JP2006200898A - Interrupt insulation measuring device - Google Patents
Interrupt insulation measuring device Download PDFInfo
- Publication number
- JP2006200898A JP2006200898A JP2005009736A JP2005009736A JP2006200898A JP 2006200898 A JP2006200898 A JP 2006200898A JP 2005009736 A JP2005009736 A JP 2005009736A JP 2005009736 A JP2005009736 A JP 2005009736A JP 2006200898 A JP2006200898 A JP 2006200898A
- Authority
- JP
- Japan
- Prior art keywords
- insulation
- measurement
- capacitor
- voltage
- igr
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Measurement Of Resistance Or Impedance (AREA)
- Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
- Testing Relating To Insulation (AREA)
Abstract
Description
本発明は、電気設備の活線絶縁計測に関するものである。 The present invention relates to hot-wire insulation measurement of electrical equipment.
一般的に電気設備の絶縁測定には、直流方式の絶縁抵抗計などが使用されているが、停電しなければ計測できないという問題がある。 In general, insulation measurement of electrical equipment uses a DC-type insulation resistance meter, but there is a problem that measurement is not possible unless a power failure occurs.
非接地方式の低圧配電路において、交流電気設備を使用しつつ対地絶縁抵抗を計測する方法については、絶縁検出用電源として直流電圧を、非接地の特質を損なわない程度の交流抵抗を持つリアクトルや抵抗などを介して電路と大地間に印加し、加えた電圧と流れる電流とから絶縁抵抗を求める方式の活線絶縁監視装置が古くから使用されている。(図5参照)
この方法は、交流性の雑音などの影響も少なく低コストで信頼性の高い測定が可能であることから、変圧器から低圧回路を一括して監視するなど、広域な絶縁群の監視用に使用されているが、この装置で絶縁劣化を検出したとき、不良個所を特定するための探査計測を活線で行う手段が無いという問題がある。
Regarding the method of measuring ground insulation resistance while using AC electrical equipment in a non-grounded low-voltage distribution line, a DC voltage is used as an insulation detection power supply, and a reactor with an AC resistance that does not impair the characteristics of non-grounding A hot-wire insulation monitoring device that has been used for a long time has been used to obtain an insulation resistance from an applied voltage and a flowing current applied between an electric circuit and the ground through a resistor or the like. (See Figure 5)
This method is less affected by AC noise and can be measured at low cost and with high reliability, so it can be used to monitor a wide range of insulation groups, such as monitoring low-voltage circuits from a transformer at once. However, when insulation deterioration is detected by this apparatus, there is a problem that there is no means for performing exploration measurement for identifying a defective part with a live line.
直接接地方式の低圧配電路において、交流電気設備を使用しつつ対地絶縁を計測する方法については、商用周波数と異なる周波数の交流電圧を電路と大地間に加え、これにより流れる電流と加えた電圧から抵抗性の電流即ち有効分の電流を検出し、その大小で絶縁の状態を判断する、図6に示すようなIgr方式の絶縁状態監視装置が使用されている。(例えば、特許文献1及び非特許文献1,2参照) In the method of measuring ground insulation while using AC electrical equipment in a direct grounding type low-voltage distribution circuit, an AC voltage of a frequency different from the commercial frequency is applied between the circuit and the ground, and the current flowing through this voltage is added. An Igr type insulation state monitoring device as shown in FIG. 6 is used which detects a resistance current, that is, an effective current, and determines the insulation state based on the detected magnitude. (For example, see Patent Document 1 and Non-Patent Documents 1 and 2)
しかし、電力半導体機器などが発する雑音などによる誤差電流や、絶縁検出に使用する交流電源周波数と同一又は近似する雑音周波数による混信障害現象を起こすなどという問題も避けられない。(例えば、特許文献3参照) However, problems such as an error current due to noise generated by power semiconductor devices and the like, and interference interference due to a noise frequency that is the same as or close to the AC power supply frequency used for insulation detection are unavoidable. (For example, see Patent Document 3)
又、Igr方式は交流電圧を絶縁部分に加えて有効分電流を計測する電力計法の応用原理であるから、対地静電容量と等価的に直列に入る損失抵抗があるとこれに生ずる交流損失電力による有効分電流が加算され、直流で計測する絶縁抵抗値から算出する直流有効分電流とは等しくならない場合があるという重大な問題がある。 The Igr method is an application principle of the wattmeter method that measures the effective current by applying an AC voltage to the insulation part. There is a serious problem that the effective current due to electric power is added and the DC effective current calculated from the insulation resistance value measured by DC may not be equal.
前記損失抵抗により生ずる誤差電流を低減するためには、検出用信号の周波数を下げる必要があるが接地線への電磁結合に使用する変圧器などが大きくなり実用的ではないという問題がある。 In order to reduce the error current caused by the loss resistance, it is necessary to lower the frequency of the detection signal, but there is a problem that the transformer used for electromagnetic coupling to the ground line becomes large and is not practical.
低い周波数の検出用信号電圧の重畳方法としてB種接地極とD種接地極などの間に介在する大地抵抗にIgr絶縁計測電圧を印加し、その降下電圧を利用する方法も考案されている。(例えば、特許文献2参照) As a method for superimposing a low-frequency detection signal voltage, a method has been devised in which an Igr insulation measurement voltage is applied to a ground resistance interposed between a B-type ground electrode and a D-type ground electrode, and the voltage drop is used. (For example, see Patent Document 2)
直流形絶縁抵抗計方式で交流電路や交流電気設備の絶縁抵抗を計るには、変圧器については接地線を外し、その他の電路については切り離すことのできる電路毎に当該開閉器を開とし、計測の対象とする設備単品もしくは計測をする絶縁群毎に分離し絶縁状態にしておかないと計測できないという問題があり、結果的には停電測定が必要となってIT関連など停電し難い現在の電力負荷事情にそぐわないという問題がある。
又、電路が分離され各々の相互の関連が絶たれた状態で電路や電気設備機器に対して個々に絶縁抵抗測定を行うことから測定漏れが出やすい他、多数の工数を必要とする。
To measure the insulation resistance of an AC circuit or AC electrical equipment using the DC insulation resistance meter method, remove the grounding wire for the transformer and open the switch for each circuit that can be disconnected for the other circuits. There is a problem that it cannot be measured unless it is isolated and separated for each equipment to be measured or insulation group to be measured, and as a result, it is necessary to measure power outage and current power that is difficult to power outage such as IT related There is a problem that it does not match the load situation.
In addition, since the insulation resistance measurement is individually performed on the electrical circuit and electrical equipment in the state where the electrical circuit is separated and the mutual relations are cut off, measurement leakage is likely to occur, and many man-hours are required.
非接地配電方式の交流電気設備等に使用されている直流式の絶縁監視装置は、原理的には直流形絶縁抵抗計方式と同じであり、同一変圧器捲き線系統の負荷を含む電路内のどこで絶縁低下事故が生じてもこれを区別することなく検出して警報する。 しかし、その絶縁低下事故点を探すためには、その疑義のある電気設備の絶縁群毎に分離しないと切り分け測定ができないし、分離すると必然的に電路は停電せざるを得ないこととなり、活線では絶縁低下事故点の探査ができないという問題がある。 The DC type insulation monitoring device used for ungrounded distribution type AC electrical equipment is in principle the same as the DC type insulation resistance meter method, and is used in the electric circuit including the load of the same transformer feeder system. Detects and alerts wherever an insulation breakdown accident occurs without distinction. However, in order to find the point of insulation failure, it is not possible to perform measurement separately unless the insulation group of the suspicious electrical equipment is separated. There is a problem that it is not possible to search for the point of insulation deterioration at the wire.
直接接地配電方式の交流電気設備に使用されているIgr方式絶縁状態監視装置が使用する被監視電路と大地間に接地線を介して印加するIgr絶縁計測電圧は、負荷設備などへの影響を避けるため出来るだけ小勢力にする必要があり、絶縁検出に利用できる代替計測電流信号は数十μAという微少電流になり、半導体電力機器などが発生する雑音電流などに対し十分な信号対雑音比が得られず安定した計測値が得られない場合があるという問題がある。 The Igr insulation measurement voltage applied via the ground wire between the monitored electrical circuit and the ground used by the Igr insulation state monitoring device used in the AC electrical equipment of the direct ground distribution system avoids the influence on the load equipment and the like. Therefore, it is necessary to make the force as small as possible. The alternative measurement current signal that can be used for insulation detection is a very small current of several tens of microamperes, and a sufficient signal-to-noise ratio can be obtained for noise current generated by semiconductor power devices. There is a problem that a stable measurement value may not be obtained.
又、最近多用される半導体電力機器は基準周波数及びその高調波が相互に干渉して数十Hzから数百kHzにわたる広範囲な周波数の雑音を発生し、これら成分がIgr絶縁計測電圧の周波数と一致又は近似すると混信障害を起こし、絶縁状態計測値が増減する誤差が生ずるという問題もある。 In addition, semiconductor power devices that are frequently used recently generate noise in a wide range of frequencies ranging from several tens of Hz to several hundreds of kHz due to interference between the reference frequency and its harmonics, and these components coincide with the frequency of the Igr insulation measurement voltage. Alternatively, there is a problem that, when approximated, an interference error occurs, and an error that an insulation state measurement value increases or decreases occurs.
Igr方式絶縁状態監視装置は、計測用代替信号電圧に交流を使う電力計法であるため、絶縁部分の静電容量と直列に損失抵抗が存在すると、これによる消費電力に相当する並列換算等価抵抗値相当分の有効電流が誤差電流として絶縁状態を表す有効分電流の計測値に加算されるという重大な問題がある。 Since the Igr system insulation state monitoring device is a wattmeter method that uses alternating current as an alternative signal voltage for measurement, if there is a loss resistance in series with the capacitance of the insulation portion, a parallel equivalent equivalent resistance corresponding to the power consumption due to this loss resistance exists. There is a serious problem that the effective current corresponding to the value is added to the measured value of the effective current representing the insulation state as the error current.
前記混信障害による誤差と直列損失抵抗による誤差を併せて、以降Igr原理誤差と呼称する。 The error due to the interference disturbance and the error due to the series loss resistance are collectively referred to as an Igr principle error hereinafter.
この直列に入る損失抵抗の影響を減らすためにはIgr絶縁計測電圧の周波数を低くする必要があるが、周波数の低下とともに接地線に起電力を与えるための重畳用変圧器が大きくなり実用的ではないという問題がある。 In order to reduce the influence of the loss resistance that enters in series, it is necessary to lower the frequency of the Igr insulation measurement voltage. However, as the frequency decreases, the superposition transformer for applying an electromotive force to the ground line becomes larger and is not practical. There is no problem.
