[go: up one dir, main page]

JP2006193391A - Carbon composition, method for producing the same, and polarizable electrode for electrochemical capacity - Google Patents

Carbon composition, method for producing the same, and polarizable electrode for electrochemical capacity Download PDF

Info

Publication number
JP2006193391A
JP2006193391A JP2005008905A JP2005008905A JP2006193391A JP 2006193391 A JP2006193391 A JP 2006193391A JP 2005008905 A JP2005008905 A JP 2005008905A JP 2005008905 A JP2005008905 A JP 2005008905A JP 2006193391 A JP2006193391 A JP 2006193391A
Authority
JP
Japan
Prior art keywords
fullerene
carbon
carbon composition
mass
polarizable electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005008905A
Other languages
Japanese (ja)
Inventor
Keiichi Okajima
敬一 岡島
Masao Sudo
雅夫 須藤
Atsushi Ikeda
篤 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shizuoka University NUC
Original Assignee
Shizuoka University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shizuoka University NUC filed Critical Shizuoka University NUC
Priority to JP2005008905A priority Critical patent/JP2006193391A/en
Publication of JP2006193391A publication Critical patent/JP2006193391A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Composite Materials (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

【課題】 50mA/平方センチメートル以上、好ましくは100mA/平方センチメートル以上の高充放電電流における静電容量が高い電気化学キャパシタ用分極性電極を与えることのできる炭素組成物、該炭素組成物の製造方法、これらの炭素組成物を用いて成形された電気化学キャパシタ用キャパシタを提供する。
【解決手段】 活性炭100質量部に対して、0.1質量部〜30質量部のフラーレンを含有する炭素組成物とその製造方法。フラーレンが1分子あたりの炭素数が60であるフラーレンC60であり、かつ球状であるのが好ましく、活性炭にフラーレンを担持させる手段は、フラーレンを有機溶媒を溶解した溶液中で活性炭を分散させ、減圧濾過するのが好ましい。この炭素組成物を用いて電気化学キャパシ夕用分極性電極が成形される。
【選択図】 なし
PROBLEM TO BE SOLVED: To provide a carbon composition capable of providing a polarizable electrode for an electrochemical capacitor having a high capacitance at a high charge / discharge current of 50 mA / square centimeter or more, preferably 100 mA / square centimeter or more, a method for producing the carbon composition, and the like A capacitor for an electrochemical capacitor formed using the carbon composition is provided.
A carbon composition containing 0.1 part by mass to 30 parts by mass of fullerene with respect to 100 parts by mass of activated carbon and a method for producing the same. The fullerene is preferably fullerene C60 having 60 carbon atoms per molecule and spherical, and the means for supporting the fullerene on the activated carbon is to disperse the activated carbon in a solution in which the organic solvent is dissolved, and to reduce the pressure. It is preferred to filter. A polarizable electrode for electrochemical capacity is formed using this carbon composition.
[Selection figure] None

Description

本発明は、炭素組成物、炭素組成物の製造方法、及び電気化学キャパシ夕用分極性電極に関し、特に高電流充放電特性に優れた電気化学キャパシタと、この電気化学キャパシタに用いるのに好適な炭素組成物、炭素組成物の製造方法に関する。   The present invention relates to a carbon composition, a method for producing the carbon composition, and a polarizable electrode for electrochemical capacity, and particularly suitable for use in an electrochemical capacitor excellent in high current charge / discharge characteristics and the electrochemical capacitor. The present invention relates to a carbon composition and a method for producing the carbon composition.

電気二重層キャパシタを含む電気化学キャパシタ(以下キャパシタ)は、高出力密度と優れたサイクル特性を示すエネルギー貯蔵デバイスであり、ハイブリッド自動車・燃料電池自動車の補助電源や通電加熱触媒(EHC)電源への応用にむけ高容量化が期待されており、そのためには高充放電電流、特に50mA/平方センチメートル以上、好ましくは100mA/平方センチメートル以上の高充放電電流におけるキャパシタ特性の向上が不可欠である。   Electrochemical capacitors (hereinafter referred to as “capacitors”) including electric double layer capacitors are energy storage devices that exhibit high power density and excellent cycle characteristics, and can be used for auxiliary power supplies and electrically heated catalyst (EHC) power supplies for hybrid and fuel cell vehicles. Higher capacity is expected for application, and for that purpose, improvement of capacitor characteristics at high charge / discharge current, particularly at high charge / discharge current of 50 mA / square centimeter or more, preferably 100 mA / square centimeter or more is indispensable.

キャパシタの高容量化に関する研究開発はこれまで様々行われているが(例えば、特許文献1)、高充放電電流に対応するハイパワーキャパシタ電極の技術開発はこれまで主に電流取出部の低抵抗化または電極の存在しないデスボリュームの低減(例えば、特許文献2)等のキャパシタユニットとしての技術開発が主流であり、電極材料である炭素組成物の技術開発による高充放電電流キャパシタ特性の向上は見られない。
ハイブリッド自動車・燃料電池自動車の補助電源や通電加熱触媒(EHC)電源へのキャパシタの適用には、高充放電電流、特に50mA/平方センチメートル以上、好ましくは100mA/平方センチメートル以上の高充放電電流におけるキャパシタ電極静電容量増大が必要である。
Various researches and developments have been made to increase the capacity of capacitors (for example, Patent Document 1). However, the technical development of high-power capacitor electrodes corresponding to high charge / discharge currents has been mainly focused on the low resistance of the current extraction part. Technology development as a capacitor unit such as reduction of the death volume without electrode or reduction of the electrode (for example, Patent Document 2) is the mainstream, and improvement of high charge / discharge current capacitor characteristics by technical development of the carbon composition as the electrode material is can not see.
Capacitor electrodes for application of capacitors to auxiliary power supplies and energized heating catalyst (EHC) power supplies for hybrid vehicles and fuel cell vehicles, especially at high charge / discharge currents, particularly high charge / discharge currents of 50 mA / square centimeters or more, preferably 100 mA / square centimeters or more An increase in capacitance is necessary.

また、フラーレンを用いる類似技術としては、特許文献3が挙げられる。該技術はフラーレンを主体とした分極性電極を対象にしている。しかしフラーレンを主体とした分極性電極では比表面積が減少し好ましくない。   Moreover, as a similar technique using fullerene, Patent Document 3 can be cited. The technique is directed to a polarizable electrode mainly composed of fullerene. However, a polarizable electrode mainly composed of fullerene is not preferable because the specific surface area decreases.

特開平11−008167号公報JP-A-11-008167 特開2000−200738号公報Japanese Patent Application Laid-Open No. 2000-200738 特開平10−097956号公報JP-A-10-097956

従って本発明の目的は、50mA/平方センチメートル以上、好ましくは100mA/平方センチメートル以上の高充放電電流における静電容量が高い電気化学キャパシタ用分極性電極を与えることのできる炭素組成物、該炭素組成物の製造方法、これらの炭素組成物を用いて成形された電気化学キャパシタ用キャパシタを提供することにある。   Accordingly, an object of the present invention is to provide a carbon composition capable of providing a polarizable electrode for an electrochemical capacitor having a high capacitance at a high charge / discharge current of 50 mA / square centimeter or more, preferably 100 mA / square centimeter or more. It is an object of the present invention to provide a production method and a capacitor for an electrochemical capacitor formed using these carbon compositions.

上記課題を解決するための本発明の炭素組成物の製造方法は、活性炭100質量部に対して、0.1質量部〜30質量部のフラーレンを含有する炭素組成物、活性炭100質量部に対して、0.1質量部〜30質量部のフラーレンを担持させる炭素組成物の製造方法であり、フラーレンとしては、1分子あたりの炭素数が60であるフラーレンC60であり、かつ球状であるものが好ましい。
上記課題を解決するための本発明の電気化学キャパシ夕用分極性電極は、前記の製造方法で得られた炭素組成物を用いて成形した電気化学キャパシ夕用分極性電極である。
The manufacturing method of the carbon composition of the present invention for solving the above-mentioned problems is based on 100 parts by mass of activated carbon, 100 parts by mass of activated carbon containing 0.1 to 30 parts by mass of fullerene, and 100 parts by mass of activated carbon. And a fullerene C60 having a carbon number of 60 per molecule and a spherical shape as a fullerene. preferable.
The polar electrode for electrochemical capacity according to the present invention for solving the above-mentioned problems is a polarizable electrode for electrochemical capacity formed by using the carbon composition obtained by the above production method.

本発明の、炭素組成物、炭素組成物の製造方法によれば、50mA/平方センチメートル以上、好ましくは100mA/平方センチメートル以上の高充放電電流における静電容量が高い電気化学キャパシタ用分極性電極の材料として有効である。
また、本発明の電気化学キャパシ夕用分極性電極によれば、50mA/平方センチメートル以上、好ましくは100mA/平方センチメートル以上の高充放電電流における静電容量が高い電気化学キャパシタ用分極性電極を提供することができる。
According to the carbon composition and the method for producing the carbon composition of the present invention, as a material for a polarizable electrode for an electrochemical capacitor having a high capacitance at a high charge / discharge current of 50 mA / square centimeter or more, preferably 100 mA / square centimeter or more. It is valid.
In addition, according to the polarizable electrode for electrochemical capacity of the present invention, there is provided a polarizable electrode for an electrochemical capacitor having a high capacitance at a high charge / discharge current of 50 mA / square centimeter or more, preferably 100 mA / square centimeter or more. Can do.

本発明者らは、上記目的を達成するために鋭意検討した結果、本発明に到達した。すなわち本発明は活性炭100質量部に対して、0.1質量部〜30質量部のフラーレンを含有する炭素組成物であり,活性炭に対し、フラーレンを高分散担持せるための製造方法としては、フラーレンを有機溶媒を溶解した溶液中で活性炭を分散させ、減圧濾過することが好ましい。また、フラーレンを有機溶媒を溶解した溶液中で活性炭を分散させ超音波処理することも好ましい。   The inventors of the present invention have arrived at the present invention as a result of intensive studies to achieve the above object. That is, the present invention is a carbon composition containing 0.1 to 30 parts by mass of fullerenes with respect to 100 parts by mass of activated carbon. It is preferable to disperse activated carbon in a solution in which an organic solvent is dissolved and filter under reduced pressure. In addition, it is also preferable to disperse activated carbon in a solution in which fullerene is dissolved in an organic solvent and to perform ultrasonic treatment.

本発明において、フラーレンは、球状でありかつ1分子あたりの炭素数がそれぞれ60及び70であるフラーレンC60及びフラーレンC70、及び円筒状のカーボンナノチューブ等が挙げられ、これらは、特に酸化安定性に優れている。
これらのフラーレンのなかで、1分子あたりの炭素数が60であるフラーレンC60であり、かつ球状であることが好ましい。フラーレンC60はサッカーボール状に炭素原子が結合した分子であり、分子表面にはπ電子が非局在化している。この特異な分子形状によりフラーレンC60は半導体的性質を示し電子受容体とされ、π共役系導電性高分子に類似した性質を持つ。π共役系導電性高分子電極は活性炭電極に比べ単位面積当たりの容量は大きいものの比表面積が活性炭電極に比べ少ない。
In the present invention, fullerenes include spherical fullerene C60 and fullerene C70 having 60 and 70 carbon atoms per molecule, cylindrical carbon nanotubes, etc., and these are particularly excellent in oxidation stability. ing.
Among these fullerenes, fullerene C60 having 60 carbon atoms per molecule and preferably spherical. Fullerene C60 is a molecule in which carbon atoms are bonded in the shape of a soccer ball, and π electrons are delocalized on the surface of the molecule. Due to this unique molecular shape, fullerene C60 exhibits semiconducting properties as an electron acceptor, and has properties similar to π-conjugated conductive polymers. Although the π-conjugated conductive polymer electrode has a larger capacity per unit area than the activated carbon electrode, it has a smaller specific surface area than the activated carbon electrode.

大比表面積を持つ活性炭粉末状にフラーレン、好ましくはフラーレンC60を高分散担持させた炭素組成物により、50mA/平方センチメートル以上、好ましくは100mA/平方センチメートル以上の高充放電電流における静電容量が高い電気化学キャパシタ用分極性電極を提供できる。   Electrochemical having high capacitance at a high charge / discharge current of 50 mA / square centimeter or more, preferably 100 mA / square centimeter or more, by a carbon composition in which fullerene, preferably fullerene C60 is supported in a highly dispersed form in activated carbon powder having a large specific surface area. A polarizable electrode for a capacitor can be provided.

活性炭粉末に対するフラーレンの分散担持量は、活性炭100質量部に対して、0.1質量部〜30質量部であり、特に1質量部〜10質量部であることが望ましい。活性炭に対してフラーレンが30質量%を越えると、該炭素組成物を用いて成形される電極の分極性電極の容量が減少し、活性炭に対してフラーレンが0.1質量%未満であると、フラーレンの担持量が少なすぎて本発明の効果が充分に得られず好ましくない。   The amount of fullerene dispersed and supported with respect to the activated carbon powder is 0.1 to 30 parts by mass, and particularly preferably 1 to 10 parts by mass with respect to 100 parts by mass of the activated carbon. When the fullerene exceeds 30% by mass with respect to the activated carbon, the capacity of the polarizable electrode of the electrode formed using the carbon composition decreases, and when the fullerene is less than 0.1% by mass with respect to the activated carbon, The amount of fullerene supported is too small, and the effects of the present invention cannot be obtained sufficiently, which is not preferable.

活性炭粉末に対し、フラーレンを担持させる方法しては、特に、a)フラーレンを有機溶媒に溶解し、該溶液を吸引圧力をかけ減圧濾過し、残渣を乾燥する方法、b)活性炭粉末とフラーレンを混合した後、有機溶媒を加え、超音波処理した後、乾燥する方法等が望ましい。   As for the method of supporting fullerene on activated carbon powder, in particular, a) a method in which fullerene is dissolved in an organic solvent, the solution is subjected to suction filtration and dried under reduced pressure, and b) the activated carbon powder and fullerene are dried. A method of drying after mixing, adding an organic solvent, ultrasonicating, and the like is desirable.

a)フラーレンを有機溶媒に溶解し、該溶液を吸引圧力をかけ減圧濾過し、残渣を乾燥する方法において、フラーレンを溶解し得る有機溶媒しては、トルエン、キシレン、ベンゼン、シクロヘキサン、四塩化炭素、ジクロルエタン、トリクロルエタン、トリクロロエチレン等が挙げられ、これらの有機溶媒の中で、特にフラーレンの溶解に対する溶解度の点からトルエン、キシレン、ベンゼン等が好ましく用いられる。減圧濾過の条件としては、20〜100kPaが好ましく,より好ましくは40〜80kPaである。乾燥温度は20〜120℃、より好ましくは40〜80℃である。   a) In a method in which fullerene is dissolved in an organic solvent, the solution is filtered under reduced pressure and the residue is dried, and the organic solvent capable of dissolving fullerene is toluene, xylene, benzene, cyclohexane, carbon tetrachloride , Dichloroethane, trichloroethane, trichloroethylene, and the like. Of these organic solvents, toluene, xylene, benzene, and the like are preferably used from the viewpoint of solubility with respect to fullerene dissolution. As conditions for vacuum filtration, 20-100 kPa is preferable, More preferably, it is 40-80 kPa. The drying temperature is 20 to 120 ° C, more preferably 40 to 80 ° C.

b)活性炭粉末とフラーレンを混合した後、有機溶媒を加え、超音波処理した後、乾燥する方法において、有機溶媒としてはエタノール、メタノール、アセトン、アセトニトリル等を用いることができるが、特に活性炭粉末とフラーレンとに濡れ性が良く又乾燥性が良い点からエタノール、アセトン等が好ましく用いられる。超音波処理条件としては、超音波洗浄機(SHARP、商品名UT−105HS)で超音波出力20〜120Wが好ましく、処理時間は、5〜120分、好ましくは10〜60分が良い。   b) After mixing the activated carbon powder and fullerene, in the method of adding an organic solvent, sonicating and drying, ethanol, methanol, acetone, acetonitrile, etc. can be used as the organic solvent. Ethanol, acetone, and the like are preferably used because they have good wettability to fullerene and good drying properties. As ultrasonic treatment conditions, an ultrasonic output of 20 to 120 W is preferable with an ultrasonic cleaner (SHARP, trade name UT-105HS), and the treatment time is 5 to 120 minutes, preferably 10 to 60 minutes.

フラーレンとしてフラーレンC60を用い、これをトルエン溶媒に溶解させた後、吸引圧力をかけ減圧濾過で行うことにより超音波処理分散担持と比較してより高いキャパシタ静電容量が得ることができる。   By using fullerene C60 as a fullerene and dissolving it in a toluene solvent, applying a suction pressure and performing vacuum filtration, a higher capacitor capacitance can be obtained as compared with ultrasonic treatment dispersion support.

上記のようにして得られる炭素組成物と、導電材、結合材から電気化学キャパシタ用
分極性電極が得られる。該分極性電極は、例えば、前記炭素組成物と導電材とポリテトラフルオロエチレン等の結合材とをアルコールの存在下で混練してシート状に成形し、乾燥した後導電性接着剤等を介して集電体と接合させることによって得られる。また、該炭素組成物と導電材と結合材と溶媒を混合してスラリーとし、集電体金属箔の上にコートし、乾燥して集電体と一体化された電極を得ることもできる。
A polarizable electrode for an electrochemical capacitor is obtained from the carbon composition obtained as described above, a conductive material, and a binder. The polarizable electrode is formed, for example, by kneading the carbon composition, a conductive material, and a binder such as polytetrafluoroethylene in the presence of alcohol to form a sheet, drying it, and then passing through a conductive adhesive or the like. And obtained by bonding with a current collector. Further, the carbon composition, the conductive material, the binder and the solvent are mixed to form a slurry, which is coated on the current collector metal foil and dried to obtain an electrode integrated with the current collector.

導電材としては、カーボンブラック、天然黒鉛、人造黒鉛、酸化チタン、酸化ルテニウム等の粉末が用いられる。これらのうち、少量でも導電性を向上させる効果が大きいことから、カーボンブラックの1種であるケッチェンブラック又はアセチレンブラックを使用するのが好ましい。   As the conductive material, powder of carbon black, natural graphite, artificial graphite, titanium oxide, ruthenium oxide or the like is used. Of these, ketjen black or acetylene black, which is a kind of carbon black, is preferably used since the effect of improving conductivity is large even in a small amount.

分極性電極中のカーボンブラック等の導電材の配合量は、導電性を向上させられるように、該炭素組成物との合計量中5質量%以上、特には10質量%以上配合するのが好ましい。また、該炭素組成物の配合割合が減ると分極性電極の容量が減るため分極性電極中の導電材の配合量は5〜40質量%,特に10〜30質量%とするのが好ましい。   The blending amount of the conductive material such as carbon black in the polarizable electrode is preferably 5% by mass or more, particularly 10% by mass or more in the total amount with the carbon composition so as to improve the conductivity. . Moreover, since the capacity | capacitance of a polarizable electrode will reduce if the mixture ratio of this carbon composition reduces, it is preferable that the compounding quantity of the electrically conductive material in a polarizable electrode shall be 5-40 mass%, especially 10-30 mass%.

スラリーに混合する結合材は、例えばポリテトラフルオロエチレン、ポリフッ化ビニリデン、フルオロオレフィン/ビニルエーテル共重合体架橋ポリマー、カルボキシメチルセルロース、ポリビニルピロリドン、ポリビニルアルコール、又はポリアクリル酸等が使用できる。分極性電極中の結合材の含有量は、炭素材料と結合材の合量中0.5〜20質量%とするのが好ましい。結合材の量が0.5質量%未満であると電極の強度が不足し、20質量%超であると電気抵抗の増大や容量の低下が起きるためである。電極の容量と強度のバランスから、結合材の配合量は0.5〜10質量%とするのがより好ましい。   For example, polytetrafluoroethylene, polyvinylidene fluoride, fluoroolefin / vinyl ether copolymer cross-linked polymer, carboxymethyl cellulose, polyvinyl pyrrolidone, polyvinyl alcohol, or polyacrylic acid can be used as the binder to be mixed with the slurry. The content of the binder in the polarizable electrode is preferably 0.5 to 20% by mass in the total amount of the carbon material and the binder. This is because if the amount of the binder is less than 0.5% by mass, the strength of the electrode is insufficient, and if it exceeds 20% by mass, the electrical resistance increases and the capacity decreases. From the balance of electrode capacity and strength, the blending amount of the binder is more preferably 0.5 to 10% by mass.

本発明において、上述の分極性電極を正極、負極の両極に用いて電気二重層キャパシタを構成することができるが、負極のみを分極性電極とし正極として金属酸化物等の電池活物質を主体とする非分極性電極を用いたり、正極のみを非分極性電極とし負極にリチウム金属、リチウム合金、又はリチウムイオンを可逆的に吸蔵、放出しうる炭素材料を主成分とする非分極性電極を用いることもできる。   In the present invention, an electric double layer capacitor can be formed by using the above polarizable electrode as both a positive electrode and a negative electrode. However, only the negative electrode is a polarizable electrode and the positive electrode is used mainly as a battery active material such as a metal oxide. A non-polarizable electrode that uses only a positive electrode as a non-polarizable electrode and a negative electrode that contains lithium metal, a lithium alloy, or a carbon material capable of reversibly occluding and releasing lithium ions as a negative electrode. You can also.

これらの電気二重層キャパシタのうち、負極にリチウムイオンを可逆的に吸蔵、放出しうる炭素材料を用い、正極に上述の分極性電極を用いた電気二重層キャパシタは、充放電サイクル耐久性と安全性に優れており、作動電圧を高くでき、かつ容量が大きいという特徴があり特に好ましい。 Among these electric double layer capacitors, electric double layer capacitors using a carbon material capable of reversibly occluding and releasing lithium ions for the negative electrode and the polarizable electrode described above for the positive electrode are charge / discharge cycle durability and safety. It is particularly preferable because of its excellent characteristics, high operating voltage and large capacity.

非分極性電極の主材料である、リチウムイオンを吸蔵、放出しうる炭素材料としては、天然黒鉛、人造黒鉛、黒鉛化メソカーボン小球体、黒鉛化ウィスカー、気相成長させた黒鉛化炭素繊維、フルフリルアルコール樹脂の焼成品、ノボラック樹脂の焼成品が好ましく使用できる。   Carbon materials that can occlude and release lithium ions, which are the main materials of non-polarizable electrodes, include natural graphite, artificial graphite, graphitized mesocarbon spherules, graphitized whiskers, vapor-grown graphitized carbon fibers, A fired product of furfuryl alcohol resin and a fired product of novolak resin can be preferably used.

電極の集電体は電気化学的、化学的に耐食性のある導電体であればよい。フラーレンを主成分とする電極の集電体としては、ステンレス鋼、アルミニウム、チタン、タンタル、ニッケル等が用いられる。なかでも、ステンレス鋼とアルミニウムが性能と価格の両面で好ましい集電体である。リチウムイオンを吸蔵させた炭素材料を主成分とする非分極性電極の集電体としては、ステンレス鋼、銅又はニッケルが好ましく使用できる。   The current collector of the electrode may be a conductor that is electrochemically and chemically corrosion resistant. Stainless steel, aluminum, titanium, tantalum, nickel, or the like is used as the current collector of the electrode mainly composed of fullerene. Of these, stainless steel and aluminum are preferred current collectors in terms of both performance and cost. Stainless steel, copper or nickel can be preferably used as the current collector of the nonpolarizable electrode mainly composed of a carbon material occluded with lithium ions.

また、集電体の形状は箔でもよいし、三次元構造を有するニッケルやアルミニウムの発泡金属やステンレス鋼のネットやウールでもよい。   The shape of the current collector may be a foil, a nickel or aluminum foam metal having a three-dimensional structure, a stainless steel net, or wool.

本発明の電気化学キャパシタの電解液は特に限定されるものでなく、従来公知あるいは周知の非水系電解液を使用できる。溶媒としては、電気化学的に安定なプロピレンカーボネート、エチレンカーボネート、γ−ブチロラクトン、スルホラン、3−メチルスルホラン、1,2−ジメトキシエタン、アセトニトリル、ジメチルホルムアミド、ジエチルカーボネート、エチルメチルカーボネート、又はジメチルカーボネートから選ばれる1種以上からなる溶媒が好ましい。 The electrolytic solution of the electrochemical capacitor of the present invention is not particularly limited, and a conventionally known or well-known non-aqueous electrolytic solution can be used. Solvents include electrochemically stable propylene carbonate, ethylene carbonate, γ-butyrolactone, sulfolane, 3-methylsulfolane, 1,2-dimethoxyethane, acetonitrile, dimethylformamide, diethyl carbonate, ethyl methyl carbonate, or dimethyl carbonate. The solvent which consists of 1 or more types chosen is preferable.

本発明において正極と負極の間に改装されるセパレータとしては、例えばポリプロピレン繊維不織布、ガラス繊維不織布等が好適に使用できる。   As a separator refurbished between the positive electrode and the negative electrode in the present invention, for example, a polypropylene fiber nonwoven fabric and a glass fiber nonwoven fabric can be suitably used.

本発明の電気化学キャパシタは、一対のシート状電極の間にセパレータを介して電解液とともに金属ケースに収容したコイン型、一対の正極と負極を間にセパレータを介して巻回してなる巻回型、多数の電極をセパレータを介して積み重ねた積層型等いずれの構成もとることができる。 The electrochemical capacitor of the present invention includes a coin type housed in a metal case together with an electrolyte solution via a separator between a pair of sheet-like electrodes, and a winding type obtained by winding a pair of positive and negative electrodes via a separator. Any configuration such as a stacked type in which a large number of electrodes are stacked via a separator can be used.

本発明において、静電容量は次の方法により測定した。到達電圧1.0Vまで電極表面積あたり100mA/平方センチメートルまたは150mA/平方センチメートルで定電流充電し、1.0Vで30分間定電圧下補充電する。補充電完了後、充電電流と同じ電流値で定電流放電する。その際0.6Vから0.5Vまでの放電傾きより静電容量を求めた。   In the present invention, the capacitance was measured by the following method. A constant current charge is performed at 100 mA / square centimeter or 150 mA / square centimeter per electrode surface area until an ultimate voltage of 1.0 V, and a supplementary charge is performed at a constant voltage of 1.0 V for 30 minutes. After supplementary charging is completed, constant current discharge is performed at the same current value as the charging current. At that time, the capacitance was determined from the discharge slope from 0.6V to 0.5V.

[実施例1]
トルエン溶液10mlを溶媒としてフラーレンC60(MTR、商品名フラーレンC60)を溶解させフラーレンC60/トルエン溶液を調製した後、活性炭粉末(関西熱化学、商品名MSP−20)を溶液中に分散させ、吸引圧力300mmHgは(40 kPa)にて減圧濾過を20分間行った。得られた残渣を50度にて乾燥させ、炭素組成物とした。濾液は波長329nmにて比色分析し濾液中のフラーレンC60残存量を確認した。フラーレンC60の活性炭に対する質量割合が1質量%となるようにフラーレンC60/トルエン溶液濃度を調製した。
[Example 1]
Fullerene C60 (MTR, trade name Fullerene C60) is dissolved using 10 ml of toluene solution as a solvent to prepare a fullerene C60 / toluene solution, and then activated carbon powder (Kansai Thermochemical, trade name MSP-20) is dispersed in the solution and sucked. The filtration was performed under reduced pressure at a pressure of 300 mmHg (40 kPa) for 20 minutes. The obtained residue was dried at 50 degrees to obtain a carbon composition. The filtrate was colorimetrically analyzed at a wavelength of 329 nm, and the amount of fullerene C60 remaining in the filtrate was confirmed. The fullerene C60 / toluene solution concentration was prepared so that the mass ratio of fullerene C60 to activated carbon was 1 mass%.

上記手順において得られた炭素組成物およびカーボンブラック(電気化学工業、商品名AB−3)、ポリテトラフルオロエチレン粉末(ダイキン、商品名F−104)を質量比8:1:1で取り、エタノール0.3mlを加えながら混錬した。混錬物を0.1g採り、直径16mmのペレット形成器を用いて10MPaで圧縮成型し、330度で5時間真空焼成し、成形電極を作製した。   The carbon composition obtained in the above procedure and carbon black (Electrochemical Industry, trade name AB-3), polytetrafluoroethylene powder (Daikin, trade name F-104) are taken at a mass ratio of 8: 1: 1, and ethanol is added. Kneading while adding 0.3 ml. 0.1 g of the kneaded product was taken, compression-molded at 10 MPa using a pellet former having a diameter of 16 mm, and vacuum-fired at 330 degrees for 5 hours to produce a molded electrode.

成形電極およびセパレータを電解液中にて40分間脱気した後、コイン型2端子セルにて定電流充放電試験測定を行った。セパレータにはガラス繊維濾紙(ADVANTEC、商品名GA−55)、電解液には濃度0.5Mの硫酸水溶液を用いた。100mA/平方センチメートルにおける結果を図1に、150mA/平方センチメートルにおける未処理活性炭電極(比較例3)静電容量からの増大比を表1に示す。   The molded electrode and the separator were deaerated in the electrolytic solution for 40 minutes, and then a constant current charge / discharge test measurement was performed using a coin-type two-terminal cell. Glass fiber filter paper (ADVANTEC, trade name GA-55) was used as the separator, and a 0.5 M sulfuric acid aqueous solution was used as the electrolyte. The results at 100 mA / square centimeter are shown in FIG. 1, and the increase ratio from the untreated activated carbon electrode (Comparative Example 3) capacitance at 150 mA / square centimeter is shown in Table 1.

