JP2006189320A - 測位演算機、測位装置および測位演算方法 - Google Patents
測位演算機、測位装置および測位演算方法 Download PDFInfo
- Publication number
- JP2006189320A JP2006189320A JP2005001283A JP2005001283A JP2006189320A JP 2006189320 A JP2006189320 A JP 2006189320A JP 2005001283 A JP2005001283 A JP 2005001283A JP 2005001283 A JP2005001283 A JP 2005001283A JP 2006189320 A JP2006189320 A JP 2006189320A
- Authority
- JP
- Japan
- Prior art keywords
- positioning
- clock
- distance
- error
- satellite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Position Fixing By Use Of Radio Waves (AREA)
Abstract
【課題】 衛星航法システムにおいて測位精度、受信感度、測位中断時の外挿精度の向上を図る。
【解決手段】 演算機300において観測量補正部330はGPS受信機の出力した擬似距離とドップラー量とに基づく衛星と受信機との距離と距離変化率を観測値として出力する。相対運動計算部340は前回の測位演算結果である移動体位置/速度に基づく距離と距離変化率を計算値として出力する。残差計算部350は観測値と計算値との差を残差として出力する。測位演算部370は残差とクロック誤差に基づいてカルマンフィルタ処理により測位演算を行う。このカルマンフィルタ処理においてクロック誤差をクロックバイアスとクロックドリフトとクロックバイアス加速度との3次系とすることを特徴とする。また、クロックリセット検出/補償部360で受信機のクロックリセットに伴うクロック誤差の補償処理においてクロック誤差を3次系で処理することも特徴とする。
【選択図】 図4
【解決手段】 演算機300において観測量補正部330はGPS受信機の出力した擬似距離とドップラー量とに基づく衛星と受信機との距離と距離変化率を観測値として出力する。相対運動計算部340は前回の測位演算結果である移動体位置/速度に基づく距離と距離変化率を計算値として出力する。残差計算部350は観測値と計算値との差を残差として出力する。測位演算部370は残差とクロック誤差に基づいてカルマンフィルタ処理により測位演算を行う。このカルマンフィルタ処理においてクロック誤差をクロックバイアスとクロックドリフトとクロックバイアス加速度との3次系とすることを特徴とする。また、クロックリセット検出/補償部360で受信機のクロックリセットに伴うクロック誤差の補償処理においてクロック誤差を3次系で処理することも特徴とする。
【選択図】 図4
Description
本発明は、衛星航法システムにおける測位演算機、測位装置および測位演算方法に関するものである。
GPS(Global Positioning System)/GNSS(Global Navigation Satellite System)受信機においては、衛星・受信機間の伝播時間を計測し、伝播時間に光速を乗じることで測距を行った後、測距した距離情報を用いて測位計算を行う。伝播時間計測に使用される基準信号は受信機内のクロックにより生成される。そのため、位置・速度を正確に計測するには極めて安定なクロックが必要とされる。そこで、高性能受信機では温度補償付の高精度水晶クロック(TCXO:Temperature Compensated Xtal Oscillator)が使用される。
また、カルマンフィルタ等によりクロックバイアスとクロックドリフトの推定・補償が行われる(非特許文献1)。
Introduction to Random Signals and Applied Kalman Filtering,3rd Edition, R. G. Brown and P. Y. C. Hwang, John Wiley & Sons, 1997
また、カルマンフィルタ等によりクロックバイアスとクロックドリフトの推定・補償が行われる(非特許文献1)。
Introduction to Random Signals and Applied Kalman Filtering,3rd Edition, R. G. Brown and P. Y. C. Hwang, John Wiley & Sons, 1997
但し、TCXOは比較的高価であるため、温度補償無しのXOを使用することがコスト的には望ましい。しかし、この場合、測位精度、感度、測位中断時の外挿精度の性能が低下する。
また、クロックバイアス誤差が過大となりGPS時刻との同期がとれなくなった場合、受信機はクロックをリセットすることで時刻整合を行う。この際、廉価な水晶発信器(XO)を使用する受信機ではクロックドリフトおよびそのレートの変化率が大きいため、リセット時に速度、位置に不連続が発生する。
また、クロックバイアス誤差が過大となりGPS時刻との同期がとれなくなった場合、受信機はクロックをリセットすることで時刻整合を行う。この際、廉価な水晶発信器(XO)を使用する受信機ではクロックドリフトおよびそのレートの変化率が大きいため、リセット時に速度、位置に不連続が発生する。
本発明は、上記の課題を解決するためになされたもので、温度補償無しのXOのように精度の低いクロックを用いた受信機で測位信号を受信して測位を行う場合にでも測位精度を向上できるようにすることを目的とする。
また、受信機の受信感度を向上できるようにすることを目的とする。
また、測位信号の受信が絶たれた場合に行う外挿による測位についても測位精度を向上できるようにすることを目的とする。
また、受信機のクロックのリセット時においても算出する移動体の位置、速度の不連続性を縮小することを目的とする。
また、受信機の受信感度を向上できるようにすることを目的とする。
また、測位信号の受信が絶たれた場合に行う外挿による測位についても測位精度を向上できるようにすることを目的とする。
また、受信機のクロックのリセット時においても算出する移動体の位置、速度の不連続性を縮小することを目的とする。
本発明の測位演算機は、受信機の備えるクロックの誤差を、クロックの誤差に基づく測位対象の位置の誤差を示すクロックバイアスとクロックの誤差に基づく測位対象の速度の誤差を示すクロックドリフトとクロックの誤差に基づく測位対象の加速度の誤差を示すクロックバイアス加速度とで表してカルマンフィルタの処理をして測位対象に対する測位演算を行うことを特徴とする。
本発明によれば、温度補償無しのXOのように精度の低いクロックを用いた受信機で測位信号を受信して測位を行う場合にでも測位精度を向上することができる。
また、受信機の受信感度を向上することができる。
また、測位信号の受信が絶たれた場合に行う外挿による測位についても測位精度を向上することができる。
また、受信機の受信感度を向上することができる。
また、測位信号の受信が絶たれた場合に行う外挿による測位についても測位精度を向上することができる。
実施の形態1.
図1は、実施の形態1における測位装置100の構成図である。
図1において、測位装置100は、GPS受信機200と演算機300とを備える。
GPS受信機200は、GPS、GNSSの航法メッセージを含む測位信号を受信する。そして、受信した測位信号の伝搬時間に基づいて測位信号を発信したGPS衛星からの擬似距離を算出する。また、受信した測位信号の周波数に基づいてGPS衛星との距離方向における相対速度をドップラー量として算出する。
また、演算機300は、GPS受信機200から擬似距離とドップラー量と航法メッセージとを入力し測位演算を行う。
図1は、実施の形態1における測位装置100の構成図である。
図1において、測位装置100は、GPS受信機200と演算機300とを備える。
GPS受信機200は、GPS、GNSSの航法メッセージを含む測位信号を受信する。そして、受信した測位信号の伝搬時間に基づいて測位信号を発信したGPS衛星からの擬似距離を算出する。また、受信した測位信号の周波数に基づいてGPS衛星との距離方向における相対速度をドップラー量として算出する。
また、演算機300は、GPS受信機200から擬似距離とドップラー量と航法メッセージとを入力し測位演算を行う。
図2は、実施の形態1における測位装置100、GPS受信機200、演算機300のハードウェア構成図である。
図2において、測位装置100、GPS受信機200、演算機300は、プログラムを実行するCPU(Central Processing Unit)911を備えている。但し、測位装置100とGPS受信機200と演算機300とがそれぞれCPU911および以下のハードウェアを備えていてもよいし、CPU911および以下のハードウェアを共有しても構わない。
CPU911は、バス912を介してROM913、RAM914、通信ボード915、磁気ディスク装置920と接続されている。
RAM914は、揮発性メモリの一例である。ROM913、磁気ディスク装置920は、不揮発性メモリの一例である。これらは、記憶装置あるいは記憶部の一例である。
通信ボード915は、FAX機、電話器、LAN、インターネット等に接続されている。
例えば、通信ボード915は、情報入力部の一例であり、出力部の一例である。
図2において、測位装置100、GPS受信機200、演算機300は、プログラムを実行するCPU(Central Processing Unit)911を備えている。但し、測位装置100とGPS受信機200と演算機300とがそれぞれCPU911および以下のハードウェアを備えていてもよいし、CPU911および以下のハードウェアを共有しても構わない。
CPU911は、バス912を介してROM913、RAM914、通信ボード915、磁気ディスク装置920と接続されている。
RAM914は、揮発性メモリの一例である。ROM913、磁気ディスク装置920は、不揮発性メモリの一例である。これらは、記憶装置あるいは記憶部の一例である。
通信ボード915は、FAX機、電話器、LAN、インターネット等に接続されている。
例えば、通信ボード915は、情報入力部の一例であり、出力部の一例である。
磁気ディスク装置920には、オペレーティングシステム(OS)921、プログラム群923、ファイル群924が記憶されている。プログラム群923は、CPU911、OS921により実行される。
上記プログラム群923には、以下に述べる実施の形態の説明において「〜部」として説明する機能を実行するプログラムが記憶されている。プログラムは、CPU911により読み出され実行される。
ファイル群924には、以下に述べる実施の形態の説明において、「〜の判定結果」、「〜の計算結果」、「〜の処理結果」、「〜の更新結果」、「〜の外挿結果」のような表現で説明する結果情報が、「〜ファイル」として記憶されている。
また、以下に述べる実施の形態の説明において説明するフローチャートの矢印の部分は主としてデータの入出力を示し、そのデータの入出力のためにデータは、磁気ディスク装置920、FD(Flexible Disk cartridge)、光ディスク、CD(コンパクトディスク)、MD(ミニディスク)、DVD(Digital Versatile Disk)、その他の記録媒体に記録される。あるいは、信号線やその他の伝送媒体により伝送される。
ファイル群924には、以下に述べる実施の形態の説明において、「〜の判定結果」、「〜の計算結果」、「〜の処理結果」、「〜の更新結果」、「〜の外挿結果」のような表現で説明する結果情報が、「〜ファイル」として記憶されている。
また、以下に述べる実施の形態の説明において説明するフローチャートの矢印の部分は主としてデータの入出力を示し、そのデータの入出力のためにデータは、磁気ディスク装置920、FD(Flexible Disk cartridge)、光ディスク、CD(コンパクトディスク)、MD(ミニディスク)、DVD(Digital Versatile Disk)、その他の記録媒体に記録される。あるいは、信号線やその他の伝送媒体により伝送される。
また、以下に述べる実施の形態の説明において「〜部」として説明するものは、ROM913に記憶されたファームウェアで実現されていても構わない。或いは、ソフトウェアのみ、或いは、ハードウェアのみ、或いは、ソフトウェアとハードウェアとの組み合わせ、さらには、ファームウェアとの組み合わせで実施されても構わない。
また、以下に述べる実施の形態を実施するプログラムは、磁気ディスク装置920、FD、光ディスク、CD、MD、DVD、その他の記録媒体による記録装置を用いて記憶されても構わない。
図3は、実施の形態1におけるGPS受信機200の構成図である。
図3において、GPS受信機200はGPSアンテナ210、RF(Radio Frequency)フロントエンド処理部220、XO230、A/D(Analog/Digital)変換部240、ベースバンドチップ処理部250を備える。
GPS受信機200では、まず、GPSアンテナ210が、GPS、GNSSの測位信号を受信する。
そして、XO230は、例えば20MHz程度の基準信号を生成する。
次に、RFフロントエンド処理部220は、受信した測位信号に対する高周波のアナログ処理を行う。具体的には、約1.5GHzの測位信号を直接デジタル処理することは困難であるため、XO230が生成した基準信号を使ってミキシングを行い、差の周波数信号を取り出す。そして、ミキシング処理を複数回行うことで、最終的に、測位信号の周波数を2MHz〜10MHz程度まで落とす処理を行う。
次に、A/D変換部240は、RFフロントエンド処理部220が処理した測位信号をアナログ信号からデジタル信号に変換する。A/D変換の前に、エイリアシング等の影響を避けるためにフィルタ処理を行っても良い。フィルタ処理では高周波フィルタとして一般的にSAW(Surface Acoustic Wave)フィルタが使用される。
ベースバンドチップ処理部250は、デジタルに変換された測位信号にスペクトラム逆拡散を行う。スペクトラム逆拡散を行うことにより、GPS衛星がスペクトラム拡散して発信した測位信号から、スペクトラム拡散前の搬送波を抽出する。次に、スペクトラム逆拡散を行って抽出した搬送波とXO230で生成した基準信号との位相差(チップ時間)を検出する。そして、検出した位相差(測位信号の伝搬時間)に光速を乗じて、測位信号を発信したGPS衛星とGPS受信機200間の擬似距離を算出する。また、受信した測位信号の周波数とGPS L1信号の基準周波数である1575.42MHzとの周波数差をドップラー周波数として、ドップラー周波数に基づいて擬似距離の距離方向におけるGPS衛星とGPS受信機200との相対速度をドップラー量として算出する。
図3において、GPS受信機200はGPSアンテナ210、RF(Radio Frequency)フロントエンド処理部220、XO230、A/D(Analog/Digital)変換部240、ベースバンドチップ処理部250を備える。
GPS受信機200では、まず、GPSアンテナ210が、GPS、GNSSの測位信号を受信する。
そして、XO230は、例えば20MHz程度の基準信号を生成する。
次に、RFフロントエンド処理部220は、受信した測位信号に対する高周波のアナログ処理を行う。具体的には、約1.5GHzの測位信号を直接デジタル処理することは困難であるため、XO230が生成した基準信号を使ってミキシングを行い、差の周波数信号を取り出す。そして、ミキシング処理を複数回行うことで、最終的に、測位信号の周波数を2MHz〜10MHz程度まで落とす処理を行う。
次に、A/D変換部240は、RFフロントエンド処理部220が処理した測位信号をアナログ信号からデジタル信号に変換する。A/D変換の前に、エイリアシング等の影響を避けるためにフィルタ処理を行っても良い。フィルタ処理では高周波フィルタとして一般的にSAW(Surface Acoustic Wave)フィルタが使用される。
ベースバンドチップ処理部250は、デジタルに変換された測位信号にスペクトラム逆拡散を行う。スペクトラム逆拡散を行うことにより、GPS衛星がスペクトラム拡散して発信した測位信号から、スペクトラム拡散前の搬送波を抽出する。次に、スペクトラム逆拡散を行って抽出した搬送波とXO230で生成した基準信号との位相差(チップ時間)を検出する。そして、検出した位相差(測位信号の伝搬時間)に光速を乗じて、測位信号を発信したGPS衛星とGPS受信機200間の擬似距離を算出する。また、受信した測位信号の周波数とGPS L1信号の基準周波数である1575.42MHzとの周波数差をドップラー周波数として、ドップラー周波数に基づいて擬似距離の距離方向におけるGPS衛星とGPS受信機200との相対速度をドップラー量として算出する。
図4は、実施の形態1における演算機300の構成図である。
図4において、演算機300は距離補正計算部310、衛星位置/速度計算部320、観測量補正部330、相対運動計算部340、残差計算部350、リセット検出/補償部360、測位演算部(カルマンフィルタ)370を備える。
演算機300は、GPS受信機200から擬似距離とドップラー量と航法メッセージとを入力し、測位演算部370で測位演算を行い、GPS受信機200を備えた測位対象である移動体の位置、速度およびGPS受信機200で発生したXO230のクロック誤差を出力する。ここで、演算機300は、測位演算部370が出力した移動体位置、移動体速度、クロック誤差を、GPS受信機200が出力する擬似距離、ドップラー量、航法メッセージと共に次の測位演算時に入力して測位演算を行う。そして、このフィードバック処理により測位精度を向上する。
図4において、演算機300は距離補正計算部310、衛星位置/速度計算部320、観測量補正部330、相対運動計算部340、残差計算部350、リセット検出/補償部360、測位演算部(カルマンフィルタ)370を備える。
演算機300は、GPS受信機200から擬似距離とドップラー量と航法メッセージとを入力し、測位演算部370で測位演算を行い、GPS受信機200を備えた測位対象である移動体の位置、速度およびGPS受信機200で発生したXO230のクロック誤差を出力する。ここで、演算機300は、測位演算部370が出力した移動体位置、移動体速度、クロック誤差を、GPS受信機200が出力する擬似距離、ドップラー量、航法メッセージと共に次の測位演算時に入力して測位演算を行う。そして、このフィードバック処理により測位精度を向上する。
まず、衛星位置/速度計算部320は、GPS受信機200から航法メッセージを入力し、入力した航法メッセージに基づいて衛星位置、衛星速度を算出する。
そして、距離補正計算部310は、GPS受信機200が出力した航法メッセージと測位演算部370が出力した移動体位置と衛星位置/速度計算部320が出力した衛星位置とを入力し、GPS受信機200が出力した擬似距離とドップラー量のそれぞれに対する補正量を算出する。
補正量とは、GPS受信機200の算出した擬似距離、ドップラー量に含まれる誤差を補正するためのものである。この擬似距離とドップラー量とに含まれる誤差には、受信した測位信号が電離層、対流圏の影響を受けることによる誤差、GPS衛星の備えるクロックの誤差、GPS受信機200のXO230のクロック誤差が存在する。そして、距離補正計算部310は、このうちの電離層および対流圏による誤差とGPS衛星のクロック誤差とを算出する。GPS受信機200のクロック誤差については、測位演算部370が算出し、観測量補正部330が入力してクロック誤差に対する演算を行う。
そこで、距離補正計算部310は、まず、測位演算部370から入力した移動体位置と衛星位置/速度計算部320から入力した衛星位置とに基づいて、移動体のGPS衛星に対する相対位置関係から仰角を求める。また、移動体位置から移動体の位置する高度を取得する。また、GPS受信機200が出力した航法メッセージから電離層の情報を取得する。そして、GPS衛星の仰角、移動体の高度、電離層の情報などに基づいて電離層および対流圏による誤差を算出する。電離層および対流圏による誤差の算出方法は、例えば「Global Positioning System:Theory and Applications Volume,1996,AIAA,Parkinson,B.W.andSpikler,J」に記される。また、GPS衛星のクロック誤差は航法メッセージから取得する。
補正量とは、GPS受信機200の算出した擬似距離、ドップラー量に含まれる誤差を補正するためのものである。この擬似距離とドップラー量とに含まれる誤差には、受信した測位信号が電離層、対流圏の影響を受けることによる誤差、GPS衛星の備えるクロックの誤差、GPS受信機200のXO230のクロック誤差が存在する。そして、距離補正計算部310は、このうちの電離層および対流圏による誤差とGPS衛星のクロック誤差とを算出する。GPS受信機200のクロック誤差については、測位演算部370が算出し、観測量補正部330が入力してクロック誤差に対する演算を行う。
そこで、距離補正計算部310は、まず、測位演算部370から入力した移動体位置と衛星位置/速度計算部320から入力した衛星位置とに基づいて、移動体のGPS衛星に対する相対位置関係から仰角を求める。また、移動体位置から移動体の位置する高度を取得する。また、GPS受信機200が出力した航法メッセージから電離層の情報を取得する。そして、GPS衛星の仰角、移動体の高度、電離層の情報などに基づいて電離層および対流圏による誤差を算出する。電離層および対流圏による誤差の算出方法は、例えば「Global Positioning System:Theory and Applications Volume,1996,AIAA,Parkinson,B.W.andSpikler,J」に記される。また、GPS衛星のクロック誤差は航法メッセージから取得する。
次に、観測量補正部330では、GPS受信機200から擬似距離とドップラー量を入力し、距離補正計算部310から擬似距離とドップラー量のそれぞれに対する補正量を入力し、測位演算部370からクロック誤差を入力する。
測位演算部370から入力するクロック誤差はクロックバイアスとクロックドリフトで示され、クロックバイアスはクロックの誤差時間に光速を乗じた距離の値で、クロックドリフトはクロックドリフトを時間で微分した速度の値である。
ここで、GPS受信機200から入力した擬似距離をρ、ドップラー量をρ’、距離補正計算部310から入力した擬似距離に対する補正量をΔρ、ドップラー量に対する補正量をΔρ’、測位演算部370から入力したクロック誤差のクロックバイアスをtcb、クロックドリフトをtcdとする。
そして測位演算部370は、ρ+Δρ+tcbを衛星と移動体間の距離の観測値、ρ’+Δρ’+tcdを衛星と移動体間の距離変化率の観測値として出力する。
測位演算部370から入力するクロック誤差はクロックバイアスとクロックドリフトで示され、クロックバイアスはクロックの誤差時間に光速を乗じた距離の値で、クロックドリフトはクロックドリフトを時間で微分した速度の値である。
ここで、GPS受信機200から入力した擬似距離をρ、ドップラー量をρ’、距離補正計算部310から入力した擬似距離に対する補正量をΔρ、ドップラー量に対する補正量をΔρ’、測位演算部370から入力したクロック誤差のクロックバイアスをtcb、クロックドリフトをtcdとする。
そして測位演算部370は、ρ+Δρ+tcbを衛星と移動体間の距離の観測値、ρ’+Δρ’+tcdを衛星と移動体間の距離変化率の観測値として出力する。
また、相対運動計算部340では、衛星位置/速度計算部320から衛星位置と衛星速度を入力し、測位演算部370から移動体位置と移動体速度を入力する。そして、衛星位置と移動体位置間の距離をρC、衛星速度と移動体速度との間の距離変化率(衛星と移動体との距離方向における相対速度)をρ’Cとして算出して出力する。
次に、残差計算部350は、観測量補正部330から衛星と移動体間の距離の観測値ρ+Δρ+tcbと衛星と移動体間の距離変化率の観測値ρ’+Δρ’+tcdを入力し、相対運動計算部340から衛星と移動体間の距離の計算値ρCと衛星と移動体間の距離変化率ρ’Cの計算値を入力する。そして、観測値と計算値の差を残差として算出して出力する。つまり、衛星と移動体間の距離の残差は(ρ+Δρ+tcb)−ρCであり、衛星と移動体間の距離変化率の残差は(ρ’+Δρ’+tcd)−ρ’Cである。
また、残差計算部350は、観測量補正部330からクロック誤差を入力し、入力したクロック誤差を出力する。
また、残差計算部350は、観測量補正部330からクロック誤差を入力し、入力したクロック誤差を出力する。
次に、リセット検出/補償部360は、残差計算部350から残差とクロック誤差を入力する。
ここで、演算機300は、GPS受信機200においてクロックのリセットが行われたか判定するための閾値を記憶部に記憶するものとする。例えば、GPSのC/Aコードの周期である1msecに対応して、1msecに光速を乗じたおおよその距離である300kmを閾値として記憶する。ただし、閾値はその他の値、例えば、GPS受信機200のクロックリセットに関する仕様に基づく値などであっても構わない。
そして、リセット検出/補償部360は、記憶部に記憶された閾値と残差計算部350から入力した距離の残差とを比較し、残差が閾値より大きい場合はGPS受信機200においてクロックのリセットが行われたものと判定する。但し、リセット検出/補償部360は、GPS受信機200から直接にリセットの有無の情報を取得して、取得した情報に基づいてリセットの有無を判定しても構わない。
ここで、演算機300は、GPS受信機200においてクロックのリセットが行われたか判定するための閾値を記憶部に記憶するものとする。例えば、GPSのC/Aコードの周期である1msecに対応して、1msecに光速を乗じたおおよその距離である300kmを閾値として記憶する。ただし、閾値はその他の値、例えば、GPS受信機200のクロックリセットに関する仕様に基づく値などであっても構わない。
そして、リセット検出/補償部360は、記憶部に記憶された閾値と残差計算部350から入力した距離の残差とを比較し、残差が閾値より大きい場合はGPS受信機200においてクロックのリセットが行われたものと判定する。但し、リセット検出/補償部360は、GPS受信機200から直接にリセットの有無の情報を取得して、取得した情報に基づいてリセットの有無を判定しても構わない。
リセット検出/補償部360は、GPS受信機200においてクロックのリセットが行われたと判定した場合、以下の式1を計算してクロック誤差を修正し、リセットに対する補償を行う。
上記式1において、tcb,kは、ある観測(k)時におけるクロックバイアスを示し、tcd,kは、ある観測時におけるクロックドリフトを示し、tca,kは、ある観測時におけるクロックドリフトを時間で微分した加速度の値(クロックバイアス加速度)を示す。また、Δtはリセット時のオフセットされた時間を示し、cは光速を示す。
従来、GPS受信機200のクロックのリセットに対する補償においては、以下の式2の計算が行われていた。
上記式2に示すように、従来は、クロックバイアスの値にオフセット分の距離(c×Δt)を加算することでクロックのリセットに対する補償を行っていた。
上記式1は、従来の式2に比べ、クロックバイアス(tcb,k)の計算にオフセット時間内のクロックドリフトによる変位距離(Δt×tcd,k)を加えている。これにより、例えば、クロックのリセットにより1msecのオフセットがされた場合で、クロックドリフトが300m/sであれば従来の式2に対して約3mの誤差を補正することができ、オフセットされた時間やクロックドリフトの値が大きければ更に誤差を補正することができる。つまり、測位精度を高めることができる。
また、上記式1では、従来の式2に比べ、クロックバイアス加速度(tca,k)分の計算を加えている。これにより、上記同様に測位精度を高めることができる。
クロックのリセットに対する補償のための計算において、クロックドリフトによる変位距離(Δt×tcd,k)を加えたこと及びクロックバイアス加速度(tca,k)分の計算を加えたことは、それぞれ、実施の形態1における測位装置100、演算機300の特徴点である。
また、上記式1では、従来の式2に比べ、クロックバイアス加速度(tca,k)分の計算を加えている。これにより、上記同様に測位精度を高めることができる。
クロックのリセットに対する補償のための計算において、クロックドリフトによる変位距離(Δt×tcd,k)を加えたこと及びクロックバイアス加速度(tca,k)分の計算を加えたことは、それぞれ、実施の形態1における測位装置100、演算機300の特徴点である。
リセット検出/補償部360は上記処理後、残差計算部350にクロック誤差を出力する。
次に、測位演算部370は、残差計算部350から距離の残差と距離変化率の残差とクロック誤差とを入力し、カルマンフィルタ処理を行って移動体に対する測位演算を行い、移動体位置、移動体速度、クロック誤差を出力する。
図5は、実施の形態1における測位演算部370の構成図である。
測位演算部370のカルマンフィルタ処理について、図5に基づいて以下に説明する。
測位演算部370のカルマンフィルタ処理について、図5に基づいて以下に説明する。
以下、式中で使用する上付きの「+」は、カルマン処理後の推定値であることを示し、上付きの「−」はカルマン処理前の予測値であることを示す。また、上付きの「T」は転置行列であることを示し、上付きの「−1」は逆行列であることを示す。また、下付きの「k」は観測の時期を示す。ここでは、「k」が前回の観測に対応し、「k+1」が「k」から1サンプリング時間経過した今回の観測に対応する。
測位演算部370は、時間外挿処理部371と観測更新処理部372とを備える。
まず、時間外挿処理部371は、カルマンフィルタ処理済みの移動体の状態量X(移動体位置、移動体速度、クロック誤差)に状態量の推移を示す推移行列Φを適用して1サンプリング時間分外挿し、状態量Xの予測値を求める。計算式を式3に示す。
次に、時間外挿処理部371は、誤差共分散行列Pに対する外挿を行い、誤差共分散行列Pの予測値を求める。計算式を式4に示す。
上記式4において、Qはプロセスノイズ行列を示し、移動体のダイナミクスに対応して算出されるものである。
次に、観測更新処理部372は、カルマンゲイン行列Kを求める。計算式を式5に示す。
上記式5において、Hは観測行列を示し、衛星と移動体の幾何学的関係から方向余弦ベクトルを求めることで算出されるものである。また、Rは観測ノイズ行列を示し、C/N(Carrier/Noise)比や仰角などのGPS受信機200の受信状態に対応して算出されるものである。
次に、観測更新処理部372は、式5で求めたカルマンゲイン行列Kを用いて、時間外挿処理部371が求めた誤差共分散行列Pの予測値を更新して、誤差共分散行列Pの推定値を求める。計算式を式6に示す。
次に、観測更新処理部372は、式5で求めたカルマンゲイン行列Kを用いて、時間外挿処理部371が求めた状態量Xの予測値を更新して、状態量Xの推定値を求める。計算式を式7に示す。
上記式7において、Zは観測量ベクトルを示し、残差計算部350の算出した残差をクロック誤差として含む移動体の観測量(移動体位置、移動体速度、クロック誤差)である。
測位演算部370は、上記の処理を行い、求めた状態量X(移動体位置、移動体速度、クロック誤差)を出力する。そして、出力した移動体位置が測位装置100の測位結果になる。また、出力した移動体位置、移動体速度、クロック誤差は次回の測位演算処理時に演算機300の入力になる。
また、測位演算部370の観測更新処理部372が求めた状態量Xの推定値と誤差共分散行列Pの推定値は、次回の状態量外挿処理時(式3)と誤差共分散外挿処理時(式4)に時間外挿処理部371の入力になる。
次に、測位演算部370が行うカルマンフィルタ処理時の実施の形態1における特徴点について説明する。
図6は、従来のクロック誤差モデルを示す図である。
図6のクロック誤差モデルは、測位演算部370の時間外挿処理部371が状態量外挿処理(式3)と誤差共分散外挿(式4)で使用する推移行列Φの行列要素のうち、クロック誤差の推移を示す部分についての従来モデルを示している。この従来のクロック誤差モデルを数式で表したものを式8に示す。
