[go: up one dir, main page]

JP2006182627A - Blackish titanium oxynitride - Google Patents

Blackish titanium oxynitride Download PDF

Info

Publication number
JP2006182627A
JP2006182627A JP2004381128A JP2004381128A JP2006182627A JP 2006182627 A JP2006182627 A JP 2006182627A JP 2004381128 A JP2004381128 A JP 2004381128A JP 2004381128 A JP2004381128 A JP 2004381128A JP 2006182627 A JP2006182627 A JP 2006182627A
Authority
JP
Japan
Prior art keywords
titanium
range
titanium oxynitride
atom
oxynitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004381128A
Other languages
Japanese (ja)
Other versions
JP4668607B2 (en
Inventor
Hideo Takahashi
英雄 高橋
Katsuichi Chiba
勝一 千葉
Yuichi Yasuda
雄一 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishihara Sangyo Kaisha Ltd
Original Assignee
Ishihara Sangyo Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishihara Sangyo Kaisha Ltd filed Critical Ishihara Sangyo Kaisha Ltd
Priority to JP2004381128A priority Critical patent/JP4668607B2/en
Publication of JP2006182627A publication Critical patent/JP2006182627A/en
Application granted granted Critical
Publication of JP4668607B2 publication Critical patent/JP4668607B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide blackish titanium oxynitride which has excellent blackness, is fine and contains little content of aggregated particles. <P>SOLUTION: The titanium oxynitride has a composition expressed by compositional formula: TiNxOy-nSiO<SB>2</SB>, contains nitrogen (expressed by N) in an amount of 10-20 wt.%, and has crystallite diameters of ≥7 nm and <17 nm, measured by using an X-ray diffractometer. In the compositional formula, Ti, N, O and Si express a titanium atom, nitrogen atom, oxygen atom and silicon atom, respectively; x expresses the ratio of a nitrogen atom to titanium atom; y expresses the ratio of the oxygen atom to titanium atom; x and y each has a real number of >0 and <2; n expresses the molar ratio of SiO<SB>2</SB>to TiNxOy; and n is a real number of ≥0.05 and ≤0.15. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、黒色系酸窒化チタンに関する。   The present invention relates to black titanium oxynitride.

酸窒化チタンはチタン−酸素−窒素を主成分とし一般にTiNxOyで表され、チタンブラックとも称される化合物であり、黒色系の色彩、導電性を有することから、黒色顔料として樹脂、塗料、インキ、化粧料等に配合して、あるいは、導電性付与剤としてフィルム、繊維、トナー、磁気記録媒体等に配合して用いられている。このような酸窒化チタンとして、例えば、特許文献1には二酸化チタン粉末をアンモニアガス流通下550〜950℃の温度で加熱して、酸素4〜30重量%、窒素5〜20重量%(O/N重量比6〜0.2)を含有し、L値が14〜8の黒色酸窒化チタン顔料粉末を開示している。
一方、黒色顔料として用いられるチタン化合物としては、チタン−窒素を主成分とし一般にTiNで表される窒化チタンも知られており、例えば、特許文献2には700〜1500℃の温度で四塩化チタンガスとアンモニアガスを反応してTiN粉末を製造し、次いで、窒素−酸素混合ガスを流して表層部を酸窒化チタンに酸化して、主としてTiNからなり、酸素1〜4重量%、窒素20〜30重量%を含む窒化チタン系黒色粉末を開示している。
Titanium oxynitride is a compound mainly composed of titanium-oxygen-nitrogen, generally represented by TiNxOy, and is also called titanium black, and since it has a black color and conductivity, a black pigment such as resin, paint, ink, It is blended in cosmetics or the like, or blended in a film, fiber, toner, magnetic recording medium or the like as a conductivity imparting agent. As such titanium oxynitride, for example, in Patent Document 1, titanium dioxide powder is heated at a temperature of 550 to 950 ° C. under a flow of ammonia gas, and oxygen is 4 to 30 wt%, nitrogen is 5 to 20 wt% (O / N titanium oxynitride pigment powder having an N weight ratio of 6 to 0.2 and an L value of 14 to 8 is disclosed.
On the other hand, as a titanium compound used as a black pigment, titanium nitride containing titanium-nitrogen as a main component and generally represented by TiN is also known. For example, Patent Document 2 discloses titanium tetrachloride at a temperature of 700 to 1500 ° C. A TiN powder is produced by reacting a gas and ammonia gas, and then a nitrogen-oxygen mixed gas is flowed to oxidize the surface layer portion to titanium oxynitride. A titanium nitride black powder containing 30% by weight is disclosed.

特開昭60−65069号公報JP 60-65069 A 特開昭64−37408号公報JP-A 64-37408

酸窒化チタンあるいは窒化チタンを黒色顔料として用いるには、黒色度、着色力、隠蔽性(遮光性)、耐光性、耐久性、分散性などの顔料特性について種々の用途に応じた改良が求められている。黒色度に間して、前記特許文献1にはL値が8〜14の黒色度を示す酸窒化チタンを記載しており、市販のチタンブラックでも8〜9程度のものであり、また、前記特許文献2にはL値が10程度の窒化チタンを記載しているが、それよりも黒色度の高いものが望まれている。また、前記の特許文献2ではTiN粉末の表層部を部分的に酸化して酸窒化チタンを形成しているものの、それでも空気中での酸化が徐々に進むため、顔料特性が安定していないという問題がある。   In order to use titanium oxynitride or titanium nitride as a black pigment, improvements in pigment properties such as blackness, coloring power, concealability (light shielding properties), light resistance, durability, dispersibility, and the like are required. ing. In relation to the blackness, Patent Document 1 describes titanium oxynitride exhibiting blackness with an L value of 8 to 14, and commercially available titanium black is about 8 to 9, and Patent Document 2 describes titanium nitride having an L value of about 10, but a higher blackness is desired. Moreover, although the surface layer part of TiN powder is partially oxidized to form titanium oxynitride in the above-mentioned Patent Document 2, the pigment properties are not stable because oxidation in air gradually proceeds. There's a problem.

本発明者らは、これらの問題点を解決すべく鋭意研究を重ねた結果、二酸化チタン等にアンモニアガス等を反応させて製造した酸窒化チタンにおいて、含有する窒素量を10〜20重量%とするとともに、酸窒化チタン粒子を構成する結晶子の大きさを7nm以上17nm未満の範囲と小さくすることによってそのサイズ効果により、黒色度の高い酸窒化チタンとなることなどを見出し、本発明を完成した。   As a result of intensive studies to solve these problems, the present inventors have made titanium oxynitride produced by reacting titanium dioxide or the like with ammonia gas or the like, and the amount of nitrogen contained is 10 to 20% by weight. In addition, by reducing the size of the crystallites constituting the titanium oxynitride particles to be in the range of 7 nm or more and less than 17 nm, the size effect has been found to produce titanium oxynitride with high blackness, and the present invention has been completed. did.

即ち、本発明は、組成式:TiNxOy・nSiO(組成式中、Tiはチタン原子、Nは窒素原子、Oは酸素原子、Siはケイ素原子を表し、xはチタン原子に対する窒素原子の比を、yはチタン原子に対する酸素原子の比を表し、x、yはそれぞれ0より大きく2未満の実数を取り得る。nはTiNxOyに対するSiOのモル比を表し、nは0.05≦n≦0.15の範囲の実数を取り得る。)で表され、しかも、Nで表される窒素原子を10〜20重量%の範囲含み、かつ、X線回折計を用いて測定した結晶子径が7nm以上17nm未満であることを特徴とする黒色系酸窒化チタンである。 That is, the present invention has a composition formula: TiNxOy · nSiO 2 (in the composition formula, Ti represents a titanium atom, N represents a nitrogen atom, O represents an oxygen atom, Si represents a silicon atom, and x represents a ratio of the nitrogen atom to the titanium atom). , Y represents the ratio of oxygen atoms to titanium atoms, and x and y can each be a real number greater than 0 and less than 2. n represents the molar ratio of SiO 2 to TiNxOy, and n is 0.05 ≦ n ≦ 0. .15 and a crystallite diameter of 7 nm including a nitrogen atom represented by N in a range of 10 to 20% by weight and measured using an X-ray diffractometer. This is a black titanium oxynitride characterized by being less than 17 nm.

本発明の酸窒化チタンは優れた黒色度を有することから、黒色顔料として樹脂、塗料、インキ等に配合して種々の用途に用いられる。また、本発明の酸窒化チタンは微細なものであり、しかも、凝集粒子が少ないものであることからその配合量を調整すると黒色でありながら透明性をも備えたものとすることができ、可視光の透過量を減少させる部材として、例えばガラス、レンズ、フィルム等に配合して用いることもできる。また、本発明の酸窒化チタンは導電性を有することから、導電性付与剤としても利用拡大が図れる。   Since the titanium oxynitride of the present invention has excellent blackness, it is blended in a resin, paint, ink or the like as a black pigment and used for various applications. In addition, since the titanium oxynitride of the present invention is fine and has few aggregated particles, it can be made black and transparent when adjusted in its blending amount and visible. As a member for reducing the amount of transmitted light, for example, it can be used by blending it with glass, a lens, a film or the like. Moreover, since the titanium oxynitride of this invention has electroconductivity, utilization expansion can be aimed at also as an electroconductivity imparting agent.

(1)酸窒化チタンの組成
本発明の酸窒化チタンはTiNxOyで表される酸窒化チタンとSiOで表される酸化ケイ素を含んでおり、組成式:TiNxOy・nSiOで表される。組成式中、Tiはチタン原子、Nは窒素原子、Oは酸素原子、Siはケイ素原子を表し、xはチタン原子に対する窒素原子の比を、yはチタン原子に対する酸素原子の比を表し、nはTiNxOyに対するSiOのモル比を表す。x、yはそれぞれ0より大きく2未満の実数を取り得るが、所望のものとするにはxとyの比y/xが0.65以上あるのが好ましく、0.70以上あるのがより好ましい。酸化ケイ素は酸窒化チタンと混合物を形成していても酸窒化チタンの粒子表面に付着していてもよく、あるいは酸窒化チタンと複合物を形成していても酸窒化チタンの粒子内部に固溶していてもよい。酸化ケイ素は酸窒化チタン製造の際の焼結防止作用、窒化促進作用や酸窒化チタンを樹脂、溶媒に分散する際の分散効果、塗料中での分散安定性が期待され、無水酸化ケイ素であっても、水分を吸着した酸化ケイ素であっても、含水酸化ケイ素の状態であってもよく、酸窒化チタンを高温度で製造する際に用いると無水酸化ケイ素となり易い。酸化ケイ素はSiOの状態で存在すると考えているが、酸窒化チタン製造の際にアンモニアガス、アミンガス等で高温焼成すると、酸化ケイ素の一部が窒化されて酸窒化物あるいは窒化物を生成する場合が起こるかもしれないが、本発明ではケイ素の酸窒化物、あるいはケイ素の窒化物が存在していてもよい。含有する酸化ケイ素のモル比nは0.05≦n≦0.15の範囲の実数を取り得るが、0.075≦n≦0.14の範囲が好ましく、0.10≦n≦0.13の範囲がより好ましい。
チタン原子、ケイ素原子はICP発光分光分析法により分析し、窒素原子は炭素・水素・窒素分析装置により分析し、それらの値からx、nを算出する。酸素原子は不活性ガス搬送融解赤外線吸収法を用いて分析し、ケイ素原子が存在する場合は、ケイ素原子が酸素原子と結合し酸化ケイ素SiOになっているものと想定し、酸素原子の分析値からケイ素原子と結合してSiOとなる酸素原子分を差し引いた値をTiNxOy中の酸素原子の値とし、その値からyを算出する。
(1) titanium oxynitride having the composition present invention titanium oxynitride includes a silicon oxide represented by titanium oxynitride and SiO 2 represented by TiNxOy, composition formula: represented by TiNxOy · nSiO 2. In the composition formula, Ti represents a titanium atom, N represents a nitrogen atom, O represents an oxygen atom, Si represents a silicon atom, x represents a ratio of the nitrogen atom to the titanium atom, y represents a ratio of the oxygen atom to the titanium atom, n Represents the molar ratio of SiO 2 to TiNxOy. x and y can each be a real number greater than 0 and less than 2, but in order to obtain a desired value, the ratio y / x between x and y is preferably 0.65 or more, more preferably 0.70 or more. preferable. Silicon oxide may form a mixture with titanium oxynitride or may adhere to the surface of titanium oxynitride particles, or may form a solid solution inside the titanium oxynitride particles even if it forms a composite with titanium oxynitride. You may do it. Silicon oxide is an anhydrous silicon oxide because of its anti-sintering action during the production of titanium oxynitride, nitriding acceleration action, dispersion effect when titanium oxynitride is dispersed in resin and solvent, and dispersion stability in paint. However, it may be silicon oxide that has adsorbed moisture, or may be in the form of hydrous silicon oxide, and when used to produce titanium oxynitride at a high temperature, it tends to be anhydrous silicon oxide. Silicon oxide is thought to exist in the state of SiO 2 , but when titanium oxynitride is produced, if it is fired at high temperature with ammonia gas, amine gas, etc., part of silicon oxide is nitrided to produce oxynitride or nitride In some cases, silicon oxynitride or silicon nitride may be present in the present invention. The molar ratio n of the silicon oxide contained can take a real number in the range of 0.05 ≦ n ≦ 0.15, but is preferably in the range of 0.075 ≦ n ≦ 0.14, and 0.10 ≦ n ≦ 0.13. The range of is more preferable.
Titanium atoms and silicon atoms are analyzed by ICP emission spectrometry, and nitrogen atoms are analyzed by a carbon / hydrogen / nitrogen analyzer, and x and n are calculated from these values. Oxygen atoms are analyzed using an inert gas-carrying melting infrared absorption method. When silicon atoms are present, the oxygen atoms are analyzed by assuming that silicon atoms are bonded to oxygen atoms to form silicon oxide SiO 2. The value obtained by subtracting the oxygen atom portion that is bonded to the silicon atom and becomes SiO 2 from the value is the value of the oxygen atom in TiNxOy, and y is calculated from the value.

(2)酸窒化チタンの窒素含有量、酸素含有量
TiNxOy・nSiOにはNで表される窒素含有量が10〜20重量%の範囲であることが重要であり、11〜19重量%の範囲がより好ましく、12〜18重量%の範囲が更に好ましい。窒素含有量が10重量%より少なくても、あるいは20重量%より多くても黒色度が低くなるため好ましくない。
一方、TiNxOy中のOで表される酸素含有量は、3〜25重量%程度の範囲で含まれていると経時的に酸化が進み難く安定しているので好ましく、5〜20重量%程度の範囲がより好ましく、10〜20重量%程度の範囲が更に好ましく、15〜20重量%程度の範囲が更に好ましい。
(2) Nitrogen content and oxygen content of titanium oxynitride It is important for the TiNxOy · nSiO 2 that the nitrogen content represented by N is in the range of 10 to 20% by weight. The range is more preferable, and the range of 12 to 18% by weight is still more preferable. Even if the nitrogen content is less than 10% by weight or more than 20% by weight, the blackness is lowered, which is not preferable.
On the other hand, the oxygen content represented by O in TiNxOy is preferably in the range of about 3 to 25% by weight because oxidation hardly proceeds with time and is stable, and is preferably about 5 to 20% by weight. The range is more preferable, the range of about 10 to 20% by weight is further preferable, and the range of about 15 to 20% by weight is further preferable.

(3)酸窒化チタンのX線回折
酸窒化チタンのX線回折(Cuα線使用)では、2θとして40〜45°の間にメイン(第一)ピークが、35〜40°の間に第二ピークが観察でき、窒素含有量を多くすると第一ピークの角度は徐々に小さい側にシフトし、例えば、窒素含有量が15重量%程度であれば2θが43.1°程度、20重量%程度であれば43.0°程度になり、本発明の酸窒化チタンは43.0°〜43.5°の範囲にメイン(第一)ピークが確認されるが、窒化チタンのピーク位置(42.6°)とは異なることから、本発明の酸窒化チタンは窒化チタン、あるいはその表面を部分的に酸化したものとは異なる。また、酸窒化チタンは二酸化チタン、含水酸化チタン、水酸化チタンやTiO、Ti、Tiなどの低次酸化チタン等のチタン酸化物をアンモニアガス、アミンガス等で加熱焼成して得られるため、出発原料として用いたチタン酸化物が残存する場合は二酸化チタン等に由来するX線回折ピークが確認できるが、本発明では不純物となる二酸化チタン等を存在させない程度まで還元するのが好ましい。一方、酸化ケイ素のX線回折ピークはそれが相当量存在する場合でも確認できない。
酸窒化チタンのX線回折メイン(第一)ピークの半価幅より式1のScherrerの式を用いて、酸窒化チタン粒子を構成する結晶子の大きさを求めることができる。市販のチタンブラックでは結晶子径が26nmであるが、本発明の酸窒化チタンはこの結晶子径が7nm以上17nm未満の範囲であることが重要であり、その範囲であるとサイズ効果により窒化度を高くしても比較的高い黒色度を有しているので好ましく、8〜16.5nmの範囲がより好ましく、9〜16nmの範囲が更に好ましく、10〜16nmの範囲が最も好ましい。
式1:D=0.9λ/(β1/2×cosθ)
(式1中、Dは算出される結晶子径(Å)、λはX線波長であり、Cuα線波長の1.54Åを用いる。β1/2はメイン(第一)ピークの半価幅(ラジアン)を、θは反射角を示す。)
(3) X-ray diffraction of titanium oxynitride In the X-ray diffraction of titanium oxynitride (using Cuα rays), the main (first) peak is 2θ between 40 and 45 °, and the second is between 35 and 40 °. A peak can be observed, and when the nitrogen content is increased, the angle of the first peak gradually shifts to a smaller side. For example, if the nitrogen content is about 15% by weight, 2θ is about 43.1 ° and about 20% by weight. If so, the main (first) peak is confirmed in the range of 43.0 ° to 43.5 ° in the titanium oxynitride of the present invention. 6), the titanium oxynitride of the present invention is different from titanium nitride or a partially oxidized surface thereof. Titanium oxynitride is obtained by heating and baking titanium oxide such as titanium dioxide, hydrous titanium oxide, titanium hydroxide, low-order titanium oxide such as TiO, Ti 2 O 3 , Ti 3 O 5 with ammonia gas, amine gas, etc. Therefore, when the titanium oxide used as a starting material remains, an X-ray diffraction peak derived from titanium dioxide or the like can be confirmed, but in the present invention, it is reduced to the extent that titanium dioxide or the like that is an impurity does not exist. preferable. On the other hand, the X-ray diffraction peak of silicon oxide cannot be confirmed even when a considerable amount thereof exists.
The size of the crystallites constituting the titanium oxynitride particles can be determined from the half width of the X-ray diffraction main (first) peak of titanium oxynitride using the Scherrer formula of Formula 1. Commercially available titanium black has a crystallite diameter of 26 nm, but it is important for the titanium oxynitride of the present invention to have a crystallite diameter in the range of 7 nm to less than 17 nm. Is preferable because it has relatively high blackness, more preferably in the range of 8 to 16.5 nm, still more preferably in the range of 9 to 16 nm, and most preferably in the range of 10 to 16 nm.
Formula 1: D = 0.9λ / (β 1/2 × cos θ)
(In formula 1, D is the calculated crystallite diameter (Å), λ is the X-ray wavelength, and 1.54α of the Cu α-ray wavelength is used. Β 1/2 is the half width of the main (first) peak (In radians, θ represents the reflection angle.)

(4)酸窒化チタンの黒色度
酸窒化チタンは黒色系の色彩を有しており、純粋な黒色のほかに青味がかった黒色、紫がかった黒色、赤味がかった黒色、茶色味がかった黒色など黒色のほかに別の色彩を呈していてもよい。酸窒化チタンの明度、色相は、試料1.5gをガラス製の丸セル(日本電色製、部品No.1483)に入れ、セルの底から色差計(日本電色製Color Meter ZE2000)を用いてLab表色系により求める。黒色度はLab表色系の明度指数L値で表され、L値が小さいほど黒色度が強いことを示し、本発明の酸窒化チタンにおいては例えばL値が2〜14程度の黒色度を有することができ、好ましくは3〜8程度とすることができる。
また、L値と同様にして求められるLab表色系のa値、b値は色相彩度を表す指数であり、a値が正側に大きくなるほど赤味が強く負側に大きくなるほど緑味が強いことを示し、b値が正側に大きくなるほど黄味が強く負側に大きくなるほど青味が強いことを示す。本発明の酸窒化チタンにおいては例えばa値が−3〜2程度、b値が−5〜−1程度の色相を有することができる。
(4) Titanium oxynitride blackness Titanium oxynitride has a blackish color and has a bluish black, purplish black, reddish black, and brownishness in addition to pure black Other colors besides black, such as black, may be exhibited. As for the brightness and hue of titanium oxynitride, 1.5 g of a sample was placed in a glass round cell (Nippon Denshoku, part No. 1483), and a color difference meter (Nippon Denshoku Color Meter ZE2000) was used from the bottom of the cell. Obtained by the Lab color system. The blackness is represented by the lightness index L value of the Lab color system. The smaller the L value, the stronger the blackness. In the titanium oxynitride of the present invention, for example, the L value has a blackness of about 2 to 14. Preferably about 3-8.
In addition, the Lab color system a value and b value obtained in the same manner as the L value are indices representing hue saturation, and the redness increases as the a value increases toward the positive side and the greenness increases as the value increases toward the negative side. It shows that it is strong, yellow value is so strong that b value becomes large on the positive side, and blue color is so strong that it becomes large on the negative side. The titanium oxynitride of the present invention can have a hue having an a value of about -3 to 2 and a b value of about -5 to -1.

(5)酸窒化チタンの可視光吸収率
酸窒化チタンは黒色系の色彩を有するため可視光の波長全域にわたって吸収が大きいが、黒色顔料として用いる場合は特にその吸収がより大きいものが好ましい。可視光の吸収率は(100−反射率)(%)から簡易的に求めることができ、その可視光の反射率は、紫外可視分光光度計(日本分光製V−570)を用いて酸窒化チタン粉末0.3gを円筒セル(直径16mm、日本分光製PSH−001型)に詰めて可視光の反射スペクトルを測定して求めることができる(比較試料として硫酸バリウム粉末を使用)。本発明の酸窒化チタンは窒化度が高く、しかも結晶子径が小さいことからそのサイズ効果により、可視光の反射率が小さくなり、例えば650nmの波長の反射率では、12%以下程度であるのが好ましく、11%以下程度がより好ましく、550nmの波長の反射率では、11%以下程度であるのが好ましく、450nmの波長の反射率では、12%以下程度であるのが好ましい。
(5) Visible light absorptivity of titanium oxynitride Since titanium oxynitride has a black color, it has a large absorption over the entire wavelength range of visible light. The visible light absorptance can be easily obtained from (100-reflectance) (%), and the visible light reflectivity is oxynitrided using an ultraviolet-visible spectrophotometer (V-570 manufactured by JASCO Corporation). It can be obtained by packing 0.3 g of titanium powder in a cylindrical cell (diameter 16 mm, JASCO PSH-001 type) and measuring the reflection spectrum of visible light (using barium sulfate powder as a comparative sample). Since the titanium oxynitride of the present invention has a high degree of nitridation and a small crystallite diameter, the size effect reduces the reflectance of visible light. For example, the reflectance at a wavelength of 650 nm is about 12% or less. It is preferably about 11% or less, more preferably about 11% or less for a reflectance at a wavelength of 550 nm, and preferably about 12% or less for a reflectance at a wavelength of 450 nm.

(6)酸窒化チタンの粒子径
TiNxOy・nSiOの粒子は、電子顕微鏡で観察してその粒子径が0.005〜0.25μm程度の範囲であると優れた顔料特性を有するため好ましく、0.005〜0.15μm程度の範囲がより好ましく、0.005〜0.05μm程度の範囲が更に好ましく、0.01〜0.03μm程度の範囲が最も好ましい。酸化ケイ素を含む場合、電子顕微鏡ではその存在を確認することはできないが、酸化ケイ素は酸窒化チタン粒子の表面に付着していると推定しており、その粒子径は測定しない。
(6) Particle diameter of titanium oxynitride The particles of TiNxOy · nSiO 2 are preferably observed when observed with an electron microscope and the particle diameter is in the range of about 0.005 to 0.25 μm. A range of about 0.005 to 0.15 μm is more preferable, a range of about 0.005 to 0.05 μm is more preferable, and a range of about 0.01 to 0.03 μm is most preferable. When silicon oxide is included, its presence cannot be confirmed with an electron microscope, but it is assumed that silicon oxide is attached to the surface of the titanium oxynitride particles, and the particle diameter is not measured.

(7)酸窒化チタンの比表面積
酸窒化チタンの比表面積はBET法により測定して、30〜200m/g程度の範囲であると黒色度が高くなるため好ましく、樹脂バインダーへの分散性も加味すると50〜150m/g程度の範囲にするのがより好ましく、50〜100m/g程度の範囲が更に好ましく、60〜90m/g程度の範囲にするのが最も好ましい。
また、BET法により測定した比表面積値から下記式2を用いて、酸窒化チタン粒子を球形状と仮定した粒子径を算出することができ、比表面積が50〜150m/gの範囲では8〜24nm程度となる。
式2:d=6×10/(SSA×ρ)
(式2中、dは算出される粒子径(nm)、SSAは比表面積値(m/g)を示し、ρは窒化チタンの密度(g/cm)であり、ここでは4.9を用いる。6は球形状係数である。)
また、BET法により測定した比表面積値から算出した粒子径を前記のX線回折計を用いて測定した結晶子径で除した割合は、本発明では小さな値となるのが特徴である。通常は酸窒化チタン粒子がある程度凝集しているため、X線回折計で測定した結晶子径に対する比表面積値から算出した粒子径の比は2〜6程度になるが、本発明では好ましくは0.9〜1.5程度の範囲、より好ましくは1.0〜1.4程度の範囲となり、凝集粒子がほとんど存在していないと言える。
(7) Specific surface area of titanium oxynitride The specific surface area of titanium oxynitride is preferably in the range of about 30 to 200 m 2 / g, as measured by the BET method, because the blackness increases, and the dispersibility in the resin binder is also preferable. more preferably in the range 50~150m about 2 / g of when considering, even more preferably in the range of from about 50 to 100 m 2 / g, and most preferably in the range of about 60~90M 2 / g.
In addition, from the specific surface area value measured by the BET method, the particle diameter assuming that the titanium oxynitride particles are spherical can be calculated using the following formula 2. If the specific surface area is in the range of 50 to 150 m 2 / g, the particle diameter is 8 ˜24 nm.
Formula 2: d = 6 × 10 3 / (SSA × ρ)
(In Formula 2, d is the calculated particle diameter (nm), SSA is the specific surface area value (m 2 / g), ρ is the density (g / cm 3 ) of titanium nitride, and here it is 4.9. (6 is the spherical shape factor.)
The ratio obtained by dividing the particle diameter calculated from the specific surface area value measured by the BET method by the crystallite diameter measured using the X-ray diffractometer is a small value in the present invention. Usually, since the titanium oxynitride particles are aggregated to some extent, the ratio of the particle diameter calculated from the specific surface area value to the crystallite diameter measured with an X-ray diffractometer is about 2 to 6, but in the present invention it is preferably 0. It is in the range of about .9 to 1.5, more preferably in the range of about 1.0 to 1.4, and it can be said that almost no aggregated particles are present.

本発明の酸窒化チタンは、窒素含有還元剤の存在下でチタン酸化物を装填した装置の温度を600〜1200℃程度の範囲の温度に昇温し加熱焼成することで製造でき、チタン酸化物の粒子表面に酸化ケイ素を被覆することにより製造できる。加熱焼成温度は800〜1100℃程度の範囲が好ましく、850〜1050℃程度がより好ましい。加熱焼成温度が前記範囲より低いと窒化が進み難く所望の酸窒化チタンが得られ難いので好ましくなく、前記範囲より高いと焼結が進み微細な粒子が得られ難いので好ましくない。加熱焼成時間はチタン酸化物や窒素含有還元剤の量によって異なるため適宜設定することになるが、操業上1〜20時間程度が適当であり、3〜10時間程度が好ましい。また、加熱焼成を行った後冷却し、その後更に加熱焼成を繰り返し行ってもよい。加熱焼成装置は、流動層装置、ロータリーキルン、トンネルキルン等の公知のものを用いることができ、特に、ロータリーキルンが好ましい。窒素含有還元剤としては、例えば、アンモニアや、メチルアミン、ジメチルアミン等のアルキルアミン、ヒドラジン及び硫酸ヒドラジン、塩酸ヒドラジン等のヒドラジン系化合物等を用いることができ、これらを1種又は2種以上を混合して用いてもよい。中でもアンモニア及びアルキルアミンは、ガス状にしてチタン酸化物と接触させることができ、均一に反応させ易いので好ましい。さらに、これらの窒素含有還元剤に窒素、水素、炭化水素を微量添加すると窒化を促進することができ、好ましい。特に、炭化水素は、チタン酸化物中の酸素と反応し、二酸化炭素となり、窒化反応を抑制する水の生成が抑制できるため好ましい。   The titanium oxynitride of the present invention can be produced by raising the temperature of an apparatus loaded with titanium oxide in the presence of a nitrogen-containing reducing agent to a temperature in the range of about 600 to 1200 ° C. and baking it. It can be produced by coating the surface of the particles with silicon oxide. The heating and baking temperature is preferably in the range of about 800 to 1100 ° C, more preferably about 850 to 1050 ° C. When the heating and baking temperature is lower than the above range, nitriding is difficult to proceed and it is difficult to obtain desired titanium oxynitride, and when it is higher than the above range, sintering is advanced and it is difficult to obtain fine particles. The heating and firing time varies depending on the amount of the titanium oxide and the nitrogen-containing reducing agent, and is appropriately set. However, about 1 to 20 hours is appropriate for operation, and about 3 to 10 hours is preferable. Moreover, after performing heat baking, it may cool, and heat baking may be repeated repeatedly after that. As the heating and baking apparatus, a known apparatus such as a fluidized bed apparatus, a rotary kiln, or a tunnel kiln can be used, and a rotary kiln is particularly preferable. As the nitrogen-containing reducing agent, for example, ammonia, alkylamines such as methylamine and dimethylamine, hydrazine and hydrazine-based compounds such as hydrazine sulfate and hydrazine hydrochloride, and the like can be used. You may mix and use. Among these, ammonia and alkylamine are preferable because they can be made into a gaseous state and brought into contact with the titanium oxide and easily reacted uniformly. Furthermore, it is preferable to add a small amount of nitrogen, hydrogen, or hydrocarbon to these nitrogen-containing reducing agents because nitriding can be promoted. In particular, a hydrocarbon is preferable because it reacts with oxygen in the titanium oxide to become carbon dioxide, and generation of water that suppresses the nitriding reaction can be suppressed.

本発明で言うチタン酸化物は、通常のルチル型(R型)、アナターゼ型(A型)等の二酸化チタンのほかに、水和酸化チタン、含水酸化チタン、水酸化チタンやTiO、Ti、Tiなどの低次酸化チタンを包含する化合物である。二酸化チタンは、例えば、含水酸化チタン(又は水酸化チタン)を空気又は酸素含有ガスの雰囲気下あるいは窒素、アルゴン等の不活性ガス雰囲気下で800〜1000℃程度の温度で加熱焼成することで得られる。また、含水酸化チタンは、例えば、イルミナイト鉱、チタンスラグ等のチタン含有鉱石を必要に応じて粉砕し、硫酸で溶解させながらチタン成分と硫酸とを反応させて、硫酸チタニル(TiOSO4)を生成させ、静置分級、濾過した後、硫酸チタニルを加熱加水分解することで得られる。窒素含有還元剤の存在下でチタン酸化物を加熱焼成する窒化反応において水が存在すると窒化が進み難くなるので、水和酸化チタン、含水酸化チタン、水酸化チタンより二酸化チタンを使用する方が好ましく、ルチル型よりアナターゼ型の二酸化チタンの方が窒化され易いためより好ましい。本発明では、チタン酸化物のX線回折メイン(第一)ピークの半価幅より式1のScherrerの式を用いて算出したチタン酸化物の結晶子径では5〜50nm程度の範囲が好ましく、10〜40nm程度の範囲がより好ましく、10〜30nm程度の範囲が更に好ましく、10〜20nm程度の範囲が最も好ましい。また、電子顕微鏡で観察してその粒子径が0.005〜0.25μm程度の範囲が好ましく、0.005〜0.15μm程度の範囲がより好ましく、0.005〜0.1μm程度の範囲が更に好ましく、0.005〜0.05μm程度の範囲が最も好ましい。また、BET法で測定したチタン酸化物の比表面積では20〜200m/g程度の範囲が好ましく、30〜150m/g程度の範囲がより好ましく、40〜100m/g程度の範囲が更に好ましく、50〜90m/g程度の範囲が最も好ましい。 The titanium oxide referred to in the present invention is not only a normal rutile type (R type) or anatase type (A type) titanium dioxide, but also hydrated titanium oxide, hydrous titanium oxide, titanium hydroxide, TiO, Ti 2 O. 3 and a compound including low-order titanium oxide such as Ti 3 O 5 . Titanium dioxide is obtained, for example, by heating and baking hydrous titanium oxide (or titanium hydroxide) at a temperature of about 800 to 1000 ° C. in an atmosphere of air or oxygen-containing gas or in an inert gas atmosphere such as nitrogen or argon. It is done. In addition, hydrous titanium oxide is obtained by, for example, grinding titanium-containing ores such as illuminite ore and titanium slag as necessary, and reacting the titanium component and sulfuric acid while dissolving with sulfuric acid to produce titanyl sulfate (TiOSO 4 ). It is obtained by standing, classifying and filtering, and then hydrolyzing titanyl sulfate with heating. In the nitriding reaction in which titanium oxide is heated and fired in the presence of a nitrogen-containing reducing agent, it is difficult to proceed with nitriding in the presence of water. Anatase type titanium dioxide is more preferable than rutile type because it is more easily nitrided. In the present invention, the crystallite diameter of the titanium oxide calculated from the half width of the X-ray diffraction main (first) peak of the titanium oxide using the Scherrer formula of Formula 1 is preferably in the range of about 5 to 50 nm. The range of about 10-40 nm is more preferable, the range of about 10-30 nm is still more preferable, and the range of about 10-20 nm is the most preferable. Moreover, the range which the particle diameter observes with an electron microscope is about 0.005-0.25 micrometer is preferable, The range which is about 0.005-0.15 micrometer is more preferable, The range which is about 0.005-0.1 micrometer is preferable. More preferably, the range of about 0.005 to 0.05 μm is most preferable. Further, preferably in the range of about 20 to 200 m 2 / g in specific surface area of titanium oxide as measured by the BET method, and more preferably in the range of about 30 to 150 m 2 / g, still in the range of about 40 to 100 m 2 / g A range of about 50 to 90 m 2 / g is most preferable.

本発明においては、チタン酸化物の粒子表面に酸化ケイ素を被覆した後、加熱焼成すると、前記の範囲の高温度でも粒子が焼結し難く、更に反応過程でルチル型の二酸化チタンが生成し難いため窒化が進み易く、微細な酸窒化チタンが更に得られ易くなるので好ましい。酸化ケイ素は多孔質酸化ケイ素として被覆しても、緻密酸化ケイ素として被覆してもよいが、緻密酸化ケイ素として被覆すると、焼結抑制の効果が得られ易く好ましい。酸化ケイ素の被覆量は、加熱焼成して得られるTiNxOyに対するモル比nで表して0.05≦n≦0.15の範囲となる量であればよく、0.075≦n≦0.15の範囲が好ましく、0.01≦n≦0.14の範囲がより好ましい。酸化ケイ素の被覆量が前記範囲より少ないと所望の焼結抑制効果が得られ難く、多いと窒化が進み難いため、好ましくない。   In the present invention, when silicon oxide is coated on the surface of titanium oxide particles and then heated and fired, the particles are difficult to sinter even at a high temperature within the above range, and further, rutile titanium dioxide is not easily generated in the reaction process. Therefore, nitriding is easy to proceed, and fine titanium oxynitride is more easily obtained, which is preferable. Silicon oxide may be coated as porous silicon oxide or dense silicon oxide, but coating as dense silicon oxide is preferable because an effect of suppressing sintering can be easily obtained. The coating amount of silicon oxide may be an amount that is in a range of 0.05 ≦ n ≦ 0.15 in terms of a molar ratio n to TiNxOy obtained by heating and firing, and 0.075 ≦ n ≦ 0.15. The range is preferable, and the range of 0.01 ≦ n ≦ 0.14 is more preferable. If the coating amount of silicon oxide is less than the above range, it is difficult to obtain a desired sintering suppressing effect, and if it is too large, nitriding is difficult to proceed, which is not preferable.

緻密酸化ケイ素の被覆方法は、特開昭53−33228号公報、特開平7−8971号公報等に記載されているような公知の方法を用いることができる。特開昭53−33228号公報に記載の方法は、チタン酸化物のスラリーを80〜100℃の範囲の温度に維持しながら、好ましくはスラリーのpHを9〜10.5の範囲に調整し、ケイ酸ナトリウムを急速に添加した後、9〜10.5の範囲のpHで中和し、その後、80〜100℃の範囲の温度を50〜60分間保持するものである。特開平7−8971号公報に記載の方法は、チタン酸化物のスラリーのpHを9.5〜11の範囲に調整した後、60℃以上、好ましくは70℃以上、更に好ましくは90℃以上の温度下で、ケイ酸塩を30〜120分間かけて徐々に添加した後、中和し、その後、スラリー温度を維持しながら60〜120分間保持するものである。ケイ酸塩には、ケイ酸ナトリウム、ケイ酸カリウム等を用いることができ、中和剤には、硫酸、塩酸等の無機酸や、酢酸、ギ酸等の有機酸等の酸性化合物を用いることができる。酸化ケイ素を被覆した後は、好ましくは脱水、洗浄し、加熱焼成工程に供する。   As a method for coating the dense silicon oxide, a known method as described in JP-A-53-33228, JP-A-7-8971, or the like can be used. The method described in JP-A-53-33228 preferably adjusts the pH of the slurry to a range of 9 to 10.5 while maintaining the titanium oxide slurry at a temperature in the range of 80 to 100 ° C. After the rapid addition of sodium silicate, it is neutralized at a pH in the range of 9 to 10.5 and then maintained at a temperature in the range of 80 to 100 ° C. for 50 to 60 minutes. In the method described in JP-A-7-8971, after adjusting the pH of the slurry of titanium oxide to the range of 9.5 to 11, it is 60 ° C or higher, preferably 70 ° C or higher, more preferably 90 ° C or higher. Under temperature, the silicate is gradually added over 30 to 120 minutes, then neutralized, and then maintained for 60 to 120 minutes while maintaining the slurry temperature. As the silicate, sodium silicate, potassium silicate and the like can be used. As the neutralizing agent, an inorganic compound such as sulfuric acid and hydrochloric acid, and an acidic compound such as organic acid such as acetic acid and formic acid can be used. it can. After coating with silicon oxide, it is preferably dehydrated and washed, and then subjected to a heating and firing step.

酸窒化チタンを製造した後は、必要に応じて公知の方法により、乾式粉砕を行ってもよく、あるいはスラリー化した後、湿式粉砕、脱水、乾燥し、乾式粉砕してもよい。湿式粉砕には縦型サンドミル、横型サンドミル等が、乾燥にはバンド式ヒーター、バッチ式ヒーター等が、乾式粉砕にはハンマーミル、ピンミル等の衝撃粉砕機、解砕機等の摩砕粉砕機、ジェットミル、スネイルミル等の気流粉砕機や、噴霧乾燥機等の機器を用いることができる。   After producing the titanium oxynitride, if necessary, dry pulverization may be performed by a known method, or after slurrying, wet pulverization, dehydration, drying, and dry pulverization may be performed. For wet grinding, vertical sand mill, horizontal sand mill, etc., for drying, band type heater, batch type heater, etc., for dry grinding, hammer mill, pin mill etc. impact crusher, crusher etc. grinding crusher, jet An airflow crusher such as a mill or a snail mill, or a device such as a spray dryer can be used.

本発明の酸窒化チタンの粒子表面には、樹脂バインダーとの親和性を向上させたり、生産性を改良する等の目的で、無機化合物、有機化合物から選ばれる少なくとも1種が被覆されていてもよい。無機化合物としては、例えば、アルミニウム化合物、ケイ素化合物、ジルコニウム化合物、スズ化合物、チタニウム化合物、アンチモン化合物等が挙げられ、これらを1種被覆することも、2種以上の被覆を積層したり、2種以上の無機化合物を混合して被覆する等して、組合せて用いることもできる。これらの無機化合物が酸化物、水酸化物、水和酸化物、リン酸塩から選ばれる少なくとも1種であれば、更に好ましい。また、有機化合物としては、多価アルコール、アルカノールアミン又はその誘導体、有機ケイ素化合物、高級脂肪酸又はその金属塩、有機金属化合物等が挙げられる。具体的には、例えば、(1)多価アルコールとしては、トリメチロールエタン、トリメチロールプロパン、トリプロパノールエタン、ペンタエリスリトール等が挙げられる。(2)アルカノールアミンとしては、トリエタノールアミン、トリプロパノールアミン等が挙げられる。(3)有機ケイ素化合物としては、(a)ポリシロキサン類(ジメチルポリシロキサン、メチルハイドロジェンポリシロキサン、メチルフェニルポリシロキサン、ジメチルポリシロキサンジオール、アルキル変性シリコーンオイル、アルキルアラルキル変性シリコーンオイル、アミノ変性シリコーンオイル、両末端アミノ変性シリコーンオイル、エポキシ変性シリコーンオイル、両末端エポキシ変性シリコーンオイル、フッ素変性シリコーンオイル等)、(b)オルガノシラン類(n−ブチルトリエトキシシラン、イソブチルトリメトキシシラン、n−ヘキシルトリメトキシシラン、n−ヘキシルトリエトキシシラン、n−オクチルトリメトキシシラン、n−オクチルトリエトキシシラン、n−デシルトリメトキシシラン、n−オクタデシルトリメトキシシラン、n−オクタデシルメチルジメトキシシランなどのアルキルシラン類、フェニルトリエトキシシランなどのフェニルシラン類、トリフルオロプロピルトリメトキシシランなどのフルオロシラン類等の非反応性シラン類、アミノプロピルトリエトキシシラン、N−(β−アミノエチル)−γ−アミノプロピルトリエトキシシラン、N−フェニル−γ−アミノプロピルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリクロロシラン、γ−グリシドキシプロピルトリメトキシシラン、メタクリロキシプロピルトリメトキシシラン、β−(3,4エポキシシクロヘキシル)エチルトリメトキシシランなどのシランカップリング剤等)が挙げられる。(4)高級脂肪酸としては、ステアリン酸、ラウリン酸等が、それらの金属塩としてはマグネシウム塩、亜鉛塩等が挙げられる。(5)有機金属化合物としては、イソプロピルトリイソステアロイルチタネート、イソプロピルトリス(ジオクチルピロホスフェート)チタネート、テトラ(2,2−ジアリルオキシメチル−1−ブチル)ビス(ジトリデシル)ホスファイトチタネート、ビス(ジオクチルピロホスフェート)オキシアセテートチタネート、ビス(ジオクチルピロホスフェート)エチレンチタネートなどのチタニウム系カップリング剤、アセトアルコキシアルミニウムジイソプロピレートなどのアルミニウム系カップリング剤、ジルコニウムトリブトキシアセチルアセトネート、ジルコニウムトリブトキシステアレートなどのジルコニウム系化合物等が挙げられる。これらは1種被覆することも、2種以上を組合せて被覆することもできる。被覆量は適宜設定できるが、酸窒化チタンに対し0.01〜30重量%程度の範囲であるのが好ましく、0.05〜10重量%程度の範囲がより好ましく、0.1〜5重量%程度の範囲が更に好ましい。酸窒化チタンの表面に無機化合物や有機化合物を被覆する場合は、酸窒化チタンの乾式粉砕の際、スラリー化した際あるいは湿式粉砕した際に公知の方法を用いて行うことができる。   The surface of the titanium oxynitride particles of the present invention may be coated with at least one selected from an inorganic compound and an organic compound for the purpose of improving affinity with a resin binder or improving productivity. Good. Examples of the inorganic compound include an aluminum compound, a silicon compound, a zirconium compound, a tin compound, a titanium compound, an antimony compound, and the like. They can also be used in combination, for example, by mixing and coating the above inorganic compounds. More preferably, these inorganic compounds are at least one selected from oxides, hydroxides, hydrated oxides, and phosphates. Examples of organic compounds include polyhydric alcohols, alkanolamines or derivatives thereof, organosilicon compounds, higher fatty acids or metal salts thereof, and organometallic compounds. Specifically, for example, (1) polyhydric alcohol includes trimethylolethane, trimethylolpropane, tripropanolethane, pentaerythritol and the like. (2) Examples of the alkanolamine include triethanolamine and tripropanolamine. (3) Examples of organosilicon compounds include: (a) polysiloxanes (dimethylpolysiloxane, methylhydrogenpolysiloxane, methylphenylpolysiloxane, dimethylpolysiloxanediol, alkyl-modified silicone oil, alkylaralkyl-modified silicone oil, amino-modified silicone) Oil, both-end amino-modified silicone oil, epoxy-modified silicone oil, both-end epoxy-modified silicone oil, fluorine-modified silicone oil, etc.), (b) organosilanes (n-butyltriethoxysilane, isobutyltrimethoxysilane, n-hexyl) Trimethoxysilane, n-hexyltriethoxysilane, n-octyltrimethoxysilane, n-octyltriethoxysilane, n-decyltrimethoxysilane, n-octadecyltrimeth Non-reactive silanes such as silane, alkylsilanes such as n-octadecylmethyldimethoxysilane, phenylsilanes such as phenyltriethoxysilane, fluorosilanes such as trifluoropropyltrimethoxysilane, aminopropyltriethoxysilane, N -(Β-aminoethyl) -γ-aminopropyltriethoxysilane, N-phenyl-γ-aminopropyltrimethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltrichlorosilane, γ-glycidoxypropyltrimethoxy And silane coupling agents such as silane, methacryloxypropyltrimethoxysilane, and β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane). (4) Examples of higher fatty acids include stearic acid and lauric acid, and examples of metal salts thereof include magnesium salts and zinc salts. (5) Examples of organometallic compounds include isopropyl triisostearoyl titanate, isopropyl tris (dioctyl pyrophosphate) titanate, tetra (2,2-diallyloxymethyl-1-butyl) bis (ditridecyl) phosphite titanate, bis (dioctyl pyro) Phosphate) oxyacetate titanate, titanium coupling agent such as bis (dioctylpyrophosphate) ethylene titanate, aluminum coupling agent such as acetoalkoxyaluminum diisopropylate, zirconium tributoxyacetylacetonate, zirconium tributoxy systemate, etc. Zirconium compounds and the like can be mentioned. These can be coated alone or in combination of two or more. The coating amount can be appropriately set, but is preferably in the range of about 0.01 to 30% by weight, more preferably in the range of about 0.05 to 10% by weight, and 0.1 to 5% by weight with respect to titanium oxynitride. A range of about is more preferred. When the surface of titanium oxynitride is coated with an inorganic compound or an organic compound, a known method can be used when titanium oxynitride is dry pulverized, slurried or wet pulverized.

本発明の黒色系酸窒化チタンは黒色顔料としてあるいは導電性付与剤として、塗料、インキやフィルム等のプラスチック成形物などの樹脂に配合すると、その優れた黒色性能あるいは導電性能を利用した樹脂組成物とすることができる。この樹脂組成物には、本発明の黒色系酸窒化チタンを任意の量、好ましくは20重量%以上を配合し、そのほかにそれぞれの分野で使用される組成物形成材料を配合し、さらに各種の添加剤を配合してもよい。塗料やインキとする場合であれば、塗膜形成材料又はインキ膜形成材料、溶剤、分散剤、顔料、充填剤、増粘剤、フローコントロール剤、レベリング剤、硬化剤、架橋剤、硬化用触媒などを配合する。塗膜形成材料としては例えば、アクリル樹脂、アルキド樹脂、ウレタン樹脂、ポリエステル樹脂、アミノ樹脂などの有機系成分や、オルガノシリケート、オルガノチタネートなどの無機系成分を用いることができ、インキ膜形成材料としては、ウレタン樹脂、アクリル樹脂、ポリアミド樹脂、塩酢ビ樹脂、塩素化プロピレン樹脂などを用いることができる。これらの塗膜形成材料、インキ膜形成材料には、熱硬化性樹脂、常温硬化性樹脂、紫外線硬化性樹脂など各種のものを用いることができ特に制限はないが、モノマーやオリゴマーの紫外線硬化性樹脂を用い、光重合開始剤や光増感剤を配合し、塗布後に紫外光を照射して硬化させると、基材に熱負荷を掛けず、硬度や密着性の優れた塗膜が得られるので好ましい。また、プラスチックス成形物であれば、プラスチックス、顔料、染料、分散剤、滑剤、酸化防止材、紫外線吸収剤、光安定剤、帯電防止剤、難燃剤、殺菌剤などを本発明の黒色系酸窒化チタンとともに練り込み、フィルム状などの任意の形状に成形する。プラスチックスとしては、ポリオレフィン樹脂、ポリスチレン樹脂、ポリエステル樹脂、アクリル樹脂、ポリカーボネート樹脂、フッ素樹脂、ポリアミド樹脂、セルロース樹脂、ポリ乳酸樹脂などの熱可塑性樹脂、フェノール樹脂、ウレタン樹脂などの熱硬化性樹脂を用いることができる。   The black titanium oxynitride of the present invention is a resin composition utilizing its excellent black performance or conductive performance when blended with a resin such as paint, ink or film, as a black pigment or as a conductivity imparting agent. It can be. In this resin composition, the black titanium oxynitride of the present invention is blended in an arbitrary amount, preferably 20% by weight or more, and in addition, a composition forming material used in each field is blended. You may mix | blend an additive. In the case of paints and inks, coating film forming materials or ink film forming materials, solvents, dispersants, pigments, fillers, thickeners, flow control agents, leveling agents, curing agents, crosslinking agents, curing catalysts Etc. Examples of coating film forming materials include organic components such as acrylic resins, alkyd resins, urethane resins, polyester resins, and amino resins, and inorganic components such as organosilicates and organotitanates. In this case, urethane resin, acrylic resin, polyamide resin, vinyl acetate resin, chlorinated propylene resin and the like can be used. Various materials such as thermosetting resin, room temperature curable resin, and ultraviolet curable resin can be used for these coating film forming material and ink film forming material. When a resin is used, a photopolymerization initiator or photosensitizer is blended, and UV light is applied and cured after application, a coating with excellent hardness and adhesion can be obtained without applying a thermal load to the substrate. Therefore, it is preferable. In the case of plastic moldings, the black type of the present invention can be used for plastics, pigments, dyes, dispersants, lubricants, antioxidants, ultraviolet absorbers, light stabilizers, antistatic agents, flame retardants, bactericides, and the like. It is kneaded with titanium oxynitride and formed into an arbitrary shape such as a film. Plastics include thermoplastic resins such as polyolefin resin, polystyrene resin, polyester resin, acrylic resin, polycarbonate resin, fluororesin, polyamide resin, cellulose resin, and polylactic acid resin, and thermosetting resins such as phenol resin and urethane resin. Can be used.

以下に実施例、比較例を挙げて本発明を更に詳細に説明するが、本発明はこれらの実施例によって制限されるものではない。   Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.

実施例1
1.二酸化チタンへの酸化ケイ素の被覆
含水二酸化チタンをTiO換算で300gを水1リットルに懸濁させスラリーとし、水酸化ナトリウム水溶液で該スラリーのpHを10に調整し、次いでスラリー温度を70℃に加温した後、ケイ酸ナトリウム水溶液を2時間滴下した。引き続き、スラリー温度を90℃に加温した後、希硫酸を2時間滴下して、pHを5に中和し、更に、30分保持した。その後、脱水、洗浄して、さらに空気中で850℃で5時間焼成して、緻密な酸化ケイ素(SiOとして9重量%)を被覆した二酸化チタンを得た。得られた二酸化チタンはアナタ−ゼ型であった。
なお、得られた緻密な酸化ケイ素を被覆した二酸化チタンの粒子径は0.020μmであり、結晶子径は19nmであり、比表面積は79.7m/gであった。
2.二酸化チタンの還元焼成
次に、この酸化ケイ素を被覆した二酸化チタンを内径7.5cmの石英管に装入し、アンモニアガスを10リットル/分の流速で通気しながら、石英管を900℃の温度で3時間加熱した。次いで、得られた生成物を同雰囲気下で100℃まで冷却し、更に大気中で常温まで放冷して本発明の酸窒化チタン(試料A)を得た。
Example 1
1. Coating titanium dioxide with silicon oxide 300 g of hydrous titanium dioxide is suspended in 1 liter of water as TiO 2 to make a slurry, the pH of the slurry is adjusted to 10 with an aqueous sodium hydroxide solution, and the slurry temperature is then raised to 70 ° C. After warming, an aqueous sodium silicate solution was added dropwise for 2 hours. Subsequently, after heating the slurry temperature to 90 ° C., dilute sulfuric acid was added dropwise for 2 hours to neutralize the pH to 5, and the mixture was further maintained for 30 minutes. Thereafter, it was dehydrated and washed, and further baked in air at 850 ° C. for 5 hours to obtain titanium dioxide coated with dense silicon oxide (9% by weight as SiO 2 ). The obtained titanium dioxide was anatase type.
The obtained titanium dioxide coated with dense silicon oxide had a particle diameter of 0.020 μm, a crystallite diameter of 19 nm, and a specific surface area of 79.7 m 2 / g.
2. Next, titanium dioxide coated with this silicon oxide was charged into a quartz tube having an inner diameter of 7.5 cm, and the quartz tube was heated to 900 ° C. while aeration of ammonia gas at a flow rate of 10 liters / minute. For 3 hours. Next, the obtained product was cooled to 100 ° C. under the same atmosphere, and further allowed to cool to room temperature in the air to obtain titanium oxynitride (sample A) of the present invention.

実施例2
実施例1において、900℃の還元焼成温度を980℃とすること以外は実施例1と同様にして本発明の酸窒化チタン(試料B)を得た。
Example 2
In Example 1, the titanium oxynitride (sample B) of the present invention was obtained in the same manner as in Example 1 except that the reduction firing temperature of 900 ° C. was 980 ° C.

比較例1
酸化ケイ素を被覆していない二酸化チタンを内径7.5cmの石英管に装入し、アンモニアガスを10リットル/分の流速で通気しながら、石英管を980℃で3時間加熱した。次いで、得られた生成物を同雰囲気下で100℃まで冷却し、更に大気中で常温まで放冷して本発明の酸窒化チタン(試料C)を得た。
なお、酸化ケイ素を被覆しない二酸化チタンの粒子径は0.15〜0.40μmであり、結晶子径は56nmであり、比表面積は4.4m/gであり、実施例1で用いた含水二酸化チタンを空気中850℃で5時間焼成して得た。
Comparative Example 1
Titanium dioxide not coated with silicon oxide was charged into a quartz tube having an inner diameter of 7.5 cm, and the quartz tube was heated at 980 ° C. for 3 hours while supplying ammonia gas at a flow rate of 10 liters / minute. Next, the obtained product was cooled to 100 ° C. under the same atmosphere, and further allowed to cool to room temperature in the air to obtain titanium oxynitride (sample C) of the present invention.
The particle diameter of titanium dioxide not coated with silicon oxide is 0.15 to 0.40 μm, the crystallite diameter is 56 nm, the specific surface area is 4.4 m 2 / g, and the water content used in Example 1 Titanium dioxide was obtained by firing in air at 850 ° C. for 5 hours.

比較例2
市販のチタンブラック(三菱マテリアル製、13M−C)を比較試料Dとした。
Comparative Example 2
Commercially available titanium black (Mitsubishi Materials, 13M-C) was used as Comparative Sample D.

実施例及び比較例で得た試料A〜Dの組成、特性を表1に示す。本発明の酸窒化チタンは結晶子径が小さいため、L値が小さく黒色度が高く、可視光反射率が低いことがわかる。また、結晶子径に対する比表面積から算出した粒子径の比が小さく、凝集粒子が少ないことがわかる。   Table 1 shows the compositions and characteristics of Samples A to D obtained in Examples and Comparative Examples. Since the titanium oxynitride of the present invention has a small crystallite diameter, it can be seen that the L value is small, the blackness is high, and the visible light reflectance is low. Further, it can be seen that the ratio of the particle diameter calculated from the specific surface area with respect to the crystallite diameter is small, and there are few aggregated particles.

Figure 2006182627
Figure 2006182627

本発明の酸窒化チタンは優れた黒色度を有することから、黒色顔料として樹脂、塗料、インキ等に配合して種々の用途に用いられる。また、本発明の酸窒化チタンは微細なものであり、しかも、凝集粒子が少ないものであることからその配合量を調整すると黒色でありながら透明性をも備えたものとすることができ、可視光の透過量を減少させる部材として、例えばガラス、レンズ、フィルム等に配合して用いることもできる。また、本発明の酸窒化チタンは導電性付与剤としてフィルム、繊維、トナー、磁気記録媒体等に配合して用いられる。   Since the titanium oxynitride of the present invention has excellent blackness, it is blended in a resin, paint, ink or the like as a black pigment and used for various applications. In addition, since the titanium oxynitride of the present invention is fine and has few aggregated particles, it can be made black and transparent when adjusted in its blending amount and visible. As a member for reducing the amount of transmitted light, for example, it can be used by blending it with glass, a lens, a film or the like. In addition, the titanium oxynitride of the present invention is used as a conductivity-imparting agent by blending it into a film, fiber, toner, magnetic recording medium or the like.

実施例1で得られた試料Aの可視光反射スペクトルを示すグラフである。2 is a graph showing a visible light reflection spectrum of Sample A obtained in Example 1. FIG. 実施例2で得られた試料Bの可視光反射スペクトルを示すグラフである。6 is a graph showing a visible light reflection spectrum of Sample B obtained in Example 2. 比較例1で得られた試料Cの可視光反射スペクトルを示すグラフである。6 is a graph showing a visible light reflection spectrum of Sample C obtained in Comparative Example 1. 比較例2で得られた試料Dの可視光反射スペクトルを示すグラフである。6 is a graph showing a visible light reflection spectrum of Sample D obtained in Comparative Example 2.

Claims (4)

組成式:TiNxOy・nSiO(組成式中、Tiはチタン原子、Nは窒素原子、Oは酸素原子、Siはケイ素原子を表し、xはチタン原子に対する窒素原子の比を、yはチタン原子に対する酸素原子の比を表し、x、yはそれぞれ0より大きく2未満の実数を取り得る。nはTiNxOyに対するSiOのモル比を表し、nは0.05≦n≦0.15の範囲の実数を取り得る。)で表され、しかも、Nで表される窒素原子を10〜20重量%の範囲を含み、かつ、X線回折計を用いて測定した結晶子径が7nm以上17nm未満であることを特徴とする黒色系酸窒化チタン。 Composition formula: TiNxOy · nSiO 2 (in the composition formula, Ti represents a titanium atom, N represents a nitrogen atom, O represents an oxygen atom, Si represents a silicon atom, x represents a ratio of a nitrogen atom to a titanium atom, and y represents a titanium atom) Represents the ratio of oxygen atoms, x and y can each be a real number greater than 0 and less than 2. n represents the molar ratio of SiO 2 to TiNxOy, and n is a real number in the range of 0.05 ≦ n ≦ 0.15 And a nitrogen atom represented by N is included in the range of 10 to 20% by weight, and the crystallite diameter measured using an X-ray diffractometer is 7 nm or more and less than 17 nm. This is a black titanium oxynitride. TiNxOy・nSiOの比表面積が50〜100m/gの範囲であることを特徴とする請求項1に記載の黒色系酸窒化チタン。 2. The black titanium oxynitride according to claim 1, wherein the specific surface area of TiNxOy · nSiO 2 is in the range of 50 to 100 m 2 / g. X線回折計を用いて測定した結晶子径に対して、BET法により測定した比表面積値から下記式1で算出した粒子径の比が0.9〜1.5の範囲であることを特徴とする請求項1に記載の黒色系酸窒化チタン。
式1:d=6×10/(SSA×ρ)
(式1中、dは算出される粒子径(nm)、SSAは比表面積値(m/g)を示し、ρは酸窒化チタンの密度(g/cm)であり、ここでは4.9を用いる。6は球形状係数である。)
The ratio of the particle diameter calculated by the following formula 1 from the specific surface area value measured by the BET method to the crystallite diameter measured using an X-ray diffractometer is in the range of 0.9 to 1.5. The black titanium oxynitride according to claim 1.
Formula 1: d = 6 × 10 3 / (SSA × ρ)
(In Formula 1, d is the calculated particle diameter (nm), SSA is the specific surface area value (m 2 / g), and ρ is the density (g / cm 3 ) of titanium oxynitride. 9 is used, and 6 is a spherical shape factor.)
粒子表面に、0.01〜30重量%の範囲の無機化合物及び/又は有機化合物を被覆してなることを特徴とする請求項1に記載の黒色系酸窒化チタン。
The black titanium oxynitride according to claim 1, wherein the particle surface is coated with an inorganic compound and / or an organic compound in the range of 0.01 to 30% by weight.
JP2004381128A 2004-12-28 2004-12-28 Black titanium oxynitride Expired - Fee Related JP4668607B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004381128A JP4668607B2 (en) 2004-12-28 2004-12-28 Black titanium oxynitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004381128A JP4668607B2 (en) 2004-12-28 2004-12-28 Black titanium oxynitride

Publications (2)

Publication Number Publication Date
JP2006182627A true JP2006182627A (en) 2006-07-13
JP4668607B2 JP4668607B2 (en) 2011-04-13

Family

ID=36736016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004381128A Expired - Fee Related JP4668607B2 (en) 2004-12-28 2004-12-28 Black titanium oxynitride

Country Status (1)

Country Link
JP (1) JP4668607B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008266045A (en) * 2007-04-17 2008-11-06 Mitsubishi Materials Corp High resistance black powder and its dispersion, paint, black film
US7491349B2 (en) * 2004-12-28 2009-02-17 Ishihara Sangyo Kaisha, Ltd. Black titanium oxynitride
JP2010030842A (en) * 2008-07-29 2010-02-12 Mitsubishi Materials Corp Black titanium oxynitride powder and its producing method and usage
JP2010030841A (en) * 2008-07-29 2010-02-12 Mitsubishi Materials Corp Black titanium oxynitride powder and its producing method and usage
EP2221665A2 (en) 2009-02-19 2010-08-25 Fujifilm Corporation Dispersion composition, photosensitive resin composition for light- shielding color filter, light-shielding color filter, method of producing the same, and solid-state image sensor having the color filter
US7785501B2 (en) * 2004-12-28 2010-08-31 Dai Nippon Printing Co., Ltd. Black resin composition for display device, and member for display device
EP2302454A1 (en) 2009-09-28 2011-03-30 Fujifilm Corporation Dispersion composition and method of producing the same, photosensitive resin composition and method of producing the same, light-shielding color filter and method of producing the same, and solid-state image sensor
JP2011195749A (en) * 2010-03-23 2011-10-06 Ishizuka Glass Co Ltd Paint for thick-walled printing, method for thick-walled printing, and thick-walled printed matter
EP2472330A1 (en) * 2010-12-28 2012-07-04 Fujifilm Corporation Titanium black dispersion composition for forming light blocking film and method of producing the same, black radiation-sensitive composition, black cured film, solid-state imaging element, and method of producing black cured film
EP2472319A3 (en) * 2010-12-28 2012-12-19 Fujifilm Corporation Titanium black dispersion composition, black radiation-sensitive composition containing the same, black cured film, solid state imaging element and method for producing a black cured film
WO2014073727A1 (en) * 2012-11-06 2014-05-15 한국세라믹기술원 Titanium oxynitride having titanium deficit rock salt structure, and method for preparing same
US8759741B2 (en) 2009-10-19 2014-06-24 Fujifilm Corporation Titanium black dispersion, photosensitive resin composition, wafer level lens, light blocking film, method for producing the light blocking film, and solid-state image pickup element
US8790852B2 (en) 2009-07-07 2014-07-29 Fujifilm Corporation Colored composition for light-shielding film, light-shielding pattern, method for forming the same, solid-state image sensing device, and method for producing the same
US9110205B2 (en) 2009-12-11 2015-08-18 Fujifilm Corporation Black curable composition, light-shielding color filter, light-shielding film and method for manufacturing the same, wafer level lens, and solid-state imaging device
EP3085736A4 (en) * 2013-12-18 2017-05-31 Mitsubishi Materials Electronic Chemicals Co., Ltd. Black titanium oxynitride powder, and semiconductor sealing resin compound using same
JP2017214573A (en) * 2010-05-28 2017-12-07 オムヤ インターナショナル アーゲー Treated mineral filler products, method for preparation thereof and uses of same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5333228A (en) * 1976-09-09 1978-03-29 Du Pont Process for preparing durable titanium dioxide pigments
JPS6065069A (en) * 1983-09-21 1985-04-13 Mitsubishi Metal Corp Black pigment
JPS6437408A (en) * 1987-08-03 1989-02-08 Toray Industries Black powder of titanium nitride
JPH0789721A (en) * 1992-04-20 1995-04-04 Ishihara Sangyo Kaisha Ltd Spherical conductive titanium compound and its production
JPH0859240A (en) * 1994-08-24 1996-03-05 Mitsubishi Materials Corp Titanium suboxide powder
JP2000500515A (en) * 1995-11-13 2000-01-18 イー・アイ・デュポン・ドゥ・ヌムール・アンド・カンパニー TiO 2 pigment coated with small inorganic particles

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5333228A (en) * 1976-09-09 1978-03-29 Du Pont Process for preparing durable titanium dioxide pigments
JPS6065069A (en) * 1983-09-21 1985-04-13 Mitsubishi Metal Corp Black pigment
JPS6437408A (en) * 1987-08-03 1989-02-08 Toray Industries Black powder of titanium nitride
JPH0789721A (en) * 1992-04-20 1995-04-04 Ishihara Sangyo Kaisha Ltd Spherical conductive titanium compound and its production
JPH0859240A (en) * 1994-08-24 1996-03-05 Mitsubishi Materials Corp Titanium suboxide powder
JP2000500515A (en) * 1995-11-13 2000-01-18 イー・アイ・デュポン・ドゥ・ヌムール・アンド・カンパニー TiO 2 pigment coated with small inorganic particles

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7491349B2 (en) * 2004-12-28 2009-02-17 Ishihara Sangyo Kaisha, Ltd. Black titanium oxynitride
US7785501B2 (en) * 2004-12-28 2010-08-31 Dai Nippon Printing Co., Ltd. Black resin composition for display device, and member for display device
JP2008266045A (en) * 2007-04-17 2008-11-06 Mitsubishi Materials Corp High resistance black powder and its dispersion, paint, black film
JP2010030842A (en) * 2008-07-29 2010-02-12 Mitsubishi Materials Corp Black titanium oxynitride powder and its producing method and usage
JP2010030841A (en) * 2008-07-29 2010-02-12 Mitsubishi Materials Corp Black titanium oxynitride powder and its producing method and usage
EP2221665A2 (en) 2009-02-19 2010-08-25 Fujifilm Corporation Dispersion composition, photosensitive resin composition for light- shielding color filter, light-shielding color filter, method of producing the same, and solid-state image sensor having the color filter
US8808948B2 (en) 2009-02-19 2014-08-19 Fujifilm Corporation Dispersion composition, photosensitive resin composition for light-shielding color filter, light-shielding color filter, method of producing the same, and solid-state image sensor having the color filter
US8790852B2 (en) 2009-07-07 2014-07-29 Fujifilm Corporation Colored composition for light-shielding film, light-shielding pattern, method for forming the same, solid-state image sensing device, and method for producing the same
EP2302454A1 (en) 2009-09-28 2011-03-30 Fujifilm Corporation Dispersion composition and method of producing the same, photosensitive resin composition and method of producing the same, light-shielding color filter and method of producing the same, and solid-state image sensor
US8759741B2 (en) 2009-10-19 2014-06-24 Fujifilm Corporation Titanium black dispersion, photosensitive resin composition, wafer level lens, light blocking film, method for producing the light blocking film, and solid-state image pickup element
US9110205B2 (en) 2009-12-11 2015-08-18 Fujifilm Corporation Black curable composition, light-shielding color filter, light-shielding film and method for manufacturing the same, wafer level lens, and solid-state imaging device
JP2011195749A (en) * 2010-03-23 2011-10-06 Ishizuka Glass Co Ltd Paint for thick-walled printing, method for thick-walled printing, and thick-walled printed matter
JP2017214573A (en) * 2010-05-28 2017-12-07 オムヤ インターナショナル アーゲー Treated mineral filler products, method for preparation thereof and uses of same
EP2472319A3 (en) * 2010-12-28 2012-12-19 Fujifilm Corporation Titanium black dispersion composition, black radiation-sensitive composition containing the same, black cured film, solid state imaging element and method for producing a black cured film
EP2472330A1 (en) * 2010-12-28 2012-07-04 Fujifilm Corporation Titanium black dispersion composition for forming light blocking film and method of producing the same, black radiation-sensitive composition, black cured film, solid-state imaging element, and method of producing black cured film
KR101409164B1 (en) 2012-11-06 2014-06-19 한국세라믹기술원 Titanium oxynitride having titanium deficiency type halite structure
WO2014073727A1 (en) * 2012-11-06 2014-05-15 한국세라믹기술원 Titanium oxynitride having titanium deficit rock salt structure, and method for preparing same
CN104884389A (en) * 2012-11-06 2015-09-02 株式会社Tmc Titanium oxynitride having titanium deficit rock salt structure, and method for preparing same
JP2015533365A (en) * 2012-11-06 2015-11-24 ティーエムシー カンパニー リミテッド Titanium-deficient rock salt structure titanium oxynitride
EP2918547A4 (en) * 2012-11-06 2016-08-10 Tmc Co Ltd Titanium oxynitride having titanium deficit rock salt structure, and method for preparing same
US9487403B2 (en) 2012-11-06 2016-11-08 Tmc Co., Ltd. Titanium oxynitride having titanium deficiency-type halite structure
EP3085736A4 (en) * 2013-12-18 2017-05-31 Mitsubishi Materials Electronic Chemicals Co., Ltd. Black titanium oxynitride powder, and semiconductor sealing resin compound using same

Also Published As

Publication number Publication date
JP4668607B2 (en) 2011-04-13

Similar Documents

Publication Publication Date Title
KR101240091B1 (en) Black titanium oxynitride
JP4668607B2 (en) Black titanium oxynitride
JP5095939B2 (en) Black titanium oxynitride
JP2008150240A (en) Titanium oxide and its production method
KR100727579B1 (en) Titanium dioxide sol, preparation method thereof and coating composition comprising same
TWI765016B (en) Method for manufacturing iron-containing rutile type titanium oxide fine particle dispersion, iron-containing rutile type titanium oxide fine particle and uses thereof
JP4982427B2 (en) Metal oxide particle surface modifier and metal oxide particle surface modification method using the same
JP2010006629A (en) Titanium dioxide fine particle and method for producing the same
JP7069814B2 (en) Structure
JP2018168007A (en) Metatitanic acid particle, production method of metatitanic acid particle, composition for photocatalyst formation, photocatalyst and structure
EP1491503B1 (en) Metal oxide particle comprising the metals tin, zinc and antimony and process for producing same
JP2011500501A (en) Zirconium dioxide powder and zirconium dioxide dispersion
JP2001026423A (en) Production of ultra-fine particle of rutile-type titanium dioxide
JP5258447B2 (en) Dispersion of titanium oxide composite particles and method for producing the dispersion
JP3993956B2 (en) Method for producing spherical titanium oxide fine particles
KR101123394B1 (en) Manufacturing method of red ceramic pigment having thermal stability
JP6080583B2 (en) Surface-modified inorganic composite oxide fine particles, production method thereof, dispersion containing the fine particles, coating solution for optical substrate, coating film for optical substrate, and coated substrate
KR100364188B1 (en) Composition Based On Samarium Sesquisulphide, Preparation Method and Use as Colouring Pigment
JP6283580B2 (en) Hydrophobic silica-based powder, rubber molding composition containing the same, and method for producing the same
JP2019156690A (en) Manufacturing method of nitrogen-containing titanium oxide powder
CA1153155A (en) Process for post-treatment of titanium dioxide
JP3418015B2 (en) Pigment and its production method
JP3787254B2 (en) Method for producing titanium oxide fine particles
KR102470961B1 (en) Barium sulfate powder and resin composition containing the same
JP2004204209A (en) Golden pigment and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4668607

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees