protective film covering the metal nanoparticles and the organic solvent for pasting in the vicinity of the center of the joint surface, As a result, the carbide remained in the bonding layer, resulting in deterioration of the strength of the bonded portion and deterioration of the electrothermal characteristics. That is, the above method is not suitable for joining large areas as compared with conventional soldering and brazing.
An object of the present invention is to provide a bonding method and a bonding structure that are advantageous for large-area bonding.

上記課題を解決するために、本発明は、第一の物体における第一の金属からなる第一の金属部分と、第二の物体における第二の金属からなる第二の金属部分とを、平均直径が100nm以下の第三の金属からなる超微粒子を有機系溶媒中に分散させてなる金属ナノペーストを介在させ、加熱して接合する接合方法において、第一の金属部分または第二の金属部分の互いを接合する側の表面に、これらの接合面の端部まで至る凹部を設けるという構成になっている。   In order to solve the above problems, the present invention provides an average of a first metal portion made of a first metal in a first object and a second metal portion made of a second metal in a second object. In a joining method in which a metal nanopaste in which ultrafine particles made of a third metal having a diameter of 100 nm or less are dispersed in an organic solvent is interposed and heated to join, the first metal part or the second metal part The surface of the side which joins each other is provided with a recess that reaches the end of these joint surfaces.

本発明によれば、大面積の接合に有利な接合方法及び接合構造を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the joining method and joining structure advantageous to joining of a large area can be provided.

以下、図面を用いて本発明の実施の形態について詳細に説明する。なお、以下で説明する図面で、同一機能を有するものは同一符号を付け、その繰り返しの説明は省略する。
《第一の実施の形態》
図1(a)〜(e)は、本発明の接合方法及び接合構造の第一の実施の形態を示す図であり、(a)は第一の物体と第二の物体とが接合された接合構造の全体断面図、(b)は(a)の接合部(A部)の拡大断面図、(c)は(b)のB−B切断線部における(上から見た)断面を示す図、(d)は(b)のB−B切断線部における別の構成の断面を示す図、(e)は(b)のB−B切断線部における望ましくない構成の断面を示す参考図である。
図1(a)において、1は第一の物体である例えば半導体素子、11は第一の金属(ここではAg:銀)からなる第一の金属部分、3は平均直径が100nm以下の第三の金属(ここではAg)からなる超微粒子を有機系の溶媒中に分散させてなる金属ナノペーストである銀ナノペースト、2aは第二の物体である、金属回路ここではCu回路付きセラミックス絶縁基板、21aは第二の金属(ここではCu:銅)からなる金属回路を構成する第二の金属部分、22はセラミックスからなる絶縁板である。なお、図1(b)においては、Cu回路付きセラミックス絶縁基板2aの全体は図示せず、Cu回路である第二の金属部分21aのみ図示している(図1(a)参照)。(b)〜(e)において、4a、4b、40は第二の金属部分21aの表面に、第一の金属部分11及び第二の金属部分21aの接合面の端部まで至るように形成された溝状の凹部、5は凹部4a、4bに対応する凸部である。
すなわち、本実施の形態では、第一の物体は、第一の金属としてAgからなる第一の金属部分11を裏面(下面。第二の物体との接合側)に持つ面実装タイプのSiからなる半導体素子1である。また、第二の物体は、金属回路である第二の金属部分21aを有するCu回路付きセラミックス絶縁基板(Cu回路基板)2aである。さらに、金属ナノペーストは、第三の金属がAgである銀ナノペースト3である。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the drawings described below, components having the same function are denoted by the same reference numerals, and repeated description thereof is omitted.
First embodiment
FIGS. 1A to 1E are views showing a first embodiment of a joining method and a joining structure according to the present invention. FIG. 1A shows a first object and a second object joined together. (B) is an enlarged cross-sectional view of the joint portion (A portion) of (a), and (c) is a cross-section (viewed from above) in the BB cutting line portion of (b). FIG. 4D is a diagram showing a cross section of another configuration at the BB cut line portion of FIG. 5B, and FIG. 4E is a reference diagram showing a cross section of an undesirable configuration at the BB cut line portion of FIG. It is.
In FIG. 1A, 1 is a first object, for example, a semiconductor element, 11 is a first metal portion made of a first metal (here, Ag: silver), and 3 is a third object having an average diameter of 100 nm or less. Silver nanopaste, which is a metal nanopaste made by dispersing ultrafine particles of the above metal (here Ag) in an organic solvent, 2a is a second object, a metal circuit, here a ceramic insulating substrate with a Cu circuit , 21a is a second metal portion constituting a metal circuit made of a second metal (here, Cu: copper), and 22 is an insulating plate made of ceramics. In addition, in FIG.1 (b), the whole ceramic insulated substrate 2a with Cu circuit is not shown in figure, and only the 2nd metal part 21a which is a Cu circuit is shown in figure (refer Fig.1 (a)). In (b) to (e), 4a, 4b and 40 are formed on the surface of the second metal portion 21a so as to reach the end of the joining surface of the first metal portion 11 and the second metal portion 21a. The groove-shaped concave portions 5 are convex portions corresponding to the concave portions 4a and 4b.
In other words, in the present embodiment, the first object is made of surface mount type Si having the first metal portion 11 made of Ag as the first metal on the back surface (the lower surface; the bonding side to the second object). This is a semiconductor element 1. The second object is a ceramic insulating substrate (Cu circuit substrate) 2a with a Cu circuit having a second metal portion 21a which is a metal circuit. Furthermore, the metal nanopaste is a silver nanopaste 3 in which the third metal is Ag.

〈部材の準備〉
まず、半導体素子1、銀ナノペースト3、Cu回路付きセラミックス絶縁基板2aを準備する。
〈半導体素子1〉
半導体素子1の裏面には、オーミック接続を取るためのTi(チタン)層(図示省略)が形成され、その上に異種金属の拡散を防止するためのNi(ニッケル)層(図示省略)が形成され、最後に、第一の金属部分11であるAg層が形成されている。
〈銀ナノペースト3〉
銀ナノペーストとは、粒径が例えば約10nm前後の銀からなるAgナノ粒子(第三の金属からなる超微粒子)からなり、その粒子の周囲を、有機保護膜によってコーティングした状態で溶媒に分散されたペースト状のものである。これに熱を加えて、ある温度になると溶媒や有機保護膜が分解され、揮発し、超微粒子である銀の表面が現れ、互いに焼結する原理を利用して接合材として機能させるものである。
〈金属ナノ粒子の接合原理〉
その基本的な原理は、材料によって違いはあるが、ナノレベルの粒子になるとその表面のエネルギーによってバルクの融点より低温で凝集し、焼結することが一般的に知られており、関連の文献に詳細が記載されている。従って、銀ナノペーストは、通常、銀の超微粒子が互いに結合することはなく、溶媒中で安定であり、熱処理によって有機物が揮発することによって銀が焼結することを利用した接着剤である。
〈Cu回路付きセラミックス絶縁基板2a〉
第二の金属からなる金属回路(第二の金属部分21a)はここではCuからなり、このCu回路上の素子が実装される側の所定の面には、エッチングやプレス、あるいは近年話題のナノインプリントなどによって凹部4a(または4b)を設けている。
面方向における形状は、第二の金属部分21aの凸部5については任意であるが、凹部4a、4bについては、有機物の揮発経路となるので、必ず第一の金属部分11と第二の金属部分21aとの接合面の端部に至っている必要がある。また、凹部4a、4bの間隔は、銀ナノペースト3の粘土に応じて銀ナノペースト3が入り込み難い間隔(例えば100μm以下)にしておくと、凹部4a、4bは常に空洞となり、そこが有機物の揮発経路となりより望ましい(後述の図3(b)参照)。なお、本図においては、凹部4a、4bの内部に銀ナノペーストが入り込んでいる形態が描かれている。凹部4a、4bの具体的な平面形状の一例を、図1(c)、(d)に示している。なお、図1(e)に示した形状は、凹部40が接合面の端部に至っておらず、閉じられており、中央部の銀ナノペースト3が揮発し難いため、望ましくない。
<Preparation of parts>
First, a semiconductor element 1, a silver nano paste 3, and a ceramic insulating substrate 2a with a Cu circuit are prepared.
<Semiconductor element 1>
A Ti (titanium) layer (not shown) for forming ohmic connection is formed on the back surface of the semiconductor element 1, and a Ni (nickel) layer (not shown) for preventing the diffusion of different metals is formed thereon. Finally, an Ag layer that is the first metal portion 11 is formed.
<Silver nano paste 3>
Silver nanopaste is composed of Ag nanoparticles (ultrafine particles made of a third metal) made of silver having a particle size of, for example, about 10 nm, and is dispersed in a solvent with the periphery of the particles coated with an organic protective film. Pasted. When heat is applied to this, the solvent and the organic protective film are decomposed and volatilized at a certain temperature, and the surface of silver, which is an ultrafine particle, appears and functions as a bonding material by utilizing the principle of sintering each other. .
<Principle of joining metal nanoparticles>
Although its basic principle varies depending on the material, it is generally known that when it becomes nano-level particles, it aggregates and sinters at a temperature lower than the melting point of the bulk due to the energy of its surface. Details. Therefore, the silver nanopaste is an adhesive utilizing the fact that silver ultrafine particles are not usually bonded to each other, are stable in a solvent, and silver is sintered by volatilization of organic substances by heat treatment.
<Ceramic insulating substrate with Cu circuit 2a>
Here, the metal circuit (second metal portion 21a) made of the second metal is made of Cu, and a predetermined surface on the side where the element on the Cu circuit is mounted is etched, pressed, or recently discussed nanoimprint. The concave portion 4a (or 4b) is provided by, for example.
The shape in the plane direction is arbitrary for the convex portion 5 of the second metal portion 21a, but the concave portions 4a and 4b serve as a volatilization path for organic matter, so that the first metal portion 11 and the second metal are always used. It is necessary to reach the end of the joint surface with the portion 21a. In addition, when the interval between the recesses 4a and 4b is set such that the silver nanopaste 3 is difficult to enter according to the clay of the silver nanopaste 3 (for example, 100 μm or less), the recesses 4a and 4b are always hollow, A volatilization path is more desirable (see FIG. 3B described later). In addition, in this figure, the form in which the silver nanopaste has entered the recessed part 4a, 4b is drawn. An example of a specific planar shape of the recesses 4a and 4b is shown in FIGS. 1 (c) and 1 (d). The shape shown in FIG. 1 (e) is not desirable because the concave portion 40 does not reach the end of the joint surface and is closed, and the silver nano paste 3 at the center is difficult to volatilize.