又、B種接地極とD種接地極などの間に介在する大地抵抗にIgr絶縁計測電圧を印加しその降下電圧を利用する方法では、絶縁劣化点の接地抵抗及びそれぞれの接地極間の大地抵抗分布などが定まらないため使用できない場合もあるなどの問題がある。 In the method of applying the Igr insulation measurement voltage to the earth resistance interposed between the class B ground electrode and the class D ground electrode and using the voltage drop, the earth resistance between the insulation deterioration points and the earth between each earth electrode are used. There is a problem that the resistance distribution cannot be used because the resistance distribution is not fixed.
本発明は、これらの問題を解決せんとするものである。
The present invention is intended to solve these problems.
被測定交流電気設備の、絶縁計測対象とする絶縁部分を挟む双方の電気設備間、例えば負荷設備を含む変圧器低圧側電気設備とB種接地工事やD種接地などの接地側電気設備間など、を接続する導体を、コンデンサで交流的に代替して直流的に遮断することで、直流方式による活線絶縁抵抗計測を可能にするとともに、これと相補する極めて低い周波数によるIgr方式絶縁状態検出方法が使用できるようにしたことを最も主要な特徴とする。 Between the electrical equipment of both sides of the insulation part to be measured for insulation of the AC electrical equipment to be measured, for example, between the transformer low voltage side electrical equipment including the load equipment and the ground side electrical equipment such as Class B grounding or Class D grounding, etc. The conductor connecting the two is connected to the capacitor in an alternating manner and is cut off in a direct current, thereby enabling measurement of the hot-wire insulation resistance by the direct current method and detecting the Igr method insulation state at an extremely low frequency complementary to this. The most important feature is that the method can be used.
本発明の絶縁計測装置の計測端子間に、被測定交流電気設備の絶縁計測対象とする絶縁部分を挟む双方の電気設備間を接続する導体を交流的に代替して直流的に遮断するための性能を持つコンデンサを設ける。 このコンデンサは接続手段を介して着脱自在に装着し或いは、独立した装置として被測定交流電気設備の要所に定置することもできる。 勿論、既設設備としてコンデンサによる代替もしくは接地が行われていれば、このコンデンサを使用することもできる。 Between the measurement terminals of the insulation measuring apparatus of the present invention, the conductor connecting the two electrical facilities sandwiching the insulation part to be measured for insulation of the alternating current electrical equipment to be measured is replaced with an alternating current and cut off in a direct current manner. Provide a capacitor with performance. This capacitor can be detachably mounted via a connecting means, or can be placed as an independent device at a point in the AC electrical equipment to be measured. Of course, this capacitor can be used as long as the existing equipment is replaced by a capacitor or grounded.
前記コンデンサの絶縁抵抗及び前記計測端子間から前記双方の電気設備間の前記絶縁部分の絶縁抵抗を随時計測することのできる直流方式絶縁抵抗計測手段を設ける。 A direct current type insulation resistance measuring means capable of measuring the insulation resistance of the insulation portion between the two electrical equipments from between the insulation resistance of the capacitor and the measurement terminal as needed is provided.
又、前記計測端子間から前記双方の電気設備間の前記絶縁部分に商用周波数より低い周波数のIgr絶縁計測電圧を印加することのできる低周波交流電力供給手段を設ける。 Further, a low-frequency AC power supply means is provided that can apply an Igr insulation measurement voltage having a frequency lower than the commercial frequency from between the measurement terminals to the insulation portion between the two electrical facilities.
前記絶縁部分に加わるIgr絶縁計測電圧とこれにより前記絶縁部分に流れる電流とから有効分の電流を抽出し、その大小で絶縁の状態を計測するIgr方式絶縁状態検出手段を設ける。 このIgr方式絶縁状態検出手段は、本発明に着脱自在に装着し携行形としての使用も可能な構成とすることも、或いは独立した装置として被測定交流電気設備の分岐回路などの要所に定置することもできる。 There is provided an Igr type insulation state detecting means for extracting an effective current from the Igr insulation measurement voltage applied to the insulation portion and the current flowing through the insulation portion and measuring the insulation state based on the extracted current. This Igr type insulation state detecting means can be detachably mounted on the present invention and can be used as a portable type, or can be installed as an independent device at a key point such as a branch circuit of an AC electrical equipment to be measured. You can also
前記計測電圧により前記コンデンサに流れる電流を計測してコンデンサの良否を判断するコンデンサ電流計測手段を設ける。 Capacitor current measuring means is provided for measuring the current flowing through the capacitor by the measurement voltage and judging whether the capacitor is good or bad.
又、直流方式絶縁抵抗計測手段の障害となる直流機の絶縁故障を計測する直流地電圧・絶縁低下計測手段を併設することもできる。 即ち、前記コンデンサによる交流的な代替が完了した状態で計測端子間に生ずる直流電圧を計測して記録した後、既定の抵抗を接続して降下電圧を測定し、これら計測結果により直流絶縁抵抗を算出するなどの方法が適用できる。 Further, a DC ground voltage / insulation drop measuring means for measuring an insulation failure of a DC machine that becomes an obstacle to the DC system insulation resistance measuring means can be provided. That is, after measuring and recording the DC voltage generated between the measuring terminals in a state where the AC replacement by the capacitor is completed, a predetermined resistance is connected to measure the voltage drop, and the DC insulation resistance is determined based on these measurement results. A method such as calculation can be applied.
非接地方式など、前記双方の電気設備間を接続する導体のない配電系には、塞流素子を介して本装置を接続することで使用が可能である。
It can be used by connecting this device to a power distribution system without a conductor that connects the two electrical facilities, such as a non-grounding system, through a current-carrying element.
この様に構成した本発明の作用について説明する。
使用にあたっては、本装置の計測端子を、被測定交流電気設備の絶縁計測対象となる絶縁部分を挟む双方の電気設備それぞれの端子などに接続する。 例えば計測用中継端子や開閉器両端などを利用すると効率的に作業ができる。 前記接続後、双方の電気設備間を接続する導体、例えば計測用中継端子や開閉器などを解放する。
これにより被測定回路の前記導体は交流的に前記コンデンサに代替され、前記双方の電気設備間を流れる交流電流は本装置の計測端子を通って前記コンデンサに流れるので被測定交流電気設備などを停電することなく継続して運転することが出来る。
The operation of the present invention configured as described above will be described.
In use, the measurement terminal of the present apparatus is connected to the terminals of both electrical equipments that sandwich the insulation part to be measured for insulation of the AC electrical equipment to be measured. For example, if a measurement relay terminal or both ends of a switch are used, work can be performed efficiently. After the connection, the conductors that connect the two electrical facilities, such as measurement relay terminals and switches, are released.
As a result, the conductor of the circuit to be measured is replaced with the capacitor in an AC manner, and the AC current flowing between the two electrical facilities flows to the capacitor through the measurement terminal of the apparatus, so that the AC electrical facility to be measured is blacked out. You can continue to drive without having to.
直流による絶縁抵抗計測は、計測端子から前記双方の電気設備間に直流計測電圧を印加し、静電容量に充電する過渡的電流値を除いて定常的に流れる電流を計測し、この電流と計測用直流電圧から絶縁抵抗を算出する方法で行う。 尚、計測電圧が既知の定電圧であるから、あらかじめ指示計器の目盛を印加する計測電圧に基づき設計計算した抵抗の数値で目盛っておき抵抗値を直読するなどの方法もある。 又、警報設定機能を設けることや絶縁抵抗情報として電気信号により出力することもできる。 Insulation resistance measurement by DC, DC measurement voltage is applied between both electrical equipments from the measurement terminal, and the current that flows constantly is measured except for the transient current value that charges the capacitance. This is done by calculating the insulation resistance from the direct current voltage. In addition, since the measured voltage is a known constant voltage, there is also a method in which the resistance value is scaled with the numerical value of the resistance designed and calculated in advance based on the measured voltage to which the scale of the indicating instrument is applied, and the resistance value is directly read. It is also possible to provide an alarm setting function and output an electrical signal as insulation resistance information.
この直流方式絶縁抵抗計測手段を用いて、随時前記コンデンサの絶縁性能の確認も行うことができる。 Using this DC type insulation resistance measuring means, the insulation performance of the capacitor can also be confirmed at any time.
又、交流性の雑音については、直流方式絶縁抵抗計測手段内部に用途に適合する振幅制限器や低域通過型盧波器を使用して電気的変動成分を除去することで絶縁計測の精度を高めることができる。 For AC noise, the accuracy of insulation measurement can be improved by removing electrical fluctuation components using an amplitude limiter and low-pass filter suitable for the application inside the DC insulation resistance measurement means. Can be increased.
計測端子間を接続する前記コンデンサは被測定交流電気設備の運転電流を通すもので信頼性が重要であるからコンデンサの絶縁抵抗や静電容量の保守確認を行うことが重要である。
低周波交流電力供給手段から低周波電圧を前記コンデンサに印加すると、静電容量に対応する電流がコンデンサに流れる。 コンデンサ電流計測手段はこの電流を計測し、電流の数値と設計電流値との比較を行いコンデンサの良否を判断する。 コンデンサ電流の計測には低周波交流電力供給手段から供給される電圧位相等を基準にして正しい電流を計測する手段をとることもできる。
Since the capacitor connecting the measurement terminals passes the operating current of the AC electrical equipment to be measured and reliability is important, it is important to check maintenance of the insulation resistance and capacitance of the capacitor.
When a low frequency voltage is applied to the capacitor from the low frequency AC power supply means, a current corresponding to the capacitance flows through the capacitor. The capacitor current measuring means measures this current, compares the current value with the design current value, and determines whether the capacitor is good or bad. For measuring the capacitor current, it is possible to take means for measuring the correct current with reference to the voltage phase supplied from the low-frequency AC power supply means.
前記コンデンサに印加した電圧は計測端子から被計測交流設備の前記絶縁部分を挟む双方の電気設備間にも供給され、これをIgr絶縁計測電圧としてIgr方式絶縁状態検出手段による絶縁状態計測を可能にする。 The voltage applied to the capacitor is also supplied from the measuring terminal to both electrical equipments sandwiching the insulation part of the AC equipment to be measured, and this can be used as an Igr insulation measurement voltage to enable insulation state measurement by the Igr system insulation state detection means. To do.
