[go: up one dir, main page]

JP2006200555A - Channel switching valve and air conditioner - Google Patents

Channel switching valve and air conditioner Download PDF

Info

Publication number
JP2006200555A
JP2006200555A JP2005009928A JP2005009928A JP2006200555A JP 2006200555 A JP2006200555 A JP 2006200555A JP 2005009928 A JP2005009928 A JP 2005009928A JP 2005009928 A JP2005009928 A JP 2005009928A JP 2006200555 A JP2006200555 A JP 2006200555A
Authority
JP
Japan
Prior art keywords
valve
valve chamber
pressure
switching valve
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005009928A
Other languages
Japanese (ja)
Inventor
Hideki Minamizawa
英樹 南澤
Yosuke Sugiyama
洋介 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saginomiya Seisakusho Inc
Original Assignee
Saginomiya Seisakusho Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saginomiya Seisakusho Inc filed Critical Saginomiya Seisakusho Inc
Priority to JP2005009928A priority Critical patent/JP2006200555A/en
Publication of JP2006200555A publication Critical patent/JP2006200555A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Fluid-Driven Valves (AREA)
  • Magnetically Actuated Valves (AREA)

Abstract

【課題】車載用の空気調和機に用いるのに適した流路切換弁を配管等を低減して構成を簡単にするとともに、省エネを実現しながら弁漏れをしにくくする。
【解決手段】圧縮機等のハウジングにシリンダ2を取り付ける。シリンダ2内に高圧弁室RH、第1切換弁室R1、低圧弁室RL、第2切換弁室R2を縦に連通して形成する。副弁4で主弁体3の冷媒通路33を開閉する。主弁体3の上端位置で、高圧冷媒を高圧弁室RH→冷媒通路33→第2切換弁室R2と流し、低圧冷媒を低圧弁室RL→第1切換弁室R1と流す。第2切換弁室R2の高圧により主弁体3の位置を保持する。下端位置で、高圧冷媒を高圧弁室RH→第1切換弁室R1と流し、低圧冷媒を低圧弁室RL→第2切換弁室R2と流す。第1切換弁室R1の高圧により主弁体3の位置を保持する。
【選択図】図1
A flow path switching valve suitable for use in an in-vehicle air conditioner is simplified in configuration by reducing piping and the like, and is less likely to cause valve leakage while realizing energy saving.
A cylinder 2 is attached to a housing such as a compressor. A high pressure valve chamber RH, a first switching valve chamber R1, a low pressure valve chamber RL, and a second switching valve chamber R2 are formed in the cylinder 2 so as to communicate vertically. The sub valve 4 opens and closes the refrigerant passage 33 of the main valve body 3. At the upper end position of the main valve body 3, high-pressure refrigerant flows through the high-pressure valve chamber RH → refrigerant passage 33 → second switching valve chamber R2, and low-pressure refrigerant flows through the low-pressure valve chamber RL → first switching valve chamber R1. The position of the main valve body 3 is held by the high pressure of the second switching valve chamber R2. At the lower end position, the high-pressure refrigerant flows from the high-pressure valve chamber RH to the first switching valve chamber R1, and the low-pressure refrigerant flows from the low-pressure valve chamber RL to the second switching valve chamber R2. The position of the main valve body 3 is held by the high pressure of the first switching valve chamber R1.
[Selection] Figure 1

Description

本発明は、ヒートポンプ式の冷凍サイクルに用いる流路切換弁、該流路切換弁を用いた空気調和機に関する。   The present invention relates to a flow path switching valve used in a heat pump refrigeration cycle and an air conditioner using the flow path switching valve.

従来、この種の流路切換弁として例えば特開平8−219308号公報に開示されたものがある。この特開平8−219308号公報の流路切換弁は、高圧冷媒流入管、低圧冷媒送出管、室外交換器連通管及び室内交換器連通管をシリンダ部の側面に並べて配設し、シリンダ部の中にロッド状の切換弁をシリンダ部の軸方向に進退可能に内挿している。また、切換弁の上端に永久磁石を取り付け、この永久磁石の回りの2つの電磁コイルにより切換弁を移動させるように構成されている。   Conventionally, this type of flow path switching valve is disclosed in, for example, Japanese Patent Application Laid-Open No. 8-219308. The flow path switching valve disclosed in Japanese Patent Laid-Open No. 8-219308 has a high pressure refrigerant inflow pipe, a low pressure refrigerant delivery pipe, an outdoor exchanger communication pipe, and an indoor exchanger communication pipe arranged side by side on the side of the cylinder section. A rod-shaped switching valve is inserted therein so as to be movable back and forth in the axial direction of the cylinder portion. Further, a permanent magnet is attached to the upper end of the switching valve, and the switching valve is moved by two electromagnetic coils around the permanent magnet.

そして、第1のモードにおいて、高圧冷媒流入管を切換弁の側部を介して室外交換器連通管に導通するとともに、室内交換器連通管を切換弁の側部を介して低圧冷媒送出管に導通し、第2のモードにおいて、高圧冷媒流入管を切換弁の側部を介して室内交換器連通管に導通するとともに、室外交換器連通管を切換弁内の冷媒通路を介して低圧冷媒送出管に導通するように、2つの弁部と連通管及び弁座の位置関係が設定されている。
特開平8−219308号公報
In the first mode, the high-pressure refrigerant inflow pipe is connected to the outdoor exchanger communication pipe via the side of the switching valve, and the indoor exchanger communication pipe is connected to the low-pressure refrigerant delivery pipe via the side of the switching valve. In the second mode, the high-pressure refrigerant inflow pipe is connected to the indoor exchanger communication pipe through the side of the switching valve, and the outdoor exchanger communication pipe is sent to the low-pressure refrigerant through the refrigerant passage in the switching valve. The positional relationship between the two valve portions, the communication pipe, and the valve seat is set so as to conduct to the pipe.
JP-A-8-219308

しかし、特開平8−219308号公報の流路切換弁は、2つの電磁コイルの通電を制御する必要があり、制御回路が複雑になり制御回路にコストがかかるという問題がある。また、電磁コイルと永久磁石との磁力のみによって切換弁の位置を保持しているため、切換弁にかかる荷重が少なく、弁漏れが発生してシステムの効率が低下するおそれがある。この弁漏れを防止するには電磁コイルに多くの電流を通電する必要があり、省エネという点で問題があり、改良の余地を残している。なお、特開平8−219308号公報の流路切換弁は、高圧冷媒流入管、低圧冷媒送出管、室外交換器連通管及び室内交換器連通管をシリンダ部の側面に並べて配設する構成になっており、当該流路切換弁の外回りに流路切換弁用の配管が多くなり、例えば、車載エンジンの回動力で駆動するカーエアコンなどに用いるには、圧縮機外回りの配管が邪魔になるという問題もある。   However, the flow path switching valve disclosed in Japanese Patent Application Laid-Open No. 8-219308 has a problem that it is necessary to control the energization of the two electromagnetic coils, which complicates the control circuit and increases the cost of the control circuit. Further, since the position of the switching valve is held only by the magnetic force of the electromagnetic coil and the permanent magnet, the load applied to the switching valve is small, and valve leakage may occur, resulting in a reduction in system efficiency. In order to prevent this valve leakage, it is necessary to supply a large amount of current to the electromagnetic coil, which is problematic in terms of energy saving and leaves room for improvement. Note that the flow path switching valve disclosed in Japanese Patent Application Laid-Open No. 8-219308 has a configuration in which a high-pressure refrigerant inflow pipe, a low-pressure refrigerant delivery pipe, an outdoor exchanger communication pipe, and an indoor exchanger communication pipe are arranged side by side on the cylinder portion. In addition, there are many pipes for the flow path switching valve around the flow path switching valve. For example, for use in a car air conditioner driven by the turning power of an in-vehicle engine, the pipe around the compressor is an obstacle. There is also a problem.

本発明は上記の事情に鑑みなされたもので、省エネを実現しながら弁漏れをしにくくすることを課題とする。   This invention is made | formed in view of said situation, and makes it a subject to make it difficult to leak a valve, implement | achieving energy saving.

