[go: up one dir, main page]

JP2006201105A - Three-dimensional measuring instrument and probe used therefor - Google Patents

Three-dimensional measuring instrument and probe used therefor Download PDF

Info

Publication number
JP2006201105A
JP2006201105A JP2005015144A JP2005015144A JP2006201105A JP 2006201105 A JP2006201105 A JP 2006201105A JP 2005015144 A JP2005015144 A JP 2005015144A JP 2005015144 A JP2005015144 A JP 2005015144A JP 2006201105 A JP2006201105 A JP 2006201105A
Authority
JP
Japan
Prior art keywords
stylus
dimensional measuring
probe
tip
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005015144A
Other languages
Japanese (ja)
Inventor
Katsuyuki Ogura
勝行 小倉
Norio Shoda
典男 正田
Tatsuya Kameyama
達也 亀山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitutoyo Corp
Mitsutoyo Kiko Co Ltd
Original Assignee
Mitutoyo Corp
Mitsutoyo Kiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitutoyo Corp, Mitsutoyo Kiko Co Ltd filed Critical Mitutoyo Corp
Priority to JP2005015144A priority Critical patent/JP2006201105A/en
Publication of JP2006201105A publication Critical patent/JP2006201105A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • A Measuring Device Byusing Mechanical Method (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To realize a precise, quick and stable profile measurement. <P>SOLUTION: In this probe used in the profile measurement of a three-dimensional measuring instrument and equipped with a stylus 18 in its tip, a DLC film 35 is formed on a surface of a tip sphere 32 of the stylus 18, and a friction coefficient thereof is set ≤0.1. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、三次元測定装置のプローブに関し、特に倣い測定に適したプローブ及びそれを用いた三次元測定装置に関する。   The present invention relates to a probe for a three-dimensional measuring apparatus, and more particularly to a probe suitable for scanning measurement and a three-dimensional measuring apparatus using the probe.

三次元測定機の倣い測定は、ポイント測定に比べて測定点数が飛躍的に多いため、測定の不確かさが改善され、測定結果の信頼性が上がる。そのために現在の測定では必要不可欠な技術である。しかし倣い測定を行う場合、測定点数が増加するため倣い測定速度を上げて測定しないと測定時間がかかってしまい、測定効率(スループット)が悪くなってしまうという問題がある。   The scanning measurement of a three-dimensional measuring machine has a significantly larger number of measurement points than point measurement, so that measurement uncertainty is improved and the reliability of measurement results is improved. Therefore, it is an indispensable technique in the current measurement. However, when scanning measurement is performed, the number of measurement points increases. Therefore, if the scanning measurement speed is not increased and measurement is performed, measurement time is required and measurement efficiency (throughput) is deteriorated.

測定効率を高めるには、倣い測定の速度を向上させることが必要である。このため、従来より、CMMの駆動機構の改造、倣い制御技術の向上、ソフトウエアの開発と倣いプローブの開発を総合的に行い、高速で高精度な倣い測定の実現を図るべく開発が進められてきた。
特開2000−039302、段落0008、図8
In order to increase the measurement efficiency, it is necessary to improve the speed of scanning measurement. For this reason, the development of the CMM drive mechanism, the improvement of the scanning control technology, the development of software and the scanning probe have been comprehensively performed to achieve high-speed and high-precision scanning measurement. I came.
JP 2000-039302, paragraph 0008, FIG.

しかしながら、倣い測定において、高速化と高精度化を両立させることは非常に難しい。そのためにはCMMの駆動機構やプローブの新規開発そして制御技術やソフトウエアを新規開発することになり、非常に大きなコストと時間を必要とする。たとえば、それらの技術が確立された場合でも、ユーザワークの形状や表面粗さの違いによって倣い時の振動現象(いわゆる「ビビリ」)が発生する場合があった。またワークの材質によっては接触したプローブ先端のスタイラスの先端球(一般的にはルビー球を使用)の摩耗やワークの磨耗が発生し、ワークの傷や倣い精度悪化の要因になっていた。   However, it is very difficult to achieve both high speed and high accuracy in scanning measurement. For this purpose, a new drive mechanism and probe of the CMM, a new control technology and software are newly developed, and a very large cost and time are required. For example, even when those techniques are established, there is a case where a vibration phenomenon (so-called “chatter”) occurs during copying due to a difference in the shape and surface roughness of the user work. Further, depending on the material of the workpiece, the tip stylus tip sphere (generally a ruby ball is used) at the tip of the probe or wear of the workpiece occurs, which causes damage to the workpiece and deterioration of the copying accuracy.