即ち、Igr方式絶縁状態検出手段は絶縁計測対象とする絶縁部分を挟んで印加されているIgr絶縁計測電圧と、この電圧により絶縁部分に流れる漏れ電流を検出し、該電圧と該電流の力率演算などを行い、有効分電流要素を抽出して印加電圧を除することで絶縁部分の等価抵抗値を計測する。 絶縁状態の表示としての有効分電流Igrは、この抵抗値で前記絶縁部分を構成する電気設備の使用電路の電圧を除した値に換算して出力される。 That is, the Igr type insulation state detection means detects the Igr insulation measurement voltage applied across the insulation portion to be measured for insulation and the leakage current flowing through the insulation portion by this voltage, and the voltage and the power factor of the current are detected. The equivalent resistance value of the insulating portion is measured by performing an operation, etc., extracting the effective current component and dividing the applied voltage. The effective current Igr as an indication of the insulation state is output after being converted into a value obtained by dividing the resistance value by the voltage of the electric circuit used in the electrical equipment constituting the insulation part.
前記漏れ電流を検出する手段としては変流器や零相変流器などが使用できるが、これを分割鉄芯形のものを使用することで活線のまま分岐電路や負荷配線ケーブルなどを挟み込むことで移動測定が可能となり、電路の下流に向かってIgr電流を要所で計測を重ねながら絶縁低下事故点を追い込む方法で合理的に探査特定をすることができる。 As a means for detecting the leakage current, a current transformer, a zero-phase current transformer, or the like can be used. By using a split iron core type, a branch electric circuit or a load wiring cable is sandwiched between the live lines. Thus, movement measurement is possible, and exploration and identification can be rationally performed by a method of driving down the insulation lowering accident point while repeatedly measuring the Igr current at the important point toward the downstream of the electric circuit.
絶縁部分を挟む双方の電気設備間を接続する導体の代替として、計測端子間を直流的に遮断し交流的に短絡する前記コンデンサのリアクタンスは、加わる電圧の周波数に反比例するから、導体の代替とするために被測定交流電気設備の使用周波数からみて無視しうる小さなリアクタンスとしたコンデンサでも、低周波交流電力供給手段から供給される低い周波数に対しては両周波数の比率に応じた大きな数値をしめすこととなる。 従って、低い周波数の電圧を使用することは電流値からコンデンサの良否を判定する際の所要電力を節約できることとなる。 As an alternative to the conductor that connects the two electrical equipments that sandwich the insulation part, the reactance of the capacitor that cuts the measurement terminals in a direct current and shorts in an alternating current is inversely proportional to the frequency of the applied voltage. Therefore, a capacitor with a small reactance that is negligible in view of the frequency of the AC electrical equipment to be measured shows a large value corresponding to the ratio of both frequencies for the low frequency supplied from the low-frequency AC power supply means. It will be. Therefore, the use of a low frequency voltage can save power required for determining the quality of the capacitor from the current value.
又、この低い周波数の電圧を前記双方の電気設備間から被計測絶縁部分に加えてIgr絶縁計測電圧として使用する際も同じ理由で少ない電力で所定の電圧を得ることが可能となり、絶縁状態の常時監視を行う際の経済性を大きく改善出来るという効果がある。 In addition, when this low frequency voltage is used as an Igr insulation measurement voltage by adding the voltage between the two electrical equipments to the insulation part to be measured, a predetermined voltage can be obtained with a small amount of power for the same reason. There is an effect that it is possible to greatly improve the economic efficiency when performing constant monitoring.
更に、Igr絶縁計測電圧の周波数が低くなる程半導体電力機器などから発する雑音周波数領域から離れることでその勢力が弱まり、雑音を除去するための低域通過型濾波器の効果が高くなることから、交流性の雑音にも影響されにくくなるという効果も大きい。 Furthermore, as the frequency of the Igr insulation measurement voltage decreases, the power of the low-pass filter for removing noise increases because the power is weakened by moving away from the noise frequency region emitted from the semiconductor power device or the like. The effect of being less susceptible to AC noise is also great.
前記の被計測絶縁部分の静電容量と等価的に直列に入る損失抵抗の並列換算値誤差は、直流絶縁抵抗計測においては検出されることはない。 The parallel conversion value error of the loss resistance that enters in series equivalent to the capacitance of the insulation portion to be measured is not detected in the DC insulation resistance measurement.
しかし前記並列換算値による誤差は、Igr方式ではIgr絶縁計測電圧が使用する周波数の略二乗に比例して影響することから、そのIgr絶縁計測電圧の周波数を下げる程、等価並列換算抵抗値が増加し、即ち等価有効分電流値が減少し、加算される電流誤差が低減するという大きな効果がある。 However, the error due to the parallel conversion value has an effect in proportion to the square of the frequency used by the Igr insulation measurement voltage in the Igr method, so that the equivalent parallel conversion resistance value increases as the frequency of the Igr insulation measurement voltage is lowered. That is, there is a great effect that the equivalent effective current value is reduced and the added current error is reduced.
図7は直列に入る損失抵抗の並列換算誤差に関する説明図である。図中のCSは被絶縁計測回路の静電容量でRSはこの静電容量と直列に入る損失抵抗である。 又、CP,RPはそれぞれ直列なCS,RSを等価的に並列換算した時の等価静電容量と等価抵抗値で換算式は次式となる FIG. 7 is an explanatory diagram regarding a parallel conversion error of a loss resistor entering in series. In the figure, C S is the capacitance of the insulated circuit, and R S is a loss resistance in series with this capacitance. C P and R P are equivalent capacitance values and equivalent resistance values when C S and R S in series are equivalently converted in parallel, and the conversion formula is as follows.
この式から周波数が低い程並列換算抵抗値は大きくなり即ち見かけの誤差となる有効分電流が減少することがわかる。
仮に30μFの静電容量と100Ωの損失抵抗が被測定交流設備の計測端子間に存在した場合について等価並列換算抵抗値をIgr絶縁計測電圧の周波数を変えて試算すると、20Hz,0.8kΩ/10Hz,2.9kΩ/1Hz,281.8kΩ となり、使用周波数の低い程等価並列換算抵抗値が高くなり、直列損失抵抗の影響が減少することが明らかである。
From this equation, it can be seen that the parallel conversion resistance value increases as the frequency decreases, that is, the effective current that causes an apparent error decreases.
Assuming that a capacitance of 30 μF and a loss resistance of 100Ω exist between the measurement terminals of the AC equipment to be measured, the equivalent parallel equivalent resistance value is calculated by changing the frequency of the Igr insulation measurement voltage, 20 Hz, 0.8 kΩ / 10 Hz 2.9 kΩ / 1 Hz, 281.8 kΩ, and it is clear that the lower the operating frequency, the higher the equivalent parallel conversion resistance value and the less the influence of the series loss resistance.
直接接地配電方式の分岐電路などの負荷電路では、電路中間の開閉器などの電源側と負荷側の間に本装置を各相線毎に割込接続し、相互間の連携を取る方法で計測する。 In a load circuit such as a branch circuit with a direct ground distribution system, this device is interrupted for each phase line between the power supply side such as a switch in the middle of the circuit and the load side, and measurement is performed by using a mutual connection method. To do.
直流絶縁抵抗計測の場合は、各相に本装置を相線分割込接続して交流負荷電流が本装置の計測端子に流れる状態にして、1台の直流絶縁抵抗計測手段を作動させることで割込接続点から負荷側の絶縁抵抗が計測できる。 In the case of DC insulation resistance measurement, the device is divided and connected to each phase so that an AC load current flows to the measurement terminal of the device, and one DC insulation resistance measurement means is operated. The load side insulation resistance can be measured from the connection point.
又、Igr方式絶縁状態検出手段を使用する場合は、本装置を各相線に割込接続して低周波交流電力供給手段のみ全相動作状態として相互に同期同調をとり、各相に設けた複数の本装置をあたかも一台の如く運転することで、負荷側電路各相と対地間に同一のIgr絶縁計測電圧を印加重畳することができて、Igr絶縁状態検出手段8の使用を可能とする。 Also, when using the Igr system insulation state detection means, this apparatus is interrupted and connected to each phase line, and only the low-frequency AC power supply means is in an all-phase operation state and synchronously tuned to each other. By operating a plurality of the devices as if they were one unit, the same Igr insulation measurement voltage can be applied and superimposed between each phase on the load side electric circuit and the ground, and the use of the Igr insulation state detection means 8 is possible. To do.
被測定交流電気設備の絶縁計測対象となる絶縁部分を挟む双方の電気設備間を接続する導体をコンデンサで代替したことで、直流方式絶縁抵抗計測と、低い周波数のIgr方式絶縁状態計測の相補併用が可能となり、平常は高精度な計測ができる直流方式絶縁抵抗計測により変圧器一括や変電所一括という広域絶縁計測を行い、絶縁低下警報が生じた場合等には、計測信頼性は直流に劣るが、分割変流器が使用できるので移動計測が可能な、低い周波数のIgr方式絶縁状態検出装置を利用して変圧器から末端負荷に至るまでの絶縁低下事故点を、停電することなく探査特定する、という利用方法が可能になった。 Complementary combination of DC method insulation resistance measurement and low frequency Igr method insulation state measurement by replacing the conductor connecting between the two electrical facilities sandwiching the insulation part to be measured for AC electrical equipment to be measured with a capacitor In general, DC insulation resistance measurement that enables high-accuracy measurement enables wide-area insulation measurements such as transformers and substations in a wide area. However, because it is possible to use a split current transformer, it is possible to move and measure, using the low-frequency Igr method insulation state detection device to identify the point of insulation degradation from the transformer to the end load without power failure The usage method to do is now possible.
又、Igr方式の絶縁状態計測において、絶縁の低下状態を示す有効分電流が増加したとき、前記Igr方式の特質上生ずる直流絶縁抵抗と異なる原因による電流誤差即ちIgr原理誤差に帰因する可能性の有無如何という疑義が生じた場合は、随時、直流方式絶縁抵抗計測法によりこれを確認することができるので、従来の如き無駄な探査作業が無くなり絶縁保全効率の向上をはかることができた。 Further, in the measurement of the insulation state of the Igr method, when the effective component current indicating the lowered state of insulation increases, it may be attributed to a current error due to a cause different from the DC insulation resistance generated due to the characteristics of the Igr method, that is, an Igr principle error. If there is any doubt about the presence or absence of this, it can be confirmed at any time by the DC insulation resistance measurement method, so that unnecessary exploration work as in the prior art is eliminated and the insulation maintenance efficiency can be improved.
直流電圧による絶縁抵抗計測法はIgr方式に比べるとコンデンサと直列に入る損失抵抗や、雑音の影響を受けることなく廉価でありながら高い精度が容易に得られるので、変圧器負荷設備を含む電路の一括監視や、複数台の変圧器を有する変電所の一括絶縁監視など広域の絶縁群に対しても絶縁抵抗を一括監視することが可能となった。
即ち、変電所内のB種接地極と各変圧器を接続する導体に本装置を割込み接続することで、該接地極を共有する多数の変圧器を一括して絶縁の計測や監視を行うことができ、わずかな設備投資で絶縁の機械監視が可能となる。
Compared to the Igr method, the insulation resistance measurement method using DC voltage can be easily obtained with high accuracy without being affected by loss resistance and noise in series with the capacitor. It has become possible to monitor insulation resistance collectively for a wide range of insulation groups such as batch monitoring and batch insulation monitoring of substations with multiple transformers.