図6は、従来のクロック誤差モデルを示す図である。
図6のクロック誤差モデルは、測位演算部370の時間外挿処理部371が状態量外挿処理(式3)と誤差共分散外挿(式4)で使用する推移行列Φの行列要素のうち、クロック誤差の推移を示す部分についての従来モデルを示している。この従来のクロック誤差モデルを数式で表したものを式8に示す。
上記式8において、TSはサンプリング間隔を示し、前回の測位演算時からの経過時間のことである。また、Wcb,kとWcd,kはそれぞれクロックバイアスとクロックドリフトに対するホワイトノイズであり、このホワイトノイズは平均値がゼロで分散が既知である。また、図6のクロック誤差モデルとの関係において、Wcb,kとWcd,kはそれぞれWbとWdを離散系に置き換えたものである。
ここで、実施の形態1のように、水晶クロックに温度補償付きであるTCXOではなく、温度補償無しであるXOを使用する場合、クロックの精度が悪いためクロックバイアス加速度が大きくなるという課題がある。しかし、上記に示す従来のクロック誤差モデルは、クロックバイアスとクロックドリフトからなる2次元系のモデルであり、クロックバイアス加速度の影響を除去できず測位精度が悪くなるという課題がある。
図7は、実施の形態1におけるクロックバイアスを示すグラフである。
図8は、実施の形態1におけるクロックドリフトを示すグラフである。
実施の形態1のように温度補償無しであるXOを使用する場合、クロックバイアスは図7に示すように変化する。図8は、クロックバイアスを微分したクロック速度を示すクロックドリフトの変化である。値が大きく変化していることからクロックドリフトを微分したクロック加速度の値が大きいということが分かる。
図8は、実施の形態1におけるクロックドリフトを示すグラフである。
実施の形態1のように温度補償無しであるXOを使用する場合、クロックバイアスは図7に示すように変化する。図8は、クロックバイアスを微分したクロック速度を示すクロックドリフトの変化である。値が大きく変化していることからクロックドリフトを微分したクロック加速度の値が大きいということが分かる。
そこで、実施の形態1ではクロックバイアス加速度の影響を除去するためのクロック誤差モデルを使用する。
図9は、実施の形態1におけるクロック誤差モデルを示す図である。この実施の形態1におけるクロック誤差モデルを数式で表したものを式9に示す。
図9は、実施の形態1におけるクロック誤差モデルを示す図である。この実施の形態1におけるクロック誤差モデルを数式で表したものを式9に示す。
実施の形態1におけるクロック誤差モデルでは、従来のクロック誤差モデルにクロックバイアス加速度tca,k分を付加している。つまり、クロックバイアスtcb,kには加速度から求めた距離の値(tca,k)×(Ts2/2)を加え、クロックドリフトtcd,kには加速度から求めた速度の値(tca,k)×Tsを加えている。
図10は、実施の形態1におけるクロックバイアス加速度を示すグラフである。
図8のクロックドリフトの変化に比べ、図10のクロックバイアス加速度の変化は少ないことがわかる。このため、クロックバイアス加速度の影響を除去することで、温度補償無しであるXOを使用した場合でも高い精度で測位することができるといえる。
図8のクロックドリフトの変化に比べ、図10のクロックバイアス加速度の変化は少ないことがわかる。このため、クロックバイアス加速度の影響を除去することで、温度補償無しであるXOを使用した場合でも高い精度で測位することができるといえる。
上記のように、クロック誤差モデルがクロックバイアス、クロックドリフトおよびクロックバイアス加速度の3次元系のモデルであることは、実施の形態1における特徴点である。
上記実施の形態1では、GPS衛星からの信号により移動体の位置・速度を計算する測位装置100において、搭載クロックのドリフト誤差の変化率を推定する機能とクロックリセット時の不連続を解消する機能を付加したことがポイントであることを示した。
つまり、従来の測位演算部では、クロック誤差モデルがクロックバイアスおよびクロックドリフトレートからなる2次系であったが、安定性が低い低価格のクロックにおいても高い精度を得るために、クロックバイアス加速度を加えた3次系としてカルマンフィルタのダイナミクスを構成し、推定を行うことがポイントの1つである。
2次系モデルでは、クロックバイアス加速度がガウスノイズであることを仮定するが、廉価な温度補償無しクロック(XO)を使用する場合は、相関成分を有するクロックバイアス加速度が発生し、この仮定は成り立たない。このため、カルマンフィルタによる推定精度が低下し、誤差を拡大させてしまう。そこで、実施の形態1では、クロックバイアス加速度を変動するバイアス成分(ランダムウォークプロセス)としてモデル化することで、誤差の拡大の防止を図った。
2次系モデルでは、クロックバイアス加速度がガウスノイズであることを仮定するが、廉価な温度補償無しクロック(XO)を使用する場合は、相関成分を有するクロックバイアス加速度が発生し、この仮定は成り立たない。このため、カルマンフィルタによる推定精度が低下し、誤差を拡大させてしまう。そこで、実施の形態1では、クロックバイアス加速度を変動するバイアス成分(ランダムウォークプロセス)としてモデル化することで、誤差の拡大の防止を図った。
これにより、カルマンフィルタにより推定される位置・速度の精度が向上し、また、速度推定精度が向上することでドップラ積算の高精度化が可能になり受信感度が向上する。さらに、クロックの動的モデルを高精度に推定することで、衛星追尾断となった場合の位置・速度推定精度が向上する。
ここで、受信感度が向上することについて説明を加える。GPSの信号は極めて微弱であるが、1msec周期のC/Aコードが20回連続して送信されており、50Hzの航法メッセージの各サンプルの間までは積分を行うことができる。また、信号を二乗した後に20msec以上の周期で積分を行うことで、更に感度を上げることができる。但し、この積分の間に衛星とGPS受信機の間のドップラー遷移が変わるため、補正を行いながら積分を行う必要がある。この補正を行うためにドップラー遷移量を積算して行き、これをドップラー積算という。この補正を高精度に行うには、ドップラー遷移量を正確に推定することが必要で、移動体の速度の推定精度を向上させることが必要となる。つまり、実施の形態1により受信感度が向上するということの理由である。
次に、衛星追尾断となった場合に位置・速度推定精度が向上することについて説明を加える。衛星追尾断の場合、位置は速度外挿することで求められるが、従来方式では速度においてクロックバイアス加速度の影響を除去できないのに対して、実施の形態1では除去できるため、速度の推定精度が相対的に良く、外挿した位置の精度も向上する。
ここで、受信感度が向上することについて説明を加える。GPSの信号は極めて微弱であるが、1msec周期のC/Aコードが20回連続して送信されており、50Hzの航法メッセージの各サンプルの間までは積分を行うことができる。また、信号を二乗した後に20msec以上の周期で積分を行うことで、更に感度を上げることができる。但し、この積分の間に衛星とGPS受信機の間のドップラー遷移が変わるため、補正を行いながら積分を行う必要がある。この補正を行うためにドップラー遷移量を積算して行き、これをドップラー積算という。この補正を高精度に行うには、ドップラー遷移量を正確に推定することが必要で、移動体の速度の推定精度を向上させることが必要となる。つまり、実施の形態1により受信感度が向上するということの理由である。
次に、衛星追尾断となった場合に位置・速度推定精度が向上することについて説明を加える。衛星追尾断の場合、位置は速度外挿することで求められるが、従来方式では速度においてクロックバイアス加速度の影響を除去できないのに対して、実施の形態1では除去できるため、速度の推定精度が相対的に良く、外挿した位置の精度も向上する。
また、リセット検出/補償部360において、クロックのリセットを補償したクロックバイアスとクロックドリフトを算出するのにクロックドリフトによる変位距離(Δt×tcd,k)を加えること及びクロックバイアス加速度(tca,k)分の計算を加えることがそれぞれポイントである。
GPS受信機200では、クロックバイアス誤差を小さな値に保つため、誤差が一定の閾値を超えた場合にリセット処理を行う。この際、連続的なダイナミクスを仮定するカルマンフィルタにおいてはリセットによる不連続を検出・補償しないと移動体の位置・速度推定出力に不連続等の影響が発生する。また、クロックバイアス加速度に相関成分がある低価格クロック(XO)を使用する場合、リセット時にクロックバイアス加速度の影響により不連続が発生する。そこで、実施の形態1では、クロックバイアス加速度の影響を考慮した補正を行うことで、その不連続の発生の防止を図った。
GPS受信機200では、クロックバイアス誤差を小さな値に保つため、誤差が一定の閾値を超えた場合にリセット処理を行う。この際、連続的なダイナミクスを仮定するカルマンフィルタにおいてはリセットによる不連続を検出・補償しないと移動体の位置・速度推定出力に不連続等の影響が発生する。また、クロックバイアス加速度に相関成分がある低価格クロック(XO)を使用する場合、リセット時にクロックバイアス加速度の影響により不連続が発生する。そこで、実施の形態1では、クロックバイアス加速度の影響を考慮した補正を行うことで、その不連続の発生の防止を図った。
100 測位装置、200 GPS受信機、210 GPSアンテナ、220 RFフロントエンド処理部、230 XO、240 A/D変換部、250 ベースバンドチップ処理部、300 演算機、310 距離補正計算部、320 衛星位置/速度計算部、330 観測量補正部、340 相対運動計算部、350 残差計算部、360 リセット検出/補償部、370 測位演算部、371 時間外挿処理部、372 観測更新処理部、911 CPU、912 バス、913 ROM、914 RAM、915 通信ボード、920 磁気ディスク装置、921 OS、923 プログラム群、924 ファイル群。
Claims (9)
- クロックを備える受信機であり測位信号を受信する受信機の出力データを入力し、受信機の備えるクロックの誤差に対応してカルマンフィルタを用いて測位対象に対する測位演算を行う測位演算機において、
受信機の備えるクロックの誤差を、クロックの誤差に基づく測位対象の位置の誤差を示すクロックバイアスとクロックの誤差に基づく測位対象の速度の誤差を示すクロックドリフトとクロックの誤差に基づく測位対象の加速度の誤差を示すクロックバイアス加速度とで表してカルマンフィルタの処理をして測位対象に対する測位演算を行うことを特徴とする測位演算機。 - クロックを備える受信機であり測位信号を受信する受信機の出力データを入力して測位対象に対する測位演算を行う測位演算機であり、受信機がクロックをリセットした場合にリセットされた分のクロックの誤差に対応して測位対象に対する測位演算を行う測位演算機において、
受信機がクロックをリセットした場合に、クロックの誤差に基づく測位対象の位置の誤差を示すクロックバイアスに、クロックの誤差に基づく測位対象の速度の誤差を示すクロックドリフトに対応する距離分の値を加算して、測位対象に対する測位演算を行うことを特徴とする測位演算機。 - 受信機がクロックをリセットした場合に、クロックの誤差に基づく測位対象の位置の誤差を示すクロックバイアスに、クロックの誤差に基づく測位対象の加速度の誤差を示すクロックバイアス加速度に対応する距離分の値を加算して、測位対象に対する測位演算を行うことを特徴とする請求項2記載の測位演算機。
- 衛星から航法メッセージを含む測位信号を受信するアンテナと基準信号を生成するためのクロックとを備え、アンテナから受信した測位信号とクロックで生成された基準信号との位相差に基づいて衛星と測位対象間の距離を算出し、受信した測位信号と衛星が発信した測位信号との周波数差に関する情報をドップラー量として算出し、受信した測位信号に含まれる航法メッセージと算出した距離と算出したドップラー量とを出力する受信機と、
測位対象の位置と測位対象の速度とを演算して出力する測位演算機であり、
受信機が出力した航法メッセージを入力し、入力した航法メッセージに基づいて衛星の位置と衛星の速度とを計算し出力する衛星位置/速度計算部と、
測位演算機が出力した測位対象の位置と衛星位置/速度計算部が出力した衛星の位置と受信機が出力した航法メッセージとを入力し、入力した測位対象の位置と衛星の位置と航法メッセージとに基づいて受信機が出力した距離に対する補正量を計算すると共に、受信機が出力したドップラー量に基づく衛星と測位対象との距離方向における相対速度を距離変化率として、入力した測位対象の位置と衛星の位置と航法メッセージとに基づいて距離変化率に対する補正量を計算し、計算した距離に対する補正量と距離変化率に対する補正量とを出力する距離補正計算部と、
受信機が出力した距離とドップラー量とを観測量として入力すると共に、距離補正計算部が出力した距離に対する補正量と距離変化率に対する補正量とを入力し、入力した距離に入力した距離に対する補正量を加算すると共に、入力したドップラー量に基づく衛星と測位対象との距離方向における相対速度を距離変化率として、距離変化率に入力した距離変化率に対する補正量を加算し、補正量を加算した距離と距離変化率とを出力する観測量補正部と、
測位演算機が出力した測位対象の位置と測位対象の速度と衛星位置/速度計算部が出力した衛星の位置と衛星の速度とを入力し、衛星と測位対象間の距離と、衛星と測位対象の距離方向における相対速度を示す距離変化率とを計算し出力する相対運動計算部と、
観測量補正部が出力した距離と距離変化率と相対運動計算部が出力した距離と距離変化率とを入力し、観測量補正部から入力した距離と相対運動計算部から入力した距離との差分と観測量補正部から入力した距離変化率と相対運動計算部から入力した距離変化率との差分とを計算し残差として出力する残差計算部と、
残差計算部が出力した残差を入力し、受信機の備えるクロックの誤差を、クロックの誤差に基づく測位対象の位置の誤差を示すクロックバイアスとクロックの誤差に基づく測位対象の速度の誤差を示すクロックドリフトとクロックの誤差に基づく測位対象の加速度の誤差を示すクロックバイアス加速度とで表し、入力した残差に基づいてクロックの誤差をクロックバイアスとクロックドリフトとクロックバイアス加速度としてカルマンフィルタの処理をして測位対象に対する測位演算を行い、測位演算で算出した測位対象の位置と測位対象の速度とを出力する測位演算部と
を備えたことを特徴とする測位装置。 - クロックを備える衛星から航法メッセージを含む測位信号を受信するアンテナと基準信号を生成するためのクロックとを備え、アンテナから受信した測位信号とクロックで生成させた基準信号との位相差に基づいて衛星と測位対象間の距離を算出し、受信した測位信号と衛星が発信した測位信号との周波数差に関する情報をドップラー量として算出し、受信した測位信号に含まれる航法メッセージと算出した距離と算出したドップラー量とを出力する受信機であり、受信機の備えるクロックと衛星の備えるクロックとの同期が取れない場合にクロックをリセットする受信機と、
測位対象の位置と測位対象の速度と受信機の備えるクロックの誤差とを演算して出力する測位演算機であり、
受信機が出力した航法メッセージを入力し、入力した航法メッセージに基づいて衛星の位置と衛星の速度とを計算し出力する衛星位置/速度計算部と、
測位演算機が出力した測位対象の位置と衛星位置/速度計算部が出力した衛星の位置と受信機が出力した航法メッセージとを入力し、入力した測位対象の位置と衛星の位置と航法メッセージとに基づいて受信機が出力した距離に対する補正量を計算すると共に、受信機が出力したドップラー量に基づく衛星と測位対象との距離方向における相対速度を距離変化率として、入力した測位対象の位置と衛星の位置と航法メッセージとに基づいて距離変化率に対する補正量を計算し、計算した距離に対する補正量と距離変化率に対する補正量とを出力する距離補正計算部と、
受信機が出力した距離とドップラー量とを観測量として入力すると共に、距離補正計算部が出力した距離に対する補正量と距離変化率に対する補正量とを入力し、入力した距離に入力した距離に対する補正量を加算すると共に、入力したドップラー量に基づく衛星と測位対象との距離方向における相対速度を距離変化率として、距離変化率に入力した距離変化率に対する補正量を加算し、補正量を加算した距離と距離変化率とを出力する観測量補正部と、
測位演算機が出力した測位対象の位置と測位対象の速度と衛星位置/速度計算部が出力した衛星の位置と衛星の速度とを入力し、衛星と測位対象間の距離と、衛星と測位対象の距離方向における相対速度を示す距離変化率とを計算し出力する相対運動計算部と、
観測量補正部が出力した距離と距離変化率と相対運動計算部が出力した距離と距離変化率とを入力し、観測量補正部から入力した距離と相対運動計算部から入力した距離との差分と観測量補正部から入力した距離変化率と相対運動計算部から入力した距離変化率との差分とを計算し残差として出力する残差計算部と、
測位演算機が出力したクロックの誤差を入力し、受信機がクロックをリセットした場合に、クロックの誤差に基づく測位対象の位置の誤差を示すクロックバイアスに、クロックの誤差に基づく測位対象の速度の誤差を示すクロックドリフトに対応する距離分の値を加算する計算を行い出力するリセット計算部と、
残差計算部が出力した残差とリセット計算部が出力したクロックバイアスとを入力し、入力した残差とクロックバイアスとに基づいて測位対象に対する測位演算を行い、測位対象の位置と測位対象の速度とクロックの誤差とを出力する測位演算部と
を備えたことを特徴とする測位装置。 - 上記リセット計算部は、
受信機がクロックをリセットした場合に、クロックの誤差に基づく測位対象の位置の誤差を示すクロックバイアスに、クロックの誤差に基づく測位対象の加速度の誤差を示すクロックバイアス加速度に対応する距離分の値を加算する計算を行い出力することを特徴とする請求項5記載の測位装置。 - クロックを備える受信機であり測位信号を受信する受信機の出力データを入力し、受信機の備えるクロックの誤差に対応してカルマンフィルタを用いて測位対象に対する測位演算を行う測位演算機の測位演算方法において、
受信機の備えるクロックの誤差を、クロックの誤差に基づく測位対象の位置の誤差を示すクロックバイアスとクロックの誤差に基づく測位対象の速度の誤差を示すクロックドリフトとクロックの誤差に基づく測位対象の加速度の誤差を示すクロックバイアス加速度とで表してカルマンフィルタの処理をして測位対象に対する測位演算を行うことを特徴とする測位演算方法。 - クロックを備える受信機であり測位信号を受信する受信機の出力データを入力して測位対象に対する測位演算を行う測位演算機であり、受信機がクロックをリセットした場合にリセットされた分のクロックの誤差に対応して測位対象に対する測位演算を行う測位演算機の測位演算方法において、
受信機がクロックをリセットした場合に、クロックの誤差に基づく測位対象の位置の誤差を示すクロックバイアスに、クロックの誤差に基づく測位対象の速度の誤差を示すクロックドリフトに対応する距離分の値を加算して、測位対象に対する測位演算を行うことを特徴とする測位演算方法。 - 受信機がクロックをリセットした場合に、クロックの誤差に基づく測位対象の位置の誤差を示すクロックバイアスに、クロックの誤差に基づく測位対象の加速度の誤差を示すクロックバイアス加速度に対応する距離分の値を加算して、測位対象に対する測位演算を行うことを特徴とする請求項8記載の測位演算方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005001283A JP2006189320A (ja) | 2005-01-06 | 2005-01-06 | 測位演算機、測位装置および測位演算方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005001283A JP2006189320A (ja) | 2005-01-06 | 2005-01-06 | 測位演算機、測位装置および測位演算方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006189320A true JP2006189320A (ja) | 2006-07-20 |
Family
ID=36796677
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005001283A Pending JP2006189320A (ja) | 2005-01-06 | 2005-01-06 | 測位演算機、測位装置および測位演算方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006189320A (ja) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009108915A3 (en) * | 2008-02-28 | 2009-10-22 | Magellan Systems Japan, Inc. | Method and apparatus for acquisition, tracking, and sub-microsecond time transfer using weak gps/gnss signals |
JP2009270928A (ja) * | 2008-05-07 | 2009-11-19 | Toyota Motor Corp | 移動体用測位システム |
JP2010060421A (ja) * | 2008-09-03 | 2010-03-18 | Toyota Motor Corp | 移動体用測位システム及びgnss受信装置 |
JP2010190723A (ja) * | 2009-02-18 | 2010-09-02 | Seiko Epson Corp | 位置算出方法及び位置算出装置 |
JP2011013189A (ja) * | 2009-07-06 | 2011-01-20 | Toyota Central R&D Labs Inc | 測位装置及びプログラム |
JP2012052954A (ja) * | 2010-09-02 | 2012-03-15 | Japan Radio Co Ltd | 測位装置 |
CN102540207A (zh) * | 2011-12-09 | 2012-07-04 | 北京空间飞行器总体设计部 | 一种星载双频gps接收机测试数据分析方法 |
US8391341B2 (en) | 2007-12-14 | 2013-03-05 | Magellan Systems Japan, Inc. | Process for sub-microsecond time transfer using weak GPS/GNSS signals |
US8442760B2 (en) | 2010-10-27 | 2013-05-14 | Denso Corporation | Mobile object positioning device and navigation apparatus |
JP2013156083A (ja) * | 2012-01-27 | 2013-08-15 | Denso Corp | 測位衛星信号受信機、測位衛星信号受信機の処理方法、および、プログラム |
WO2017154779A1 (ja) * | 2016-03-09 | 2017-09-14 | 三菱電機株式会社 | 測位装置および測位方法 |
JP2018128330A (ja) * | 2017-02-08 | 2018-08-16 | 三菱スペース・ソフトウエア株式会社 | 測位計算装置、測位計算方法及び測位計算プログラム |
JP2019007844A (ja) * | 2017-06-26 | 2019-01-17 | 古野電気株式会社 | タイミング信号生成装置、それを備える電子機器、及びタイミング信号生成方法 |
JPWO2020174935A1 (ja) * | 2019-02-25 | 2021-12-23 | 古野電気株式会社 | 移動情報算出装置、および、移動情報算出方法 |
-
2005
- 2005-01-06 JP JP2005001283A patent/JP2006189320A/ja active Pending
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8615032B2 (en) | 2007-12-14 | 2013-12-24 | Magellan Systems Japan, Inc. | Process for sub-microsecond time transfer using weak GPS/GNSS signals |
US8391341B2 (en) | 2007-12-14 | 2013-03-05 | Magellan Systems Japan, Inc. | Process for sub-microsecond time transfer using weak GPS/GNSS signals |
US8331422B2 (en) | 2008-02-28 | 2012-12-11 | Magellan Systems Japan, Inc. | Method and apparatus for acquisition, tracking, and transfer using sub-microsecond time transfer using weak GPS/GNSS signals |
WO2009108915A3 (en) * | 2008-02-28 | 2009-10-22 | Magellan Systems Japan, Inc. | Method and apparatus for acquisition, tracking, and sub-microsecond time transfer using weak gps/gnss signals |
US8542718B2 (en) | 2008-02-28 | 2013-09-24 | Magellan Systems Japan, Inc. | Method and apparatus for acquisition, tracking, and sub-microsecond time transfer using weak GPS/GNSS signals |
JP2009270928A (ja) * | 2008-05-07 | 2009-11-19 | Toyota Motor Corp | 移動体用測位システム |
JP2010060421A (ja) * | 2008-09-03 | 2010-03-18 | Toyota Motor Corp | 移動体用測位システム及びgnss受信装置 |
JP2010190723A (ja) * | 2009-02-18 | 2010-09-02 | Seiko Epson Corp | 位置算出方法及び位置算出装置 |
JP2011013189A (ja) * | 2009-07-06 | 2011-01-20 | Toyota Central R&D Labs Inc | 測位装置及びプログラム |
JP2012052954A (ja) * | 2010-09-02 | 2012-03-15 | Japan Radio Co Ltd | 測位装置 |
US8442760B2 (en) | 2010-10-27 | 2013-05-14 | Denso Corporation | Mobile object positioning device and navigation apparatus |
CN102540207A (zh) * | 2011-12-09 | 2012-07-04 | 北京空间飞行器总体设计部 | 一种星载双频gps接收机测试数据分析方法 |
JP2013156083A (ja) * | 2012-01-27 | 2013-08-15 | Denso Corp | 測位衛星信号受信機、測位衛星信号受信機の処理方法、および、プログラム |
WO2017154779A1 (ja) * | 2016-03-09 | 2017-09-14 | 三菱電機株式会社 | 測位装置および測位方法 |
WO2017154131A1 (ja) * | 2016-03-09 | 2017-09-14 | 三菱電機株式会社 | 測位装置および測位方法 |
JPWO2017154779A1 (ja) * | 2016-03-09 | 2018-05-24 | 三菱電機株式会社 | 測位装置および測位方法 |
JP2018128330A (ja) * | 2017-02-08 | 2018-08-16 | 三菱スペース・ソフトウエア株式会社 | 測位計算装置、測位計算方法及び測位計算プログラム |
JP2019007844A (ja) * | 2017-06-26 | 2019-01-17 | 古野電気株式会社 | タイミング信号生成装置、それを備える電子機器、及びタイミング信号生成方法 |
JPWO2020174935A1 (ja) * | 2019-02-25 | 2021-12-23 | 古野電気株式会社 | 移動情報算出装置、および、移動情報算出方法 |
JP7291775B2 (ja) | 2019-02-25 | 2023-06-15 | 古野電気株式会社 | 移動情報算出装置、および、移動情報算出方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3314300B1 (en) | Satellite navigation receiver and method for switching between real-time kinematic mode and precise positioning mode | |
CN107710016B (zh) | 用于在实时运动模式与精确定位模式之间切换的卫星导航接收器及方法 | |
CN107710017B (zh) | 用于在实时运动模式和相对定位模式之间切换的卫星导航接收器及方法 | |
CN108027444B (zh) | 利用偏差估算进行相对定位的卫星导航接收器 | |
JP5034935B2 (ja) | 測位方法、プログラム、測位装置及び電子機器 | |
JP5186873B2 (ja) | 測位方法、プログラム、測位装置及び電子機器 | |
US20090140924A1 (en) | Positioning method, positioning device, and program | |
US11906635B2 (en) | Method and system for recreating unavailable GNSS measurements | |
JP2006189320A (ja) | 測位演算機、測位装置および測位演算方法 | |
JP2008157705A (ja) | ナビゲーションシステム、およびgps測位解精度判定方法 | |
US20230129514A1 (en) | Positioning system and method | |
CN115104039B (zh) | 使用卡尔曼滤波器估计运载装置的导航状态来导航运载装置的方法 | |
WO2022201391A1 (ja) | 測位装置、測位プログラムおよび測位方法 | |
JP6203608B2 (ja) | Glonass受信機 | |
JP5375773B2 (ja) | 位置算出方法及び位置算出装置 | |
JP2006258461A (ja) | 測位装置、測位方法および測位プログラム | |
JP4928114B2 (ja) | キャリア位相相対測位装置 | |
JP7088846B2 (ja) | 衛星信号処理のための方法およびシステム | |
JP2004045126A (ja) | 衛星信号受信機 | |
JP2002022818A (ja) | Gps受信機及びナビゲーションシステム | |
JP2003114272A (ja) | Uraを利用した2drmsを出力するgpsレシーバ、2drms算出方法、及びカーナビゲーションシステム | |
JP4985479B2 (ja) | 雑音成分除去装置及びプログラム | |
JPH07159509A (ja) | 測位装置及び方法 | |
JP2012021808A (ja) | 測位支援装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Effective date: 20070605 Free format text: JAPANESE INTERMEDIATE CODE: A621 |
|
A977 | Report on retrieval |
Effective date: 20090818 Free format text: JAPANESE INTERMEDIATE CODE: A971007 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090908 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20100202 |