[実施例2]
実施例1において吸引圧力を600mmHg(80kPa)として減圧濾過を行った以外は実施例1と同様に行った。結果を図1および表1に示す。
[Example 2]
The same operation as in Example 1 was performed except that vacuum filtration was performed with a suction pressure of 600 mmHg (80 kPa) in Example 1. The results are shown in FIG.

[実施例3]
実施例1と同じ活性炭粉末とフラーレンC60を、フラーレンC60の活性炭に対する質量割合が1質量%となるように、混合した。エタノール1.2mlを加え超音波洗浄器(SHARP、商品名 UT−105HS)にて30分間超音波処理を施し乾燥させ、炭素化合物とした。成形電極の作製および測定は実施例1と同様に行った。
[Example 3]
The same activated carbon powder and fullerene C60 as in Example 1 were mixed so that the mass ratio of fullerene C60 to activated carbon was 1% by mass. 1.2 ml of ethanol was added and subjected to ultrasonic treatment for 30 minutes with an ultrasonic cleaner (SHARP, trade name: UT-105HS), followed by drying to obtain a carbon compound. Fabrication and measurement of the molded electrode were performed in the same manner as in Example 1.

[比較例1]
炭素組成物として活性炭粉末のみを使用した以外は、実施例1と同様に行った。結果
を図1および表1に示す。
[Comparative Example 1]
It carried out like Example 1 except having used only activated carbon powder as a carbon composition. The results are shown in FIG.

Figure 2006193391
Figure 2006193391

図1及び表1から本発明の実施例1,2,3の分極性電極によると、活性炭のみを用いて成形された比較例1の分極性電極に比較し、静電容量及びその増大率が大きく、特にフラーレンを有機溶媒に溶解し、該溶液を吸引圧力をかけ減圧濾過し、残渣を乾燥する方法によって得られた炭素組成物を成形することによって製造された分極性電極(実施例1,2)は静電容量及びその増大率が大幅に向上している。   1 and Table 1, according to the polarizable electrodes of Examples 1, 2, and 3 of the present invention, compared with the polarizable electrode of Comparative Example 1 formed using only activated carbon, the capacitance and its increase rate are In particular, a polarizable electrode produced by dissolving a fullerene in an organic solvent, forming the carbon composition obtained by filtering the solution under reduced pressure and applying a suction pressure, and drying the residue (Example 1, In 2), the capacitance and the rate of increase thereof are greatly improved.

本発明の実施例の比較例に対する静電容量の増大率を示すグラフである。It is a graph which shows the increase rate of the electrostatic capacitance with respect to the comparative example of the Example of this invention.

Claims (9)

活性炭100質量部に対して、0.1質量部〜30質量部のフラーレンを含有することを特徴とする炭素組成物。   A carbon composition comprising 0.1 to 30 parts by mass of fullerene with respect to 100 parts by mass of activated carbon. 前記フラーレンが1分子あたりの炭素数が60であるフラーレンC60であり、かつ球状である請求項1に記載の炭素組成物。 The carbon composition according to claim 1, wherein the fullerene is fullerene C60 having 60 carbon atoms per molecule and is spherical. 前記炭素組成物が、電気化学キャパシ夕用分極性電極に用いられることを特徴とする請求項1または請求項2に記載の炭素組成物。   The carbon composition according to claim 1 or 2, wherein the carbon composition is used for a polarizable electrode for electrochemical capacity. 活性炭100質量部に対して、0.1質量部〜30質量部のフラーレンを担持させることを特徴とする炭素組成物の製造方法。   A method for producing a carbon composition, comprising supporting 0.1 part by mass to 30 parts by mass of fullerene with respect to 100 parts by mass of activated carbon. 前記フラーレンが1分子あたりの炭素数が60であるフラーレンC60であり、かつ球状であることを特徴とする請求項4に記載の炭素組成物の製造方法。   5. The method for producing a carbon composition according to claim 4, wherein the fullerene is fullerene C60 having 60 carbon atoms per molecule and is spherical. フラーレンを有機溶媒を溶解した溶液中で活性炭を分散させ、減圧濾過することを特徴とする請求項4または請求項5に記載の炭素組成物の製造方法。   The method for producing a carbon composition according to claim 4 or 5, wherein the activated carbon is dispersed in a solution in which fullerene is dissolved in an organic solvent, followed by filtration under reduced pressure. フラーレンを有機溶媒を溶解した溶液中で活性炭を分散させ超音波処理することを特徴とする請求項4または請求項5に記載の炭素組成物の製造方法。   6. The method for producing a carbon composition according to claim 4 or 5, wherein the activated carbon is dispersed in a solution in which an organic solvent is dissolved in fullerene and subjected to ultrasonic treatment. 前記炭素組成物が、電気化学キャパシ夕用分極性電極に用いられることを特徴とする請求項4乃至請求項7のいずれか1項に記載の炭素組成物の製造方法。   The method for producing a carbon composition according to any one of claims 4 to 7, wherein the carbon composition is used for a polarizable electrode for electrochemical capacity. 請求項1乃至請求項3のいずれか1項に記載の炭素組成物または請求項4乃至請求項8のいずれか1項に記載の炭素組成物の製造方法で製造された炭素組成物を成形した電気化学キャパシ夕用分極性電極。   A carbon composition produced by the carbon composition according to any one of claims 1 to 3 or the carbon composition production method according to any one of claims 4 to 8 was molded. Electropolar capacity polarizable electrode.
JP2005008905A 2005-01-17 2005-01-17 Carbon composition, method for producing the same, and polarizable electrode for electrochemical capacity Pending JP2006193391A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005008905A JP2006193391A (en) 2005-01-17 2005-01-17 Carbon composition, method for producing the same, and polarizable electrode for electrochemical capacity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005008905A JP2006193391A (en) 2005-01-17 2005-01-17 Carbon composition, method for producing the same, and polarizable electrode for electrochemical capacity

Publications (1)

Publication Number Publication Date
JP2006193391A true JP2006193391A (en) 2006-07-27

Family

ID=36799756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005008905A Pending JP2006193391A (en) 2005-01-17 2005-01-17 Carbon composition, method for producing the same, and polarizable electrode for electrochemical capacity

Country Status (1)

Country Link
JP (1) JP2006193391A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1097956A (en) * 1996-09-25 1998-04-14 Asahi Glass Co Ltd Electric double layer capacitor
JP2000124079A (en) * 1998-10-15 2000-04-28 Tokin Corp Electric double-layer capacitor
WO2002027843A1 (en) * 2000-09-29 2002-04-04 Sony Corporation Fuel cell
JP2003173941A (en) * 2001-12-04 2003-06-20 Asahi Kasei Corp Carbon material for electrode of electric double layer capacitor and method for producing the same
JP2004211718A (en) * 2002-12-26 2004-07-29 Nissan Motor Co Ltd Hydrogen storing material, hydrogen storage device, and method of manufacturing hydrogen storing body

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1097956A (en) * 1996-09-25 1998-04-14 Asahi Glass Co Ltd Electric double layer capacitor
JP2000124079A (en) * 1998-10-15 2000-04-28 Tokin Corp Electric double-layer capacitor
WO2002027843A1 (en) * 2000-09-29 2002-04-04 Sony Corporation Fuel cell
JP2003173941A (en) * 2001-12-04 2003-06-20 Asahi Kasei Corp Carbon material for electrode of electric double layer capacitor and method for producing the same
JP2004211718A (en) * 2002-12-26 2004-07-29 Nissan Motor Co Ltd Hydrogen storing material, hydrogen storage device, and method of manufacturing hydrogen storing body

Similar Documents

Publication Publication Date Title
An et al. Electrochemical properties of high‐power supercapacitors using single‐walled carbon nanotube electrodes
CN105261721B (en) A kind of asymmetry diaphragm and the application in lithium-sulfur rechargeable battery
JP4971335B2 (en) Electrochemical double layer capacitor using organosilicon electrolyte
CN105682775B (en) Independent micro-pipe, method and its purposes for preparing it, electrode and membrane-electrode assembly
US7948738B2 (en) Electrode material for electric double layer capacitor and process for producing the same, electrode for electric double layer capacitor, and electric double layer capacitor
KR102320546B1 (en) Electrode, electric double-layer capacitor using same, and electrode manufacturing method
CN101517678B (en) Electrochemical capacitor
US20020008956A1 (en) Fibril composite electrode for electrochemical capacitors
WO2013073526A1 (en) Electrode for electricity storage devices, electricity storage device, and method for producing electrode for electricity storage devices
CN107910195B (en) A hybrid supercapacitor
JP2010225809A (en) Separator electrode integrated storage element for electrochemical element and electrochemical element using the same
CN102217015A (en) Electrical double layer capacitor
JP2014064030A (en) Electrochemical capacitor
JP2010238808A (en) Capacitor separator electrode integrated element and capacitor using the same
JP2007269551A (en) Activated carbon and method of manufacturing the same
KR102098690B1 (en) Wet-spun Electrode Fibers and Supercapacitors There upon
KR100745193B1 (en) Method for manufacturing CNP / DAA composite electrode for supercapacitor
JP4625950B2 (en) Activated carbon, manufacturing method thereof, and polarizable electrode for electric double layer capacitor
CN103280340B (en) A kind of nickel base electrode material and preparation method thereof
JP2009231421A (en) Faraday capacitance type capacitor
KR20100081054A (en) Electrode composition and electrode for super capacitor using conducting polymer as binder and method for manufacturing the same
JP2006193391A (en) Carbon composition, method for producing the same, and polarizable electrode for electrochemical capacity
KR102188242B1 (en) Composite for supercapacitor electrode, manufacturing method of supercapacitor electrode using the composite, and supercapacitor manufactured by the method
CN102891017A (en) Carbon nanotube composite hybrid supercapacitor positive electrode sheet and manufacturing method thereof
JP2010114356A (en) Electrochemical capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101207

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110405