In other words, by interrupting this device to the conductors connecting the Class B grounding electrode and each transformer in the substation, it is possible to measure and monitor the insulation of a large number of transformers sharing the grounding electrode in a lump. Insulation machine monitoring is possible with a small capital investment.
電気設備を停電することなく活線で行う絶縁低下事故点の探査については、従来その効果は期待されつつも適切なIgr絶縁計測電圧の重畳方法が無いために用途が非接地系統に限られていた極めて低い周波数のIgr方式絶縁状態検出手段が、当該導体をコンデンサで代替することで使用できるようになった。 As for the exploration of the point of insulation degradation accident that is performed by live line without power failure of the electric equipment, the effect is conventionally expected but the use is limited to the non-grounded system because there is no appropriate method for superimposing the Igr insulation measurement voltage. In addition, an extremely low frequency Igr type insulation state detecting means can be used by replacing the conductor with a capacitor.
直流方式絶縁抵抗検出手段が絶縁低下事故警報を検出したとき、前記Igr方式絶縁状態検出手段に切り替えて、B種接地極を共有する一括監視範囲の変電所内各変圧器及び各変圧器負荷電路や負荷設備の階層的分岐個所ごとに有効分電流を計測し、不良分岐を特定しつつ電路の下流に向かって追い込み探査し、必然的に絶縁低下事故点に到達する、という合理的な探査をすることが可能になった。 When the DC system insulation resistance detection means detects an insulation drop accident alarm, switch to the Igr system insulation state detection means, and each transformer in the substation and each transformer load circuit in the collective monitoring range sharing the class B ground electrode Measure the effective current at each hierarchical branch of the load facility, and conduct a rational exploration that inevitably reaches the downstream of the electric circuit while identifying the defective branch, and inevitably reaches the insulation breakdown accident point. It became possible.
又、分岐電路などに於いては、停電することなくコンピューターシステムや通信システムなどの絶縁抵抗測定や絶縁状態測定を行うことができるようになった。 In addition, it has become possible to measure insulation resistance and insulation state of computer systems, communication systems, etc., without causing a power outage in branch circuits.
高圧非接地配電系統に於いては、接地形計器用変圧器の接地線等に割り込んで本装置を適用すれば対地絶縁抵抗計測や分岐ケーブルを探査して絶縁低下事故点の探査特定をすることも可能である。 In the high-voltage ungrounded distribution system, if this device is applied by interrupting the grounding wire of a grounded instrument transformer, the insulation insulation resistance measurement and the branch cable should be investigated to identify the location of the insulation degradation accident. Is also possible.
又、高圧ケーブルのシールドの接地線に計測用中継端子を設け、これに割り込んで本装置を適用すればケーブルシールドの対地絶縁抵抗測定を行うことも容易である。
In addition, if a measurement relay terminal is provided on the ground wire of the shield of the high voltage cable and this device is applied by interrupting the measurement relay terminal, it is easy to measure the ground insulation resistance of the cable shield.
これら直流方式絶縁抵抗計測方法及び低い周波数によるIgr絶縁状態検出方法という異なる2方式の絶縁計測法を併設し、相互に相補させて効率的に使用することで廉価且つ信頼性の高い活線絶縁監視方法が確立し、絶縁保全のシステム的効率化をはかることが出来た。
Two different types of insulation measurement methods, the DC method insulation resistance measurement method and the Igr insulation state detection method at a low frequency, are provided side by side, and they are complemented to each other and used efficiently to provide a cheap and highly reliable hot-wire insulation monitor. The method has been established and the system efficiency of insulation maintenance has been improved.
被測定交流電気設備の絶縁部を挟む双方の電気設備間を接続する導体を流れる交流電流を、本装置の計測端子から前記導体を代替するコンデンサに移して流すことから、コンデンサ性能が重要なポイントとなる。 本発明では前記コンデンサの絶縁抵抗と静電容量を確認することができる構成とし、このコンデンサの静電容量確認用に設けた低い周波数の低周波電力は、被測定交流電気設備の絶縁部分にもIgr絶縁計測電圧を供給し、低い周波数のIgr絶縁状態検出手段の使用を可能とし、Igr方式による信頼性の高い絶縁低下事故点探査特定作業を容易にした。
Capacitor performance is important because the AC current flowing through the conductor connecting the two electrical facilities sandwiching the insulation section of the AC electrical equipment to be measured is transferred from the measurement terminal of this device to the capacitor that replaces the conductor. It becomes. In the present invention, the insulation resistance and capacitance of the capacitor can be confirmed, and the low frequency low frequency power provided for confirming the capacitance of the capacitor is also applied to the insulation portion of the AC electrical equipment to be measured. By supplying an Igr insulation measurement voltage, it is possible to use a low frequency Igr insulation state detection means, and a highly reliable insulation lowering fault point identification work by the Igr method is facilitated.
図1は本発明になる割込形絶縁計測装置(絶縁抵抗・絶縁状態検出装置)の1実施例で、本装置の構成と被測定交流電気設備を示す電気回路図である。
図1に於いて、1及び2は被測定電気設備を接続する計測端子、3は直流方式絶縁抵抗計測手段、4は計測端子間に接続される被測定交流電気設備の絶縁計測対象となる絶縁部分を挟む双方の電気設備間に流れる交流電流を安全に通すためのコンデンサで41,42は前記コンデンサの接続手段、5は低周波交流電力供給手段、6はコンデンサ電流検出用の変流器(CT)で61は既設設備のコンデンサを使用する場合の接続手段、7は前記6により検出した電流を計測して静電容量を監視するコンデンサ電流計測手段である。
8はIgr方式絶縁状態検出手段である。 9は前記コンデンサ4等を被計測回路に接続する開閉器、10は低周波交流電力を供給する開閉器、11は直流絶縁抵抗計測手段を接続する開閉器である。
FIG. 1 is an electric circuit diagram showing the configuration of the apparatus and the AC electrical equipment to be measured, which is an embodiment of the interrupt type insulation measuring apparatus (insulation resistance / insulation state detecting apparatus) according to the present invention.
In FIG. 1, 1 and 2 are measurement terminals for connecting the electrical equipment to be measured, 3 is a DC insulation resistance measuring means, and 4 is an insulation subject to insulation measurement of the AC electrical equipment to be measured connected between the measurement terminals. Capacitors 41 and 42 are means for safely passing an alternating current flowing between both electrical equipments sandwiching the portion, means for connecting the capacitors, 5 is a means for supplying low-frequency alternating current power, and 6 is a current transformer for detecting capacitor current ( CT) 61 is a connecting means for using a capacitor of existing equipment, and 7 is a capacitor current measuring means for measuring the current detected by 6 and monitoring the capacitance.
Reference numeral 8 denotes an Igr system insulation state detection means. 9 is a switch for connecting the capacitor 4 and the like to the circuit to be measured, 10 is a switch for supplying low frequency AC power, and 11 is a switch for connecting DC insulation resistance measuring means.
図1の符号100番台は本実施例で絶縁抵抗又は絶縁状態を計測する被測定交流電気設備の1例を示す単線電気回路図である。
102は変圧器電路側電気設備の計測用中継端子で、101変圧器低圧回路の接地線、100単相三線式電力配電用変圧器、106、107、108変圧器低圧側からの分岐電路、などで構成される。
104は接地極側電気設備の計測用中継端子で、105B種接地極、110B種接地極D種接地極の間に生ずる大地抵抗R2、109、111D種接地工事の接地極、などで構成される。
又、103は前記計測用中継端子相互の短絡片である。
Reference numeral 100 in FIG. 1 is a single-wire electric circuit diagram showing an example of an AC electrical equipment to be measured for measuring an insulation resistance or an insulation state in this embodiment.
102 is a relay terminal for measuring electrical equipment on the transformer circuit side, 101 transformer low-voltage circuit ground wire, 100 single-phase three-wire power distribution transformer, 106, 107, 108 branch-circuit from the low-voltage side, etc. Consists of.
104 is a relay terminal for measurement of the grounding electrode side electrical equipment, and is composed of a grounding resistor for ground resistance R2, 109, 111D classing grounding generated between the 105B type grounding electrode, the 110B type grounding electrode and the D type grounding electrode, and the like. .
Reference numeral 103 denotes a short-circuit piece between the measurement relay terminals.
図1の符号200番台は被測定交流電気設備の絶縁部分を構成する回路常数を示す。201は分岐108の配電線と大地間に存在する絶縁抵抗R1、202は前記配電線と大地間に存在する浮遊静電容量や半導体電力機器などのフィルターコンデンサなどのうち純粋な静電容量C1、203は前記静電容量やフィルターコンデンサの中で損失を持つ静電容量Csで204はそのコンデンサ又はコンデンサ回路に等価的に直列に存在する損失抵抗Rsである。 Reference numeral 200 in FIG. 1 indicates a circuit constant constituting an insulating portion of the AC electrical equipment to be measured. 201 is an insulation resistance R1 existing between the distribution line of the branch 108 and the ground, 202 is a pure capacitance C1 among a floating capacitance existing between the distribution line and the ground, a filter capacitor such as a semiconductor power device, Reference numeral 203 denotes an electrostatic capacity Cs having a loss in the electrostatic capacity or the filter capacitor, and reference numeral 204 denotes a loss resistance Rs equivalently present in series with the capacitor or the capacitor circuit.
図1の構成に於いてその使用法と作用について説明する。
本装置の開閉器9、10,11は開として計測のための接続作業を行う。 被測定交流電気設備を使用状態のままその絶縁を計測する場合、絶縁計測の対象となる絶縁部分を挟む双方の電気設備間即ち、接地線101から変圧器100を経て分岐電路106等にいたる電路や設備で構成される電路側電気設備の端末電極102と、B種接地極105と接地極間抵抗110,D種接地極109などで構成する接地側電気設備の端末電極104に、本装置の計測端子1と2を接続する。
The usage and operation of the configuration of FIG. 1 will be described.
The switches 9, 10, 11 of this device are open and perform connection work for measurement. When measuring the insulation of the AC electrical equipment to be measured while in use, the electrical circuit between the two electrical equipments sandwiching the insulation part to be insulated, that is, from the ground wire 101 to the branch circuit 106 and the like through the transformer 100 The terminal electrode 102 of the electric circuit side electric equipment constituted by the electric circuit side equipment, the terminal electrode 104 of the ground side electric equipment constituted by the B type grounding electrode 105, the resistance between the earthing electrodes 110, the D type grounding electrode 109, etc. Connect measuring terminals 1 and 2.
前記コンデンサの静電容量計測診断を行うには、低周波交流電力供給手段の開閉器10を閉とする。 低周波交流電圧がコンデンサ4に加わり前記コンデンサが正常であればコンデンサ容量設計値に対応する電流が流れる。 前記コンデンサ電流は変流器6により検出されコンデンサ電流計測手段7によりその数値が設計範囲にあるか否かの判定が下される。コンデンサ電流を正確に計測するためには前記低周波交流電力供給手段からの信号を判別に利用する場合もある。計測終了後は開閉器10を開とする。 In order to perform the capacitance measurement diagnosis of the capacitor, the switch 10 of the low frequency AC power supply means is closed. If a low-frequency AC voltage is applied to the capacitor 4 and the capacitor is normal, a current corresponding to the capacitor capacity design value flows. The capacitor current is detected by the current transformer 6, and the capacitor current measuring means 7 determines whether the numerical value is within the design range. In order to accurately measure the capacitor current, the signal from the low-frequency AC power supply means may be used for discrimination. After the measurement is completed, the switch 10 is opened.
前記コンデンサの絶縁抵抗診断を行うには、直流絶縁抵抗計測手段3の開閉器11を閉とする。 絶縁抵抗計測用の直流電圧がコンデンサ4に加わりコンデンサ容量設計値に対応する時間をかけて充電される。 充電完了後、定常的に得られる絶縁抵抗計測手段の計測値があらかじめ設定した設計値以下であれば開閉器11を開として必要に応じてコンデンサの放電操作を行う。 In order to perform the insulation resistance diagnosis of the capacitor, the switch 11 of the DC insulation resistance measuring means 3 is closed. A DC voltage for measuring the insulation resistance is applied to the capacitor 4 and charged over a time corresponding to the capacitor capacity design value. After the completion of charging, if the measured value of the insulation resistance measuring means obtained steadily is equal to or less than the preset design value, the switch 11 is opened and the capacitor is discharged as necessary.
計測準備として前記コンデンサ接続用の開閉器9を閉とする。 前記コンデンサ4が接続されるから計測端子1,2間は交流的に短絡状態となる。 次に、被測定交流電気設備の短絡片103を外して開とすると短絡片103に流れていた交流負荷電流(この実施例では接地線電流)はコンデンサ4に流れて被測定交流電気設備の回路導体としての短絡片3をコンデンサが代替した形となり絶縁計測待機状態となる。 As a measurement preparation, the capacitor connecting switch 9 is closed. Since the capacitor 4 is connected, the measuring terminals 1 and 2 are short-circuited in an alternating manner. Next, when the short circuit piece 103 of the AC electrical equipment to be measured is removed and opened, the AC load current (the ground line current in this embodiment) flowing through the short circuit piece 103 flows to the capacitor 4 and the circuit of the AC electrical equipment to be measured. A capacitor is substituted for the short-circuit piece 3 as a conductor, and an insulation measurement standby state is set.
直流方式絶縁抵抗測定を行うためには、開閉器11を閉とする。 すると直流絶縁抵抗検出手段が送出する計測用直流電圧が本装置のコンデンサ4を充電するとともに被計測交流電気設備の絶縁部分に存在する静電容量202,203をも充電する。 静電容量の多い電気回路の直流絶縁測定は高圧ケーブルやコンデンサの診断などでしばしば行われており計測技術上の問題はない。 静電容量への充電が完了すると、絶縁抵抗R1に定常的に流れる電流のみとなり一定の安定な電流値となるのでこの直流電流D(mA)と印加した計測用直流電圧E(V)から絶縁抵抗計測手段は絶縁抵抗値K(Ω)を算出し出力する。 The switch 11 is closed in order to perform the DC method insulation resistance measurement. Then, the DC voltage for measurement sent out by the DC insulation resistance detecting means charges the capacitor 4 of the present apparatus and also charges the capacitances 202 and 203 existing in the insulating portion of the AC electric equipment to be measured. DC insulation measurement of electric circuits with a large capacitance is often performed for diagnosis of high-voltage cables and capacitors, and there is no problem in measurement technology. When the charging to the electrostatic capacitance is completed, only a constant current flows through the insulation resistor R1 and a constant stable current value is obtained. Therefore, the DC current D (mA) and the applied measurement DC voltage E (V) are insulated. The resistance measuring means calculates and outputs an insulation resistance value K (Ω).
Igr絶縁状態計測及び前記コンデンサ容量の継続監視をする場合は開閉器10を閉とする。 コンデンサ電流計測手段7で前記コンデンサの静電容量監視を行うと同時に、コンデンサ両端の電圧は計測端子1,2、被測定交流電気設備の端子102,104を経て変圧器電路側電気設備と接地極側電気設備の間に加わる。 この電圧は双方の電気設備の絶縁部分を構成する201(R1),202(C1),203(Cs),204(Rs),等に印加され、Igr絶縁計測電圧による電流が流れてIgr絶縁状態検出手段8による絶縁状態の計測が可能となる。 The switch 10 is closed when measuring the Igr insulation state and continuously monitoring the capacitor capacity. Capacitor current measuring means 7 monitors the capacitance of the capacitor. At the same time, the voltage across the capacitor passes through measurement terminals 1 and 2 and terminals 102 and 104 of the AC electric equipment to be measured, and the transformer electric circuit side electric equipment and the ground electrode. Join between side electrical equipment. This voltage is applied to 201 (R 1), 202 (C 1), 203 (Cs), 204 (Rs), etc. that constitute the insulating parts of both electrical equipments, and a current due to the Igr insulation measurement voltage flows and the Igr insulation state The insulation state can be measured by the detection means 8.
Igr方式絶縁状態検出手段8は高感度の電力計にその動作が類似している。 81,82は力率演算に用いる電圧信号入力端子である。入力端子81を変圧器の接地線101に、又、入力端子82をD種接地工事に接続し、この間から前記絶縁部分に加わるIgr絶縁計測電圧Vgを得る。 又、絶縁部分に流れる電流信号Igを変圧器接地線101もしくは分岐電路108等に設置した零相変流器85から得て、前記電圧Vgと、電流Ig両者の間で力率演算を行い絶縁インピーダンスに流れる電流に含まれる有効分電流要素を抽出し、Igr絶縁計測電圧と整定電圧(使用電路の対地電圧)との比率を乗じて電路電圧に於いて流れる電流に換算し、Igr計測電流値G(mA)として表示する。 この数値が警報整定値を超えると絶縁状態低下の警報を発することとなる。 The operation of the Igr type insulation state detection means 8 is similar to that of a highly sensitive wattmeter. 81 and 82 are voltage signal input terminals used for power factor calculation. The input terminal 81 is connected to the transformer ground line 101, and the input terminal 82 is connected to the D-type grounding work. From this time, the Igr insulation measurement voltage Vg applied to the insulating portion is obtained. In addition, the current signal Ig flowing in the insulating portion is obtained from the zero-phase current transformer 85 installed in the transformer ground line 101 or the branch circuit 108, and the power factor is calculated between the voltage Vg and the current Ig for insulation. The effective current component included in the current flowing through the impedance is extracted, multiplied by the ratio of the Igr insulation measurement voltage and the settling voltage (ground voltage of the circuit used), and converted to the current flowing through the circuit voltage, and the Igr measurement current value Displayed as G (mA). When this numerical value exceeds the alarm set value, an alarm for insulation state deterioration is issued.
Igr方式で検出される有効分電流即ちIgr電流値には絶縁抵抗に流れる有効分電流以外にIgr原理誤差による電流が誤差として加算される問題があるが、代替コンデンサ4の採用によりIgr絶縁計測電圧の周波数を低くすることができたのでこれが改善されて計測信頼性を確保し、Igr絶縁状態計測手段による絶縁低下事故点の探査特定を可能にした。 There is a problem that the current due to the Igr principle error is added to the effective component current detected by the Igr method, that is, the Igr current value as an error in addition to the effective component current flowing through the insulation resistance. This has been improved to ensure measurement reliability, and the Igr insulation state measuring means can be used to identify the location where the insulation drop has occurred.
検出したIgr電流値に疑義のある場合は併設した直流方式絶縁抵抗計測手段により測定を行い、比較検証することが容易になった。 When there is a doubt about the detected Igr current value, it is easy to perform comparison and verification by measuring with the DC-type insulation resistance measuring means provided therewith.
絶縁状態をあらわすIgr電流、G(mA)と直流絶縁抵抗計測値K(kΩ)に誤差のない場合は次の式が成立する When there is no error between the Igr current, G (mA), which represents the insulation state, and the DC insulation resistance measurement value K (kΩ), the following equation holds:
絶縁状態計測結果と直流計測値との偏差が大きい場合、Igr電流に前記Igr原理誤差の介在が疑われるが一般的には直流による計測値がより正しいものと推定される。 この結果を反映して警報管理値の変更はじめ検出用零相変流器の取付点の変更追加など、被監視絶縁群の計測範囲調整などを行って絶縁計測の信頼性向上をはかるなどの迅速な対策をとることが可能となった。 When the deviation between the insulation state measurement result and the DC measurement value is large, the Igr current error is suspected to be involved in the Igr current, but it is generally estimated that the DC measurement value is more correct. Reflecting this result, it is possible to improve the reliability of insulation measurement by adjusting the measurement range of the monitored insulation group, such as changing the alarm management value and adding the attachment point of the detection zero-phase current transformer. It became possible to take appropriate measures.
図2は単相3線変圧器からの分岐電路である単相2線配電線の中間開閉器307に本装置を割込接続し、負荷側対地絶縁を計測する場合の接続を説明する複線図で符号300番台は分岐電路108の負荷電路を示す。 本図は半導体電力機器や電子機器など停電が困難な被計測回路及び機器301,302,303等の絶縁不良個所を探査する場合の使用方法の一例である。
これによれば、重要な電子機器などを含む被計測回路及び機器の絶縁劣化を早期に検出し予測的に大事を防止することが可能となる。
これらの機器は通常スィッチング電力半導体素子が多く使用されており多くの交流広帯域雑音を発生している。 この雑音対策に多量のコンデンサなどを含むフィルターを持つ場合が多く、従来のIgr方式絶縁状態検出器ではIgr原理誤差などにより絶縁の良否判定が困難であった。 本発明では極めて低い周波数のIgr方式が使用できるため、信頼性の高い計測が可能になった。 しかし、電路の特性如何によっては計測結果に疑義が生ずる場合があり直流方式絶縁抵抗測定を必要とする場合もある。
FIG. 2 is a double-line diagram for explaining the connection when measuring the load side ground insulation by interrupting and connecting this device to the intermediate switch 307 of the single-phase two-wire distribution line that is a branch circuit from the single-phase three-wire transformer. Reference numeral 300 indicates a load circuit of the branch circuit 108. This figure is an example of a usage method in the case of searching for a circuit to be measured such as a semiconductor power device or an electronic device that is difficult to be interrupted, and an insulation failure portion such as the devices 301, 302, and 303.