本発明は、このような問題点に鑑みされたもので、様々なワークを測定する三次元測定装置において、三次元測定装置本体や制御技術、ソフトウエアを変えることなしに、既存のシステムを有効に利用し、高精度・高速で且つ安定な倣い測定を実現可能とする三次元測定装置及びそれに用いられるプローブを提供することを目的とする。   The present invention has been made in view of such problems, and in a three-dimensional measuring apparatus for measuring various workpieces, the existing system can be effectively used without changing the main body of the three-dimensional measuring apparatus, control technology, or software. It is an object of the present invention to provide a three-dimensional measuring apparatus and a probe used in the three-dimensional measuring apparatus which can be used for the above and realize high-precision, high-speed and stable scanning measurement.

上記目的を達成するため、本発明に係る三次元測定装置のプローブは、三次元測定装置の倣い測定に用いられ、先端にスタイラスを装着してなるプローブにおいて、前記スタイラスの先端球の表面の摩擦係数が0.1以下であることを特徴とする。   In order to achieve the above object, a probe of a three-dimensional measurement apparatus according to the present invention is used for scanning measurement of a three-dimensional measurement apparatus, and is a probe in which a stylus is attached to the tip, and the friction of the surface of the tip sphere of the stylus is The coefficient is 0.1 or less.

また、本発明に係る三次元測定装置は、プローブの先端にスタイラスを装着し、このスタイラスの先端球を測定対象に接触させた状態で前記先端球を測定対象の表面に沿って移動させる倣い測定を実行する三次元測定装置において、前記スタイラスの先端球の表面の摩擦係数が0.1以下であることを特徴とする。   The three-dimensional measuring apparatus according to the present invention is a scanning measurement in which a stylus is attached to the tip of a probe, and the tip sphere is moved along the surface of the measurement target while the tip sphere of the stylus is in contact with the measurement target. In the three-dimensional measuring apparatus for executing the above, the friction coefficient of the surface of the tip sphere of the stylus is 0.1 or less.

なお、前記スタイラスの先端球は、例えば表面に低摩擦化処理が施されたものである。この場合、前記低摩擦化処理としては、DLC(ダイアモンドライクカーボン)コーティングを使用することが出来る。前記スタイラスの先端球は、例えば表面に膜厚0.2〜10μmのDLC膜が形成されたものである。   The tip sphere of the stylus has, for example, a surface subjected to low friction treatment. In this case, a DLC (diamond-like carbon) coating can be used as the low friction treatment. The tip sphere of the stylus has, for example, a DLC film having a film thickness of 0.2 to 10 μm formed on the surface.

本発明によれば、測定対象とプローブ先端のスタイラス先端球の摩擦抵抗を、例えば低摩擦化処理により0.1以下とするようにしているので、高速倣い測定時の振動現象の発生もなく、動作もスムースになり、高精度化を図ることが出来る。また、スタイラスの先端球の耐摩耗性が向上し、スタイラスの長寿命化とワークの損傷防止とを図ることができる。   According to the present invention, the frictional resistance between the object to be measured and the stylus tip sphere of the probe tip is set to 0.1 or less by, for example, low friction processing, so that no vibration phenomenon occurs during high-speed scanning measurement, The operation is also smooth and high accuracy can be achieved. In addition, the wear resistance of the tip ball of the stylus is improved, and it is possible to extend the life of the stylus and prevent damage to the workpiece.

次に、本発明の実施の形態を、図面を参照して説明する。   Next, embodiments of the present invention will be described with reference to the drawings.

図1は、この発明の一実施形態に係る三次元測定機の外観斜視図である。   FIG. 1 is an external perspective view of a coordinate measuring machine according to an embodiment of the present invention.

除振台10の上には、定盤11がその上面をベース面として水平面と一致するように載置され、この定盤11の両側端から立設されたアーム支持体12a,12bの上端でX軸ガイド13を支持している。アーム支持体12aは、その下端がY軸駆動機構14によってY軸方向に駆動され、アーム支持体12bは、その下端がエアーベアリングによって定盤11上にY軸方向に移動可能に支持されている。X軸ガイド13は、垂直方向に延びるZ軸ガイド15をX軸方向に駆動する。Z軸ガイド15には、Z軸アーム16がZ軸ガイド15に沿って駆動されるように設けられ、Z軸アーム16の下端に接触式のプローブ17が装着されている。このプローブ17の先端にはスタイラス18が装着されている。   A surface plate 11 is placed on the vibration isolation table 10 so as to coincide with a horizontal surface with the upper surface as a base surface, and at the upper ends of arm supports 12 a and 12 b erected from both side ends of the surface plate 11. The X-axis guide 13 is supported. The lower end of the arm support 12a is driven in the Y-axis direction by the Y-axis drive mechanism 14, and the lower end of the arm support 12b is supported on the surface plate 11 by the air bearing so as to be movable in the Y-axis direction. . The X-axis guide 13 drives a Z-axis guide 15 extending in the vertical direction in the X-axis direction. The Z-axis guide 15 is provided so that the Z-axis arm 16 is driven along the Z-axis guide 15, and a contact type probe 17 is attached to the lower end of the Z-axis arm 16. A stylus 18 is attached to the tip of the probe 17.

ジョイスティック19は、手動操作でプローブ17を移動させるのに用いられる。この三次元測定機は、スタイラス18の先端を定盤11上に載置されたワーク20の表面に接触させた状態でスタイラス18をワーク20の表面に沿って移動させる倣い測定を実行する。   The joystick 19 is used to move the probe 17 manually. This three-dimensional measuring machine performs a scanning measurement in which the stylus 18 is moved along the surface of the work 20 in a state where the tip of the stylus 18 is in contact with the surface of the work 20 placed on the surface plate 11.

図2は、スタイラス18の詳細を示す図であり、同図(a)は正面図、同図(b)は先端の断面図である。図示のように、スタイラス18は、シャフト31と、このシャフト31の先端に装着された先端球32と、シャフト31の基端部に形成されたプローブ連結部33とにより構成されている。先端球23は、ルビー球(Al)のベース球34の表面に、0.2〜10μmのDLC膜35をコーティング等の低摩擦化処理で施したものである。一般的に、ルビー球の摩擦係数(動摩擦係数/相手材:鋼S45C)は、0.16であるが、DLCコーティングは、摩擦係数が0.1以下である。従って、倣い測定時の振動現象の発生を効果的に防止することができる。但し、先端球コーティングの厚みを高精度に均一化することが難しく、先端球の真球度の劣化を考慮すると、厚み上限は10μmが限界である。 2A and 2B are diagrams showing details of the stylus 18, wherein FIG. 2A is a front view and FIG. 2B is a sectional view of the tip. As illustrated, the stylus 18 includes a shaft 31, a tip sphere 32 attached to the tip of the shaft 31, and a probe connecting portion 33 formed at the base end of the shaft 31. The tip sphere 23 is obtained by applying a DLC film 35 of 0.2 to 10 μm to the surface of a base sphere 34 of a ruby sphere (Al 2 O 3 ) by a low friction process such as coating. Generally, the ruby ball has a friction coefficient (dynamic friction coefficient / counterpart: steel S45C) of 0.16, but the DLC coating has a friction coefficient of 0.1 or less. Accordingly, it is possible to effectively prevent the occurrence of a vibration phenomenon at the time of scanning measurement. However, it is difficult to make the thickness of the tip sphere coating highly accurate, and considering the deterioration of the sphericity of the tip sphere, the upper limit of the thickness is 10 μm.

なお、ベース球34の材質は、ルビーに限定されるものではなく、超鋼等を用いることも出来る。また、低摩擦化処理は、DLCのコーティング以外でも、例えばPTFE(テトラフルオロエチレン)樹脂、FEP(フッ化エチレンプロピレン共重合)樹脂、PFA(パーフルオロアルコキシ)樹脂等のコーティングでも良く、この場合には摩擦係数0.05以下を実現することができる。   The material of the base sphere 34 is not limited to ruby, and super steel or the like can be used. Further, the friction reduction treatment may be a coating of PTFE (tetrafluoroethylene) resin, FEP (fluorinated ethylene propylene copolymer) resin, PFA (perfluoroalkoxy) resin, etc., in addition to the DLC coating. Can achieve a coefficient of friction of 0.05 or less.