請求項1の流路切換弁は、高圧冷媒が導入される高圧弁室、熱交換機に連通される第1切換弁室、低圧冷媒を導出する低圧弁室、及び熱交換器に連通される第2切換弁室の順に、各弁室を軸方向に連通して形成されたシリンダと、該シリンダ内に前記軸方向に往復移動可能に挿入されて前記高圧弁室から第2切換弁室にかけて配設された主弁体であって、第1切換弁室と第2切換弁室との部分で円柱状側面の径を一部大きくした第1弁部及び第2弁部をそれぞれ有する主弁体と、前記高圧弁室と前記第2切換弁室とを導通可能にする冷媒通路と、前記冷媒通路の前記高圧弁室側を開閉する副弁と、前記主弁体を前記軸方向に移動する駆動部とを備え、前記主弁体の移動位置に応じて、前記第1弁部が第1切換弁室の高圧弁室側を封止するとともに低圧弁室側を開放し、かつ、前記第2弁部が第2切換弁室の低圧弁室側を封止する第1状態と、前記第1弁部が第1切換弁室の低圧弁室側を封止するとともに高圧弁室側を開放し、かつ、前記第2弁部が第2切換弁室の低圧弁室側を開放する第2状態との、2状態間を遷移可能となるように構成し、前記副弁が冷媒通路の高圧弁室側を開として第1状態とし、該副弁が冷媒通路の高圧弁室側を閉として第2状態とし、第1状態において前記冷媒通路を介して第2切換弁室に供給される高圧冷媒の圧力により前記主弁体の位置を保持し、第2状態において前記第1弁部を介して高圧弁室から第1切換弁室に供給される高圧冷媒の圧力により前記主弁体の位置を保持するようにしたことを特徴とする。   The flow path switching valve according to claim 1 is a high pressure valve chamber into which high-pressure refrigerant is introduced, a first switching valve chamber communicated with a heat exchanger, a low-pressure valve chamber for deriving low-pressure refrigerant, and a first fluid communication with a heat exchanger. In the order of the two switching valve chambers, a cylinder formed by communicating each valve chamber in the axial direction, and inserted into the cylinder so as to be capable of reciprocating in the axial direction and arranged from the high pressure valve chamber to the second switching valve chamber. A main valve body provided with a first valve portion and a second valve portion, each of which has a partly increased diameter on a cylindrical side surface at the first switching valve chamber and the second switching valve chamber. A refrigerant passage that allows the high-pressure valve chamber and the second switching valve chamber to conduct, a sub-valve that opens and closes the high-pressure valve chamber side of the refrigerant passage, and the main valve body is moved in the axial direction. A drive unit, and the first valve unit seals the high-pressure valve chamber side of the first switching valve chamber according to the movement position of the main valve body. A first state in which the low pressure valve chamber side is opened and the second valve portion seals the low pressure valve chamber side of the second switching valve chamber, and the first valve portion is the low pressure valve of the first switching valve chamber. The chamber side is sealed and the high pressure valve chamber side is opened, and the second state can be changed between two states, the second state in which the second valve portion opens the low pressure valve chamber side of the second switching valve chamber. The sub-valve is in the first state with the high-pressure valve chamber side of the refrigerant passage open, and the sub-valve is in the second state with the high-pressure valve chamber side of the refrigerant passage closed, and the refrigerant passage in the first state The position of the main valve body is held by the pressure of the high-pressure refrigerant supplied to the second switching valve chamber via the first pressure valve, and is supplied from the high-pressure valve chamber to the first switching valve chamber via the first valve portion in the second state. The position of the main valve body is held by the pressure of the high-pressure refrigerant that is generated.

請求項2の流路切換弁は、請求項1に記載の流路切換弁であって、前記主弁体の軸方向に該主弁体を高圧弁室側から第2切換弁室側まで貫通する通路により、前記冷媒通路が形成されていることを特徴とする。   The flow path switching valve according to claim 2 is the flow path switching valve according to claim 1, wherein the main valve body penetrates from the high pressure valve chamber side to the second switching valve chamber side in the axial direction of the main valve body. The refrigerant passage is formed by a passage to be performed.

請求項3の流路切換弁は、請求項1または2に記載の流路切換弁であって、前記副弁の駆動方向を前記主弁体の移動方向と同軸にしたことを特徴とする。   A flow path switching valve according to a third aspect is the flow path switching valve according to the first or second aspect, wherein the driving direction of the auxiliary valve is coaxial with the moving direction of the main valve element.

請求項4の流路切換弁は、請求項1、2または3に記載の流路切換弁であって、前記副弁は、前記主弁体の軸方向に貫通するパイロットポートを有するとともに該主弁体から離間する方向に付勢され、前記主弁体は、前記第2弁部が第2切換弁室の低圧弁室側を封止するように付勢され、前記駆動部は、前記副弁のパイロットポートを前記主弁体と反対側で開閉するパイロット弁を備えるとともに、該パイロット弁で該副弁を押圧することにより該副弁と前記主弁体とを移動するように構成され、前記パイロット弁で前記パイロットポートを閉として前記第2状態とするとともに、該パイロット弁で該パイロットポートを開とすることで、該パイロットポート及び前記冷媒通路を介して前記高圧弁室と前記第2切換弁室とを均圧して、前記第2状態を解除することを特徴とする。   The flow path switching valve according to claim 4 is the flow path switching valve according to claim 1, 2 or 3, wherein the sub valve has a pilot port penetrating in the axial direction of the main valve body and the main valve body. The main valve body is urged in a direction away from the valve body, and the main valve body is urged so that the second valve portion seals the low pressure valve chamber side of the second switching valve chamber. A pilot valve that opens and closes the pilot port of the valve on the side opposite to the main valve body, and is configured to move the sub valve and the main valve body by pressing the sub valve with the pilot valve; The pilot valve is closed by the pilot valve to be in the second state, and the pilot valve is opened by the pilot valve, so that the high pressure valve chamber and the second state are passed through the pilot port and the refrigerant passage. Equalizing the switching valve chamber and Characterized in that it releases the state.

請求項5の流路切換弁は、請求項1、2、3または4に記載の流路切換弁であって、圧縮機本体の高圧空間と低圧空間とに隣接して設けられるブロック状のハウジングを備え、該ハウジングに、シリンダ嵌挿孔、該シリンダ嵌挿孔に開口し前記高圧弁室に導通される高圧ポート用通路、前記低圧弁室に導通される低圧ポート用通路、及び前記第1及び第2切換弁室にそれぞれ導通される2つの切換ポート用通路を、それぞれ該ハウジングに穿設することで該ハウジング自体で形成し、前記シリンダ嵌挿孔に前記シリンダを嵌挿して形成したことを特徴とする。   The flow path switching valve according to claim 5 is the flow path switching valve according to claim 1, 2, 3 or 4, and is a block-shaped housing provided adjacent to the high pressure space and the low pressure space of the compressor body. The housing has a cylinder insertion hole, a high pressure port passage that opens into the cylinder insertion hole and is connected to the high pressure valve chamber, a low pressure port passage that is connected to the low pressure valve chamber, and the first And two switching port passages respectively connected to the second switching valve chamber are formed in the housing itself by drilling in the housing, and the cylinder is inserted into the cylinder insertion hole. It is characterized by.

請求項6の空気調和機は、請求項1、2、3、4または5に記載の流路切換弁を搭載したことを特徴とする。   An air conditioner according to a sixth aspect includes the flow path switching valve according to the first, second, third, fourth, or fifth aspect.

請求項1の流路切換弁において、低圧弁室の両側に第1切換弁室及び第2切換弁室が形成され、第1及び第2切換弁室内に第1及び第2弁部がそれぞれ配置されている。駆動部で主弁体が移動されることにより、第1状態と第2状態との間で遷移が行われる。副弁が冷媒通路の高圧弁室側を開とする第1状態において、冷媒通路を介して第2切換弁室に供給される高圧冷媒の圧力により主弁体の位置が保持され、副弁が冷媒通路の高圧弁室側を閉とする第2状態において、第1弁部を介して高圧弁室から第1切換弁室に供給される高圧冷媒の圧力により主弁体の位置が保持される。なお、冷媒通路は高圧弁室と第2切換弁室とを導通可能にするものであり、この冷媒通路は請求項2のように構成するのが好適であるが、例えばシリンダの脇に該シリンダと平行に形成してもよい。   2. The flow path switching valve according to claim 1, wherein a first switching valve chamber and a second switching valve chamber are formed on both sides of the low pressure valve chamber, and the first and second valve portions are respectively disposed in the first and second switching valve chambers. Has been. A transition is performed between the first state and the second state by moving the main valve body in the drive unit. In the first state where the auxiliary valve opens the high-pressure valve chamber side of the refrigerant passage, the position of the main valve body is maintained by the pressure of the high-pressure refrigerant supplied to the second switching valve chamber via the refrigerant passage. In the second state in which the high-pressure valve chamber side of the refrigerant passage is closed, the position of the main valve body is maintained by the pressure of the high-pressure refrigerant supplied from the high-pressure valve chamber to the first switching valve chamber via the first valve portion. . The refrigerant passage allows the high-pressure valve chamber and the second switching valve chamber to be electrically connected, and the refrigerant passage is preferably configured as in claim 2. And may be formed in parallel.

請求項2の流路切換弁において、主弁体には軸方向に冷媒通路が形成されており、冷媒通路を構成するのが容易になるとともに、シリンダの回りに余分な通路を必要としない。   In the flow path switching valve according to claim 2, a refrigerant passage is formed in the axial direction in the main valve body, so that it is easy to configure the refrigerant passage and no extra passage is required around the cylinder.

請求項3の流路切換弁において、副弁の駆動方向が主弁体の移動方向と同軸になっているので、副弁と主弁体の動作が容易になるとともに、動作部分のサイズをコンパクトにできる。   In the flow path switching valve according to claim 3, since the driving direction of the sub valve is coaxial with the moving direction of the main valve body, the operation of the sub valve and the main valve body is facilitated, and the size of the operating portion is compact. Can be.

請求項4の流路切換弁において、副弁と主弁体は、駆動部のパイロット弁が副弁を押圧する方向と反対方向に付勢されている。駆動部がパイロット弁で副弁のパイロットポートを閉としてさらに前記副弁を押圧する方向と反対方向の付勢力に抗して該副弁を押圧すると、副弁と主弁体が移動する。したがって、第1弁部が第1切換弁室の低圧弁室側を封止するとともに高圧弁室側を開放して第2状態となる。駆動部がパイロット弁でパイロットポートを開とすると、パイロットポート及び冷媒通路を介して高圧弁室と第2切換弁室とが均圧され、第2切換弁室が高圧となって、前記付勢力により主弁体が移動して第2状態が解除される。なお、駆動部はパイロット弁を取り付けたプランジャを電磁コイルで駆動するような簡単な構成とすることができる。   In the flow path switching valve according to claim 4, the auxiliary valve and the main valve body are urged in a direction opposite to a direction in which the pilot valve of the drive unit presses the auxiliary valve. When the driving unit closes the pilot port of the sub valve with the pilot valve and further presses the sub valve against the urging force in the direction opposite to the direction of pressing the sub valve, the sub valve and the main valve body move. Accordingly, the first valve portion seals the low pressure valve chamber side of the first switching valve chamber and opens the high pressure valve chamber side to enter the second state. When the driving unit opens the pilot port with the pilot valve, the high pressure valve chamber and the second switching valve chamber are pressure-equalized through the pilot port and the refrigerant passage, and the second switching valve chamber becomes high pressure, and the urging force is increased. As a result, the main valve body moves and the second state is released. Note that the drive unit can have a simple configuration in which a plunger equipped with a pilot valve is driven by an electromagnetic coil.

請求項5の流路切換弁において、ハウジングはブロック状であり、このハウジングにはシリンダ嵌挿孔、高圧ポート用通路、低圧ポート用通路及び2つの切換ポート用通路がそれぞれ穿設されており、このハウジングの低圧ポート用通路と高圧ポート用通路とが圧縮機本体の低圧空間と高圧空間とにそれぞれ接続される。そして、シリンダ嵌挿孔及び各通路がハウジング自体により形成されており、当該流路切換弁の外回りには流路切換弁用の配管がない。また、シリンダをハウジングのシリンダ嵌挿孔に挿入して流路切換弁が構成できるので、製造が容易になる。   In the flow path switching valve according to claim 5, the housing has a block shape, and a cylinder fitting insertion hole, a high pressure port passage, a low pressure port passage, and two switching port passages are formed in the housing. The low pressure port passage and the high pressure port passage of the housing are respectively connected to the low pressure space and the high pressure space of the compressor body. The cylinder insertion hole and each passage are formed by the housing itself, and there is no pipe for the flow path switching valve around the flow path switching valve. Further, since the flow path switching valve can be configured by inserting the cylinder into the cylinder fitting insertion hole of the housing, the manufacture becomes easy.

請求項6の空気調和機においては、請求項1、2、3、4または5の流路切換弁の作用効果を奏する。   In the air conditioner of claim 6, the effect of the flow path switching valve of claim 1, 2, 3, 4 or 5 is achieved.

請求項1の流路切換弁によれば、切換弁室の高圧冷媒の圧力により主弁体の位置を保持するので、例えば電磁コイルに通電し続けなくてもよく、省エネを実現しながら弁漏れをしにくくすることができる。   According to the flow path switching valve of the first aspect, the position of the main valve body is held by the pressure of the high-pressure refrigerant in the switching valve chamber. Can be difficult.

請求項2の流路切換弁によれば、請求項1の効果に加えて、冷媒通路を容易に構成できるとともに、シリンダの回りに余分な通路を必要としないので、コンパクトにすることができる。   According to the flow path switching valve of the second aspect, in addition to the effect of the first aspect, the refrigerant passage can be easily configured, and an extra passage is not required around the cylinder, so that it can be made compact.

請求項3の流路切換弁によれば、請求項1または2の効果に加えて、副弁の駆動方向が主弁体の移動方向と同軸になっているので、副弁と主弁体の動作が容易になるとともに、動作部分のサイズをコンパクトにできる。   According to the flow path switching valve of the third aspect, in addition to the effect of the first or second aspect, the driving direction of the sub valve is coaxial with the moving direction of the main valve body. The operation becomes easy and the size of the operation part can be made compact.

請求項4の流路切換弁によれば、請求項1、2または3の効果に加えて、駆動部によるパイロット弁の操作だけで第2状態から第1状態に容易に遷移できるので、簡便な動作により省エネの効果が得られるとともに、制御が簡単になる。   According to the flow path switching valve of the fourth aspect, in addition to the effect of the first, second, or third aspect, the transition from the second state to the first state can be easily made only by the operation of the pilot valve by the drive unit. The operation provides energy savings and simplifies control.

請求項5の流路切換弁によれば、請求項1、2、3または4の効果に加えて、流路切換弁用の外回りの流路切換弁用の配管を極力低減することができるとともに、シリンダをシリンダ嵌挿孔に挿入して流路切換弁が構成できるので、製造が容易になる。   According to the flow path switching valve of the fifth aspect, in addition to the effect of the first, second, third, or fourth aspect, it is possible to reduce the outer flow path switching valve pipe for the flow path switching valve as much as possible. Since the flow path switching valve can be configured by inserting the cylinder into the cylinder fitting insertion hole, the manufacture becomes easy.

請求項6の空気調和機によれば、請求項1、2、3、4または5と同様な効果が得られる。   According to the air conditioner of the sixth aspect, the same effect as that of the first, second, third, fourth or fifth aspect can be obtained.

次に、本発明による流路切換弁及び空気調和機の実施形態を図面を参照して説明する。   Next, embodiments of a flow path switching valve and an air conditioner according to the present invention will be described with reference to the drawings.

図1は本発明の実施形態の流路切換弁の要部断面図及び主弁体ガイドの斜視図、図2は同流路切換弁のシリンダ嵌挿孔を示すハウジングの一部断面図、図3は同流路切換弁を用いた流路切換弁付き圧縮機の冷房運転時の断面図、図4は同流路切換弁付き圧縮機の暖房運転時の断面図、図5は冷房運転と暖房運転の切り換え過程を示す図、図6は同流路切換弁付き圧縮機を用いた空気調和機の冷凍サイクルを示す図である。なお、図3〜図5では図を分かり易くするために、別部材を一体に固着した部分について、その一部を同一斜線で一体に示す略図としている。また、圧縮機本体100の圧縮部10は従来のものと同様であり、その一部を簡略化して図示してある。以下の説明では図の上下方向を流路切換弁及び圧縮機の上下方向として説明する。   FIG. 1 is a cross-sectional view of a main part of a flow path switching valve according to an embodiment of the present invention and a perspective view of a main valve element guide, and FIG. 2 is a partial cross-sectional view of a housing showing a cylinder fitting insertion hole of the flow path switching valve. 3 is a cross-sectional view of the compressor with a flow path switching valve using the same flow path switching valve during cooling operation, FIG. 4 is a cross-sectional view of the compressor with the flow path switching valve during heating operation, and FIG. The figure which shows the switching process of heating operation, FIG. 6 is a figure which shows the refrigerating cycle of the air conditioner using the compressor with the flow-path switching valve. 3 to 5, in order to make the drawings easy to understand, a part of the portion to which another member is integrally fixed is shown as a schematic diagram in which a part thereof is integrally shown by the same oblique line. Moreover, the compression part 10 of the compressor main body 100 is the same as the conventional one, and a part thereof is shown in a simplified manner. In the following description, the vertical direction in the figure will be described as the vertical direction of the flow path switching valve and the compressor.

この実施形態の圧縮機は車載用の圧縮機であり、図6の冷凍サイクルは車載用空気調和機を構成している。圧縮機本体100は圧縮部10とハウジング1とで構成されている。ハウジング1には後述のCポート(開口)14及びEポート15が形成されており、Cポート14から室外機20、キャピラリ30、室内機40及びEポート15と配管により接続され、冷凍サイクルが構成されている。そして、冷房運転時に、圧縮機本体100から吐出される冷媒はCポート14→室外機20→キャピラリ30→室内機40→Eポート15と循環し、室外機20が凝縮器、室内機40が蒸発器として機能し、車室内の冷房がなされる。また、暖房運転時には冷媒は逆に循環され、室内機40が凝縮器、室外機20が蒸発器として機能し、車室内の暖房がなされる。なお、Cポート14及びEポート15の「C」「E」は冷房運転を基準に付けた名前である。   The compressor of this embodiment is an in-vehicle compressor, and the refrigeration cycle in FIG. 6 constitutes an in-vehicle air conditioner. The compressor main body 100 includes a compression unit 10 and a housing 1. A C port (opening) 14 and an E port 15 which will be described later are formed in the housing 1, and the refrigeration cycle is configured by connecting the C port 14 to the outdoor unit 20, capillary 30, indoor unit 40 and E port 15 by piping. Has been. During the cooling operation, the refrigerant discharged from the compressor body 100 circulates from the C port 14 → the outdoor unit 20 → the capillary 30 → the indoor unit 40 → the E port 15, and the outdoor unit 20 is a condenser and the indoor unit 40 is evaporated. It functions as a vessel and cools the passenger compartment. Further, during the heating operation, the refrigerant is circulated in reverse, the indoor unit 40 functions as a condenser, and the outdoor unit 20 functions as an evaporator, thereby heating the vehicle interior. “C” and “E” of the C port 14 and the E port 15 are names based on the cooling operation.

図3及び図4に示したように、圧縮部10は、円筒状のフロントケース10aをバルブシート10bで封止して構成され、フロントケース10a内には、シリンダブロック10c、駆動軸10d及び揺動板10eが収容されている。シリンダブロック10cにはシリンダボア10fが形成され、このシリンダボア10f内にはピストン10gが配設されている。ピストン10gは揺動板10eに連結され、揺動板10eは駆動軸10dに揺動自在に取り付けられている。また、バルブシート10bには、吐出通路10hと吸入通路10iが形成されており、吐出通路10hは吐出弁10jにより開閉され、吸入通路10iは吸入弁10kにより開閉される。   As shown in FIGS. 3 and 4, the compression unit 10 is configured by sealing a cylindrical front case 10a with a valve seat 10b, and in the front case 10a, a cylinder block 10c, a drive shaft 10d, and a swinging member are formed. A moving plate 10e is accommodated. A cylinder bore 10f is formed in the cylinder block 10c, and a piston 10g is disposed in the cylinder bore 10f. The piston 10g is connected to a swing plate 10e, and the swing plate 10e is swingably attached to the drive shaft 10d. Further, a discharge passage 10h and a suction passage 10i are formed in the valve seat 10b. The discharge passage 10h is opened and closed by a discharge valve 10j, and the suction passage 10i is opened and closed by a suction valve 10k.

以上の構成により、図示しない車載エンジンの回転動力がプーリ10pを介して駆動軸10dに伝達されて駆動軸10dが回転すると、揺動板10eが揺動してピストン10gがシリンダボア10f内で往復動する。これにより、吸入通路10iからの冷媒ガスの吸入と、吐出通路10hからの冷媒ガスの吐出が繰り返される。なお、揺動板10eの傾斜角度の制御により、圧縮部10の運転能力が制御される。   With the above configuration, when the rotational power of an in-vehicle engine (not shown) is transmitted to the drive shaft 10d via the pulley 10p and the drive shaft 10d rotates, the swing plate 10e swings and the piston 10g reciprocates within the cylinder bore 10f. To do. Thereby, the suction of the refrigerant gas from the suction passage 10i and the discharge of the refrigerant gas from the discharge passage 10h are repeated. In addition, the driving capability of the compression unit 10 is controlled by controlling the inclination angle of the swing plate 10e.

バルブシート10bにはハウジング1が取り付けられている。ハウジング1は金属材料でダイキャスト及び切削加工等により形成された部材であり、フロントケース10a及びバルブシート10bの外周に整合する略円柱状の形状をしている。このハウジング1は、リング状の外壁1Aと、この外壁1Aの内部で該外壁1Aと同心円にリング状に形成された隔壁1Bと、隔壁1Bの内側の中央で前記駆動軸10dの端部を通す軸受部1Cとを一体に成型したものである。そして、外壁1Aと隔壁1Bの間の空間は高圧空間sp1、隔壁1Bの内側の空間は低圧空間sp2とされ、高圧空間sp1には吐出通路10hが開口され、低圧空間sp2には吸入通路10iが開口されている。また、ハウジング1には、該ハウジング1の上部から圧縮部10における駆動軸10dと直角な方向に延びる略円柱状のシリンダ嵌挿孔1Dが形成されており、このシリンダ嵌挿孔1D内に図1に示す弁本体のシリンダ2が嵌挿されて固着されている。   A housing 1 is attached to the valve seat 10b. The housing 1 is a member made of a metal material by die casting, cutting, or the like, and has a substantially cylindrical shape that matches the outer periphery of the front case 10a and the valve seat 10b. The housing 1 has a ring-shaped outer wall 1A, a partition wall 1B formed in a ring shape concentrically with the outer wall 1A inside the outer wall 1A, and an end portion of the drive shaft 10d at the center inside the partition wall 1B. The bearing portion 1C is integrally molded. The space between the outer wall 1A and the partition wall 1B is a high pressure space sp1, the space inside the partition wall 1B is a low pressure space sp2, the discharge passage 10h is opened in the high pressure space sp1, and the suction passage 10i is formed in the low pressure space sp2. It is open. The housing 1 is formed with a substantially cylindrical cylinder insertion hole 1D extending from the upper part of the housing 1 in a direction perpendicular to the drive shaft 10d in the compression section 10, and the cylinder insertion insertion hole 1D is shown in FIG. The cylinder 2 of the valve body shown in FIG.

図1(A) に示したように、弁本体はシリンダ2、主弁体3、副弁4及び駆動部5を有している。シリンダ2は、それぞれが略リング状の上環状部材21、中環状部材22、下環状部材23及び底蓋24で構成されており、中環状部材22の上半分は上環状部材21より外径が小さく、中環状部材22の下半分はその上半分より外径が小さく、さらに下環状部材23は中環状部材22の下半分より外径が小さくなっている。中環状部材22の上端は上環状部材21の下端に嵌合され、加締め部21aを加締めることにより上環状部材21に中環状部材22が嵌合固着されている。また、下環状部材23の上端は中環状部材22の下端に嵌合され、加締め部22aを加締めることにより中環状部材22に下環状部材23が嵌合固着されている。さらに、下環状部材23の下端に底蓋24が螺合して封止されている。   As shown in FIG. 1 (A), the valve body has a cylinder 2, a main valve body 3, a sub valve 4, and a drive unit 5. The cylinder 2 is composed of an upper ring member 21, a middle ring member 22, a lower ring member 23, and a bottom cover 24, each of which has a substantially ring shape, and the upper half of the middle ring member 22 has an outer diameter larger than that of the upper ring member 21. The lower half of the middle annular member 22 has a smaller outer diameter than the upper half, and the lower annular member 23 has a smaller outer diameter than the lower half of the middle annular member 22. The upper end of the middle annular member 22 is fitted to the lower end of the upper annular member 21, and the middle annular member 22 is fitted and fixed to the upper annular member 21 by crimping the caulking portion 21 a. Further, the upper end of the lower annular member 23 is fitted to the lower end of the middle annular member 22, and the lower annular member 23 is fitted and fixed to the middle annular member 22 by caulking the caulking portion 22 a. Further, a bottom lid 24 is screwed and sealed to the lower end of the lower annular member 23.

上環状部材21には内部に円筒状の高圧弁室RHが形成されるとともに、該高圧弁室RHを外周に導通する導通部2aが形成されている。中環状部材22には内部に円筒状の第1切換弁室R1と低圧弁室RLが上下に形成されるとともに、この第1切換弁室R1と低圧弁室RLを外周にそれぞれ導通する導通部2b,2cが形成されている。下環状部材23には内部に円筒状の第2切換弁室R2が形成されるとともに、該第2切換弁室R2を外周に導通する導通部2dが形成されている。また、上環状部材21の外周には上下2箇所にOリング21b,21cが配設され、中環状部材22の外周の導通部2bと導通部2cの間にOリング22dが配設され、さらに、下環状部材23の上1箇所にOリング23bが配設されている。   The upper annular member 21 has a cylindrical high-pressure valve chamber RH formed therein, and a conduction portion 2a that conducts the high-pressure valve chamber RH to the outer periphery. A cylindrical first switching valve chamber R1 and a low-pressure valve chamber RL are formed in the middle annular member 22 in the vertical direction, and conducting portions that respectively connect the first switching valve chamber R1 and the low-pressure valve chamber RL to the outer periphery. 2b and 2c are formed. A cylindrical second switching valve chamber R2 is formed in the lower annular member 23, and a conducting portion 2d that conducts the second switching valve chamber R2 to the outer periphery is formed. In addition, O-rings 21b and 21c are arranged at two locations on the outer circumference of the upper annular member 21, and an O-ring 22d is arranged between the conducting portion 2b and the conducting portion 2c on the outer circumference of the middle annular member 22. The O-ring 23b is disposed at one place on the lower annular member 23.

図2に示すように、シリンダ嵌挿孔1Dは、シリンダ2の上環状部材21、中環状部材22及び下環状部材23からなる一体形状の外径に略整合する形状であり、最上段の円筒面11、中上段の円筒面12U、中下段の円筒面12D、最下段の円筒面13が順に内径を小さくして形成されている。最上段の円筒面11には前記高圧空間sp1に開口するDポート用通路(高圧ポート用通路)1aが開口され、中上段の円筒面12UにはEポート15に通じるEポート用通路(切換ポート用通路)1bが開口されている。また、中下段の円筒面12Dには前記低圧空間sp2に開口するSポート用通路(低圧ポート用通路)1cが開口され、最下段の円筒面13にはCポート14に通じるCポート用通路(切換ポート用通路)1dが開口されている。   As shown in FIG. 2, the cylinder fitting insertion hole 1 </ b> D has a shape that substantially matches the outer diameter of an integral shape that includes the upper annular member 21, the middle annular member 22, and the lower annular member 23 of the cylinder 2. A surface 11, a middle upper cylindrical surface 12U, a middle lower cylindrical surface 12D, and a lowermost cylindrical surface 13 are formed in order of decreasing inner diameter. A D-port passage (high-pressure port passage) 1a that opens into the high-pressure space sp1 is opened in the uppermost cylindrical surface 11, and an E-port passage (switching port) that leads to the E-port 15 is formed in the middle-upper cylindrical surface 12U. For use) 1b is opened. Further, an S port passage (low pressure port passage) 1c that opens to the low pressure space sp2 is opened in the middle and lower cylindrical surface 12D, and a C port passage (communication to the C port 14) is opened in the lowermost cylindrical surface 13. A switching port passage 1d is opened.

そして、シリンダ2をシリンダ嵌挿孔1D内に嵌挿収容すると、各Oリング21b,21c,22d、23bが、円筒面11,12U,12D,13に圧接され、それぞれ、高圧弁室RH、第1切換弁室R1、低圧弁室RL及び第2切換弁室R2をシリンダ嵌挿孔1D内で密閉する。また、このとき、高圧弁室RHの導通部2aはDポート用通路1aに同軸で対向し、第1切換弁室R1の導通部2bはEポート用通路1bに同軸で対向し、低圧弁室RLの導通部2cはSポート用通路1cに同軸で対向し、第2切換弁室R2の導通部2dはCポート用通路1dに同軸で対向する。   When the cylinder 2 is inserted and accommodated in the cylinder insertion hole 1D, the O-rings 21b, 21c, 22d, and 23b are brought into pressure contact with the cylindrical surfaces 11, 12U, 12D, and 13, respectively. The first switching valve chamber R1, the low pressure valve chamber RL, and the second switching valve chamber R2 are sealed in the cylinder fitting insertion hole 1D. At this time, the conducting portion 2a of the high pressure valve chamber RH is coaxially opposed to the D port passage 1a, and the conducting portion 2b of the first switching valve chamber R1 is coaxially opposed to the E port passage 1b. The conducting portion 2c of the RL is coaxially opposed to the S port passage 1c, and the conducting portion 2d of the second switching valve chamber R2 is coaxially opposed to the C port passage 1d.

図1(A) に示したように、シリンダ2は高圧弁室RHから第2切換弁室R2まで連通する構造になっているが、上環状部材21の下部は、高圧弁室RHと第1切換弁室R1との間の部分で内径を小さくしたリング状の高圧側弁座211となっている。また、中環状部材22の中央部分は、第1切換弁室R1と低圧弁室RLとの間の部分で内径を小さくしたリング状の第1低圧弁座221となっている。さらに、下環状部材23の上部は、低圧弁室RLと第2切換弁室R2との間の部分で内径を小さくしたリング状の第2低圧弁座231となっている。   As shown in FIG. 1A, the cylinder 2 is structured to communicate from the high pressure valve chamber RH to the second switching valve chamber R2, but the lower portion of the upper annular member 21 is connected to the high pressure valve chamber RH and the first high pressure valve chamber RH. A ring-shaped high-pressure side valve seat 211 having a smaller inner diameter is formed at a portion between the switching valve chamber R1. Further, the central portion of the middle annular member 22 is a ring-shaped first low pressure valve seat 221 having a smaller inner diameter at a portion between the first switching valve chamber R1 and the low pressure valve chamber RL. Furthermore, the upper part of the lower annular member 23 is a ring-shaped second low-pressure valve seat 231 having a smaller inner diameter at a portion between the low-pressure valve chamber RL and the second switching valve chamber R2.

主弁体3は、円柱状側面を有し高圧弁室RHから第2切換弁室R2にかけて配設されており、第1切換弁室R1の部分でその円柱状側面の径を一部大きくすることにより第1弁部31が形成されている。また、主弁体3の第2切換弁室R2の部分となる下端部にリング状部材を固定することにより、円柱状側面の径が一部大きくなった第2弁部32が形成されている。また、主弁体3は、軸方向に該主弁体3の内部空間により高圧弁室RH側から第2切換弁室R2側まで貫通する冷媒通路33が形成されている。さらに、主弁体3は、低圧弁室RL内に配設された主弁体ガイド6により軸支され、主弁体3はシリンダ2内で上下に移動可能となっている。図1(B) に示したように、主弁体ガイド6は、主弁体3の円柱状側面を摺動自在に通す筒状のガイド部61と、ガイド部61の周囲4箇所に突出されたリブ62とで構成されており、このリブ62を低圧弁室RL内に固定することにより取り付けられている。なお、低圧弁室RL内において、主弁体ガイド6の上下部分と導通部2cとはリブ62,62間を介して常時連通している。   The main valve body 3 has a cylindrical side surface and is disposed from the high-pressure valve chamber RH to the second switching valve chamber R2, and the diameter of the cylindrical side surface is partially increased in the portion of the first switching valve chamber R1. Thus, the first valve portion 31 is formed. Moreover, the 2nd valve part 32 in which the diameter of the column-shaped side part became large was formed by fixing a ring-shaped member to the lower end part used as the part of 2nd switching valve chamber R2 of the main valve body 3. . Further, the main valve body 3 is formed with a refrigerant passage 33 penetrating from the high-pressure valve chamber RH side to the second switching valve chamber R2 side in the axial direction by the internal space of the main valve body 3. Further, the main valve body 3 is pivotally supported by a main valve body guide 6 disposed in the low-pressure valve chamber RL, and the main valve body 3 can move up and down in the cylinder 2. As shown in FIG. 1 (B), the main valve element guide 6 protrudes from a cylindrical guide part 61 that slidably passes through the columnar side surface of the main valve element 3 and four places around the guide part 61. The rib 62 is fixed to the low-pressure valve chamber RL. In the low-pressure valve chamber RL, the upper and lower portions of the main valve element guide 6 and the conducting portion 2c are always in communication via the ribs 62, 62.

以上の構成により、主弁体3がシリンダ2内で上下に移動し、図1(A) に示すように第1弁部31が高圧側弁座211に当接(着座)するとともに第2弁部32が第2低圧弁座231に当接(着座)したとき上端位置となり、第1弁部31が第1低圧弁座221に当接(着座)したとき下端位置となる。また、主弁体3の第2弁部32の部分には、シリンダ2の底蓋24の底面に当接する主弁体用バネ34が配設されており、この主弁体用バネ34により主弁体3は図1(A) において上側に付勢されている。すなわち、主弁体3は、第2弁部32が第2切換弁室R2の低圧弁室RL側を封止するように、かつ、第1弁部31が第1切換弁室R1の高圧弁室RH側を封止するように付勢されている。   With the above configuration, the main valve body 3 moves up and down in the cylinder 2, and as shown in FIG. 1 (A), the first valve portion 31 contacts (sits) the high pressure side valve seat 211 and the second valve. When the portion 32 abuts (sits) the second low-pressure valve seat 231, the upper end position is reached, and when the first valve portion 31 abuts (sits) the first low-pressure valve seat 221, the lower end position is reached. In addition, a main valve body spring 34 that abuts against the bottom surface of the bottom cover 24 of the cylinder 2 is disposed in the second valve portion 32 of the main valve body 3. The valve body 3 is urged upward in FIG. That is, the main valve body 3 is configured so that the second valve portion 32 seals the low-pressure valve chamber RL side of the second switching valve chamber R2 and the first valve portion 31 is the high-pressure valve of the first switching valve chamber R1. It is urged to seal the chamber RH side.