According to this, it becomes possible to detect the deterioration of the insulation of the circuit to be measured and the equipment including important electronic equipment and the like at an early stage, and to prevent important matters in a predictive manner.
These devices usually use many switching power semiconductor elements and generate a lot of AC broadband noise. In many cases, this noise countermeasure includes a filter including a large amount of capacitors and the like, and it has been difficult to determine whether the insulation is good or bad due to an Igr principle error in the conventional Igr type insulation state detector. In the present invention, since the Igr method with a very low frequency can be used, highly reliable measurement is possible. However, depending on the characteristics of the electric circuit, there may be doubts about the measurement results, and DC-type insulation resistance measurement may be required.
図2では、本発明の装置を2式、配電線のn相310側及びw相311側の双方に対象に使用しており、それぞれの低周波交流電力供給手段は同期整合駆動回路で接続され同一周波数、同一位相、同一電圧で駆動される構成となっている。 従って開閉器307を挟んで、n相310とn相310a間及びw相311とw相311a間の双方に同一Igr絶縁計測電圧が加わり、電路2線間の負荷に加わる電圧は互いに相殺されて零となり負荷側線間商用周波電圧に与えるIgr絶縁計測電圧の影響はない。n相310とw相311は変圧器捲き線を経てB種接地工事により大地に接続されているから、開閉器307より負荷側では電路とB種接地等105に大地でつながるD種接地工事等109に対してIgr絶縁計測電圧が加わっておりこれを利用してIgr絶縁状態検出手段8が使用できる。 In FIG. 2, the apparatus of the present invention is used for two sets, both on the n-phase 310 side and the w-phase 311 side of the distribution line, and each low-frequency AC power supply means is connected by a synchronous matching drive circuit. Driven by the same frequency, the same phase, and the same voltage. Therefore, across the switch 307, the same Igr insulation measurement voltage is applied between both the n-phase 310 and the n-phase 310a and between the w-phase 311 and the w-phase 311a, and the voltages applied to the load between the two electric lines are canceled out. There is no influence of the measured Igr insulation voltage on the commercial frequency voltage between the load side lines because it becomes zero. Since the n-phase 310 and the w-phase 311 are connected to the ground by the B-type grounding work via the transformer winding line, the D-type grounding work connected to the earth from the switch 307 to the electric circuit and the B-type grounding 105 on the load side, etc. An Igr insulation measurement voltage is applied to 109, and the Igr insulation state detection means 8 can be used by utilizing this.
計測準備に於いて開閉器9n,9w,308,309を閉とした上で分岐電路の開閉器307を開とする。 Igr方式絶縁状態検出手段8で絶縁状態の計測をする場合は、双方の低周波交流電力供給手段の接続開閉器10n及び10wを閉とし、11nと11wを開とする。 次に、絶縁検出用の入力端子リード線81をn相310aに接続し、入力端子リード線82をD種接地等109に接続してIgr絶縁計測電圧を得る。 そして零相変流器85に、開閉器304,又は開閉器305・開閉器306等につながる電力供給線の2線を通すことで被計測回路301等の対地絶縁状態を計測することが出来る。 In the measurement preparation, the switches 9n, 9w, 308, and 309 are closed, and the branch circuit switch 307 is opened. When measuring the insulation state with the Igr type insulation state detection means 8, the connection switches 10n and 10w of both low-frequency AC power supply means are closed, and 11n and 11w are opened. Next, the input terminal lead 81 for insulation detection is connected to the n-phase 310a, and the input terminal lead 82 is connected to the D-type grounding 109 or the like to obtain an Igr insulation measurement voltage. The ground insulation state of the circuit to be measured 301 or the like can be measured by passing two wires of the power supply line connected to the switch 304 or the switches 305 and 306 to the zero-phase current transformer 85.
直流方式絶縁抵抗計測を行う場合は、双方の低周波交流電力供給手段の開閉器10n及び10wと、11wを開とし、一方、n側の直流方式絶縁抵抗計測手段の開閉器11nのみを閉とする。 コンデンサ4n,4w及び絶縁部分の対地静電容量202等を充電後に開閉器307から負荷側電路一括の対地絶縁抵抗201等が直流方式絶縁抵抗計測手段3nにより計測できる。 When performing DC system insulation resistance measurement, the switches 10n and 10w and 11w of both low-frequency AC power supply means are opened, while only the switch 11n of the DC side insulation resistance measurement means on the n side is closed. To do. After charging the capacitors 4n and 4w and the ground capacitance 202 of the insulating part, the ground insulation resistance 201 and the like of the load side electric circuit can be measured from the switch 307 by the DC type insulation resistance measuring means 3n.
尚この計測個所は各分岐開閉器毎に移動して同様の方法で絶縁低下機器を探査特定することが可能である。 This measurement point can be moved for each branch switch, and the insulation lowering device can be identified by the same method.
図3は非接地高圧配電系統の絶縁計測の一使用例で符号600番台は高圧配電路を示す。 600は特高受電用変圧器、601はEVT用の負荷開閉器で,602,603,604は高圧分岐線の遮断器である。
605は接地形計器用変圧器EVTで606はその中性点接地線、607,609は接地線の計測用中継端子で608はその短絡片である。 本装置の計測端子1,2を607,609に接続して、本装置の計測手順にしたがつて確認の後、短絡片608を開とすることで高圧系統の接地回路に割込み、絶縁計測が可能となる。
即ち、先の手順で開閉器9,11を開の状態で10を閉とし計測端子間短絡用コンデンサ4の静電容量値を確認する。 次に開閉器9,10を開の状態で11を閉とし計測端子間短絡用コンデンサ4の絶縁抵抗値を確認する。 確認の後開閉器9を閉とした上で接地中継端子の短絡片608を開とする。
FIG. 3 shows an example of the use of insulation measurement in an ungrounded high-voltage distribution system. Reference numeral 600 denotes a high-voltage distribution path. Reference numeral 600 is an extra high voltage receiving transformer, 601 is an EVT load switch, and 602, 603, and 604 are high voltage branch line breakers.
Reference numeral 605 denotes a grounding-type instrument transformer EVT, 606 a neutral point grounding wire thereof, 607 and 609 a relay terminal for measuring the grounding wire, and 608 a short-circuiting piece thereof. After connecting the measurement terminals 1 and 2 of this device to 607 and 609 and confirming according to the measurement procedure of this device, the short circuit piece 608 is opened to interrupt the grounding circuit of the high voltage system and insulation measurement is performed. It becomes possible.
That is, in the previous procedure, the switches 9 and 11 are opened, 10 is closed, and the capacitance value of the measuring terminal short-circuit capacitor 4 is confirmed. Next, with the switches 9 and 10 open, 11 is closed, and the insulation resistance value of the short-circuit capacitor 4 between measurement terminals is confirmed. After confirmation, the switch 9 is closed and the grounding relay terminal shorting piece 608 is opened.
系統一括の直流絶縁抵抗は、開閉器9を閉のまま開閉器10を開、開閉器11を閉とし、前記コンデンサ4及び系統全体の静電容量250(Cx)などへの充電が完了した後に定常的に流れる直流漏れ電流から直流方式絶縁抵抗計測手段により求めることが出来る。 The DC insulation resistance for the entire system is such that the switch 10 is opened while the switch 9 is closed, the switch 11 is closed, and charging of the capacitor 4 and the electrostatic capacity 250 (Cx) of the entire system is completed. It can be obtained by a DC type insulation resistance measuring means from a DC leakage current that flows constantly.
系統一括、又は高圧分岐線とその負荷設備などの絶縁状態は、開閉器9を閉のまま開閉器11を開とし、低周波交流電力供給手段10を閉とすることで、Igr絶縁計測電圧が系統内すべての充電部回路と大地間に加わり、Igr方式絶縁状態検出手段8による計測が可能になる。 Igr絶縁状態検出手段8では、その電流検出用のZCT85の位置を随意に選択して計測し、Igr電流の多い分岐を階層的に下流に向かって計測を進め、被計測絶縁群を絞り込み、絶縁状態不良個所251(Rx)等を合理的に探査特定することが可能となる。
Insulation state of the system or the high voltage branch line and its load equipment, etc., can be obtained by opening the switch 11 with the switch 9 closed and closing the low frequency AC power supply means 10 so that the Igr insulation measurement voltage is Measurement is performed by the Igr system insulation state detecting means 8 in addition to all the charging circuit and ground in the system. The Igr insulation state detection means 8 arbitrarily selects and measures the position of the current detection ZCT85, advances the measurement hierarchically downstream of branches having a large Igr current, narrows down the insulation group to be measured, and insulates It becomes possible to reasonably search and identify the state defect location 251 (Rx) and the like.
又、ZCT85及びIgr方式絶縁状態検出手段8は、これを固定据付形の常置装置とすることも出来る。 Further, the ZCT 85 and the Igr type insulation state detection means 8 can be a fixed installation type permanent device.
又、シールド電力ケーブルのシールド接地線612に設けた中継端子613、615に本装置を割込接続すれば水トリー発生の原因となりやすい高圧電力ケーブルのシールド対地間の絶縁抵抗の計測も容易である。
In addition, if this device is interrupted and connected to the relay terminals 613 and 615 provided on the shield ground line 612 of the shielded power cable, it is easy to measure the insulation resistance between the shield and the ground of the high-voltage power cable that is likely to cause water trees. .
図4は本発明になる割込絶縁抵抗・絶縁状態監視装置を、補完する関連技術とともに実施した一例である。
1,2は計測端子、81は本発明に着装したIgr方式絶縁状態検出手段8のIgr絶縁計測電圧の入力端子、83は信号接地線82を接続する端子で図1に示す被計測電気設備のD種接地工事に端子111を経て接続される。 20は低圧非接地配電方式の交流電気設備に本装置を適用する際の計測接続端子で塞流素子Z1が接続されており、これを非接地配電路の一点に接続することで絶縁計測が可能になる。 尚、非接地配電系で使用する場合はIgr絶縁計測電圧の入力端子を84に接続することで非接地系配電路の絶縁部分の双方の電気設備間電圧を取り入れることができる。
FIG. 4 shows an example in which the interrupt insulation resistance / insulation state monitoring apparatus according to the present invention is implemented together with related technologies.