〈接合方法〉
次に、それぞれの部材を用いて接合を行う。
まず、Cu回路付きセラミックス絶縁基板2a上の半導体素子1が実装される側の所定の面に銀ナノペースト3を、スクリーン印刷法を用いて厚みを一定にして塗布する。
その後、裏面にAg層(第一の金属部分11)を形成した半導体素子1を裏面が銀ナノペースト3と接着するように設置し、加熱する。必要に応じて接合面に対して垂直方向に加圧する。こうすることで、銀ナノペースト3を構成する有機物に含まれる炭素によって、半導体素子1の裏面の第一の金属部分11であるAg層の最表面と、第三の金属であるAgナノ粒子の最表面と、Cu回路付きセラミックス絶縁基板2aの第二の金属部分21aであるCu回路の最表面は、酸化還元されるため、有機物の揮発によってAgナノ粒子の凝集が始まる。その結果、第一の物体である半導体素子1と、第二の物体であるCu回路付きセラミックス絶縁基板2aのCu回路とがAgの接合層によって接合された構造が完成する。
<Join method>
Next, it joins using each member.
First, the silver nano paste 3 is applied to a predetermined surface on the side where the semiconductor element 1 is mounted on the ceramic insulating substrate 2a with a Cu circuit by using a screen printing method with a constant thickness.
Thereafter, the semiconductor element 1 on which the Ag layer (first metal portion 11) is formed on the back surface is placed so that the back surface adheres to the silver nanopaste 3 and heated. If necessary, pressurize in a direction perpendicular to the joint surface. By carrying out like this, with the carbon contained in the organic substance which comprises the silver nanopaste 3, the outermost surface of Ag layer which is the 1st metal part 11 of the back surface of the semiconductor element 1, and Ag nanoparticle which is the 3rd metal Since the outermost surface and the outermost surface of the Cu circuit, which is the second metal portion 21a of the ceramic insulating substrate 2a with Cu circuit, are oxidized and reduced, aggregation of Ag nanoparticles starts due to volatilization of organic substances. As a result, a structure in which the semiconductor element 1 as the first object and the Cu circuit of the ceramic insulating substrate 2a with the Cu circuit as the second object are joined by the joining layer of Ag is completed.

〈凹部4a、4bによる効果〉
銀ナノペースト3よりも回路を構成するCuの方が熱伝導率が高い。本実施の形態では、Cu回路(第二の金属部分21a)の表面に図1(b)〜(d)に示すような凹部4a、4b、すなわち、凹凸構造が存在することによって、銀ナノペースト3の厚さが一様ではなくなるため、接合部の面方向において温度分布が生じる。まず、Cu回路の凹凸部の表面周辺の銀ナノペースト3に熱が伝わり、有機物の揮発が開始され、銀の焼結が始まる。従って、接合面に対して垂直方向の銀ナノペースト3の厚みが薄いほど半導体素子1とCu回路付きセラミック絶縁基板2aとの接合は早く完了することになる。よって、銀ナノペースト3の厚みが比較的薄い第二の金属部分21aの凸部5の周辺から部分的に加熱が開始され、接合が開始される。その際、発生する有機物の揮発は、凹部4a、4bの周辺の銀ナノペースト3内を経由することによって十分に実施される。そして、最終的には凹部4a、4bの周辺の銀ナノペースト3も有機物を揮発させて、半導体素子1とCu回路付きセラミック絶縁基板2aとの接合が、無加圧または低い加圧力で有機物の残存なく完了する。その結果、強度の高い接合が達成されるのみならず、電気的、熱的特性に優れた接合が可能となる。
<Effects of the recesses 4a and 4b>
The thermal conductivity of Cu constituting the circuit is higher than that of the silver nanopaste 3. In the present embodiment, the presence of the concave portions 4a and 4b as shown in FIGS. 1B to 1D on the surface of the Cu circuit (second metal portion 21a), that is, the concavo-convex structure, silver nano paste. Since the thickness of 3 is not uniform, a temperature distribution occurs in the surface direction of the joint. First, heat is transferred to the silver nanopaste 3 around the surface of the concave and convex portion of the Cu circuit, and the volatilization of the organic matter is started, and silver sintering starts. Therefore, the thinner the silver nanopaste 3 in the direction perpendicular to the bonding surface is, the faster the bonding between the semiconductor element 1 and the ceramic insulating substrate 2a with Cu circuit is completed. Therefore, heating is partially started from the periphery of the convex portion 5 of the second metal portion 21a where the thickness of the silver nanopaste 3 is relatively thin, and bonding is started. At this time, volatilization of the generated organic substance is sufficiently performed by passing through the silver nano paste 3 around the recesses 4a and 4b. Finally, the silver nano paste 3 around the recesses 4a and 4b also volatilizes the organic material, and the bonding between the semiconductor element 1 and the ceramic insulating substrate 2a with the Cu circuit can be performed without applying pressure or with low pressure. Complete without remaining. As a result, not only high strength bonding is achieved, but also bonding with excellent electrical and thermal characteristics is possible.

上記のように本実施の形態の接合方法は、半導体素子1における第一の金属(Ag)からなる第一の金属部分11と、Cu回路付きセラミック絶縁基板2aにおける第二の金属(Cu)からなる第二の金属部分21aとを、平均直径が100nm以下の第三の金属(Ag)からなる超微粒子を有機系溶媒中に分散させてなる金属ナノペースト3を介在させ、加熱して接合する接合方法において、第一の金属部分11、第二の金属部分21aの、該第一の金属部分11と該第二の金属部分21aとを接合する側の少なくとも一方の表面、ここでは第二の金属部分21aの表面に、該第一の金属部分11と該第二の金属部分21aとの接合面の端部にまで至る凹部4a(または4b)を形成するという構成になっている。
また、本実施の形態の接合構造は、第一の物体である半導体素子1における第一の金属(Ag)からなる第一の金属部分11と、第二の物体であるCu回路付きセラミック絶縁基板2aにおける第二の金属(Cu)からなる第二の金属部分21aとが、平均直径が100nm以下の第三の金属からなる超微粒子を有機系溶媒中に分散させてなる金属ナノペーストを用いて接合された接合構造において、第一の金属部分11、第二の金属部分21aの、該第一の金属部分11と該第二の金属部分21aとを接合する側の少なくとも一方の表面、ここでは第二の金属部分21aの表面に、該第一の金属部分11と該第二の金属部分21aとの接合面の端部にまで至る凹部4a(または4b)が形成されているという構成になっている。
As described above, the bonding method of the present embodiment is based on the first metal portion 11 made of the first metal (Ag) in the semiconductor element 1 and the second metal (Cu) in the ceramic insulating substrate 2a with Cu circuit. The second metal portion 21a is joined by heating with a metal nano paste 3 in which ultrafine particles made of a third metal (Ag) having an average diameter of 100 nm or less are dispersed in an organic solvent. In the joining method, at least one surface of the first metal part 11 and the second metal part 21a on the side where the first metal part 11 and the second metal part 21a are joined, here the second metal part 11a. A recess 4a (or 4b) is formed on the surface of the metal portion 21a so as to reach the end of the joint surface between the first metal portion 11 and the second metal portion 21a.
The bonding structure of the present embodiment includes a first metal portion 11 made of the first metal (Ag) in the semiconductor element 1 that is the first object, and a ceramic insulating substrate with a Cu circuit that is the second object. The second metal portion 21 a made of the second metal (Cu) in 2 a is used with a metal nano paste in which ultrafine particles made of the third metal having an average diameter of 100 nm or less are dispersed in an organic solvent. In the joined joint structure, at least one surface of the first metal part 11 and the second metal part 21a on the side joining the first metal part 11 and the second metal part 21a, here A concave portion 4a (or 4b) is formed on the surface of the second metal portion 21a so as to reach the end of the joint surface between the first metal portion 11 and the second metal portion 21a. ing.

金属ナノペーストを用いた場合の基本的な効果は、上記従来技術においても記述があるとおり、有機系の溶媒に分散させた金属ナノペーストが、有機系の溶媒や保護膜をある温度で揮発されると、第三の金属からなるナノ粒子を含むそれぞれの金属は互いに直接接触する。そして、ナノ粒子特有の低温での焼結が開始される。これにより、第三の金属(超微粒子を構成する金属)からなる接合層を形成するとともに、第一の金属部分11(半導体素子1のチップ表面の膜)と第二の金属部分21a(金属回路)とを接合することができるので、比較的低温で接合できる。その上、それ以上の温度、例えば第三の金属のバルク状態での融点まで使用することができる。このことは、同一部品に対してこの接合材料は何度でも使用できることを意味しており、高温はんだと共晶はんだを2ステップで用いている従来の工程に対しても、同一の金属ナノペーストのみを使用することで代替可能である。
また、例えば半導体装置として機能する本実施の形態においては、半導体素子1とCu回路付きセラミック絶縁基板2aとの接合部において、第一の金属部分11の表面、または第二の金属部分21aの表面の少なくとも一つの表面に凹部4a(または4b)を形成しているので、熱伝導率の高い第二の金属部分21aの凸部5が先に加熱され、従って、接合面において部分的に銀ナノペースト3を加熱させることが可能である。よって、部分的に有機物の揮発が始まり、金属ナノ粒子が結合するため、接合面の中央付近でも十分に有機物の揮発が可能となり、高強度でかつ電気的、熱的にも最も良好な面接合が達成できる。
また、凹部4a、4bの間隔を小さくすることによって、金属ナノペーストの流入を防ぐことができ、従って、有機物の揮発が凹部4a、4bからより一層確実に達成可能となる。よって、接合面の中央付近でも十分に有機物の揮発が可能となり、高強度でかつ電気的、熱的にも最も良好な面接合が達成できる。なお、凹部4a、4bの間隔は、例えばエッチングやナノインプリント等のMEMS技術などを用いて数百ミクロンから数ナノメーター程度まで製造可能である。
また、第一の物体は、二つの主面のうち少なくとも一方の主面、ここでは下面に第一の金属部分11を有する面接合タイプの半導体素子1であり、第二の物体は、第二の金属部分21aであるCu回路を有する金属回路付き絶縁基板2aである。これによって、本発明の接合方法及び接合構造を半導体装置に適用することができる。
As described in the above prior art, the basic effect of using metal nanopaste is that metal nanopaste dispersed in organic solvent volatilizes organic solvent and protective film at a certain temperature. Then, the respective metals including the nanoparticles made of the third metal are in direct contact with each other. And the sintering at the low temperature peculiar to nanoparticles is started. Thus, a bonding layer made of the third metal (metal constituting the ultrafine particles) is formed, and the first metal portion 11 (film on the chip surface of the semiconductor element 1) and the second metal portion 21a (metal circuit). Can be bonded at a relatively low temperature. Moreover, it can be used at higher temperatures, for example up to the melting point of the third metal in the bulk state. This means that this bonding material can be used any number of times for the same component, and the same metal nanopaste is used for the conventional process using high-temperature solder and eutectic solder in two steps. It is possible to substitute by using only.
Further, for example, in the present embodiment functioning as a semiconductor device, the surface of the first metal portion 11 or the surface of the second metal portion 21a at the junction between the semiconductor element 1 and the Cu circuit-equipped ceramic insulating substrate 2a. Since the concave portion 4a (or 4b) is formed on at least one surface of the second metallic portion 21a, the convex portion 5 of the second metal portion 21a having a high thermal conductivity is heated first. It is possible to heat the paste 3. Therefore, since the volatilization of the organic substance partially starts and the metal nanoparticles are bonded, the organic substance can be sufficiently volatilized near the center of the bonding surface, and the surface bonding with the highest strength and the best electrical and thermal properties is possible. Can be achieved.
In addition, by reducing the interval between the recesses 4a and 4b, the inflow of the metal nano paste can be prevented, and therefore, the volatilization of the organic substance can be achieved more reliably from the recesses 4a and 4b. Therefore, the organic substance can be sufficiently volatilized even near the center of the joining surface, and the best surface joining with high strength and electrical and thermal properties can be achieved. In addition, the space | interval of the recessed parts 4a and 4b can be manufactured from several hundred microns to about several nanometers using MEMS techniques, such as an etching and nanoimprint, for example.
The first object is a surface junction type semiconductor element 1 having a first metal portion 11 on at least one of the two principal surfaces, here the lower surface, and the second object is the second object. This is an insulating substrate 2a with a metal circuit having a Cu circuit which is a metal portion 21a. Thereby, the bonding method and the bonding structure of the present invention can be applied to a semiconductor device.

〈電流を利用した接合方法〉
銀ナノペースト3を加熱する方法として、電流を用いることも可能である。半導体素子1からCu回路付きセラミック絶縁基板2aに対して電流を流そうとすると、回路を構成するCuより銀ナノペースト3の方が電気抵抗が高いため、接合面に対して垂直方向の銀ナノペースト3の厚みが薄いほど電気抵抗は小さくなり、電流は流れやすくなる。よって、銀ナノペースト3の厚みが比較的薄い第二の金属部分21aの凸部5の周辺から対向する第一の金属部分11に向かって電流は流れ、加熱され、接合が開始される。その際、発生する有機物の揮発は、凹部4a、4bの周辺の銀ナノペースト3内を経由することによって十分に実施される。そして、最終的には凹部4a、4bの周辺の銀ナノペースト3も有機物を揮発し、接合を行う。その結果、半導体素子1とCu回路付きセラミック絶縁基板2aとの接合が、無加圧または低い加圧力でも有機物の残存なく完了する。その結果、強度の高い接合が達成されるのみならず、電気的・熱的特性に優れた接合が可能となる。
<Junction method using current>
As a method for heating the silver nanopaste 3, an electric current can also be used. When an electric current is caused to flow from the semiconductor element 1 to the ceramic insulating substrate 2a with a Cu circuit, the silver nanopaste 3 has a higher electric resistance than the Cu constituting the circuit. The thinner the paste 3 is, the smaller the electric resistance is and the easier the current flows. Therefore, an electric current flows from the periphery of the convex part 5 of the 2nd metal part 21a where the thickness of the silver nano paste 3 is comparatively thin toward the 1st metal part 11 which opposes, and it heats, and joining is started. At this time, volatilization of the generated organic substance is sufficiently performed by passing through the silver nano paste 3 around the recesses 4a and 4b. Finally, the silver nano paste 3 around the recesses 4a and 4b also volatilizes the organic matter and performs bonding. As a result, the bonding between the semiconductor element 1 and the ceramic insulating substrate 2a with a Cu circuit is completed without remaining organic matter even without pressure or with a low pressure. As a result, not only high-strength bonding is achieved, but also bonding with excellent electrical and thermal characteristics is possible.

このように半導体素子1とCu回路付きセラミック絶縁基板2aとの間に電流を流すことで、該半導体素子1とCu回路付きセラミック絶縁基板2aとの間の接合予定部に、部分的に電流を集中させて加熱し、接合することができる。このように接合部に流れる電流は、凸部5と対向する第一の金属部分11との間に集中して流れ、発熱するので、接合面において部分的に加熱させることがより一層容易になる。   In this manner, by passing a current between the semiconductor element 1 and the ceramic insulating substrate 2a with a Cu circuit, a current is partially applied to a portion to be bonded between the semiconductor element 1 and the ceramic insulating substrate 2a with a Cu circuit. It can be concentrated and heated for bonding. As described above, the current flowing through the joint flows in a concentrated manner between the first metal portion 11 facing the convex portion 5 and generates heat, so that it is even easier to partially heat the joint surface. .