なお、平面へのコーティング技術は、既に確立されているが、この実施形態のような球体へのコーティング技術は非常に難しい。そのためコーティングは、以下の工程により実施することが望ましい。   In addition, although the coating technique to a plane is already established, the coating technique to a sphere like this embodiment is very difficult. Therefore, it is desirable to carry out the coating by the following steps.

(1)ベース球34全体に所定膜厚の膜を均一にコーティングするためシャフト31を回転させる。   (1) The shaft 31 is rotated in order to uniformly coat the base sphere 34 with a film having a predetermined film thickness.

(2)膜の付着性能を上げるために2層、3層のコーティングを実施する。   (2) In order to improve the adhesion performance of the film, two or three layers of coating are performed.

図3及び図4は、三次元測定装置により円筒のワークを倣い測定した結果を示す図で、図3は上述した低摩擦化処理を実施していない従来のプローブを用いて倣い測定を行った例、図4は上述した低摩擦化処理を実施した本実施形態のプローブを用いて倣い測定を行った例を示している。なお、倣い速度は、10mm/sに設定した。   FIG. 3 and FIG. 4 are diagrams showing the result of measuring a cylindrical workpiece by a three-dimensional measuring apparatus. FIG. 3 shows the result of using a conventional probe that has not been subjected to the above-described friction reduction processing. For example, FIG. 4 shows an example in which the scanning measurement is performed using the probe of the present embodiment in which the above-described friction reduction processing is performed. The copying speed was set to 10 mm / s.

これらの例から明らかなように、従来のプローブにより倣い測定した措定結果では、図3中点線で囲まれた部分に示されるように振動現象が発生しており、最小値と最大値の幅が9.997〜10.002と広い範囲でばらつき正確な測定を行うことができなかったが、図4に示すように、本実施形態のプローブを用いた倣い測定によれば、最小値と最大値の幅が、9.9986〜10.0002とばらつきが大幅に軽減されており、より正確な測定が可能になることが分かった。   As is clear from these examples, in the determination results obtained by copying with a conventional probe, a vibration phenomenon occurs as shown in the portion surrounded by the dotted line in FIG. 3, and the width between the minimum value and the maximum value is In the wide range of 9.997 to 10.002, accurate measurement could not be performed. However, as shown in FIG. 4, according to the scanning measurement using the probe of the present embodiment, the minimum value and the maximum value are measured. The range of 9.9986 to 10.0002 is greatly reduced in variation, and it was found that more accurate measurement is possible.

この発明の一実施形態に係る三次元測定装置の構成を示す外観斜視図である。1 is an external perspective view showing a configuration of a three-dimensional measuring apparatus according to an embodiment of the present invention. 同三次元測定装置で使用されるスタイラスの正面図とその先端球の拡大断面図である。It is the front view of a stylus used with the same three-dimensional measuring device, and the expanded sectional view of the tip sphere. 従来のプローブを使用して行った倣い測定の測定結果を示すグラフである。It is a graph which shows the measurement result of the scanning measurement performed using the conventional probe. 本発明の一実施形態によるプローブを使用して行った倣い測定の測定結果を示すグラフである。It is a graph which shows the measurement result of the scanning measurement performed using the probe by one Embodiment of this invention.

符号の説明Explanation of symbols

10…徐振台、11…定盤、12a,12b…アーム支持体、13…X軸ガイド、14…Y軸駆動機構、15…Z軸ガイド、16…Z軸ガイド、17…プローブ、18…スタイラス、19…ジョイスティック、20…ワーク、31…シャフト、32…先端球、33…プローブ連結部、34…ベース球、35…DLC膜。
DESCRIPTION OF SYMBOLS 10 ... Slow vibration stand, 11 ... Surface plate, 12a, 12b ... Arm support, 13 ... X-axis guide, 14 ... Y-axis drive mechanism, 15 ... Z-axis guide, 16 ... Z-axis guide, 17 ... Probe, 18 ... Stylus, DESCRIPTION OF SYMBOLS 19 ... Joystick, 20 ... Workpiece, 31 ... Shaft, 32 ... Tip ball | bowl, 33 ... Probe connection part, 34 ... Base ball | bowl, 35 ... DLC film | membrane.

Claims (8)

三次元測定装置の倣い測定に用いられ、先端にスタイラスを装着してなるプローブにおいて、
前記スタイラスの先端球の表面の摩擦係数が0.1以下であることを特徴とする三次元測定装置のプローブ。
In a probe that is used for scanning measurement of a three-dimensional measuring device and has a stylus attached to the tip,
A probe for a three-dimensional measuring apparatus, wherein a friction coefficient of a surface of a tip sphere of the stylus is 0.1 or less.
前記スタイラスの先端球は、表面に低摩擦化処理が施されたものであることを特徴とする請求項1記載の三次元測定装置のプローブ。   The probe for a three-dimensional measuring apparatus according to claim 1, wherein the tip sphere of the stylus has a surface subjected to a low friction treatment. 前記低摩擦化処理は、DLC(ダイアモンドライクカーボン)コーティングであることを特徴とする請求項2記載の三次元測定装置のプローブ。   3. The probe of a three-dimensional measuring apparatus according to claim 2, wherein the low friction treatment is DLC (diamond-like carbon) coating. 前記スタイラスの先端球は、表面に膜厚0.2〜10μmのDLC膜が形成されたものであることを特徴とする請求項1記載の三次元測定装置のプローブ。   2. The probe of a three-dimensional measuring apparatus according to claim 1, wherein the tip sphere of the stylus has a DLC film having a thickness of 0.2 to 10 [mu] m formed on a surface thereof. プローブの先端にスタイラスを装着し、このスタイラスの先端球を測定対象に接触させた状態で前記先端球を測定対象の表面に沿って移動させる倣い測定を実行する三次元測定装置において、
前記スタイラスの先端球の表面の摩擦係数が0.1以下であることを特徴とする三次元測定装置。
In a three-dimensional measurement apparatus that performs a scanning measurement in which a stylus is attached to the tip of a probe, and the tip sphere is moved along the surface of the measurement target in a state where the tip sphere of the stylus is in contact with the measurement target.
The three-dimensional measuring apparatus characterized in that the friction coefficient of the surface of the tip sphere of the stylus is 0.1 or less.
前記スタイラスの先端球は、表面に低摩擦化処理が施されたものであることを特徴とする請求項5記載の三次元測定装置。   6. The three-dimensional measuring apparatus according to claim 5, wherein the tip sphere of the stylus has a surface subjected to a friction reduction process. 前記低摩擦化処理は、DLC(ダイアモンドライクカーボン)コーティングであることを特徴とする請求項6記載の三次元測定装置。   The three-dimensional measuring apparatus according to claim 6, wherein the low friction treatment is DLC (diamond-like carbon) coating. 前記スタイラスの先端球は、表面に膜厚0.2〜10μmのDLC膜が形成されたものであることを特徴とする請求項5記載の三次元測定装置。   6. The three-dimensional measuring apparatus according to claim 5, wherein the tip sphere of the stylus has a DLC film having a film thickness of 0.2 to 10 [mu] m formed on a surface thereof.
JP2005015144A 2005-01-24 2005-01-24 Three-dimensional measuring instrument and probe used therefor Pending JP2006201105A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005015144A JP2006201105A (en) 2005-01-24 2005-01-24 Three-dimensional measuring instrument and probe used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005015144A JP2006201105A (en) 2005-01-24 2005-01-24 Three-dimensional measuring instrument and probe used therefor

Publications (1)

Publication Number Publication Date
JP2006201105A true JP2006201105A (en) 2006-08-03

Family

ID=36959228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005015144A Pending JP2006201105A (en) 2005-01-24 2005-01-24 Three-dimensional measuring instrument and probe used therefor

Country Status (1)

Country Link
JP (1) JP2006201105A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8468707B2 (en) * 2007-01-18 2013-06-25 Element Six Limited Polycrystalline diamond elements having convex surfaces
EP2722644A1 (en) 2012-10-18 2014-04-23 Mitutoyo Corporation Surface roughness measuring unit and coordinate measuring apparatus
WO2025033295A1 (en) * 2023-08-04 2025-02-13 Tpr株式会社 Stylus