1 and 2 are measurement terminals, 81 is an input terminal for the Igr insulation measurement voltage of the Igr system insulation state detecting means 8 worn in the present invention, 83 is a terminal for connecting the signal ground line 82, and the electrical equipment to be measured shown in FIG. Connected to the D-type grounding work via the terminal 111. 20 is a measurement connection terminal when applying this apparatus to a low-voltage ungrounded distribution type AC electrical facility, and a closing element Z1 is connected to it, and insulation measurement is possible by connecting this to one point of the ungrounded distribution line. become. When used in a non-grounded distribution system, by connecting the input terminal of the Igr insulation measurement voltage to 84, it is possible to take in the voltage between the electrical facilities of both of the insulated portions of the non-grounded distribution path.
図4においては、実施例1で被監視電気設備の内部に使用例を示していたIgr方式絶縁状態検出手段8が本装置内に着脱自在に着装されている。 これはIgr方式絶縁状態検出手段8のみ取り外して携帯型として使用し、被計測電気設備の絶縁低下事故点特定のために移動して任意の計測点で使用することを可能にするためである。
又、このIgr絶縁状態検出手段8は、定置形として変圧器低圧負荷回路の分岐や負荷設備など所要される所に任意の数を取りつけることも出来る。 本実施例でIgr絶縁状態検出手段8の接地線82を被監視電気設備のD種接地極EDに接続しているのは、前記B種接地極とD種接地極間の間に介在する大地抵抗110(R2)による直列損失抵抗効果に帰因して生ずる等価並列抵抗の影響を除外するためである。
In FIG. 4, the Igr system insulation state detection means 8 which has been shown as an example of use inside the monitored electrical equipment in the first embodiment is detachably mounted in the apparatus. This is because only the Igr system insulation state detection means 8 is removed and used as a portable type, and it can be used to move to specify the insulation lowering accident point of the electric equipment to be measured and used at any measurement point.
Further, the Igr insulation state detection means 8 can be installed in any number of places as required such as a branch of a transformer low-voltage load circuit or a load facility as a stationary type. In the present embodiment, the ground wire 82 of the Igr insulation state detecting means 8 is connected to the D-type ground electrode ED of the monitored electrical equipment because the ground interposed between the B-type ground electrode and the D-type ground electrode. This is to eliminate the influence of the equivalent parallel resistance caused by the series loss resistance effect caused by the resistor 110 (R2).
19は、本装置を使用停止とする場合などに使用する補助開閉器である。
14は計測端子短絡用の半導体継電器、12は計測端子短絡用の電磁接触器で、これらはコンデンサ電流計測手段7、過電圧検出手段13、過電流検出手段21、などが絶縁計測中に何等かの計測上の問題を検出したときに、本装置及び被計測交流電気設備への影響を防止して安全をはかるため計測端子間を短絡するものである。 半導体継電器14が現象とリアルタイムで作動し、同時に電磁接触器12が瞬時に作動して連携動作により計測端子1,2間を閉とする構成となっている。
Reference numeral 19 denotes an auxiliary switch used when the apparatus is stopped.
14 is a semiconductor relay for short-circuiting the measurement terminal, 12 is an electromagnetic contactor for short-circuiting the measurement terminal, and these are any of the capacitor current measurement means 7, the overvoltage detection means 13, the overcurrent detection means 21, etc. during the insulation measurement. When a measurement problem is detected, the measurement terminals are short-circuited in order to prevent the influence on the present apparatus and the AC electric equipment to be measured and to ensure safety. The semiconductor relay 14 operates in real time with the phenomenon, and at the same time, the electromagnetic contactor 12 operates instantaneously, and the measurement terminals 1 and 2 are closed by a cooperative operation.
16は、直流地電圧・絶縁抵下計測手段で被計測交流電気設備の直流機絶縁劣化を測定するためのものである。 被計測負荷電気設備の中で直流電源を持つ回路の絶縁低下が生ずると、コンデンサ4の端子間に直流地電圧が発生して本装置の直流方式絶縁抵抗計測手段に誤差を与えるほか、被計測設備にも障害を起こす恐れがある。 16はこれら直流機による障害が予想される場合に備えた計測手段である。 使用方法は、開閉器10、11、17、19、を開として開閉器9と15を閉とした直流地電圧計測時、その計測した直流電圧が設定値を超えた場合、その電圧VD1を記録した後開閉器17を閉としてR3直流機絶縁計測抵抗18を投入して被計測交流電気設備の直流機地絡抵抗RDによる電圧降下の影響を計測し、この電圧をVD2として記録する。 この抵抗18の抵抗値DΩとVD1,VD2,から直流機絶縁抵抗RDは次式により算出される。 16 is for measuring the DC machine insulation deterioration of the AC electrical equipment to be measured by the DC ground voltage / insulation resistance measuring means. When insulation of a circuit with a DC power supply in the load electrical equipment to be measured occurs, a DC ground voltage is generated between the terminals of the capacitor 4 to give an error to the DC system insulation resistance measuring means of this device. There is a risk of damage to the equipment. Reference numeral 16 denotes a measuring means provided when a failure due to these DC machines is expected. The usage method is to record the voltage VD1 when the measured DC voltage exceeds a set value when measuring the DC ground voltage with the switches 10, 11, 17, 19 open and the switches 9 and 15 closed. After that, the switch 17 is closed, the R3 DC machine insulation measuring resistor 18 is inserted, the influence of the voltage drop due to the DC machine ground fault resistance RD of the AC electric equipment to be measured is measured, and this voltage is recorded as VD2. From the resistance value DΩ of the resistor 18 and VD1, VD2, the DC machine insulation resistance RD is calculated by the following equation.
尚、この抵抗器は、計測終了時の前記コンデンサ4及び被測定電気設備系統が持つ対地静電容量の充電電荷の放電用にも使用される。 This resistor is also used for discharging the charge of the electrostatic capacitance of the capacitor 4 and the measured electrical equipment system at the end of measurement.
コンデンサ4は故障による障害低減のため図の如く2個以上の複数にした冗長設計とする場合もある。 In some cases, the capacitor 4 has a redundant design of two or more as shown in FIG.
50は、前述の計測操作をあらかじめプログラムされた手順により、現象に対応して処理する統括制御部で、51はその統括操作部、52は同じく表示部、53は同じくデータや警報の出力装置である。 Reference numeral 50 denotes an overall control unit that processes the above-described measurement operation according to a phenomenon according to a preprogrammed procedure, 51 is an overall operation unit thereof, 52 is also a display unit, and 53 is an output device for data and alarms. is there.
勿論、手動操作により本装置を運転して絶縁を計測することも容易である。
Of course, it is also easy to measure the insulation by operating this device by manual operation.
低圧直接接地配電系統や非接地配電系統の変圧器や変電所一括絶縁計測、又は高圧非接地配電系統の変圧器や分岐配電線の括絶縁計測や絶縁低下事故点の探査特定など、一元化した計測方法の確立で絶縁保全が合理化され広く電力利用設備の活線保全に適用が可能である。 Centralized measurement such as transformers and substation collective insulation measurement of low-voltage direct ground distribution system and ungrounded distribution system, joint insulation measurement of transformers and branch distribution lines of high-voltage ungrounded distribution system, and identification of exploration of insulation drop accident point The establishment of the method has rationalized insulation maintenance and can be widely applied to hot-line maintenance of power usage facilities.
1,2 計測端子
3, 直流方式絶縁抵抗計測手段
4, 被測定交流電気設備の希望計測点導体を代替するコンデンサC
41,42 コンデンサの接続手段
5, 低周波交流電力供給手段
6, コンデンサ電流検出用変流器CT
61, コンデンサ電流検出用変流器の接続手段
7, コンデンサ電流計測手段
8, Igr方式絶縁状態検出手段
81,82,83 Igr絶縁計測電圧入力端子
84, 非接地配電系統に接続するIgr絶縁計測電圧入力端子
85 零相変流器ZCT1
9, 開閉器・コンデンサ回路接続
10, 開閉器・低周波交流電力
11, 開閉器・直流方式絶縁抵抗計測
12, 電磁接触器・非常短絡用
13, 過電圧検出手段
14, 半導体継電器
15, 開閉器・直流地電圧計測
16, 直流地電圧・絶縁低下計測装置
17, 開閉器・直流地電圧・絶縁低下計測装置
18, 抵抗器R3・直流地電圧・絶縁低下計測装置
19, 開閉器・入力短絡用
20, 非接地配電路用接続端子
21, 過電流検出手段
22, 変流器・過電流検出
100, 変圧器
101, B種接地線
102,104計測用中継端子
103, 短絡片
105, B種接地工事の接地極
106,107,108低圧回路の分岐電路
109, D種接地工事等
110, B種接地とD種接地間の大地抵抗R2
111, D種接地工事引出端子
201, 低圧回路の絶縁抵抗R1
202, 低圧回路の対地静電容量C1
203, 低圧回路の対地静電容量Cs
204, Csの直列損失抵抗Rs
250, 高圧回路の対地静電容量Cx
251, 高圧回路の対地絶縁抵抗Rx
301,〜303,被計測回路及び機器
304,〜306,分岐開閉器
307, 分岐電路の開閉器
308,309絶縁計測装置の開閉器
310,311分岐電路の相線n,w
310a,311a分岐電路開閉器負荷側相線
600, 特高/高圧 変圧器
601, 分岐回路の負荷開閉器
602,〜604分岐回路の遮断器
605, 計器用接地形変圧器EVT
606, EVTの中性点接地線
607,609 計測用中継端子
608, 短絡片
610, A種接地工事などの接地極
611, 高圧ケーブルのケーブルヘッド
612, 高圧ケーブルシールドの接地線
613,615シールド接地測定用中継端子
614, 短絡片
616, 高圧ケーブルのケーブルヘッド
617, 高圧/低圧 変圧器
618, 負荷開閉器
1, 2, Measuring terminal 3, DC type insulation resistance measuring means
4. Capacitor C that replaces the desired measuring point conductor of the AC electrical equipment to be measured
41, 42 Capacitor connection means 5, Low frequency AC power supply means 6, Capacitor current detection current transformer CT
61, connection means of current transformer for detecting capacitor current 7, capacitor current measuring means 8, Igr method insulation state detecting means 81, 82, 83 Igr insulation measurement voltage input terminal 84, Igr insulation measurement voltage connected to ungrounded distribution system Input terminal 85 Zero-phase current transformer ZCT1
9, Switch / capacitor circuit connection 10, Switch / low frequency AC power 11, Switch / DC type insulation resistance measurement 12, Magnetic contactor / Emergency short circuit 13, Overvoltage detection means 14, Semiconductor relay 15, Switch / DC earth voltage measurement 16, DC earth voltage / insulation degradation measuring device 17, Switch / DC earth voltage / insulation degradation measuring device 18, Resistor R3 / DC earth voltage / insulation degradation measuring device 19, Switch / input short circuit 20 , Non-grounded distribution circuit connection terminal 21, Overcurrent detection means 22, Current transformer / overcurrent detection 100, Transformer 101, Class B grounding wire 102, 104 Measurement relay terminal 103, Short-circuit piece 105, Class B grounding work Grounding poles 106, 107, 108 Branch circuit 109 of low-voltage circuit, Class D grounding work, etc. 110, Ground resistance R2 between Class B grounding and Class D grounding
111, D class grounding lead terminal 201, insulation resistance R1 of low voltage circuit
202, Ground capacitance C1 of the low-voltage circuit
203, capacitance Cs to ground of low-voltage circuit
204, Cs series loss resistance Rs
250, Ground capacitance Cx of high-voltage circuit
251 Ground insulation resistance Rx of high voltage circuit
301, 303, Circuits and equipment to be measured 304, 306, Branch switch 307, Branch circuit switch 308, 309 Insulation measuring device switch 310, 311 Phase line n, w of branch circuit
310a, 311a branch circuit switch load side phase line 600, extra high / high voltage transformer 601, branch circuit load switch 602, to 604 branch circuit breaker 605, instrument grounding transformer EVT
606, EVT neutral point grounding wire 607, 609 Measurement relay terminal 608, shorting piece 610, grounding pole for class A grounding work, etc. 611, cable head for high voltage cable 612, ground wire for high voltage cable shield 613, 615 shield grounding Measurement relay terminal 614, short-circuit piece 616, cable head of high-voltage cable 617, high-voltage / low-voltage transformer 618, load switch
Claims (6)
6. The apparatus according to claim 3, 4 or 5, further comprising a DC ground voltage / insulation drop measuring means.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005009736A JP4871511B2 (en) | 2005-01-18 | 2005-01-18 | Interrupt insulation measuring device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005009736A JP4871511B2 (en) | 2005-01-18 | 2005-01-18 | Interrupt insulation measuring device |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2006200898A true JP2006200898A (en) | 2006-08-03 |
JP2006200898A5 JP2006200898A5 (en) | 2007-09-13 |
JP4871511B2 JP4871511B2 (en) | 2012-02-08 |
Family
ID=36959053
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005009736A Expired - Lifetime JP4871511B2 (en) | 2005-01-18 | 2005-01-18 | Interrupt insulation measuring device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4871511B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103558537A (en) * | 2013-11-01 | 2014-02-05 | 国家电网公司 | Circuit for testing overload tolerance capacity of series capacitor and working method of circuit |
CN103558536A (en) * | 2013-11-01 | 2014-02-05 | 国家电网公司 | Circuit for testing overload tolerance capacity of series capacitor and working method of circuit |
WO2014121900A1 (en) * | 2013-02-08 | 2014-08-14 | B2 Electronic Gmbh | Mobile high-voltage tester |
CN104166079A (en) * | 2014-08-29 | 2014-11-26 | 国家电网公司 | Method for detecting capacitor element frequency impact current in capacitor voltage transformer |
KR101552174B1 (en) * | 2014-07-07 | 2015-09-11 | 동서대학교산학협력단 | Apparatus for monitoring multi power isolation having signal detection mode, and method for monitoring multi power isolation using the same |
CN114184863A (en) * | 2021-12-01 | 2022-03-15 | 国网北京市电力公司 | A kind of insulation resistance method distribution line grounding inspection device and method |
WO2025052773A1 (en) * | 2023-09-07 | 2025-03-13 | 株式会社日立産機システム | Dc insulation resistance monitoring device and dc insulation resistance monitoring method |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111610411A (en) * | 2020-04-20 | 2020-09-01 | 华为技术有限公司 | Cable insulation resistance detection method and device |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5313479A (en) * | 1976-07-02 | 1978-02-07 | Kansai Electric Power Co | Insulation resistance measuring method |
JPS6011176A (en) * | 1983-06-30 | 1985-01-21 | Sumitomo Electric Ind Ltd | Insulation measuring method in hot-line state of high- voltage power cable |
JPS63136926A (en) * | 1986-11-28 | 1988-06-09 | 日本ケミコン株式会社 | Detecting circuit of deterioration of electrolytic capacitor |
JPS63218871A (en) * | 1987-03-09 | 1988-09-12 | Tohoku Electric Power Co Inc | Apparatus for applying dc voltage to high voltage system |
JPH03218479A (en) * | 1990-01-23 | 1991-09-26 | Hisashi Kumai | Insulation degradation diagnostic method for cable |
JPH07253444A (en) * | 1994-03-15 | 1995-10-03 | Mitsubishi Denki Bill Techno Service Kk | Insulation diagnostic apparatus for power cable |
JPH08184622A (en) * | 1994-11-02 | 1996-07-16 | Yazaki Corp | Method and device for diagnosing insulation deterioration of power cable |
JPH08254566A (en) * | 1995-03-16 | 1996-10-01 | Toyo Commun Equip Co Ltd | Leak current detector |
JP2004271285A (en) * | 2003-03-06 | 2004-09-30 | Toenec Corp | Device for monitoring insulation |
-
2005
- 2005-01-18 JP JP2005009736A patent/JP4871511B2/en not_active Expired - Lifetime
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5313479A (en) * | 1976-07-02 | 1978-02-07 | Kansai Electric Power Co | Insulation resistance measuring method |
JPS6011176A (en) * | 1983-06-30 | 1985-01-21 | Sumitomo Electric Ind Ltd | Insulation measuring method in hot-line state of high- voltage power cable |
JPS63136926A (en) * | 1986-11-28 | 1988-06-09 | 日本ケミコン株式会社 | Detecting circuit of deterioration of electrolytic capacitor |
JPS63218871A (en) * | 1987-03-09 | 1988-09-12 | Tohoku Electric Power Co Inc | Apparatus for applying dc voltage to high voltage system |
JPH03218479A (en) * | 1990-01-23 | 1991-09-26 | Hisashi Kumai | Insulation degradation diagnostic method for cable |
JPH07253444A (en) * | 1994-03-15 | 1995-10-03 | Mitsubishi Denki Bill Techno Service Kk | Insulation diagnostic apparatus for power cable |
JPH08184622A (en) * | 1994-11-02 | 1996-07-16 | Yazaki Corp | Method and device for diagnosing insulation deterioration of power cable |
JPH08254566A (en) * | 1995-03-16 | 1996-10-01 | Toyo Commun Equip Co Ltd | Leak current detector |
JP2004271285A (en) * | 2003-03-06 | 2004-09-30 | Toenec Corp | Device for monitoring insulation |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014121900A1 (en) * | 2013-02-08 | 2014-08-14 | B2 Electronic Gmbh | Mobile high-voltage tester |
CN105190332A (en) * | 2013-02-08 | 2015-12-23 | B2电子有限公司 | Mobile high-voltage tester |
US10598721B2 (en) | 2013-02-08 | 2020-03-24 | B2 Electronic Gmbh | Mobile high-voltage tester |
CN103558537A (en) * | 2013-11-01 | 2014-02-05 | 国家电网公司 | Circuit for testing overload tolerance capacity of series capacitor and working method of circuit |
CN103558536A (en) * | 2013-11-01 | 2014-02-05 | 国家电网公司 | Circuit for testing overload tolerance capacity of series capacitor and working method of circuit |
KR101552174B1 (en) * | 2014-07-07 | 2015-09-11 | 동서대학교산학협력단 | Apparatus for monitoring multi power isolation having signal detection mode, and method for monitoring multi power isolation using the same |
CN104166079A (en) * | 2014-08-29 | 2014-11-26 | 国家电网公司 | Method for detecting capacitor element frequency impact current in capacitor voltage transformer |
CN114184863A (en) * | 2021-12-01 | 2022-03-15 | 国网北京市电力公司 | A kind of insulation resistance method distribution line grounding inspection device and method |
WO2025052773A1 (en) * | 2023-09-07 | 2025-03-13 | 株式会社日立産機システム | Dc insulation resistance monitoring device and dc insulation resistance monitoring method |
Also Published As
Publication number | Publication date |
---|---|
JP4871511B2 (en) | 2012-02-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10522998B2 (en) | Method for detecting an open-phase condition of a transformer | |
RU2542494C2 (en) | Device and method for detection of ground short-circuit | |
CN103782509B (en) | System, computer program product and method for detecting internal winding faults of a synchronous generator | |
CN100533161C (en) | Method and apparatus for identifying intermittent ground faults | |
EP2686691B1 (en) | A method for detecting earth faults | |
US8537510B2 (en) | Method and apparatus for monitoring the isolation of an IT-Grid | |
US8717721B2 (en) | High impedance fault isolation system | |
CN101563824A (en) | System and method to determine the impedance of a disconnected electrical facility | |
CN108614180B (en) | Single-phase earth fault line searching method | |
WO2010036469A2 (en) | A partial discharge coupler for application on high voltage generator bus works | |
CN102420420A (en) | Single-phase grounding protection method and system | |
CN106370975A (en) | Power distribution automation system's single-phase grounding section precisely positioning method | |
KR101490770B1 (en) | Ground fault detecting apparatus | |
CN108051699A (en) | A kind of secondary loop of mutual inductor of transformer substation exception live detection method and system | |
JP4871511B2 (en) | Interrupt insulation measuring device | |
JP2004239863A (en) | Grounding method for transformer | |
JP2006200898A5 (en) | ||
JP7514472B2 (en) | Wire short circuit confirmation device and wire short circuit confirmation method | |
Selkirk et al. | Why neutral-grounding resistors need continuous monitoring | |
Shaikh et al. | Common Mode Voltage based Stator Insulation Testing for Inverter fed Motors with High Resistance Grounding Systems | |
JP2013113632A (en) | Ground fault detecting method | |
JPH07245869A (en) | Insulation deterioration detector for electrical equipment | |
WO2023002770A1 (en) | Power distribution system and malfunction detection method for power distribution system | |
JP2607623B2 (en) | Light ground fault occurrence cable identification method | |
JP2024066022A (en) | Test Equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070727 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070727 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20091113 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091215 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100213 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100622 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100811 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110628 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110726 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20111108 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20111121 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4871511 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20171125 Year of fee payment: 6 |
|
R255 | Notification that request for automated payment was rejected |
Free format text: JAPANESE INTERMEDIATE CODE: R2525 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |