JP2006194908A - Method for manufacturing blood filtration film, and filtration method - Google Patents
Method for manufacturing blood filtration film, and filtration method Download PDFInfo
- Publication number
- JP2006194908A JP2006194908A JP2006109576A JP2006109576A JP2006194908A JP 2006194908 A JP2006194908 A JP 2006194908A JP 2006109576 A JP2006109576 A JP 2006109576A JP 2006109576 A JP2006109576 A JP 2006109576A JP 2006194908 A JP2006194908 A JP 2006194908A
- Authority
- JP
- Japan
- Prior art keywords
- film
- membrane
- filtration
- pore size
- blood
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 210000004369 blood Anatomy 0.000 title claims abstract description 37
- 239000008280 blood Substances 0.000 title claims abstract description 37
- 238000001914 filtration Methods 0.000 title claims abstract description 19
- 238000004519 manufacturing process Methods 0.000 title claims description 7
- 238000000034 method Methods 0.000 title abstract description 16
- 239000011148 porous material Substances 0.000 claims abstract description 30
- 239000012528 membrane Substances 0.000 claims description 34
- 239000002904 solvent Substances 0.000 claims description 16
- 239000000463 material Substances 0.000 claims description 11
- 210000003743 erythrocyte Anatomy 0.000 claims description 8
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 claims description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 claims description 6
- 229920002401 polyacrylamide Polymers 0.000 claims description 6
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 claims description 2
- 239000008096 xylene Substances 0.000 claims description 2
- 230000015572 biosynthetic process Effects 0.000 claims 1
- 210000000265 leukocyte Anatomy 0.000 abstract description 15
- 210000002966 serum Anatomy 0.000 abstract description 8
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 16
- 229920001610 polycaprolactone Polymers 0.000 description 8
- 239000000758 substrate Substances 0.000 description 6
- 210000000601 blood cell Anatomy 0.000 description 5
- 238000005266 casting Methods 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 229940125904 compound 1 Drugs 0.000 description 4
- 229940125782 compound 2 Drugs 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 238000010030 laminating Methods 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 108090000623 proteins and genes Proteins 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 239000003799 water insoluble solvent Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 description 2
- 239000000020 Nitrocellulose Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 238000003745 diagnosis Methods 0.000 description 2
- 230000002068 genetic effect Effects 0.000 description 2
- 238000005534 hematocrit Methods 0.000 description 2
- 229960002897 heparin Drugs 0.000 description 2
- 229920000669 heparin Polymers 0.000 description 2
- 229920001220 nitrocellulos Polymers 0.000 description 2
- 229920002492 poly(sulfone) Polymers 0.000 description 2
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 2
- OMIGHNLMNHATMP-UHFFFAOYSA-N 2-hydroxyethyl prop-2-enoate Chemical compound OCCOC(=O)C=C OMIGHNLMNHATMP-UHFFFAOYSA-N 0.000 description 1
- 229920000936 Agarose Polymers 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 206010018910 Haemolysis Diseases 0.000 description 1
- WOBHKFSMXKNTIM-UHFFFAOYSA-N Hydroxyethyl methacrylate Chemical compound CC(=C)C(=O)OCCO WOBHKFSMXKNTIM-UHFFFAOYSA-N 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 235000010724 Wisteria floribunda Nutrition 0.000 description 1
- 239000011543 agarose gel Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000000427 antigen Substances 0.000 description 1
- 102000036639 antigens Human genes 0.000 description 1
- 108091007433 antigens Proteins 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 239000012620 biological material Substances 0.000 description 1
- 239000012503 blood component Substances 0.000 description 1
- 238000004820 blood count Methods 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000000502 dialysis Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 230000008588 hemolysis Effects 0.000 description 1
- 239000000017 hydrogel Substances 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000002207 metabolite Substances 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 210000004180 plasmocyte Anatomy 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920000070 poly-3-hydroxybutyrate Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920002338 polyhydroxyethylmethacrylate Polymers 0.000 description 1
- 229920006254 polymer film Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
Images
Landscapes
- Investigating Or Analysing Biological Materials (AREA)
- Sampling And Sample Adjustment (AREA)
Abstract
Description
本発明は、全血から血球を除去するための濾過膜、およびその濾過膜を用いて全血から赤血球あるいは白血球を捕捉して回収する方法に関する。 The present invention relates to a filtration membrane for removing blood cells from whole blood, and a method for capturing and collecting red blood cells or white blood cells from whole blood using the filtration membrane.
血液中の構成成分例えば代謝産物、蛋白質、脂質、電解質、酵素、抗原、抗体などの種類や濃度の測定は、通常全血を遠心分離して得られる血清または血漿を検体として行われている。しかし、遠心分離には手間と時間を要し、特に少数の検体を急いで処理したいときあるいは現場検査などには、電気を動力として遠心分離機を必要とする遠心分離法は不向きである。そこで、濾過により全血から血清あるいは血漿を分離回収する方法が検討されてきた。 Measurement of the types and concentrations of constituents in blood such as metabolites, proteins, lipids, electrolytes, enzymes, antigens, and antibodies is usually performed using serum or plasma obtained by centrifuging whole blood as a specimen. However, it takes time and labor to centrifuge, and in particular, when it is desired to process a small number of samples in a hurry or on-site inspection, a centrifuge method that requires a centrifuge using electricity as power is not suitable. Therefore, methods for separating and collecting serum or plasma from whole blood by filtration have been studied.
濾過によって全血から血清あるいは血漿を得る方法には、富士写真フイルム(株)製の「プラズマフィルターPF」として市販され、特開平2000−81432号公報で知られているように、3〜6枚のガラス繊維濾紙をプラスチック製のホルダーに装填して、吸引により全血を濾過する方法がある。しかし、この濾過方法では、血漿を150μL程度濾過できるものの全血を3mL程度必要とし、微量の全血を濾過することができない。 A method for obtaining serum or plasma from whole blood by filtration is commercially available as “Plasma Filter PF” manufactured by Fuji Photo Film Co., Ltd., and as known in Japanese Patent Laid-Open No. 2000-81432, 3-6 sheets There is a method of loading whole glass fiber filter paper into a plastic holder and filtering whole blood by suction. However, although this filtration method can filter plasma by about 150 μL, it requires about 3 mL of whole blood, and a trace amount of whole blood cannot be filtered.
濾過によって全血から血球を捕捉し、血清あるいは血漿を得る方法には、特開平10−185910号公報に記載された3次元多孔質体を用る方法があり、ポリスルホン膜、酢酸セルロース膜などが知られている。しかし、この膜は孔径を均一に作成するのは難しい。 As a method for capturing blood cells from whole blood by filtration to obtain serum or plasma, there is a method using a three-dimensional porous material described in JP-A-10-185910, such as a polysulfone membrane or a cellulose acetate membrane. Are known. However, it is difficult to create a uniform pore size for this membrane.
一方、全血から白血球を捕捉して採取し、これをもとに遺伝子を回収して遺伝子解析あるいは遺伝子診断に用いることが、近年盛んに行われるようになってきており、全血から白血球を回収する技術が必要となってきている。 On the other hand, in recent years, it has become a popular practice to capture and collect leukocytes from whole blood, collect genes based on these, and use them for gene analysis or genetic diagnosis. Technology to collect is needed.
全血から白血球のみを除去する方法には、テルモ(株)社製の「イムノガード(登録商標)III−RC」で実用化されているポリウレタン多孔質フィルター,日本ポール(株)社で販売している「ポール輸血フィルターPL1J」で実用化されているポリエステルフィルターなどが知られている。しかし、このフィルターは輸血用の全血から白血球を除去するためのものであり、微量の全血から白血球を捕捉して白血球を回収することが難しい。 A method for removing only white blood cells from whole blood is a polyurethane porous filter that has been put into practical use in "Immunoguard (registered trademark) III-RC" manufactured by Terumo Corporation, sold by Nippon Pole Co., Ltd. A polyester filter that has been put to practical use in "Pole Transfusion Filter PL1J" is known. However, this filter is for removing white blood cells from whole blood for transfusion, and it is difficult to capture white blood cells from a small amount of whole blood and collect white blood cells.
新生児など微量の全血しか採血できない場合など、微量の全血から血清あるいは血漿を急いで得る方法が求められている。また、濾過によって全血から血球を捕捉する方法において、遺伝子診断等に用いるために白血球のみを分画して採取する方法が求められている。 There is a need for a method of rapidly obtaining serum or plasma from a small amount of whole blood, such as when a very small amount of whole blood can be collected, such as a newborn baby. In addition, in a method for capturing blood cells from whole blood by filtration, a method for fractionating and collecting only white blood cells is required for use in genetic diagnosis and the like.