《第二の実施の形態》
図2(a)は、本発明の第二の実施の形態の、半導体素子1と、メッキ等でAg層を表面に付けたAl回路が付いたセラミック絶縁基板(以下、Al回路及びAg層付きセラミック絶縁基板)2bとが接合された接合構造の全体断面図、(b)は接合部(A部)の拡大断面図である。
図1の第一の実施の形態との違いは、本実施の形態においては、金属回路がAl(アルミニウム)からなり、その周囲にメッキや蒸着等を利用して第二の金属部分21bとしてAg層が形成され、このAg層の半導体素子1の第一の金属部分11と接合される表面に、凹部4a(または4b)を形成したものである。その他の構成、接合方法、作用、効果は第一の実施の形態と同様である。
このように本実施の形態では、第一の物体は、二つの主面のうち少なくとも一方の主面、ここでは下面に第一の金属部分11を有する面接合タイプの半導体素子1であり、第二の物体は、第二の金属部分21bであるAg層を少なくとも接合する側の表面(ここでは全表面)に有し、第四の金属(Al)からなるAl回路を有するAl回路及びAg層付きセラミック絶縁基板2bである。これによって、本発明の接合方法及び接合構造を半導体装置に適用することができる。
<< Second Embodiment >>
FIG. 2A shows a semiconductor element 1 according to the second embodiment of the present invention and a ceramic insulating substrate with an Al circuit with an Ag layer on the surface by plating or the like (hereinafter referred to as an Al circuit and an Ag layer). FIG. 2 is an overall cross-sectional view of a bonding structure in which a ceramic insulating substrate) 2b is bonded, and FIG.
The difference from the first embodiment of FIG. 1 is that in this embodiment, the metal circuit is made of Al (aluminum), and Ag is formed as the second metal portion 21b around the periphery using plating, vapor deposition, or the like. A layer 4 is formed, and a recess 4a (or 4b) is formed on the surface of the Ag layer where the first metal portion 11 of the semiconductor element 1 is bonded. Other configurations, joining methods, operations, and effects are the same as those in the first embodiment.
Thus, in the present embodiment, the first object is a surface junction type semiconductor element 1 having the first metal portion 11 on at least one main surface, here the lower surface, of the two main surfaces, The second object has an Al circuit and an Ag layer having an Al circuit made of a fourth metal (Al), having an Ag layer which is the second metal portion 21b on at least the surface (here, the entire surface) on the side to be joined. The attached ceramic insulating substrate 2b. Thereby, the bonding method and the bonding structure of the present invention can be applied to a semiconductor device.

《第三の実施の形態》
図3(a)、(b)は本発明の第三の実施の形態の、半導体素子1とAl回路及びAg層付きセラミック絶縁基板2bとが接合された接合部の拡大断面図である。
図3(a)、(b)に示す本実施の形態では、半導体素子1の裏面(下面)の第一の金属部分11であるAg層に凹部4a(または4b)を形成したものである。その他の構成、接合方法、作用、効果は第一の実施の形態と同様である。
なお、図3(b)に示す構造においては、半導体素子1の裏面のAg層に形成する凹部4a(または4b)の間隔を、銀ナノペースト3の粘土に応じて銀ナノペーストが入り込み難い間隔(例えば100μm以下)にしたものである。こうすることで、凹部4a、4bは常に空洞となり、そこが有機物の揮発経路となるため、先に述べた効果がより一層得られやすくなる。製法については先に記したとおりである。
<< Third embodiment >>
FIGS. 3A and 3B are enlarged cross-sectional views of a joint portion where the semiconductor element 1 and the ceramic insulating substrate 2b with an Al circuit and an Ag layer are joined according to the third embodiment of the present invention.
In this embodiment shown in FIGS. 3A and 3B, the recess 4 a (or 4 b) is formed in the Ag layer that is the first metal portion 11 on the back surface (lower surface) of the semiconductor element 1. Other configurations, joining methods, operations, and effects are the same as those in the first embodiment.
In the structure shown in FIG. 3B, the interval between the recesses 4a (or 4b) formed in the Ag layer on the back surface of the semiconductor element 1 is set such that the silver nanopaste is difficult to enter according to the clay of the silver nanopaste 3. (For example, 100 μm or less). By doing so, the recesses 4a and 4b are always hollow, which becomes a volatilization path for the organic matter, so that the effects described above can be more easily obtained. The manufacturing method is as described above.

《第四の実施の形態》
図4(a)、(b)は、本発明の第四の実施の形態の、半導体素子1とAl回路及びAg層付きセラミック絶縁基板2bとが接合された接合部の拡大断面図である。
第一の実施の形態との違いは、(a)においては、第一の金属部分11であるAg層が、(b)においては、第二の金属部分21bであるAg層が、面方向に対して部分的に完全に存在していない(すなわち、凹部が層を完全に貫通している)点である。
本実施の形態は、製造上、例えば数μmの高さの凹凸を形成するのが難しい場合に、エッチングなどを用いて第一の金属部分11または第二の金属部分21bであるAg層を部分的に除去し形成することで、先に記した製法によって接合することができ、上記と同様の同様な効果を得ることができる。
このように本実施の形態の接合方法は、第一の金属部分11、第二の金属部分21bの少なくとも一方、(a)では第一の金属部分11、(b)では第二の金属部分21bを部分的に形成し、該部分的に形成した第一の金属部分11もしくは第二の金属部分21bを形成していない部分は、これらの接合面の端部にまで至るように形成するという構成になっている。また、本実施の形態の接合構造は、第一の金属部分11、第二の金属部分21bの少なくとも一方が部分的に形成され、該部分的に形成した第一の金属部分11もしくは第二の金属部分21bを形成していない部分は、これらの接合面の端部にまで至っている。このように半導体素子1とAl回路及びAg層付きセラミック絶縁基板2bとの接合部において、第一の金属部分11、または第二の金属部分21bの少なくとも一つを部分的に形成しているので、熱伝導率の高い第一の金属部分11または第二の金属部分21bの形成部が先に加熱され、従って、接合面において部分的に加熱させることが可能である。よって、部分的に有機物の揮発が始まり、金属ナノ粒子が結合するため、接合面の中央付近でも十分に有機物の揮発が可能となり、高強度でかつ電気的、熱的にも最も良好な面接合が達成できる。
なお、半導体素子1とAl回路及びAg層付きセラミック絶縁基板2bとの間に電流を流して接合する場合では、接合部に流れる電流は金属膜の形成部と対向する金属膜との間に集中し、発熱するので、接合面において部分的に加熱させることがより一層容易になる。
<< Fourth embodiment >>
FIGS. 4A and 4B are enlarged cross-sectional views of a joint portion in which the semiconductor element 1 and the ceramic insulating substrate 2b with an Al circuit and an Ag layer are joined according to the fourth embodiment of the present invention.
The difference from the first embodiment is that in (a), the Ag layer as the first metal portion 11 is in the plane direction, and in (b), the Ag layer as the second metal portion 21b is in the plane direction. On the other hand, it is partly completely absent (ie the recess completely penetrates the layer).
In the present embodiment, for example, when it is difficult to form unevenness with a height of several μm in manufacturing, the Ag layer which is the first metal portion 11 or the second metal portion 21b is partially formed using etching or the like. By removing the film and forming it, it can be joined by the manufacturing method described above, and the same effect as described above can be obtained.
As described above, the bonding method of the present embodiment is such that at least one of the first metal portion 11 and the second metal portion 21b, (a) the first metal portion 11, (b) the second metal portion 21b. Is formed, and the part not formed with the partially formed first metal part 11 or the second metal part 21b is formed so as to reach the end of these joint surfaces. It has become. Further, in the joining structure of the present embodiment, at least one of the first metal portion 11 and the second metal portion 21b is partially formed, and the first metal portion 11 or the second metal portion that is partially formed is formed. The portion where the metal portion 21b is not formed reaches the end portions of these joint surfaces. As described above, at least one of the first metal portion 11 or the second metal portion 21b is partially formed at the junction between the semiconductor element 1 and the ceramic insulating substrate 2b with the Al circuit and the Ag layer. The formation part of the first metal part 11 or the second metal part 21b having a high thermal conductivity is heated first, so that it can be partially heated on the joining surface. Therefore, since the volatilization of the organic substance partially starts and the metal nanoparticles are bonded, the organic substance can be sufficiently volatilized near the center of the bonding surface, and the surface bonding with the highest strength and the best electrical and thermal properties is possible. Can be achieved.
In the case where the semiconductor element 1 is bonded to the Al circuit and Ag-layer-attached ceramic insulating substrate 2b, the current flowing in the bonded portion is concentrated between the metal film forming portion and the opposing metal film. However, since it generates heat, it becomes even easier to partially heat the joint surface.

《第五の実施の形態》
図5(a)は本発明の第五の実施の形態の、半導体素子1とAl回路及びAg層付きセラミック絶縁基板2bとが接合された接合部の拡大断面図、(b)は(a)のB−B切断線部における(上から見た)断面を示す図、(c)は(a)のB−B切断線部における別の構成の断面を示す図である。
図5(b)における第一の実施の形態との違いは、銀ナノペースト3が塗布される接合層内に、例えば銀ナノペーストの厚みの1/2程度の径を有する金属粒子例えば銀玉6aを設置してある点である。
図5(c)における第一の実施の形態との違いは、銀ナノペースト3が塗布される接合層内に、例えば銀ナノペーストの厚みの1/2程度の径を有する銀の金属線6bを設置してある点である。なお、金属線の断面形状はここでは円形状であるが、三角形状や四角形状やその他の多角形状等でもよい。
こうすることで、第一から第三の実施の形態で示した凹部4a、4bや、第四の実施の形態で示した金属層の部分的な形成をすることなく、先に記した製法によって、上記と同様の効果を得ることができる。
<< Fifth embodiment >>
FIG. 5A is an enlarged cross-sectional view of a joint portion in which the semiconductor element 1 and the ceramic insulating substrate 2b with an Al circuit and an Ag layer are joined according to the fifth embodiment of the present invention, and FIG. The figure which shows the cross section (viewing from the top) in the BB cut line part of FIG. 3, (c) is a figure which shows the cross section of another structure in the BB cut line part of (a).
The difference from the first embodiment in FIG. 5B is that, for example, metal particles having a diameter of about ½ of the thickness of the silver nanopaste, for example, silver balls, in the bonding layer to which the silver nanopaste 3 is applied. 6a is installed.
The difference from the first embodiment in FIG. 5C is that, for example, a silver metal wire 6b having a diameter of about ½ of the thickness of the silver nanopaste in the bonding layer to which the silver nanopaste 3 is applied. It is a point that has been installed. The cross-sectional shape of the metal wire is circular here, but it may be triangular, quadrangular, or other polygonal shapes.
By carrying out like this, according to the manufacturing method described previously, without carrying out the partial formation of the recessed part 4a, 4b shown in 1st-3rd embodiment, and the metal layer shown in 4th embodiment. The same effects as described above can be obtained.

このように本実施の形態の接合方法は、第一の金属部分11、第二の金属部分21bの、該第一の金属部分11と該第二の金属部分21bとを接合する側の少なくとも一方の表面、ここでは両面に、銀ナノペースト3の超微粒子よりも径が大きな金属粒子として銀玉6a、または金属線6bを部分的に設置するという構成になっている。このように半導体素子1とAl回路及びAg層付きセラミック絶縁基板2bとの接合部において、第三の金属からなる超微粒子より径が十分に大きな金属粒子である銀玉6aまたは金属線6bを部分的に設置しているので、熱伝導率の高い金属部からなる銀玉6aまたは金属線6bが先に加熱され、従って、接合面において部分的に加熱させることが可能である。よって、部分的に有機物の揮発が始まり、金属ナノ粒子が結合するため、接合面の中央付近でも十分に有機物の揮発が可能となり、高強度でかつ電気的、熱的にも最も良好な面接合が達成できる。
なお、本実施の形態において、半導体素子1とAl回路及びAg層付きセラミック絶縁基板2bとの間に電流を流して接合する場合では、接合部に流れる電流は、銀玉6aまたは金属線6bに集中し、発熱するので、接合面において部分的に加熱させることがより一層容易になる。
As described above, the joining method of the present embodiment is such that at least one of the first metal portion 11 and the second metal portion 21b on the side where the first metal portion 11 and the second metal portion 21b are joined. The silver balls 6a or the metal wires 6b are partially installed as metal particles having a diameter larger than that of the ultrafine particles of the silver nanopaste 3 on the surface, here both surfaces. In this way, at the junction between the semiconductor element 1 and the ceramic insulating substrate 2b with the Al circuit and the Ag layer, the silver ball 6a or the metal wire 6b which is a metal particle having a diameter sufficiently larger than the ultrafine particles made of the third metal is partially formed. Therefore, the silver ball 6a or the metal wire 6b made of a metal part having a high thermal conductivity is heated first, so that it can be partially heated at the joint surface. Therefore, since the volatilization of the organic substance partially starts and the metal nanoparticles are bonded, the organic substance can be sufficiently volatilized near the center of the bonding surface, and the surface bonding with the highest strength and the best electrical and thermal properties is possible. Can be achieved.
In the present embodiment, when a current is passed between the semiconductor element 1 and the ceramic insulating substrate 2b with an Al circuit and an Ag layer, the current flowing through the joint is applied to the silver ball 6a or the metal wire 6b. Since it concentrates and generates heat, it becomes even easier to partially heat the joint surface.

なお、以上説明した実施の形態は、本発明の理解を容易にするために記載されたものであって、本発明を限定するために記載されたものではない。したがって、上記実施の形態に開示された各要素は、本発明の技術的範囲に属する全ての設計変更や均等物をも含む趣旨である。例えば、以上の実施の形態では、金属としてAgやCuやAl等を用いたが、本発明はこれに限定されることなく、特許請求の範囲に基づく製法によって同様な効果が得られる金属であればいずれであっても構わない。また、半導体素子としては、Siを用いたが、その他のガリウム砒素(GaAs)や炭化シリコン(SiC)などであっても構わない。特に、本発明によって得られる効果である、Agナノペーストを用いた低温接合による残留応力低減と、接合後の使用温度の高耐熱化と、アルミニウム回路基板による応力緩和を有効に活用できる用途として、高耐熱素子として有望なSiCの高温使用に対する実装方法として最適であると言える。また、上記第一の実施の形態においては、Cu回路付きセラミック絶縁基板2aの第二の金属部分21aの表面に、凹部4aまたは4bを形成しているが、上記第三の実施の形態のように第一の金属部分11の表面に形成してもよく、また両方の面に形成することも可能である。この場合は、相互の凹部4a、4bの位置を考慮して形成する。また、第四の実施の形態において、第一の金属部分11と第二の金属部分21bの両方を部分的に形成することも可能である。この場合は、両方の金属膜の相互の位置を考慮して形成する。さらに、上記第五の実施の形態においては、第一の金属部分11と第二の金属部分21bとを接合する側の、第一の金属部分11、第二の金属部分21bの両面に、銀玉6aまたは金属線6bを部分的に設置したが、一方の面に設置しても構わない。   The embodiment described above is described for facilitating the understanding of the present invention, and is not described for limiting the present invention. Therefore, each element disclosed in the above embodiment includes all design changes and equivalents belonging to the technical scope of the present invention. For example, in the above embodiment, Ag, Cu, Al, or the like is used as the metal. However, the present invention is not limited to this, and any metal that can achieve the same effect by the manufacturing method based on the claims. Any of them may be used. Further, Si is used as the semiconductor element, but other gallium arsenide (GaAs), silicon carbide (SiC), or the like may be used. In particular, the effects obtained by the present invention, such as the residual stress reduction by low-temperature bonding using Ag nanopaste, high heat resistance of the use temperature after bonding, and the use of stress relaxation by the aluminum circuit board can be effectively utilized. It can be said that it is optimal as a mounting method for high temperature use of SiC, which is promising as a high heat resistance element. In the first embodiment, the recess 4a or 4b is formed on the surface of the second metal portion 21a of the ceramic insulating substrate 2a with a Cu circuit. However, as in the third embodiment. In addition, it may be formed on the surface of the first metal portion 11 or on both surfaces. In this case, it forms in consideration of the position of the mutual recessed part 4a, 4b. In the fourth embodiment, both the first metal portion 11 and the second metal portion 21b can be partially formed. In this case, the two metal films are formed in consideration of the mutual position. Further, in the fifth embodiment, silver is formed on both surfaces of the first metal portion 11 and the second metal portion 21b on the side where the first metal portion 11 and the second metal portion 21b are joined. Although the ball 6a or the metal wire 6b is partially installed, it may be installed on one surface.

(a)は本発明の第一の実施の形態の接合構造の全体断面図、(b)はは(a)の接合部の拡大断面図、(c)は(b)のB−B切断線部における断面を示す図、(d)は(b)のB−B切断線部における別の構成の断面を示す図、(e)は(b)のB−B切断線部における望ましくない構成の断面を示す参考図である。(A) is whole sectional drawing of the junction structure of 1st embodiment of this invention, (b) is an expanded sectional view of the junction part of (a), (c) is a BB cutting line of (b). The figure which shows the cross section in a part, (d) is a figure which shows the cross section of another structure in the BB cutting line part of (b), (e) is an undesirable structure in the BB cutting line part of (b). It is a reference figure showing a section. (a)は、本発明の第二の実施の形態の、半導体素子と金属回路付きセラミック絶縁基板とが接合された接合構造の全体断面図、(b)は接合部の拡大断面図である。(A) is whole sectional drawing of the junction structure where the semiconductor element and the ceramic insulated substrate with a metal circuit of the 2nd embodiment of this invention were joined, (b) is an expanded sectional view of a junction part. (a)、(b)は本発明の第三の実施の形態の、半導体素子と金属回路付きセラミック絶縁基板とが接合された接合部の拡大断面図である。(A), (b) is an expanded sectional view of the junction part by which the semiconductor element and the ceramic insulating substrate with a metal circuit of the 3rd embodiment of this invention were joined. (a)、(b)は本発明の第四実施の形態の、半導体素子と金属回路付きセラミック絶縁基板とが接合された接合部の拡大断面図である。(A), (b) is an expanded sectional view of the junction part by which the semiconductor element and the ceramic insulated substrate with a metal circuit were joined of 4th embodiment of this invention. (a)は本発明の第五の実施の形態の、半導体素子と金属回路付きセラミック絶縁基板とが接合された接合部の拡大断面図、(b)は(a)のB−B切断線部における断面を示す図、(c)は(a)のB−B切断線部における別の構成の断面を示す図である。(A) is an expanded sectional view of the junction part by which the semiconductor element and the ceramic insulated substrate with a metal circuit of the 5th embodiment of this invention were joined, (b) is a BB cutting line part of (a) The figure which shows the cross section in (c) is a figure which shows the cross section of another structure in the BB cut line part of (a).

符号の説明Explanation of symbols

1…半導体素子
2a…Cu回路付きセラミックス絶縁基板
2b…Al回路及びAg層付きセラミック絶縁基板
3…銀ナノペースト 4a、4b、40…凹部
5…凸部 6a…銀玉
6b…金属線 11…第一の金属部分
21a、21b…第二の金属部分 22…セラミックス絶縁板
DESCRIPTION OF SYMBOLS 1 ... Semiconductor element 2a ... Ceramic insulated substrate with Cu circuit 2b ... Ceramic insulated substrate with Al circuit and Ag layer 3 ... Silver nano paste 4a, 4b, 40 ... Concave part 5 ... Convex part 6a ... Silver ball 6b ... Metal wire 11th One metal portion 21a, 21b ... second metal portion 22 ... ceramic insulating plate

Claims (8)

第一の物体における第一の金属からなる第一の金属部分と、
第二の物体における第二の金属からなる第二の金属部分とを、
平均直径が100nm以下の第三の金属からなる超微粒子を有機系溶媒中に分散させてなる金属ナノペーストを介在させ、加熱して接合する接合方法において、
前記第一の金属部分、前記第二の金属部分の、該第一の金属部分と該第二の金属部分とを接合する側の少なくとも一方の表面に、該第一の金属部分と該第二の金属部分との接合面の端部にまで至る凹部を形成することを特徴とする接合方法。
A first metal portion comprising a first metal in the first object;
A second metal portion made of the second metal in the second object,
In a joining method in which a metal nanopaste obtained by dispersing ultrafine particles made of a third metal having an average diameter of 100 nm or less in an organic solvent is interposed and heated,
At least one surface of the first metal portion and the second metal portion on the side where the first metal portion and the second metal portion are joined is formed on the first metal portion and the second metal portion. Forming a recess reaching the end of the joint surface with the metal portion.
第一の物体における第一の金属からなる第一の金属部分と、
第二の物体における第二の金属からなる第二の金属部分とを、
平均直径が100nm以下の第三の金属からなる超微粒子を有機系溶媒中に分散させてなる金属ナノペーストを介在させ、加熱して接合する接合方法において、
前記第一の金属部分、前記第二の金属部分の少なくとも一方を部分的に形成し、
該部分的に形成した前記第一の金属部分もしくは前記第二の金属部分を形成していない部分は、該第一の金属部分と該第二の金属部分との接合面の端部にまで至るように形成することを特徴とする接合方法。
A first metal portion comprising a first metal in the first object;
A second metal portion made of the second metal in the second object,
In a joining method in which a metal nanopaste obtained by dispersing ultrafine particles made of a third metal having an average diameter of 100 nm or less in an organic solvent is interposed and heated,
Partially forming at least one of the first metal portion and the second metal portion;
The partially formed first metal portion or the portion not forming the second metal portion reaches the end of the joint surface between the first metal portion and the second metal portion. It forms so that it may form.
第一の物体における第一の金属からなる第一の金属部分と、
第二の物体における第二の金属からなる第二の金属部分とを、
平均直径が100nm以下の第三の金属からなる超微粒子を有機系溶媒中に分散させてなる金属ナノペーストを介在させ、加熱して接合する接合方法において、
前記第一の金属部分、前記第二の金属部分の、該第一の金属部分と該第二の金属部分とを接合する側の少なくとも一方の表面に、前記超微粒子よりも径が大きな金属粒子または金属線を部分的に設置することを特徴とする接合方法。
A first metal portion comprising a first metal in the first object;
A second metal portion made of the second metal in the second object,
In a joining method in which a metal nanopaste obtained by dispersing ultrafine particles made of a third metal having an average diameter of 100 nm or less in an organic solvent is interposed and heated,
Metal particles having a diameter larger than that of the ultrafine particles on at least one surface of the first metal portion and the second metal portion on the side where the first metal portion and the second metal portion are joined. Alternatively, a joining method characterized in that a metal wire is partially installed.
前記第一の物体と前記第二の物体との間に電流を流すことで、該第一の物体と前記第二の物体との間の接合予定部に、部分的に電流を集中させて加熱し、接合することを特徴とする請求項1乃至3のいずれか記載の接合方法。   Heating is performed by partially concentrating the current on the planned joining portion between the first object and the second object by passing a current between the first object and the second object. The bonding method according to claim 1, wherein the bonding is performed. 第一の物体における第一の金属からなる第一の金属部分と、
第二の物体における第二の金属からなる第二の金属部分とが、
平均直径が100nm以下の第三の金属からなる超微粒子を有機系溶媒中に分散させてなる金属ナノペーストを用いて接合された接合構造において、
前記第一の金属部分、前記第二の金属部分の、該第一の金属部分と該第二の金属部分とを接合する側の少なくとも一方の表面に、該第一の金属部分と該第二の金属部分との接合面の端部にまで至る凹部が形成されていることを特徴とする接合構造。
A first metal portion comprising a first metal in the first object;
A second metal portion made of the second metal in the second object,
In a bonded structure bonded using a metal nanopaste in which ultrafine particles made of a third metal having an average diameter of 100 nm or less are dispersed in an organic solvent,
At least one surface of the first metal portion and the second metal portion on the side where the first metal portion and the second metal portion are joined is formed on the first metal portion and the second metal portion. A joint structure is formed in which a recess reaching the end of the joint surface with the metal portion is formed.
第一の物体における第一の金属からなる第一の金属部分と、
第二の物体における第二の金属からなる第二の金属部分とが、
平均直径が100nm以下の第三の金属からなる超微粒子を有機系溶媒中に分散させてなる金属ナノペーストを用いて接合された接合構造において、
前記第一の金属部分、前記第二の金属部分の少なくとも一方が部分的に形成され、
該部分的に形成した前記第一の金属部分もしくは前記第二の金属部分を形成していない部分は、該第一の金属部分と該第二の金属部分との接合面の端部にまで至っていることを特徴とする接合構造。
A first metal portion comprising a first metal in the first object;
A second metal portion made of the second metal in the second object,
In a bonded structure bonded using a metal nanopaste in which ultrafine particles made of a third metal having an average diameter of 100 nm or less are dispersed in an organic solvent,
At least one of the first metal portion and the second metal portion is partially formed;
The partially formed first metal part or the part not forming the second metal part reaches the end of the joint surface between the first metal part and the second metal part. A junction structure characterized by having
第一の物体における第一の金属からなる第一の金属部分と、
第二の物体における第二の金属からなる第二の金属部分とが、
平均直径が100nm以下の第三の金属からなる超微粒子を有機系溶媒中に分散させてなる金属ナノペーストを用いて接合された接合構造において、
前記第一の金属部分、前記第二の金属部分の、該第一の金属部分と該第二の金属部分とを接合する側の少なくとも一方の表面に、前記超微粒子よりも径が大きな金属粒子または金属線が部分的に設置されていることを特徴とする接合構造。
A first metal portion comprising a first metal in the first object;
A second metal portion made of the second metal in the second object,
In a bonded structure bonded using a metal nanopaste in which ultrafine particles made of a third metal having an average diameter of 100 nm or less are dispersed in an organic solvent,
Metal particles having a diameter larger than that of the ultrafine particles on at least one surface of the first metal portion and the second metal portion on the side where the first metal portion and the second metal portion are joined. Or the joining structure characterized by the metal wire being partially installed.
前記第一の物体は、
二つの主面のうちの少なくとも一方の主面に、前記第一の金属部分を有する面接合タイプの半導体素子であり、
前記第二の物体は、
前記第二の金属部分である金属回路、
または第二の金属部分である金属膜を少なくとも前記接合する側の表面に有し、第四の金属からなる金属回路
を有する金属回路付き絶縁基板であることを特徴とする請求項5乃至7のいずれか記載の接合構造。
The first object is
A surface junction type semiconductor element having the first metal portion on at least one main surface of two main surfaces,
The second object is
A metal circuit which is the second metal part;
Or an insulating substrate with a metal circuit having a metal film as a second metal portion on at least a surface on the side to be joined and having a metal circuit made of a fourth metal. Any one of the junction structures.
JP2005012394A 2005-01-20 2005-01-20 Bonding method and bonding structure Withdrawn JP2006202586A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005012394A JP2006202586A (en) 2005-01-20 2005-01-20 Bonding method and bonding structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005012394A JP2006202586A (en) 2005-01-20 2005-01-20 Bonding method and bonding structure

Publications (1)

Publication Number Publication Date
JP2006202586A true JP2006202586A (en) 2006-08-03

Family

ID=36960402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005012394A Withdrawn JP2006202586A (en) 2005-01-20 2005-01-20 Bonding method and bonding structure

Country Status (1)

Country Link
JP (1) JP2006202586A (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008153470A (en) * 2006-12-18 2008-07-03 Renesas Technology Corp Semiconductor apparatus and manufacturing method of semiconductor apparatus
JP2010010502A (en) * 2008-06-30 2010-01-14 Hitachi Ltd Semiconductor device, and bonding material
US7682875B2 (en) 2008-05-28 2010-03-23 Infineon Technologies Ag Method for fabricating a module including a sintered joint
JP2012094873A (en) * 2006-12-28 2012-05-17 Hitachi Ltd Bonding method and bonding material using metal particle
JP2012517704A (en) * 2009-02-13 2012-08-02 ダンフォス・シリコン・パワー・ゲーエムベーハー Method for forming a connection resistant to high temperatures and temperature changes between a semiconductor module and a connection partner
US8253233B2 (en) 2008-02-14 2012-08-28 Infineon Technologies Ag Module including a sintered joint bonding a semiconductor chip to a copper surface
JP2013041870A (en) * 2011-08-11 2013-02-28 Furukawa Electric Co Ltd:The Semiconductor device
CN103170617A (en) * 2011-12-23 2013-06-26 比亚迪股份有限公司 Improved silver paste, application thereof and sintering method of chip and main body of power module
KR20140068769A (en) * 2012-11-28 2014-06-09 도와 메탈테크 가부시키가이샤 Electronic part mounting substrate and method for producing same
EP2293324A4 (en) * 2008-06-25 2014-09-10 Panasonic Corp PACKAGING STRUCTURE AND METHOD FOR MANUFACTURING PACKAGING STRUCTURE
CN104347564A (en) * 2013-08-08 2015-02-11 三菱电机株式会社 Bonding structure and bonding method using metal nano particles
WO2015034078A1 (en) 2013-09-09 2015-03-12 Dowaメタルテック株式会社 Electronic-component-equipped substrate and method for producing same
JP2015095545A (en) * 2013-11-12 2015-05-18 三菱電機株式会社 Semiconductor module and manufacturing method of the same
DE102014222818A1 (en) * 2014-11-07 2016-05-12 Danfoss Silicon Power Gmbh Electronic sandwich structure with two joining partners sintered together by means of a sintered layer
DE102014222819A1 (en) * 2014-11-07 2016-05-12 Danfoss Silicon Power Gmbh Power semiconductor contact structure with bonding buffer and method for its production
JP2016157660A (en) * 2015-02-26 2016-09-01 日本航空電子工業株式会社 Electric connection structure and electric connection member
WO2017002793A1 (en) * 2015-07-01 2017-01-05 三菱電機株式会社 Semiconductor device and semiconductor device manufacturing method
JP2017139345A (en) * 2016-02-04 2017-08-10 株式会社日立製作所 Semiconductor device and method for manufacturing semiconductor device
JP2018046186A (en) * 2016-09-15 2018-03-22 株式会社デンソー Semiconductor device and manufacturing method of the same
CN108520855A (en) * 2018-05-11 2018-09-11 北京科技大学 A method for improving the reliability of ceramic copper-clad laminates with nano-silver paste
US10586756B2 (en) 2016-10-04 2020-03-10 Infineon Technologies Ag Chip carrier configured for delamination-free encapsulation and stable sintering
JP2020119948A (en) * 2019-01-22 2020-08-06 三菱電機株式会社 Semiconductor device and manufacturing method of the same
EP3494592A4 (en) * 2016-08-03 2020-11-11 Soliduv, Inc. Strain-tolerant die attach with improved thermal conductivity, and method of fabrication
WO2020255773A1 (en) * 2019-06-20 2020-12-24 富士電機株式会社 Semiconductor device and method for manufacturing semiconductor device
WO2021037420A1 (en) * 2019-08-29 2021-03-04 Siemens Aktiengesellschaft Semifinished substrate with a sintering material
CN115101507A (en) * 2022-06-14 2022-09-23 北京理工大学 Ultra-narrow pitch nt-Cu/nano composite Ag-based micro-bump interconnection structure and preparation method thereof

Cited By (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008153470A (en) * 2006-12-18 2008-07-03 Renesas Technology Corp Semiconductor apparatus and manufacturing method of semiconductor apparatus
US8821768B2 (en) 2006-12-28 2014-09-02 Hitachi, Ltd. Bonding method and bonding material using metal particle
JP2012094873A (en) * 2006-12-28 2012-05-17 Hitachi Ltd Bonding method and bonding material using metal particle
US8253233B2 (en) 2008-02-14 2012-08-28 Infineon Technologies Ag Module including a sintered joint bonding a semiconductor chip to a copper surface
US8415207B2 (en) 2008-02-14 2013-04-09 Infineon Technologies Ag Module including a sintered joint bonding a semiconductor chip to a copper surface
US7682875B2 (en) 2008-05-28 2010-03-23 Infineon Technologies Ag Method for fabricating a module including a sintered joint
US9246073B2 (en) 2008-06-25 2016-01-26 Panasonic Intellectual Property Management Co., Ltd. Mounting structure, and method of manufacturing mounting structure
EP2293324A4 (en) * 2008-06-25 2014-09-10 Panasonic Corp PACKAGING STRUCTURE AND METHOD FOR MANUFACTURING PACKAGING STRUCTURE
JP2010010502A (en) * 2008-06-30 2010-01-14 Hitachi Ltd Semiconductor device, and bonding material
JP2012517704A (en) * 2009-02-13 2012-08-02 ダンフォス・シリコン・パワー・ゲーエムベーハー Method for forming a connection resistant to high temperatures and temperature changes between a semiconductor module and a connection partner
JP2013041870A (en) * 2011-08-11 2013-02-28 Furukawa Electric Co Ltd:The Semiconductor device
CN103170617A (en) * 2011-12-23 2013-06-26 比亚迪股份有限公司 Improved silver paste, application thereof and sintering method of chip and main body of power module
JP2014130989A (en) * 2012-11-28 2014-07-10 Dowa Metaltech Kk Electronic component mounting board and manufacturing method therefor
KR20140068769A (en) * 2012-11-28 2014-06-09 도와 메탈테크 가부시키가이샤 Electronic part mounting substrate and method for producing same
KR102151824B1 (en) * 2012-11-28 2020-09-03 도와 메탈테크 가부시키가이샤 Electronic part mounting substrate and method for producing same
DE102014213083A1 (en) 2013-08-08 2015-02-12 Mitsubishi Electric Corporation Bond structure with metal nanoparticles and bonding methods using metal nanoparticles
JP2015035459A (en) * 2013-08-08 2015-02-19 三菱電機株式会社 Bonding structure by use of metal nano particles, and bonding method by use of metal nano particles
DE102014213083B4 (en) * 2013-08-08 2020-12-10 Mitsubishi Electric Corporation Bond structure with metal nanoparticles and bonding process using metal nanoparticles
US9362242B2 (en) 2013-08-08 2016-06-07 Mitsubishi Electric Corporation Bonding structure including metal nano particle
CN104347564A (en) * 2013-08-08 2015-02-11 三菱电机株式会社 Bonding structure and bonding method using metal nano particles
WO2015034078A1 (en) 2013-09-09 2015-03-12 Dowaメタルテック株式会社 Electronic-component-equipped substrate and method for producing same
JP2015053414A (en) * 2013-09-09 2015-03-19 Dowaメタルテック株式会社 Electronic-component-equipped substrate and method for producing the same
KR102280653B1 (en) * 2013-09-09 2021-07-21 도와 메탈테크 가부시키가이샤 Electronic part mounting substrate and method for producing same
KR20160054549A (en) 2013-09-09 2016-05-16 도와 메탈테크 가부시키가이샤 Electronic part mounting substrate and method for producing same
US9831157B2 (en) 2013-09-09 2017-11-28 Dowa Metaltech Co., Ltd. Method of attaching an electronic part to a copper plate having a surface roughness
JP2015095545A (en) * 2013-11-12 2015-05-18 三菱電機株式会社 Semiconductor module and manufacturing method of the same
CN104637910A (en) * 2013-11-12 2015-05-20 三菱电机株式会社 Semiconductor module and method for manufacturing the same
US9698078B2 (en) 2013-11-12 2017-07-04 Mitsubishi Electric Corporation Semiconductor module and method for manufacturing the same
CN107112303A (en) * 2014-11-07 2017-08-29 丹佛斯硅动力有限责任公司 Power semiconductor contact structures and its production method
DE102014222819B4 (en) * 2014-11-07 2019-01-03 Danfoss Silicon Power Gmbh Power semiconductor contact structure with bonding buffer and method for its production
CN107112304A (en) * 2014-11-07 2017-08-29 丹佛斯硅动力有限责任公司 With by means of having the electronics sandwich and corresponding manufacture method of two parts that higher density and sinter layer compared with the graded area of low-density be combined together
CN107112304B (en) * 2014-11-07 2021-07-27 丹佛斯硅动力有限责任公司 Electronic sandwich structure having two parts joined together by means of a sintered layer having alternating regions of higher and lower density, and corresponding manufacturing method
DE102014222818A1 (en) * 2014-11-07 2016-05-12 Danfoss Silicon Power Gmbh Electronic sandwich structure with two joining partners sintered together by means of a sintered layer
DE102014222819A1 (en) * 2014-11-07 2016-05-12 Danfoss Silicon Power Gmbh Power semiconductor contact structure with bonding buffer and method for its production
US10332858B2 (en) 2014-11-07 2019-06-25 Danfoss Silicon Power Gmbh Electronic sandwich structure with two parts joined together by means of a sintering layer
DE102014222818B4 (en) 2014-11-07 2019-01-03 Danfoss Silicon Power Gmbh Electronic sandwich structure with two joining partners sintered together by means of a sintered layer
WO2016136064A1 (en) * 2015-02-26 2016-09-01 日本航空電子工業株式会社 Electric connection structure and electric connection member
JP2016157660A (en) * 2015-02-26 2016-09-01 日本航空電子工業株式会社 Electric connection structure and electric connection member
US10721822B2 (en) 2015-02-26 2020-07-21 Japan Aviation Electronics Industry, Limited Electric connection structure and electric connection member
US10314175B2 (en) 2015-02-26 2019-06-04 Japan Aviation Electronics Industry, Limited Electric connection structure and electric connection member
CN107533984B (en) * 2015-07-01 2020-07-10 三菱电机株式会社 Semiconductor device and method for manufacturing semiconductor device
JP2019024121A (en) * 2015-07-01 2019-02-14 三菱電機株式会社 Semiconductor device and method of manufacturing semiconductor device
US11094664B2 (en) 2015-07-01 2021-08-17 Mitsubishi Electric Corporation Semiconductor device and method of manufacturing semiconductor device
WO2017002793A1 (en) * 2015-07-01 2017-01-05 三菱電機株式会社 Semiconductor device and semiconductor device manufacturing method
US20180190611A1 (en) * 2015-07-01 2018-07-05 Mitsubishi Electric Corporation Semiconductor device and method of manufacturing semiconductor device
US10573617B2 (en) 2015-07-01 2020-02-25 Mitsubishi Electric Corporation Semiconductor device and method of manufacturing semiconductor device
JPWO2017002793A1 (en) * 2015-07-01 2017-11-02 三菱電機株式会社 Semiconductor device and manufacturing method of semiconductor device
CN107533984A (en) * 2015-07-01 2018-01-02 三菱电机株式会社 The manufacture method of semiconductor device and semiconductor device
JP2017139345A (en) * 2016-02-04 2017-08-10 株式会社日立製作所 Semiconductor device and method for manufacturing semiconductor device
EP3494592A4 (en) * 2016-08-03 2020-11-11 Soliduv, Inc. Strain-tolerant die attach with improved thermal conductivity, and method of fabrication
WO2018051896A1 (en) * 2016-09-15 2018-03-22 株式会社デンソー Semiconductor device, and method for manufacturing same
JP2018046186A (en) * 2016-09-15 2018-03-22 株式会社デンソー Semiconductor device and manufacturing method of the same
DE112017004644B4 (en) 2016-09-15 2023-03-09 Denso Corporation Semiconductor device and method of manufacturing the same
CN109716493A (en) * 2016-09-15 2019-05-03 株式会社电装 Semiconductor device and its manufacturing method
CN109716493B (en) * 2016-09-15 2023-04-04 株式会社电装 Semiconductor device and method for manufacturing the same
US10586756B2 (en) 2016-10-04 2020-03-10 Infineon Technologies Ag Chip carrier configured for delamination-free encapsulation and stable sintering
CN108520855A (en) * 2018-05-11 2018-09-11 北京科技大学 A method for improving the reliability of ceramic copper-clad laminates with nano-silver paste
JP2020119948A (en) * 2019-01-22 2020-08-06 三菱電機株式会社 Semiconductor device and manufacturing method of the same
JP7263792B2 (en) 2019-01-22 2023-04-25 三菱電機株式会社 Semiconductor device and its manufacturing method
WO2020255773A1 (en) * 2019-06-20 2020-12-24 富士電機株式会社 Semiconductor device and method for manufacturing semiconductor device
JP7238985B2 (en) 2019-06-20 2023-03-14 富士電機株式会社 Semiconductor device and method for manufacturing semiconductor device
JPWO2020255773A1 (en) * 2019-06-20 2021-10-21 富士電機株式会社 Semiconductor devices and methods for manufacturing semiconductor devices
US12021043B2 (en) 2019-06-20 2024-06-25 Fuji Electric Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
WO2021037420A1 (en) * 2019-08-29 2021-03-04 Siemens Aktiengesellschaft Semifinished substrate with a sintering material
CN115101507A (en) * 2022-06-14 2022-09-23 北京理工大学 Ultra-narrow pitch nt-Cu/nano composite Ag-based micro-bump interconnection structure and preparation method thereof

Similar Documents

Publication Publication Date Title
JP2006202586A (en) Bonding method and bonding structure
JP4635230B2 (en) Joining method and joining structure
JP6632686B2 (en) Semiconductor device and method of manufacturing semiconductor device
JP5316602B2 (en) Heat diffusion member joining structure, heating element cooling structure, and heat diffusion member joining method
CN101687284B (en) Joint product, process for producing the joint product, power semiconductor module, and process for producing the power semiconductor module
CN104205328B (en) Semiconductor device and method for manufacturing same
JP6214273B2 (en) Bonding structure using metal nanoparticles and bonding method using metal nanoparticles
JP6432466B2 (en) Bonded body, power module substrate with heat sink, heat sink, method for manufacturing bonded body, method for manufacturing power module substrate with heat sink, and method for manufacturing heat sink
JP2006202938A (en) Semiconductor device and manufacturing method thereof
JP4969589B2 (en) Peltier element purification process and Peltier element
JP2006352080A (en) Semiconductor device manufacturing method and semiconductor device
JP5642336B2 (en) Semiconductor device and manufacturing method thereof
JP6432465B2 (en) Bonded body, power module substrate with heat sink, heat sink, method for manufacturing bonded body, method for manufacturing power module substrate with heat sink, and method for manufacturing heat sink
Zhang et al. Effects of sintering pressure on the densification and mechanical properties of nanosilver double-side sintered power module
JP5659663B2 (en) Semiconductor device and manufacturing method of semiconductor device
WO2017187998A1 (en) Semiconductor device
JP3627591B2 (en) Power semiconductor module manufacturing method
CN108305838B (en) Low-temperature chip mounting method and chip mounting structure without organic matters
Deng et al. Bonding below 150 C using nano-ag film for power electronics packaging
JP7498283B2 (en) Joint, holding device, and electrostatic chuck
Liu et al. Laser-assisted sintering of silver nanoparticle paste for bonding of silicon to DBC for high-temperature electronics packaging
KR101929750B1 (en) Bonding paste for high temperature applications and bonding method using the in situ formation of fine Ag bumps
JP2006228804A (en) Ceramic circuit board for semiconductor module and manufacturing method thereof
JP6392583B2 (en) Circuit board and electronic device
JP2017220490A (en) Semiconductor device and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071221

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090825