副弁4は、主弁体3の上部に配設されており、この副弁4の下端には、その周縁部と高圧弁室RHの底部周縁とに当接する副弁用バネ44が配設されている。副弁4は円盤状の弁部41と円柱状の軸部42と円筒状のガイド部43とで構成されており、軸部42は上環状部材21の高圧弁室RHの上部に嵌合されるプランジャチューブガイド51内に摺動自在に配設されている。また、副弁4の底面には、主弁体3の上端部に当接するリング状のパッキン4aが配設されるとともに、該副弁4の中心には主弁体3及びシリンダ2と同軸にして弁部41と軸部42を上下に貫通するパイロットポート4bが形成されている。   The sub-valve 4 is disposed on the upper portion of the main valve body 3, and a sub-valve spring 44 is disposed at the lower end of the sub-valve 4 so as to abut on the peripheral edge thereof and the bottom peripheral edge of the high pressure valve chamber RH. Has been. The sub-valve 4 includes a disc-shaped valve portion 41, a columnar shaft portion 42, and a cylindrical guide portion 43. The shaft portion 42 is fitted to the upper portion of the high-pressure valve chamber RH of the upper annular member 21. The plunger tube guide 51 is slidably disposed. In addition, a ring-shaped packing 4 a that contacts the upper end of the main valve body 3 is disposed on the bottom surface of the sub-valve 4, and is coaxial with the main valve body 3 and the cylinder 2 at the center of the sub-valve 4. Thus, a pilot port 4b penetrating vertically through the valve portion 41 and the shaft portion 42 is formed.

駆動部5は、プランジャチューブ52の一端をプランジャチューブガイド51に固定し、該プランジャチューブガイド51を上環状部材21に嵌合することにより、シリンダ2の上部に取り付けられている。プランジャチューブ52内にはプランジャ53が配設され、その周囲に電磁コイル54が配設されている。また、プランジャチューブ52の他端部にはプランジャガイド55が取り付けられるとともに、プランジャ53はプランジャ用バネ56によってプランジャガイド55側に付勢されている。プランジャ53の先端にはパイロットポート弁57が取り付けられており、電磁コイル54への通電/非通電により、パイロットポート弁57が副弁4のパイロットポート4bを閉状態/開状態とする。また、電磁コイル54への通電により、パイロットポート4bを閉としたまま、副弁4を主弁体3側に押すように構成されている。   The drive unit 5 is attached to the upper portion of the cylinder 2 by fixing one end of the plunger tube 52 to the plunger tube guide 51 and fitting the plunger tube guide 51 to the upper annular member 21. A plunger 53 is disposed in the plunger tube 52, and an electromagnetic coil 54 is disposed around the plunger 53. A plunger guide 55 is attached to the other end of the plunger tube 52, and the plunger 53 is biased toward the plunger guide 55 by a plunger spring 56. A pilot port valve 57 is attached to the tip of the plunger 53, and the pilot port valve 57 closes / opens the pilot port 4 b of the auxiliary valve 4 by energizing / deenergizing the electromagnetic coil 54. In addition, when the electromagnetic coil 54 is energized, the auxiliary valve 4 is pushed toward the main valve body 3 while the pilot port 4b is closed.

次に、図3〜図5に基づいて動作を説明する。まず、図3の冷房運転時の第1状態にあるとする。なお、図3における弁本体は図1の状態である。この状態では、高圧弁室RHと第1切換弁室R1とは第1弁部31と高圧側弁座211により閉塞され、低圧弁室RLと第2切換弁室R2とは第2弁部32と第2低圧弁座231により閉塞される。また、高圧弁室RHと第2切換弁室R2とは主弁体3の冷媒通路33を介して導通され、低圧弁室RLと第1切換弁室R1とは第1低圧弁座221の内側を介して導通されている。したがって、図3に矢印で示したように、高圧の冷媒は、高圧空間sp1→Dポート用通路1a→導通部2a→高圧弁室RH→冷媒通路33→第2切換弁室R2→導通部2d→Cポート用通路1d→Cポート14と流れる。また、低圧の冷媒は、Eポート15→Eポート用通路1b→導通路2b→第1切換弁室R1→低圧弁室RL→導通部2c→Sポート用通路1c→低圧空間sp2と流れる。このとき、高圧弁室RHと第2切換弁室R2とが共に高圧となるが、第2切換弁室R2側において第2弁部32が第2低圧弁座231を閉塞している部分の径の方が、高圧弁室RH側において高圧側弁座211が第1弁部31によって閉塞されている部分の径よりも大きいため、主弁体3に上向きの荷重が加わり、この主弁体3の位置が確実に保持される。   Next, the operation will be described with reference to FIGS. First, suppose that it is in the 1st state at the time of the air_conditionaing | cooling operation of FIG. 3 is in the state shown in FIG. In this state, the high pressure valve chamber RH and the first switching valve chamber R1 are closed by the first valve portion 31 and the high pressure side valve seat 211, and the low pressure valve chamber RL and the second switching valve chamber R2 are the second valve portion 32. And the second low pressure valve seat 231. The high-pressure valve chamber RH and the second switching valve chamber R2 are electrically connected via the refrigerant passage 33 of the main valve body 3, and the low-pressure valve chamber RL and the first switching valve chamber R1 are inside the first low-pressure valve seat 221. Is conducted through. Therefore, as indicated by an arrow in FIG. 3, the high-pressure refrigerant is the high pressure space sp1 → D port passage 1a → conducting portion 2a → high pressure valve chamber RH → refrigerant passage 33 → second switching valve chamber R2 → conducting portion 2d. → C port passage 1d → C port 14 The low-pressure refrigerant flows in the order of E port 15 → E port passage 1b → conduction passage 2b → first switching valve chamber R1 → low pressure valve chamber RL → conduction portion 2c → S port passage 1c → low pressure space sp2. At this time, both the high-pressure valve chamber RH and the second switching valve chamber R2 have high pressure, but the diameter of the portion where the second valve portion 32 closes the second low-pressure valve seat 231 on the second switching valve chamber R2 side. Since this is larger than the diameter of the portion where the high pressure side valve seat 211 is closed by the first valve portion 31 on the high pressure valve chamber RH side, an upward load is applied to the main valve body 3. The position of is securely held.

次に、電磁コイル54へ通電すると、図5(A) に示すようにパイロットポート弁57が副弁4のパイロットポート4bを塞ぎ(閉とし)、さらにパイロットポート弁57が副弁4を押し下げ、図5(B) に示すように副弁4が主弁体3の冷媒通路33を塞ぐ(閉とする)。これにより、高圧弁室RHと第2切換弁室R2とが閉塞され、第2切換弁室R2側の圧力が下がり、高圧弁室RHと第2切換弁室R2との間に圧力差が生じ、主弁体3が下に移動する。そして、図4の暖房運転時の状態になる。   Next, when the electromagnetic coil 54 is energized, as shown in FIG. 5A, the pilot port valve 57 closes (closes) the pilot port 4b of the auxiliary valve 4, and the pilot port valve 57 pushes down the auxiliary valve 4. As shown in FIG. 5B, the auxiliary valve 4 closes (closes) the refrigerant passage 33 of the main valve body 3. As a result, the high pressure valve chamber RH and the second switching valve chamber R2 are closed, the pressure on the second switching valve chamber R2 side decreases, and a pressure difference is generated between the high pressure valve chamber RH and the second switching valve chamber R2. The main valve body 3 moves downward. And it will be in the state at the time of the heating operation of FIG.

この図4の状態では、高圧弁室RHと第2切換弁室R2とは副弁4により閉塞され、低圧弁室RLと第1切換弁室R1とは第1弁部31と第1低圧弁座221により閉塞される。また、高圧弁室RHと第1切換弁室R1とは高圧側弁座211の内側を介して導通され、低圧弁室RLと第2切換弁室R2とは第2低圧弁座231の内側を介して導通される。したがって、図4に矢印で示したように、高圧の冷媒は、高圧空間sp1→Dポート用通路1a→導通部2a→高圧弁室RH→第1切換弁室R1→導通路2b→Eポート用通路1b→Eポート15と流れる。また、低圧の冷媒は、Cポート14→Cポート用通路1d→導通部2d→第2切換弁室R2→低圧弁室RL→導通部2c→Sポート用通路1c→低圧空間sp2と流れる。このとき、高圧弁室RHと第1切換弁室R1とが高圧となり、低圧弁室RLと第2切換弁室R2とが低圧になり、この圧力差により主弁体3に下向きの荷重が加わり、この主弁体3の位置が確実に保持される。   In the state of FIG. 4, the high pressure valve chamber RH and the second switching valve chamber R2 are closed by the auxiliary valve 4, and the low pressure valve chamber RL and the first switching valve chamber R1 are the first valve portion 31 and the first low pressure valve. It is closed by the seat 221. The high-pressure valve chamber RH and the first switching valve chamber R1 are electrically connected via the inside of the high-pressure side valve seat 211, and the low-pressure valve chamber RL and the second switching valve chamber R2 pass through the inside of the second low-pressure valve seat 231. Through. Therefore, as shown by the arrows in FIG. 4, the high-pressure refrigerant is the high pressure space sp1 → D port passage 1a → conduction portion 2a → high pressure valve chamber RH → first switching valve chamber R1 → conduction passage 2b → E port. Flows through passage 1b → E port 15. The low-pressure refrigerant flows in the order of C port 14 → C port passage 1d → conduction portion 2d → second switching valve chamber R2 → low pressure valve chamber RL → conduction portion 2c → S port passage 1c → low pressure space sp2. At this time, the high pressure valve chamber RH and the first switching valve chamber R1 become high pressure, the low pressure valve chamber RL and the second switching valve chamber R2 become low pressure, and a downward load is applied to the main valve body 3 due to this pressure difference. The position of the main valve body 3 is securely held.

副弁4の弁部41と上環状部材21との間、及び副弁4の軸部42とプランジャチューブガイド51との間には、僅かなクリアランスが設けられており、副弁4のプランジャ53側の空間も高圧になる。したがって、この高圧と冷媒通路33の低圧との圧力差により、副弁4が主弁体3の冷媒通路33を塞ぐ状態、パイロットポート4bが塞がれた状態も、それぞれ保持される。そこで、この状態保持のための電磁コイル54への通電は、切換駆動時の通常の通電よりも少ない電力で可能であり、例えば2電圧電源で駆動することもできる。   A slight clearance is provided between the valve portion 41 of the sub valve 4 and the upper annular member 21, and between the shaft portion 42 of the sub valve 4 and the plunger tube guide 51, and the plunger 53 of the sub valve 4 is provided. The side space also becomes high pressure. Therefore, the state in which the auxiliary valve 4 blocks the refrigerant passage 33 of the main valve body 3 and the state in which the pilot port 4b is blocked by the pressure difference between the high pressure and the low pressure of the refrigerant passage 33 are also maintained. Therefore, the energization of the electromagnetic coil 54 for maintaining this state can be performed with less power than the normal energization during the switching drive, and can be driven with, for example, a two-voltage power supply.

図4の暖房運転から図3の冷房運転に切り換えるときには、電磁コイル54への通電を遮断する。これにより、図5(C) に示すように副弁4のパイロットポート4bが開かれ、副弁4のプランジャ53側の空間の圧力がパイロットポート4b及び冷媒通路33を介して低圧側に逃げるため、前記圧力差がキャンセルされる。これにより、副弁4は副弁用バネ44の力により図5(D) のように上方に移動し、シリンダ2内(各弁室RH,RL,R1,R2)が均圧され、主弁体用バネ34の力により主弁体3が上方に移動し、図3の状態となる。   When switching from the heating operation of FIG. 4 to the cooling operation of FIG. 3, the energization to the electromagnetic coil 54 is cut off. As a result, the pilot port 4b of the auxiliary valve 4 is opened as shown in FIG. 5C, and the pressure in the space on the plunger 53 side of the auxiliary valve 4 escapes to the low pressure side via the pilot port 4b and the refrigerant passage 33. The pressure difference is cancelled. As a result, the auxiliary valve 4 moves upward as shown in FIG. 5 (D) by the force of the auxiliary valve spring 44, the cylinder 2 (each valve chamber RH, RL, R1, R2) is pressure-equalized, and the main valve The main valve body 3 is moved upward by the force of the body spring 34 to be in the state shown in FIG.

以上の実施形態では圧縮機本体100として斜板式のものを例に説明したが、スクロール式の圧縮機本体であってもよい。   In the above embodiment, the compressor body 100 has been described as an example of the swash plate type, but a scroll type compressor body may be used.

なお、実施形態では高圧空間sp1と低圧空間sp2がハウジング1に形成されているが、この高圧空間と低圧空間を別部材で形成して、そこにシリンダ嵌挿孔及びシリンダ等を設けたハウジングを接続するようにしてもよい。   In the embodiment, the high-pressure space sp1 and the low-pressure space sp2 are formed in the housing 1. However, a housing in which the high-pressure space and the low-pressure space are formed by separate members and provided with a cylinder insertion hole, a cylinder, and the like is provided. You may make it connect.

また、実施形態では流路切換弁付き圧縮機を例に説明したが本発明の流路切換弁は圧縮機と別体となっていてもよいことはいうまでもない。   In the embodiment, the compressor with the flow path switching valve has been described as an example. However, it goes without saying that the flow path switching valve of the present invention may be separated from the compressor.

本発明の実施形態の流路切換弁の要部断面図及び主弁体ガイドの斜視図である。It is principal part sectional drawing of the flow-path switching valve of embodiment of this invention, and the perspective view of the main valve body guide. 同流路切換弁のシリンダ嵌挿孔を示すハウジングの一部断面図である。It is a partial cross section figure of the housing which shows the cylinder fitting insertion hole of the flow-path switching valve. 同流路切換弁を用いた流路切換弁付き圧縮機の冷房運転時の断面図である。It is sectional drawing at the time of the cooling operation of the compressor with a flow-path switching valve using the same flow-path switching valve. 同流路切換弁付き圧縮機の暖房運転時の断面図である。It is sectional drawing at the time of the heating operation of the compressor with the flow-path switching valve. 実施形態における冷房運転と暖房運転の切り換え過程を示す図である。It is a figure which shows the switching process of the air_conditionaing | cooling operation and heating operation in embodiment. 同流路切換弁付き圧縮機を用いた空気調和機の冷凍サイクルを示す図である。It is a figure which shows the refrigerating cycle of the air conditioner using the compressor with the flow-path switching valve.

符号の説明Explanation of symbols

1 ハウジング
1a Dポート用通路(高圧ポート用通路)
1b Eポート用通路(切換ポート用通路)
1c Sポート用通路(低圧ポート用通路)
1d Cポート用通路(切換ポート用通路)
1D シリンダ嵌挿孔
14 Cポート
15 Eポート
2 シリンダ
RH 高圧弁室
R1 第1切換弁室
RL 低圧弁室
R2 第2切換弁室
2a,2b,2c,2d 導通部
211 高圧側弁座
221 第1低圧弁座
231 第2低圧弁座
3 主弁体
31 第1弁部
32 第2弁部
33 冷媒通路
34 主弁体用バネ
4 副弁
4b パイロットポート
44 副弁用バネ
5 駆動部
53 プランジャ
54 電磁コイル
57 パイロットポート弁
10 圧縮部
20 室外機
30、 キャピラリ
40、 室内機
sp1 高圧空間
sp2 低圧空間
100 圧縮機本体
1 Housing 1a D port passage (high pressure port passage)
1b E port passage (switching port passage)
1c S port passage (low pressure port passage)
1d C port passage (switching port passage)
1D Cylinder insertion hole 14 C port 15 E port 2 Cylinder RH High pressure valve chamber R1 1st switching valve chamber RL Low pressure valve chamber R2 2nd switching valve chamber 2a, 2b, 2c, 2d Conducting part 211 High pressure side valve seat 221 1st Low pressure valve seat 231 Second low pressure valve seat 3 Main valve body 31 First valve portion 32 Second valve portion 33 Refrigerant passage 34 Main valve body spring 4 Sub valve 4b Pilot port 44 Sub valve spring 5 Drive unit 53 Plunger 54 Electromagnetic Coil 57 Pilot port valve 10 Compressor 20 Outdoor unit 30, Capillary 40, Indoor unit sp1 High pressure space sp2 Low pressure space 100 Compressor body

Claims (6)

高圧冷媒が導入される高圧弁室、熱交換機に連通される第1切換弁室、低圧冷媒を導出する低圧弁室、及び熱交換器に連通される第2切換弁室の順に、各弁室を軸方向に連通して形成されたシリンダと、
該シリンダ内に前記軸方向に往復移動可能に挿入されて前記高圧弁室から第2切換弁室にかけて配設された主弁体であって、第1切換弁室と第2切換弁室との部分で円柱状側面の径を一部大きくした第1弁部及び第2弁部をそれぞれ有する主弁体と、
前記高圧弁室と前記第2切換弁室とを導通可能にする冷媒通路と、
前記冷媒通路の前記高圧弁室側を開閉する副弁と、
前記主弁体を前記軸方向に移動する駆動部とを備え、
前記主弁体の移動位置に応じて、前記第1弁部が第1切換弁室の高圧弁室側を封止するとともに低圧弁室側を開放し、かつ、前記第2弁部が第2切換弁室の低圧弁室側を封止する第1状態と、前記第1弁部が第1切換弁室の低圧弁室側を封止するとともに高圧弁室側を開放し、かつ、前記第2弁部が第2切換弁室の低圧弁室側を開放する第2状態との、2状態間を遷移可能となるように構成し、
前記副弁が冷媒通路の高圧弁室側を開として第1状態とし、該副弁が冷媒通路の高圧弁室側を閉として第2状態とし、第1状態において前記冷媒通路を介して第2切換弁室に供給される高圧冷媒の圧力により前記主弁体の位置を保持し、第2状態において前記第1弁部を介して高圧弁室から第1切換弁室に供給される高圧冷媒の圧力により前記主弁体の位置を保持するようにしたことを特徴とする流路切換弁。
The valve chambers are arranged in the order of a high-pressure valve chamber into which high-pressure refrigerant is introduced, a first switching valve chamber that communicates with the heat exchanger, a low-pressure valve chamber that leads out low-pressure refrigerant, and a second switching valve chamber that communicates with the heat exchanger. A cylinder formed by communicating in the axial direction;
A main valve body that is inserted into the cylinder so as to be reciprocally movable in the axial direction and is disposed from the high-pressure valve chamber to the second switching valve chamber, and includes a first switching valve chamber and a second switching valve chamber; A main valve body having a first valve portion and a second valve portion, each of which has a partially enlarged cylindrical side diameter,
A refrigerant passage enabling the high pressure valve chamber and the second switching valve chamber to be electrically connected;
A sub-valve that opens and closes the high-pressure valve chamber side of the refrigerant passage;
A drive unit that moves the main valve body in the axial direction;
The first valve portion seals the high pressure valve chamber side of the first switching valve chamber and opens the low pressure valve chamber side according to the movement position of the main valve body, and the second valve portion is the second. A first state in which the low pressure valve chamber side of the switching valve chamber is sealed; and the first valve portion seals the low pressure valve chamber side of the first switching valve chamber and opens the high pressure valve chamber side; and The two valve parts are configured to be capable of transitioning between two states, the second state in which the low pressure valve chamber side of the second switching valve chamber is opened,
The sub-valve is in the first state with the high-pressure valve chamber side of the refrigerant passage open, and the sub-valve is in the second state with the high-pressure valve chamber side of the refrigerant passage closed, and in the first state, the second state passes through the refrigerant passage. The position of the main valve body is maintained by the pressure of the high-pressure refrigerant supplied to the switching valve chamber, and the high-pressure refrigerant supplied from the high-pressure valve chamber to the first switching valve chamber via the first valve portion in the second state. A flow path switching valve characterized in that the position of the main valve body is maintained by pressure.
前記主弁体の軸方向に該主弁体を高圧弁室側から第2切換弁室側まで貫通する通路により、前記冷媒通路が形成されていることを特徴とする請求項1に記載の流路切換弁。   2. The flow according to claim 1, wherein the refrigerant passage is formed by a passage that passes through the main valve body from the high-pressure valve chamber side to the second switching valve chamber side in the axial direction of the main valve body. Road switching valve. 前記副弁の駆動方向を前記主弁体の移動方向と同軸にしたことを特徴とする請求項1または2に記載の流路切換弁。   The flow path switching valve according to claim 1 or 2, wherein a driving direction of the sub valve is coaxial with a moving direction of the main valve body. 前記副弁は、前記主弁体の軸方向に貫通するパイロットポートを有するとともに該主弁体から離間する方向に付勢され、
前記主弁体は、前記第2弁部が前記第2切換弁室の低圧弁室側を封止するように付勢され、
前記駆動部は、前記副弁のパイロットポートを前記主弁体と反対側で開閉するパイロット弁を備えるとともに、該パイロット弁で該副弁を押圧することにより該副弁と前記主弁体とを移動するように構成され、
前記パイロット弁で前記パイロットポートを閉として前記第2状態とするとともに、該パイロット弁で該パイロットポートを開とすることで、該パイロットポート及び前記冷媒通路を介して前記高圧弁室と前記第2切換弁室とを均圧して、前記第2状態を解除することを特徴とする請求項1、2または3に記載の流路切換弁。
The sub-valve has a pilot port penetrating in the axial direction of the main valve body and is biased in a direction away from the main valve body,
The main valve body is biased so that the second valve portion seals the low pressure valve chamber side of the second switching valve chamber,
The drive unit includes a pilot valve that opens and closes a pilot port of the sub valve on the side opposite to the main valve body, and presses the sub valve with the pilot valve to connect the sub valve and the main valve body. Configured to move,
The pilot valve is closed by the pilot valve to be in the second state, and the pilot valve is opened by the pilot valve, so that the high pressure valve chamber and the second state are passed through the pilot port and the refrigerant passage. 4. The flow path switching valve according to claim 1, wherein the second state is released by equalizing pressure with the switching valve chamber. 5.
圧縮機本体の高圧空間と低圧空間とに隣接して設けられるブロック状のハウジングを備え、
該ハウジングに、シリンダ嵌挿孔、該シリンダ嵌挿孔に開口し前記高圧弁室に導通される高圧ポート用通路、前記低圧弁室に導通される低圧ポート用通路、及び前記第1及び第2切換弁室にそれぞれ導通される2つの切換ポート用通路を、それぞれ該ハウジングに穿設することで該ハウジング自体で形成し、
前記シリンダ嵌挿孔に前記シリンダを嵌挿して形成したことを特徴とする請求項1、2、3または4に記載の流路切換弁。
A block-shaped housing provided adjacent to the high-pressure space and the low-pressure space of the compressor body,
A cylinder fitting insertion hole in the housing; a high pressure port passage that opens into the cylinder fitting insertion hole and communicates with the high pressure valve chamber; a low pressure port passage that communicates with the low pressure valve chamber; and the first and second Two switching port passages respectively connected to the switching valve chamber are formed in the housing itself by drilling in the housing,
The flow path switching valve according to claim 1, 2, 3, or 4, wherein the cylinder is inserted into the cylinder insertion hole.
請求項1、2、3、4または5に記載の流路切換弁を搭載したことを特徴とする空気調和機。   An air conditioner equipped with the flow path switching valve according to claim 1, 2, 3, 4 or 5.
JP2005009928A 2005-01-18 2005-01-18 Channel switching valve and air conditioner Withdrawn JP2006200555A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005009928A JP2006200555A (en) 2005-01-18 2005-01-18 Channel switching valve and air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005009928A JP2006200555A (en) 2005-01-18 2005-01-18 Channel switching valve and air conditioner

Publications (1)

Publication Number Publication Date
JP2006200555A true JP2006200555A (en) 2006-08-03

Family

ID=36958749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005009928A Withdrawn JP2006200555A (en) 2005-01-18 2005-01-18 Channel switching valve and air conditioner

Country Status (1)

Country Link
JP (1) JP2006200555A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021118177A1 (en) * 2019-12-10 2021-06-17 Hanon Systems Pressure relief arrangement in refrigerant circuits

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021118177A1 (en) * 2019-12-10 2021-06-17 Hanon Systems Pressure relief arrangement in refrigerant circuits

Similar Documents

Publication Publication Date Title
JP3145048U (en) Electric expansion valve and refrigeration cycle
US8152482B2 (en) Displacement control valve for variable displacement compressor
JP5906372B2 (en) Control valve
JP2018040385A (en) solenoid valve
JP2009287913A (en) Expansion valve, heat pump type refrigerating cycle, and air conditioner
JP2016089969A (en) solenoid valve
JP2017025986A (en) Linear motion type solenoid valve and four-way selector with linear motion type solenoid valve acting as pilot valve
CN102252114A (en) Flow path switching valve
JP4848548B2 (en) Expansion valve with solenoid valve
JP6321358B2 (en) Four-way selector valve
KR102178579B1 (en) Variable displacement compressor and mounting structure of flow sensor
CN210441470U (en) Refrigeration system
JP2018507339A (en) Variable capacity compressor and refrigeration apparatus including the same
JP5200214B2 (en) Variable capacity compressor
US20090022604A1 (en) Suction structure in piston type compressor
JP2006200555A (en) Channel switching valve and air conditioner
JP4440795B2 (en) Channel switching valve and air conditioner
US7069949B2 (en) Four-way switching valve
JP4615995B2 (en) Channel switching valve, compressor with channel switching valve, and air conditioner
JP4648692B2 (en) Switching valve device for compressor
JP2009058217A (en) Refrigerant piping unit
JP2011235722A (en) Control valve and air conditioner for vehicle
JP5560002B2 (en) Three-way switching valve for hot gas cycle
JP4346538B2 (en) Refrigeration cycle and accumulator
JP2013224719A (en) Solenoid valve

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080401