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03261817A (en) * 1990-03-12 1991-11-21 Tokyo Seimitsu Co Ltd Controlling method for stylus of coordinate measuring machine
JPH0599657A (en) * 1991-07-17 1993-04-23 Yamaha Corp Bending angle detection device
JPH06185950A (en) * 1992-11-18 1994-07-08 Mitsutoyo Corp Displacement measuring instrument
JPH08233503A (en) * 1994-12-29 1996-09-13 Tesa Sa Length measuring devcie
JP2000008155A (en) * 1998-06-25 2000-01-11 Sumitomo Electric Ind Ltd Hard carbon film coated member
JP2001027521A (en) * 1999-07-13 2001-01-30 Canon Inc Measuring apparatus provided with terminal for measurement
JP2001099637A (en) * 1999-08-25 2001-04-13 Renishaw Plc Stylus of contact probe

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03261817A (en) * 1990-03-12 1991-11-21 Tokyo Seimitsu Co Ltd Controlling method for stylus of coordinate measuring machine
JPH0599657A (en) * 1991-07-17 1993-04-23 Yamaha Corp Bending angle detection device
JPH06185950A (en) * 1992-11-18 1994-07-08 Mitsutoyo Corp Displacement measuring instrument
JPH08233503A (en) * 1994-12-29 1996-09-13 Tesa Sa Length measuring devcie
JP2000008155A (en) * 1998-06-25 2000-01-11 Sumitomo Electric Ind Ltd Hard carbon film coated member
JP2001027521A (en) * 1999-07-13 2001-01-30 Canon Inc Measuring apparatus provided with terminal for measurement
JP2001099637A (en) * 1999-08-25 2001-04-13 Renishaw Plc Stylus of contact probe

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8468707B2 (en) * 2007-01-18 2013-06-25 Element Six Limited Polycrystalline diamond elements having convex surfaces
EP2722644A1 (en) 2012-10-18 2014-04-23 Mitutoyo Corporation Surface roughness measuring unit and coordinate measuring apparatus
US9250053B2 (en) 2012-10-18 2016-02-02 Mitutoyo Corporation Surface roughness measuring unit and coordinate measuring apparatus
WO2025033295A1 (en) * 2023-08-04 2025-02-13 Tpr株式会社 Stylus
JP7646756B2 (en) 2023-08-04 2025-03-17 Tpr株式会社 stylus

Similar Documents

Publication Publication Date Title
JP4459264B2 (en) Three-dimensional shape measurement method
JP5754971B2 (en) Shape measuring apparatus and shape measuring method
US11592278B2 (en) Method and apparatus for determining a relative position of an axis of rotation of a rotary table for a coordinate measuring machine
JP2008200798A (en) Machine tool with workpiece reference position setting function by contact detection
KR20060105616A (en) Method and apparatus for measuring and adjusting electrodes for taper processing in electric discharge machining
JP2009198303A (en) Profile measurement apparatus
JP2006201105A (en) Three-dimensional measuring instrument and probe used therefor
WO2022162927A1 (en) Positional relationship measuring device, contact detection method, and processing device
JP2018030195A (en) Method for correction of thermal displacement of machine tool and reference gauge
JP5679793B2 (en) Shape measuring apparatus and method
CN118049946A (en) Measurement error compensation method and device for dynamic error of three-dimensional coordinate measuring machine
JP2013142685A (en) Shape measuring device
JP5006565B2 (en) Shape measuring method and shape measuring apparatus
JP6330324B2 (en) Machine tool dynamic characteristic calculation device and dynamic characteristic calculation method
EP3572764B1 (en) Shape measuring probe
JP2006261271A (en) Gripper for holding semiconductor wafer and holding method, and shape measuring device
JP2010066150A (en) Displacement sensor
US20200246908A1 (en) Distance measuring device, friction stir welding apparatus, and friction stir welding method
JP4348976B2 (en) Surface shape measurement method
CN114076581A (en) Rotary table compensation
KR101823052B1 (en) Method of measuring workpiece for correction of cnc machine job
JP7514800B2 (en) Machine tool and method for aligning machine tool axis
JP6456082B2 (en) Shape measurement method
TWI495839B (en) Scanning touch probe with 5-axis measuring functions
JP2006098201A (en) Measuring tool and measuring method

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20071211

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20100412

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20100427

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101102