均一な孔径の薄い膜を用いることで、微量の全血から血球のみを捕捉して血清あるいは血漿を回収することができること、および均一な孔径の大きさによって全血の白血球のみを捕捉して回収できることを見出した。 By using a thin membrane with a uniform pore size, it is possible to collect only blood cells from a small amount of whole blood and collect serum or plasma, and to capture and collect only white blood cells with a uniform pore size. I found out that I can do it.
本発明により、微量の全血から、血清あるいは血漿と血球を分離し、さらには白血球のみを捕捉して分離することができる。 According to the present invention, serum or plasma and blood cells can be separated from a small amount of whole blood, and only leukocytes can be captured and separated.
膜の素材としては、ポリ−ε−カプロラクトン、ポリ−3−ヒドロキシブチレート、アガロース、ポリ−2−ヒドロキシエチルアクリレート、ポリスルホンなどの非水溶性溶媒に溶解する高分子化合物を用いることができるが、ポリ−ε−カプロラクトンを用いることが好ましい。 As a material of the membrane, a polymer compound that can be dissolved in a water-insoluble solvent such as poly-ε-caprolactone, poly-3-hydroxybutyrate, agarose, poly-2-hydroxyethyl acrylate, polysulfone, etc. can be used. It is preferable to use poly-ε-caprolactone.
これらの素材だけでもハニカム様の構造の膜を形成させることができるが、両親媒性の素材を添加することが好ましい。両親媒性の素材としては、例えば両親媒性ポリアクリルアミドがある。 A film having a honeycomb-like structure can be formed using only these materials, but it is preferable to add an amphiphilic material. Examples of the amphiphilic material include amphiphilic polyacrylamide.
膜の素材と両親媒性の素材の混合比率は、重量比0:1〜1:0の範囲で使用することが好ましい。より好ましくは、重量比5:1〜20:1の範囲である。 The mixing ratio of the membrane material to the amphiphilic material is preferably used in a weight ratio range of 0: 1 to 1: 0. More preferably, the weight ratio is in the range of 5: 1 to 20: 1.
キャストする溶媒としては、クロロホルム、ジクロロメタン、四塩化炭素、シクロヘキサンなど膜の素材となる高分子化合物を溶解させることができる非水溶性の溶媒であればよい。キャストするときのポリマー濃度は、高分子膜を形成できる濃度であればよく、工業的に大量生産をするためには、0.1wt%以上のできる限り高い濃度で製膜することが望ましい。 The solvent to be cast may be any water-insoluble solvent that can dissolve a polymer compound serving as a film material, such as chloroform, dichloromethane, carbon tetrachloride, and cyclohexane. The polymer concentration at the time of casting may be a concentration capable of forming a polymer film. In order to mass-produce industrially, it is desirable to form a film at a concentration as high as 0.1 wt% or more.
非水溶性の膜の素材、例えばポリ−ε−カプロラクトンを、非水溶性の溶媒、例えばクロロホルムに溶解させているので、高湿度空気によって溶媒を蒸発させるときに気化熱により空気中の水分が結露し、それが溶媒の蒸発とともに徐々に成長して直径0.5〜40μm程度のサイズの水滴になる。この水滴には非水溶性のポリ−ε−カプロラクトンは溶解できないから、この部分が孔(ポア)となった膜が得られる。例えばシャーレに2次元的にキャストしているので、成長した水滴は、球の2次元的最密充填構造様に規則正しく配列し、結果としてハニカム構造の膜が得られる。 Since water-insoluble membrane material, such as poly-ε-caprolactone, is dissolved in a water-insoluble solvent, such as chloroform, moisture in the air is condensed by heat of vaporization when the solvent is evaporated by high-humidity air. Then, it gradually grows with the evaporation of the solvent and becomes water droplets having a diameter of about 0.5 to 40 μm. Since the water-insoluble poly-ε-caprolactone cannot be dissolved in the water droplets, a film having pores in the portions can be obtained. For example, since it is cast two-dimensionally on a petri dish, the grown water droplets are regularly arranged like a two-dimensional close-packed structure of spheres, and as a result, a honeycomb structure film is obtained.
孔径は、キャストする液の濃度及び液量を調節してシャーレ等の支持層に供給し、雰囲気あるいは吹き付ける空気の温度、湿度を制御することで、溶媒の蒸発スピード、結露スピードを制御することによって、制御することができる。更に、微量の界面活性剤を添加して水滴の融合を抑えて安定化させることによって、より規則正しいハニカム構造の膜を作成することができる。 By adjusting the concentration and amount of the liquid to be cast and supplying it to a support layer such as a petri dish, the temperature and humidity of the atmosphere or the air to be blown are controlled to control the evaporation speed and condensation speed of the solvent. Can be controlled. Furthermore, by adding a small amount of a surfactant to suppress the fusion of water droplets and stabilize the film, a more regular honeycomb structure film can be formed.
膜に吹き付ける高湿度空気は、相対湿度30%および80%のものを主に用いたが、膜の表面に空気中の水分を結露させることができる湿度であればよく、温度によって20〜100%の相対湿度であればよいし、空気に限らず窒素、アルゴンなどの比較的不活性なガスを用いてもよい。 The high-humidity air to be blown onto the membrane was mainly those having a relative humidity of 30% and 80%, but any humidity that can condense moisture in the air on the surface of the membrane may be used, depending on the temperature. Relative humidity may be sufficient, and not only air but relatively inert gas such as nitrogen or argon may be used.
膜に吹き付ける高湿度空気の流量は、膜の表面に空気中の水分を結露させることができ、キャストに用いた溶媒を蒸発させることができる流量であればよい。 The flow rate of the high-humidity air sprayed on the film may be any flow rate that can condense moisture in the air on the surface of the film and evaporate the solvent used for casting.
高湿度空気を吹き付けるときの雰囲気の温度は、キャストに用いた溶媒が蒸発することができる温度であればよく、実験室レベルでは15〜32℃、生産レベルでは5〜80℃の温度であることが望ましい。 The temperature of the atmosphere when high-humidity air is blown may be a temperature at which the solvent used for casting can evaporate, and is 15 to 32 ° C. at the laboratory level and 5 to 80 ° C. at the production level. Is desirable.
キャストする溶液の濃度、溶液の量、溶媒の種類、吹き付ける空気の相対湿度・温度・流量を変えることによって、結露、水滴の成長、溶媒の蒸発速度を制御し、様々な孔径の規則正しいハニカム様の構造の膜を得ることができ、血液中の成分である、直径約3μmの血小板、直径約15μmの白血球、変形能が大きいが直径約7μmの赤血球を、孔径のサイズを変えることにより各々を分離できるフィルターとして使用できる。 By changing the concentration of the solution to be cast, the amount of the solution, the type of solvent, the relative humidity / temperature / flow rate of the air to be blown, the condensation, water droplet growth, and the evaporation rate of the solvent are controlled. A membrane with a structure can be obtained, and blood components such as platelets with a diameter of about 3 μm, leukocytes with a diameter of about 15 μm, and red blood cells with a large deformability but a diameter of about 7 μm are separated by changing the pore size. Can be used as a filter.
また、孔径のほぼ等しい膜を積層することによって、フィルターとして分離できる能力を高めることができる。更に、孔径の異なる複数の膜を積層することによって、幾つかの生体物質を同時に分離する或いは分画することができる。例えば、孔径5.5〜8.5μmの膜と孔径3.5μm以下の膜を積層して孔径の大きい膜側から全血を供給することによって、孔径の大きい膜で白血球を捕捉し、孔径の小さい膜で赤血球を捕捉することが同時に達成できる。 Moreover, the ability to separate as a filter can be enhanced by laminating membranes having substantially the same pore diameter. Furthermore, several biological materials can be separated or fractionated simultaneously by laminating a plurality of membranes having different pore diameters. For example, by laminating a membrane having a pore size of 5.5 to 8.5 μm and a membrane having a pore size of 3.5 μm or less and supplying whole blood from the membrane side having a large pore size, leukocytes are captured by the membrane having a large pore size, Capturing red blood cells with a small membrane can be achieved simultaneously.
更に、孔径をサブミクロンオーダーに設定することで、透析などの血液浄化に代表されるような標的生体物質の選択的分離回収技術としての期待ができる。 Furthermore, by setting the pore diameter to the submicron order, it can be expected as a technique for selectively separating and recovering a target biological substance as represented by blood purification such as dialysis.
本発明においてハニカム様構造とは、孔径がほぼ一定の複数の孔が規則正しく配列し、このような孔が膜を貫通している構造をいう。孔の断面に特に限定は無く、円形、楕円形、六角形、長方形、正方形等の形状でよい。 In the present invention, the honeycomb-like structure refers to a structure in which a plurality of holes having a substantially constant hole diameter are regularly arranged and such holes penetrate the film. There is no particular limitation on the cross section of the hole, and it may be circular, elliptical, hexagonal, rectangular, square or the like.
以下、実施例により本発明をさらに具体的に説明するが、本発明の範囲は下記の実施例に限定されることはない。 EXAMPLES Hereinafter, although an Example demonstrates this invention further more concretely, the scope of the present invention is not limited to the following Example.
実施例1 ハニカム様構造の膜の作成(1)
平均分子量7万〜10万のポリ−ε−カプロラクトン(化合物1)と両親媒性ポリアクリルアミド(化合物2)を重量比で10:1の割合で混合したクロロホルム溶液(ポリマー濃度として0.1〜2wt%)を、直径10cmのシャーレ上に5mLキャストし、相対湿度30〜80%の高湿度空気を毎分1〜20Lの流量で吹き付け、クロロホルム溶媒を蒸発させることによって、柔軟性、弾性を有し、力学強度の強いハニカム様構造の膜を得た。
Example 1 Preparation of a honeycomb-like structure film (1)
Chloroform solution (0.1-2 wt as the polymer concentration) in which poly-ε-caprolactone (compound 1) having an average molecular weight of 70,000 to 100,000 and amphiphilic polyacrylamide (compound 2) are mixed at a weight ratio of 10: 1. %) Is cast on a petri dish with a diameter of 10 cm, high-humidity air with a relative humidity of 30 to 80% is blown at a flow rate of 1 to 20 L / min, and the chloroform solvent is evaporated, thereby having flexibility and elasticity. As a result, a film having a honeycomb-like structure with high mechanical strength was obtained.
上記の様々な条件で作成した膜の構造を、光学顕微鏡、走査型電子顕微鏡で観察したところ、0.5〜40μmの孔径のハニカム様の構造の膜であり、表面から裏面へ単一層の孔で貫通している構造であった。孔径はキャストした全面にわたってきれいな円形をしており、サイズもほぼ同一であった。撮影した写真から孔径を計測し、孔径の分布を求めると変動係数でCV10%以下であることがわかった。また、レーザーを用いた光散乱の評価でキャストした膜全面にわたって10次以上の回折光が観測できたことから、規則性の極めて高いポーラスフィルムを作成することができたことがわかった。 When the structure of the film prepared under the various conditions described above was observed with an optical microscope and a scanning electron microscope, it was a film having a honeycomb-like structure with a pore diameter of 0.5 to 40 μm. It was a structure penetrating through. The hole diameter was a clean circle over the entire cast surface, and the size was almost the same. When the hole diameter was measured from the photograph taken and the distribution of the hole diameter was determined, it was found that the coefficient of variation was CV 10% or less. In addition, it was found that diffracted light of the 10th order or higher was observed over the entire surface of the cast film by light scattering evaluation using a laser, and thus it was found that a highly regular porous film could be produced.
実施例2 ハニカム様構造の膜の作成(2)
膜となる物質として化合物2からなる両親媒性ポリアクリルアミドを用い、キャストする溶媒をクロロホルム、ベンゼン、トルエン、キシレンと変え、溶液濃度を1.0g/L、キャスト量を30μLとし、キャストさせる基板にガラスを用い、高湿度空気の流量を0.09L/分にし、相対湿度を85%にし、温度を20℃にしたときに作成できる膜の溶媒依存を評価した。このときの形態観察結果を図1に示す。
図1において、孔径は、上から0.5μm〜10μmである。
Example 2 Production of a honeycomb-like film (2)
For the substrate to be cast, an amphiphilic polyacrylamide composed of compound 2 is used as a material to be a film, the solvent to be cast is changed to chloroform, benzene, toluene, xylene, the solution concentration is 1.0 g / L, the cast amount is 30 μL. Using glass, the solvent dependence of a film that can be produced when the flow rate of high-humidity air was 0.09 L / min, the relative humidity was 85%, and the temperature was 20 ° C. was evaluated. The form observation result at this time is shown in FIG.
In FIG. 1, the pore diameter is 0.5 μm to 10 μm from the top.
実施例3 ハニカム様構造の膜の作成(3)
膜となる物質として化合物1からなるポリ−ε−カプロラクトンと化合物2からなる両親媒性ポリアクリルアミドを重量比で10:1の割合で用い、溶媒としてクロロホルムを用い、溶液濃度を10.0g/Lにし、キャストする量を5、10、20mLと変え、キャストさせる基板にガラスを用い、高湿度空気の流量を2.0L/分にし、相対湿度を30%にし、温度を20℃にしたときに作成できる膜のキャスト量依存を評価した。このときの形態観察結果を図2に示す。
図2において、孔径は、上から8μm〜35μmである。
Example 3 Production of a honeycomb-like structure film (3)
A poly-ε-caprolactone composed of Compound 1 and an amphiphilic polyacrylamide composed of Compound 2 are used in a weight ratio of 10: 1 as a substance to be a film, chloroform is used as a solvent, and the solution concentration is 10.0 g / L. When the casting amount is changed to 5, 10, 20 mL, glass is used for the substrate to be cast, the flow rate of high humidity air is 2.0 L / min, the relative humidity is 30%, and the temperature is 20 ° C. The cast amount dependence of the film that can be produced was evaluated. The form observation result at this time is shown in FIG.
In FIG. 2, the hole diameter is 8 μm to 35 μm from the top.
実施例4 ハニカム様構造の膜の作成(4)
膜となる物質として化合物1からなるポリ−ε−カプロラクトンと化合物2からなる両親媒性ポリアクリルアミドを重量比で10:1の割合で用い、溶媒としてクロロホルムを用い、溶液濃度を1、5、10、20g/Lと変え、キャスト量を10mLとし、キャストさせる基板にハイドロゲルを用い、高湿度空気の流量を2.0L/分にし、相対湿度を30%にし、温度を20℃にしたときに作成できる膜の溶液濃度依存を評価した。このときの形態観察結果を図3に示す。
図3において、孔径は、最小15μm、最大25μmである。
Example 4 Preparation of a honeycomb-like structure film (4)
A poly-ε-caprolactone composed of Compound 1 and an amphiphilic polyacrylamide composed of Compound 2 are used in a weight ratio of 10: 1 as a substance to be a film, chloroform is used as a solvent, and the solution concentration is 1, 5, 10 When the cast amount is 10 mL, hydrogel is used for the substrate to be cast, the flow rate of high-humidity air is 2.0 L / min, the relative humidity is 30%, and the temperature is 20 ° C. The solution concentration dependence of the membrane that can be produced was evaluated. The form observation result at this time is shown in FIG.
In FIG. 3, the pore diameter is a minimum of 15 μm and a maximum of 25 μm.
実施例5 ハニカム様構造の膜の作成(5)
膜となる物質として化合物1からなるポリ−ε−カプロラクトンを用い、溶媒としてクロロホルムを用い、溶液濃度を1.0g/Lとし、キャスト量を5mLとし、キャストさせる基板をアガロースゲル、ガラス、マイカ、PHEMAと変え、高湿度空気の流量を2.0L/分にし、相対湿度を30%にし、温度を20℃にしたときに作成できる膜のキャスト基板依存を評価した。このときの形態観察結果を図4に示す。
図4において、孔径は、最小7μm、最大14μmである。
Example 5 Preparation of a honeycomb-like structure film (5)
Poly-ε-caprolactone composed of compound 1 is used as a material to be a film, chloroform is used as a solvent, a solution concentration is 1.0 g / L, a cast amount is 5 mL, and a substrate to be cast is agarose gel, glass, mica, In place of PHEMA, the dependence of the high humidity air flow rate at 2.0 L / min, the relative humidity at 30%, and the temperature produced at 20 ° C. was evaluated on the cast substrate dependence. The form observation result at this time is shown in FIG.
In FIG. 4, the pore diameter is a minimum of 7 μm and a maximum of 14 μm.
なお、図1〜図4において、バーの長さはすべて20μmである。 In FIGS. 1 to 4, all the bars have a length of 20 μm.
実施例6 濾過性能の評価(1)
作成したハニカム様の構造の膜の血液濾過性能を評価するに先立ち、粒径が既知のポリスチレン粒子の通過実験を行い、孔径を変えることによって通過する粒子の種類と通過率を調べた。結果を表1に示す。孔径5.5〜8.5μmの膜を用いると、直径3μmの粒子は通過するが直径10μm以上の粒子は全く通過しないことを初めて明らかにすることができた。
Example 6 Evaluation of Filtration Performance (1)
Prior to evaluating the blood filtration performance of the prepared membrane having a honeycomb-like structure, a passage experiment of polystyrene particles having a known particle diameter was conducted, and the kind and passage rate of passing particles were examined by changing the pore diameter. The results are shown in Table 1. When a membrane having a pore diameter of 5.5 to 8.5 μm was used, it was revealed for the first time that particles having a diameter of 3 μm pass but particles having a diameter of 10 μm or more did not pass at all.
実施例7 濾過性能の評価(2)
作成したハニカム様の構造の膜を用いて、ヒト全血中の白血球の捕捉実験を行った。孔径5.2μm、9.8μmの膜を用い、ヘパリン採血管で採血した人全血を濾過させ、血球計算板に血液をキャストして白血球の数を計測したところ、濾過前では4800個/μLあった白血球数が、濾過後は0個/μLになっていることがわかった(表2)。また、濾過した濾液を3000回転で10分遠心分離して得られた上清の色を目視で確認したところ、溶血は確認されなかった。
Example 7 Evaluation of Filtration Performance (2)
Using the prepared honeycomb-like membrane, an experiment for capturing leukocytes in human whole blood was performed. Human whole blood collected with a heparin blood collection tube was filtered using membranes with pore sizes of 5.2 μm and 9.8 μm, and the number of white blood cells was measured by casting the blood on a hemocytometer. Before the filtration, 4800 / μL It was found that the white blood cell count was 0 / μL after filtration (Table 2). Moreover, when the color of the supernatant obtained by centrifuging the filtered filtrate at 3000 rpm for 10 minutes was visually confirmed, hemolysis was not confirmed.
実施例8 濾過性能の評価(3)
作成したハニカム様の構造の膜を用いて、ヒト全血中の赤血球の捕捉実験を行った。孔径3.5〜5.5μmの膜を用い、各々直径5mmに3枚打ち抜いて積層してニトロセルロース膜の上に静置した。ヘパリン採血管で採血したヘマトクリット値40%のヒト全血を、同一全血を遠心分離して得られた血漿で希釈してヘマトクリット値2.5%に調製した全血にしたものを、積層した膜の上に5μL点着して10秒間放置し、その後に積層した膜を持ち上げ、濾過されてニトロセルロース膜に転写した血漿に赤血球の赤い色が残存しているかどうかの評価を行ったところ、孔径が3.5μmの膜で赤い色が見とめられず、赤血球を捕捉できていることが確認できた(表3)。
Example 8 Evaluation of Filtration Performance (3)
Using the prepared honeycomb-like membrane, an experiment for capturing red blood cells in human whole blood was performed. Using a membrane having a pore diameter of 3.5 to 5.5 μm, three sheets each having a diameter of 5 mm were punched out and laminated, and left on the nitrocellulose membrane. Human whole blood with a hematocrit value of 40% collected with a heparin blood collection tube was diluted with plasma obtained by centrifuging the same whole blood to obtain a whole blood prepared to a hematocrit value of 2.5%, and then laminated. When 5 μL was spotted on the membrane and allowed to stand for 10 seconds, the laminated membrane was lifted, and it was evaluated whether the red color of red blood cells remained in the plasma that was filtered and transferred to the nitrocellulose membrane. It was confirmed that red blood cells were not captured with a membrane having a pore size of 3.5 μm, and that red blood cells were captured (Table 3).
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006109576A JP2006194908A (en) | 2006-04-12 | 2006-04-12 | Method for manufacturing blood filtration film, and filtration method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006109576A JP2006194908A (en) | 2006-04-12 | 2006-04-12 | Method for manufacturing blood filtration film, and filtration method |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001342484A Division JP2003149096A (en) | 2001-11-07 | 2001-11-07 | Blood filter film and method therefor |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006194908A true JP2006194908A (en) | 2006-07-27 |
Family
ID=36801063
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006109576A Pending JP2006194908A (en) | 2006-04-12 | 2006-04-12 | Method for manufacturing blood filtration film, and filtration method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006194908A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008249434A (en) * | 2007-03-29 | 2008-10-16 | Mentec:Kk | Biosensor chip |
JP2010520446A (en) * | 2007-03-02 | 2010-06-10 | スミス アンド ネフュー ピーエルシー | Filter cleaning apparatus and method with ultrasonic, backwash and filter motion during biological sample filtration |
JP2012088055A (en) * | 2010-09-21 | 2012-05-10 | Tokyo Univ Of Agriculture & Technology | Method for analyzing leukocyte populations from very small amount of blood |
JP2020072752A (en) * | 2016-03-18 | 2020-05-14 | 株式会社村田製作所 | Filter for filtering nucleated cells and filtering method using the same |
US12018277B2 (en) | 2017-04-26 | 2024-06-25 | Murata Manufacturing Co., Ltd. | Filter for filtering nucleated cells and filtering method using the same |
-
2006
- 2006-04-12 JP JP2006109576A patent/JP2006194908A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010520446A (en) * | 2007-03-02 | 2010-06-10 | スミス アンド ネフュー ピーエルシー | Filter cleaning apparatus and method with ultrasonic, backwash and filter motion during biological sample filtration |
US8273253B2 (en) | 2007-03-02 | 2012-09-25 | Smith & Nephew Plc | Apparatus and method for filter cleaning by ultrasound, backwashing and filter movement during the filtration of biological samples |
US8777017B2 (en) | 2007-03-02 | 2014-07-15 | Smith & Nephew, Inc. | Apparatus and method for filter cleaning by ultrasound, backwashing and filter movement during the filtration of biological samples |
JP2008249434A (en) * | 2007-03-29 | 2008-10-16 | Mentec:Kk | Biosensor chip |
JP2012088055A (en) * | 2010-09-21 | 2012-05-10 | Tokyo Univ Of Agriculture & Technology | Method for analyzing leukocyte populations from very small amount of blood |
JP2020072752A (en) * | 2016-03-18 | 2020-05-14 | 株式会社村田製作所 | Filter for filtering nucleated cells and filtering method using the same |
JP7074148B2 (en) | 2016-03-18 | 2022-05-24 | 株式会社村田製作所 | Filtration filter for nucleated cells and filtration method using it |
US11485951B2 (en) | 2016-03-18 | 2022-11-01 | Murata Manufacturing Co., Ltd. | Filter for filtration of nucleated cells and filtration method using the same |
US12018277B2 (en) | 2017-04-26 | 2024-06-25 | Murata Manufacturing Co., Ltd. | Filter for filtering nucleated cells and filtering method using the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1103682C (en) | Highly porous polyvinylidene difluoride membranes | |
EP1666129B1 (en) | Composite porous membrane | |
CA2455786C (en) | Coating material for leukocyte removal filter and the filter | |
Yu et al. | High performance thin-film nanofibrous composite hemodialysis membranes with efficient middle-molecule uremic toxin removal | |
TWI517898B (en) | Membrane suitable for blood filtration | |
KR101833336B1 (en) | Nanofiber containing composite structures | |
Zhao et al. | Blood compatible aspects of DNA-modified polysulfone membrane—protein adsorption and platelet adhesion | |
JP2006194908A (en) | Method for manufacturing blood filtration film, and filtration method | |
TW201302252A (en) | Cancer cell adhesiveness improver | |
JP2003149096A (en) | Blood filter film and method therefor | |
JP2004361419A (en) | Blood filtering unit | |
JP3741320B2 (en) | Leukocyte selective removal filter material | |
CN114930145A (en) | Multilayer film and method for producing same | |
CN1800341A (en) | Method for immobilizing lipase using microstructure in hydrophilic/ hydrophobic composite membrane | |
JP2009229339A (en) | Sample preparation method for microscopic observation, and kit used for the same | |
CN103212310A (en) | Modified polyvinyl chloride acetate flat micro filtration membrane preparation method | |
CN105517973B (en) | Apparatus and method | |
JP2004236788A (en) | Method for producing leukocyte-removed blood cell suspension and leukocyte-removing filter device | |
CN116943442B (en) | Preparation method of ultrafiltration membrane with controllable thickness of humidity sensing small pore layer and ultrafiltration equipment | |
JP7351065B2 (en) | Biological particle concentration device, concentration system and concentration method, and biological particle detection method | |
JP4892824B2 (en) | Method for producing hollow fiber membrane separation membrane and method for using hollow fiber membrane separation membrane produced by the production method | |
Fu et al. | Thermo-responsive bioseparation engineered for human leukocyte enrichment process driven by functionalized polypropylene bio-separators | |
Ayub et al. | Application of Membrane Filtration for Microalgae Harvesting and Protein Separation | |
JP6672603B2 (en) | Method for evaluating the action between substances and cells | |
WO2024190895A1 (en) | Filter unit, purification device, and method for producing purified liquid |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060424 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060424 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20061212 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070329 |
|
A02 | Decision of refusal |
Effective date: 20070928 Free format text: JAPANESE INTERMEDIATE CODE: A02 |