[go: up one dir, main page]

JP2006181556A - Bell cup for rotary atomizing type coating apparatus - Google Patents

Bell cup for rotary atomizing type coating apparatus Download PDF

Info

Publication number
JP2006181556A
JP2006181556A JP2004381420A JP2004381420A JP2006181556A JP 2006181556 A JP2006181556 A JP 2006181556A JP 2004381420 A JP2004381420 A JP 2004381420A JP 2004381420 A JP2004381420 A JP 2004381420A JP 2006181556 A JP2006181556 A JP 2006181556A
Authority
JP
Japan
Prior art keywords
bell cup
paint
rotary atomizing
coating apparatus
surface roughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004381420A
Other languages
Japanese (ja)
Inventor
Osamu Masuko
治 益子
Shigenori Kazama
重徳 風間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2004381420A priority Critical patent/JP2006181556A/en
Publication of JP2006181556A publication Critical patent/JP2006181556A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Nozzles (AREA)
  • Electrostatic Spraying Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a bell cup for a rotary atomizing coating apparatus capable of achieving highly fine atomization even if the cut is turned at a high speed. <P>SOLUTION: A bell cup 1 is used in the rotary atomizing type coating apparatus having a rotation shaft 3 and the bell cup 1 which is installed on the rotation shaft and on the surface of which a coating is supplied, and the surface of the bell cup 2 has a surface roughness Ra of not lower than 5μm. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、回転霧化式塗装装置のベルカップに関する。   The present invention relates to a bell cup of a rotary atomizing coating apparatus.

回転霧化式塗装装置は、エアー霧化式塗装装置(スプレー式塗装装置)に比べて塗着効率に優れているので、中塗り塗装や上塗り塗装(ソリッド塗料、メタリックベース塗料及びクリヤ塗料)で広く用いられている。   Rotating atomizing coating equipment has better coating efficiency than air atomizing coating equipment (spray coating equipment), so it can be used for intermediate coating and top coating (solid paint, metallic base paint and clear paint). Widely used.

ところで、メタリックベース塗料を塗装する場合において、所望の色相を再現させるためには塗料粒子を高速で塗装面に衝突させることが効果的であることが知られているが、回転霧化式塗装装置を用いてメタリック塗料を塗装する場合に塗料粒子を高速で塗装面に衝突させるには、シェーピングエアーの流速を高くする必要がある。しかしながら、シェーピングエアーの流速が一定値を超えると塗着効率が低下するといった問題があった。   By the way, when painting a metallic base paint, in order to reproduce a desired hue, it is known that it is effective to make the paint particles collide with the paint surface at a high speed. When coating a metallic paint using, it is necessary to increase the flow velocity of shaping air in order for the paint particles to collide with the paint surface at high speed. However, when the flow velocity of the shaping air exceeds a certain value, there is a problem that the coating efficiency is lowered.

そこで、回転霧化式塗装装置のベルカップの回転数を70,000rpm程度まで高速回転させることで塗料粒径を小さくし、シェーピングエアーの流速を上げなくてもメタリック塗料の光輝材を塗装面に平行に配向させ得ることが確認されている。   Therefore, the rotational speed of the bell cup of the rotary atomizing coating device is rotated at a high speed to about 70,000 rpm to reduce the particle size of the paint, and the metallic paint luster material is applied to the coating surface without increasing the shaping air flow rate. It has been confirmed that they can be oriented in parallel.

回転霧化式塗装装置では、高速回転するベルカップの表面中央に塗料を供給すると、ベルカップの遠心力により当該塗料は薄い液膜状となってベルカップの表面全体に広がり、ベルカップのエッジから接線方向に飛散する。そして、この放射状に飛散した塗料粒子は、ベルカップの外周に供給されるシェーピングエアーによって塗装面に導かれる。なお、塗料の微粒化を促進させるためにベルカップのエッジには切り込み溝などが形成されている(特許文献1参照)。   In the rotary atomizing coating equipment, when paint is supplied to the center of the bell cup rotating at high speed, the paint becomes a thin liquid film due to the centrifugal force of the bell cup and spreads over the entire surface of the bell cup. Scattered in the tangential direction. The paint particles scattered radially are guided to the paint surface by shaping air supplied to the outer periphery of the bell cup. In order to promote atomization of the paint, a cut groove or the like is formed on the edge of the bell cup (see Patent Document 1).

しかしながら、塗料の微粒化を向上させるためにベルカップの回転数を70,000rpm程度まで上げても、塗料の吐出量によってはベルカップ表面に形成される液膜が十分に薄くならず、塗料の滑りによって液膜の厚さに偏りが生じる。この液膜厚さの偏りがベルカップのエッジにまで影響し、不均一な液膜厚さで微粒化させる結果、目的とする高微粒化が達成できないといった問題が確認されている。期待通りの微粒化が得られないと、結局シェーピングエアーの流量を高くして高速で塗装面に衝突させるほかメタリックベース塗料の色相を安定させる方法はないが、こうすると塗着効率が低下してしまう。   However, even if the rotation speed of the bell cup is increased to about 70,000 rpm in order to improve atomization of the paint, the liquid film formed on the surface of the bell cup is not sufficiently thin depending on the discharge amount of the paint. The thickness of the liquid film is biased by sliding. This unevenness of the liquid film thickness affects the edge of the bell cup, and as a result of atomization with a non-uniform liquid film thickness, the problem that the desired high atomization cannot be achieved has been confirmed. If the desired atomization cannot be achieved, there is no way to stabilize the hue of the metallic base paint in addition to increasing the flow rate of shaping air and colliding with the paint surface at high speed. End up.

特に、水を溶剤とする水系メタリックベース塗料では、水の表面張力が有機溶剤に比べて高いので、ベルカップ表面における濡れ性が有機溶剤系メタリックベースに比べて低く、上述した問題が顕著となる。
実開昭58−174263号公報
In particular, in the water-based metallic base paint using water as a solvent, the surface tension of water is higher than that of the organic solvent, so that the wettability on the surface of the bell cup is lower than that of the organic solvent-based metallic base, and the above-mentioned problems become remarkable. .
Japanese Utility Model Publication No. 58-174263

本発明は、高速回転させても高微粒化を達成できる回転霧化式塗装装置のベルカップを提供することを目的とする。
上記目的を達成するために、本発明の回転霧化式塗装装置のベルカップは、回転軸と、前記回転軸に装着されてその表面に塗料が供給されるベルカップとを有する回転霧化式塗装装置において、前記ベルカップの表面の表面粗度Raが、5μm以上であることを特徴とする。
An object of this invention is to provide the bell cup of the rotary atomization type coating apparatus which can achieve high atomization even if it rotates at high speed.
In order to achieve the above object, a bell cup of a rotary atomizing coating apparatus according to the present invention has a rotary shaft, and a rotary atomizing type having a rotary cup and a bell cup attached to the rotary shaft and supplied with paint on the surface thereof. In the coating apparatus, the surface roughness Ra of the surface of the bell cup is 5 μm or more.

本発明では、塗料が供給されるベルカップの表面に凹凸などを形成することでその表面粗度Raを5μm以上にしているので、供給された塗料の濡れ性が向上し、液膜の滑りが防止できる結果、均一な厚さの液膜が形成される。   In the present invention, since the surface roughness Ra is set to 5 μm or more by forming irregularities on the surface of the bell cup to which the paint is supplied, the wettability of the supplied paint is improved and the liquid film slips. As a result, a liquid film having a uniform thickness can be formed.

これにより、ベルカップのエッジから放出される塗料粒子の微粒化が向上するので、所定の色相が要求されるメタリックベース塗料を塗装する場合でも、シェーピングエアーの流量を増加させることなく、所定の色相を確保することができる。   This improves the atomization of the paint particles released from the edge of the bell cup, so even when applying a metallic base paint that requires a predetermined hue, the predetermined hue is not increased without increasing the flow rate of shaping air. Can be secured.

発明の実施の形態BEST MODE FOR CARRYING OUT THE INVENTION

以下、本発明の実施形態を図面に基づいて説明する。
図1は本発明に係るベルカップの第1実施形態を示す断面図、図2は同じく正面図(X矢視図)である。同図はベルカップ全体と、このベルカップが装着される回転霧化式塗装装置の先端部分を示すが、回転霧化式塗装装置にはこれ以外に、回転軸を高速回転させるためのエアーモータ、ベルカップに直流高電圧を印加するための電圧印加装置、ベルカップに塗料や洗浄液、洗浄エアーを供給するための塗料管、ベルカップの周囲にシェーピングエアーを供給するためのエアー管などが設けられている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a cross-sectional view showing a first embodiment of a bell cup according to the present invention, and FIG. 2 is a front view (X arrow view). The figure shows the entire bell cup and the tip of the rotary atomizing coating device to which the bell cup is attached. In addition, the rotary atomizing coating device has an air motor for rotating the rotating shaft at high speed. , A voltage application device for applying a DC high voltage to the bell cup, a paint tube for supplying paint, cleaning liquid and cleaning air to the bell cup, an air tube for supplying shaping air around the bell cup, etc. It has been.

本例のベルカップ1は、同図に概略が示されるように釣鐘形状に形成され、凹状をなすベルカップ1の表面2が塗料の供給面となる。このベルカップ1は、回転軸3の先端にハブ4を介して固定され、回転軸3の回転にともなって高速回転する。ベルカップ1の表面中央から突出したハブ4の側面には、全周にわたって均一な間隔で塗料供給孔又は塗料供給スリット(代表的に5で示す。)が形成され、同図に示す塗料管6の先端から供給された塗料はこのハブ4の塗料供給孔又は塗料供給スリット5を通ってベルカップ1の表面2に吐出される。   The bell cup 1 of the present example is formed in a bell shape as schematically shown in the figure, and the surface 2 of the concave bell cup 1 serves as a paint supply surface. The bell cup 1 is fixed to the tip of the rotating shaft 3 via a hub 4 and rotates at a high speed as the rotating shaft 3 rotates. On the side surface of the hub 4 protruding from the center of the surface of the bell cup 1, paint supply holes or paint supply slits (typically indicated by 5) are formed at uniform intervals over the entire circumference, and the paint pipe 6 shown in FIG. The coating material supplied from the front end is discharged onto the surface 2 of the bell cup 1 through the coating material supply hole or the coating material supply slit 5 of the hub 4.

ベルカップ1の表面2の最外周部には、ベルカップ1の表面2から遠心力により送られてくる液膜状の塗料を微粒化するための微細な切り込み溝7が全周にわたって均一に形成されている。   In the outermost peripheral portion of the surface 2 of the bell cup 1, fine cut grooves 7 for atomizing the liquid film-like paint sent from the surface 2 of the bell cup 1 by centrifugal force are uniformly formed over the entire circumference. Has been.

ベルカップ1の外側にはシェーピングエアーを供給するための外筒部材8が設けられ、この外筒部材8には、エアー通路9と、このエアー通路9に連通する環状エアー通路10と、環状エアー通路10からベルカップ1の背面に向かって所定間隔で形成されたエアー吹出口11が設けられている。これにより、塗料を噴霧する際にその背面から所定流量のシェーピングエアーが供給されるので、塗料粒子を被塗物方向に搬送することができる。   An outer cylinder member 8 for supplying shaping air is provided outside the bell cup 1, and the outer cylinder member 8 has an air passage 9, an annular air passage 10 communicating with the air passage 9, and an annular air An air outlet 11 formed at a predetermined interval from the passage 10 toward the back surface of the bell cup 1 is provided. Thereby, when spraying the paint, the shaping air having a predetermined flow rate is supplied from the back surface thereof, so that the paint particles can be conveyed in the direction of the object to be coated.

特に本例のベルカップ1は、塗料が供給される表面2の全体に凹凸処理が施され、その表面粗度(表面粗さ)Raが5μm以上、50μm又は60μm以下であって、表面粗さの最大高さRyが20μm以上、180μm又は200μm以下とされている。凹凸処理を施す範囲は、少なくとも、ハブ4の塗料供給孔又は塗料供給スリット5から吐出された塗料がベルカップ1の回転にともなって薄い液膜を形成する範囲とすることが望ましい。すなわち、図1に×印で示すとともに図2に斜線で示す範囲とすることが望ましいが、切り込み溝7が形成されたベルカップ1の最外周部に凹凸処理を施す必要はない。   In particular, the bell cup 1 of the present example is subjected to uneven treatment on the entire surface 2 to which the paint is supplied, and the surface roughness (surface roughness) Ra is 5 μm or more, 50 μm or 60 μm or less, and the surface roughness The maximum height Ry is 20 μm or more, 180 μm or 200 μm or less. It is desirable that the unevenness treatment range be at least a range in which the paint discharged from the paint supply hole of the hub 4 or the paint supply slit 5 forms a thin liquid film as the bell cup 1 rotates. That is, it is desirable to make the range shown by x in FIG. 1 and the hatched area in FIG. 2, but it is not necessary to perform uneven processing on the outermost peripheral portion of the bell cup 1 in which the cut groove 7 is formed.

本例の凹凸処理は、表面粗度Ra及び最大高さRyが上述した値になれば、その処理方法には何ら限定されず、たとえばサンドブラスト法、ショットブラスト法、溶射、転造などの手法を用いることができる。   The unevenness treatment of this example is not limited to the treatment method as long as the surface roughness Ra and the maximum height Ry are the values described above. For example, sandblasting, shot blasting, thermal spraying, rolling, etc. Can be used.

なお、ベルカップ1の表面2に施す凹凸処理は厳密な意味で均一なパターンでなくともよいが、後述するようにこの凹凸処理によりベルカップ表面2に対する塗料の濡れ性が向上し、均一な膜厚の液膜を形成できることが高微粒化を達成できる理由であることから、ベルカップ1の表面2の全体にできる限り均一なパターンの凹凸処理を施すことが望ましい。   The unevenness treatment applied to the surface 2 of the bell cup 1 does not have to be a uniform pattern in a strict sense. However, as will be described later, the unevenness treatment improves the wettability of the paint with respect to the bell cup surface 2, and the uniform film Since the ability to form a thick liquid film is the reason why it is possible to achieve high atomization, it is desirable that the entire surface 2 of the bell cup 1 be subjected to a concavo-convex process that is as uniform as possible.

上述したベルカップ1の表面2の表面粗度Ra及び最大高さRyの上限値、つまり表面粗度Raを50μm又は60μm以下、最大高さRyを180μm又は200μm以下とし、上限値が2つ存在するがこれは以下の理由による。   The upper limit of the surface roughness Ra and the maximum height Ry of the surface 2 of the bell cup 1 described above, that is, the surface roughness Ra is 50 μm or 60 μm or less, the maximum height Ry is 180 μm or 200 μm or less, and there are two upper limit values. However, this is due to the following reasons.

すなわち、現在多用されているメタリックベース塗料には、水を溶剤とする水系メタリックベース塗料と有機溶剤を溶剤とする有機溶剤系メタリックベース塗料があるが、水の表面張力は有機溶剤に比べて高いので、水系メタリックベース塗料のベルカップ表面における濡れ性は有機溶剤系メタリックベースに比べて低い。この塗料が有する濡れ性のため、塗料を塗装した後に洗浄用溶剤を用いてベルカップ1の表面2を洗浄する際に時間がかかるという問題があるからである。すなわち、水系メタリックベース塗料を用いる場合にはベルカップ1の表面2の表面粗度Raは50μm以下、最大高さRyは180μm以下とし、有機溶剤系メタリックベース塗料を用いる場合の表面粗度Ra=60μm以下、最大高さRy=200μm以下に比べて小さくすることが望ましい。ただし、洗浄時間を問題にしない場合には、表面粗度Ra及び最大高さRyを大きくすればするほど平均微粒化径は小さくなるので、微粒化を優先したい場合には特に上限を規制する必要はない。   In other words, currently used metallic base paints include water-based metallic base paints that use water as a solvent and organic solvent-based metallic base paints that use an organic solvent as a solvent, but the surface tension of water is higher than that of organic solvents. Therefore, the wettability of the water-based metallic base paint on the bell cup surface is lower than that of the organic solvent-based metallic base. This is because the wettability of the paint has a problem that it takes time to clean the surface 2 of the bell cup 1 using a cleaning solvent after the paint is applied. That is, when the water-based metallic base paint is used, the surface roughness Ra of the surface 2 of the bell cup 1 is 50 μm or less, the maximum height Ry is 180 μm or less, and the surface roughness Ra when using the organic solvent-based metallic base paint = It is desirable to make it smaller than 60 μm or less and the maximum height Ry = 200 μm or less. However, if the cleaning time is not a problem, the larger the surface roughness Ra and the maximum height Ry, the smaller the average atomization diameter. Therefore, when priority is given to atomization, it is necessary to regulate the upper limit. There is no.

ベルカップ1の表面2に凹凸処理を施すと、ハブ4の塗料供給孔又は塗料供給スリット5から供給された塗料の濡れ性がベルカップ1の表面2の全体にわたって向上し、これにより液膜の滑りが防止できる結果、均一な厚さの液膜がベルカップ1の表面2の全体にわたって形成される。   When the surface 2 of the bell cup 1 is subjected to unevenness treatment, the wettability of the paint supplied from the paint supply hole of the hub 4 or the paint supply slit 5 is improved over the entire surface 2 of the bell cup 1, thereby As a result of preventing slippage, a liquid film having a uniform thickness is formed over the entire surface 2 of the bell cup 1.

したがって、ベルカップ1のエッジから放出される塗料粒子の微粒化が向上し、所定の色相が要求されるメタリックベース塗料を塗装する場合でも、シェーピングエアーの流量を増加させることなく、所定の色相を確保することができる。   Therefore, the atomization of the paint particles discharged from the edge of the bell cup 1 is improved, and even when a metallic base paint requiring a predetermined hue is applied, the predetermined hue is not increased without increasing the flow rate of shaping air. Can be secured.

図1及び図2に示す実施形態では、所定の表面粗度及び最大高さの凹凸処理をベルカップ1の表面2の全体に施したが、上述した塗料の濡れ性向上の観点から考慮すると、ベルカップ1の表面2の一部に凹凸処理を施しても同様の作用効果が発揮される。   In the embodiment shown in FIG. 1 and FIG. 2, the uneven surface treatment with a predetermined surface roughness and maximum height was applied to the entire surface 2 of the bell cup 1, but considering the above-described wettability improvement of the paint, Even if the unevenness treatment is applied to a part of the surface 2 of the bell cup 1, the same effect is exhibited.

図3及び図4は本発明に係る他の実施形態を示すベルカップ1の正面図であり、斜線にて示す範囲が凹凸処理を施した部分である。図3に示すベルカップ1では、ベルカップ1の外周の範囲にのみ凹凸処理を施し、中心部分には凹凸処理を施していない。また、図4に示すベルカップ1では、逆にベルカップ1の中心部分のみに凹凸処理を施し、外周の範囲には凹凸処理を施していない。   3 and 4 are front views of a bell cup 1 showing another embodiment according to the present invention, and a range shown by hatching is a portion subjected to uneven processing. In the bell cup 1 shown in FIG. 3, the unevenness processing is performed only on the outer peripheral range of the bell cup 1, and the unevenness processing is not performed on the central portion. In contrast, in the bell cup 1 shown in FIG. 4, concavity and convexity processing is performed only on the center portion of the bell cup 1, and the concavity and convexity processing is not performed on the outer periphery.

このように、ベルカップ1の表面2の一部に凹凸処理を施しても塗料の濡れ性は向上するので、図1及び図2に示す実施形態に比べて微粒化の程度は若干劣るものの、凹凸処理を施さないベルカップ1に比べると平均微粒化径は小さくなる。   In this way, even if the unevenness treatment is applied to a part of the surface 2 of the bell cup 1, the wettability of the paint is improved, so the degree of atomization is slightly inferior to the embodiment shown in FIG. 1 and FIG. The average atomization diameter is smaller than that of the bell cup 1 that is not subjected to the uneven treatment.

ただし、ベルカップ1の表面2に対して面積割合で少なくとも10%以上の範囲に凹凸処理を施すことが望ましい。10%未満であると、凹凸処理を施さないベルカップの平均微粒化径と大差ないからである。   However, it is desirable that the unevenness treatment is performed in the area ratio of at least 10% or more with respect to the surface 2 of the bell cup 1. This is because if it is less than 10%, it does not differ greatly from the average atomized diameter of the bell cup that is not subjected to the uneven treatment.

また、図3に示すようにベルカップ1の表面2の外周側に凹凸処理を施したものは、図4に示すようにベルカップ1の表面2の中心側に凹凸処理を施したものに比べて平均微粒化径が向上することが確認されている。図3に示すように外周側に凹凸処理を施すと、ベルカップ1のエッジから放出される直前の液膜の厚さが均一になるので、平均微粒化径が小さくなるのが原因と考えられる。   Moreover, as shown in FIG. 3, the surface of the bell cup 1 that has been subjected to the unevenness treatment on the outer peripheral side of the surface 2 is compared to the surface of the bell cup 1 that has been subjected to the unevenness treatment as shown in FIG. It has been confirmed that the average atomization diameter is improved. As shown in FIG. 3, when the unevenness is applied to the outer peripheral side, the thickness of the liquid film immediately before being discharged from the edge of the bell cup 1 becomes uniform. .

なお、以上説明した実施形態は、本発明の理解を容易にするために記載されたものであって、本発明を限定するために記載されたものではない。したがって、上記の実施形態に開示された各要素は、本発明の技術的範囲に属する全ての設計変更や均等物をも含む趣旨である。   The embodiment described above is described for facilitating the understanding of the present invention, and is not described for limiting the present invention. Therefore, each element disclosed in the above embodiment is intended to include all design changes and equivalents belonging to the technical scope of the present invention.

以下、本発明をさらに具体化して説明する。   Hereinafter, the present invention will be described more specifically.

《実施例1》
ベルカップ(日産自動車製試作品,表面粗度は5μm未満)の表面全体に、表面粗度Raが5μm、最大高さRyが20μmの凹凸処理を施し、このベルカップを回転霧化式塗装装置に装着した。
Example 1
The entire surface of the bell cup (manufactured by Nissan Motor Co., Ltd., with a surface roughness of less than 5 μm) is subjected to uneven treatment with a surface roughness Ra of 5 μm and a maximum height Ry of 20 μm. Attached to.

この回転霧化式塗装装置を用いて水系メタリックベース塗料(シルバー,日本油脂BASFコーティングス社製アクアBC−3)を、吐出量200cc/min,ベル回転数70,000rpm,シェーピングエアー流量280NL/minの条件で吐出し、このときの平均微粒化径(μm)を測定した。また、このメタリックベース塗料を吐出後に、洗浄水を用いてベルカップを自動洗浄し、そのときの表面洗浄性(洗浄容易性)を評価した。この表面洗浄性は、2秒以内の洗浄工程によりベルカップの表面が清浄になった場合を○、ベルカップの表面が清浄になるのに3秒以上を要した場合を△とした。   A water-based metallic base paint (Silver, Aqua BC-3 manufactured by Nippon Oil & Fats BASF Coatings Co., Ltd.) is discharged using this rotary atomizing coating device, with a discharge rate of 200 cc / min, a bell rotation speed of 70,000 rpm, and a shaping air flow rate of 280 NL / min. The average atomization diameter (μm) at this time was measured. Moreover, after discharging this metallic base coating material, the bell cup was automatically cleaned using cleaning water, and the surface cleaning property (easiness of cleaning) at that time was evaluated. This surface cleanability was evaluated as ◯ when the bell cup surface was cleaned by the cleaning process within 2 seconds, and Δ when it took 3 seconds or more to clean the bell cup surface.

また、このベルカップが装着された回転霧化式塗装装置を用いて、中塗り塗膜を形成したテストピースに、上述したメタリックベース塗料を、吐出量200cc/min,ベル回転数70,000rpm,シェーピングエアー流量280NL/minの条件で、膜厚が15〜20μmとなるよう塗装し、続けて、このメタリックベース塗膜の上にウェットオンウェットでクリヤ塗料を膜厚20〜25μmで塗装したのち、これらメタリックベース塗膜及びクリヤ塗膜を140℃×20分で焼き付けた。   Further, using the rotary atomizing type coating apparatus equipped with the bell cup, the above-mentioned metallic base paint is applied to the test piece on which the intermediate coating film is formed, the discharge amount is 200 cc / min, the bell rotation number is 70,000 rpm, After coating with a shaping air flow rate of 280 NL / min so that the film thickness is 15 to 20 μm, and subsequently applying a clear paint on the metallic base coating film by wet-on-wet with a film thickness of 20 to 25 μm, These metallic base coating and clear coating were baked at 140 ° C. for 20 minutes.

得られた上塗り塗膜について色相標準板との色差ΔLを(色相標準対比シェード側明度差,日産自動車製視感色差計(NISSAN COLOR ANALYZER)測定した。以上の結果を表1に示す。   The obtained top coat film was measured for a color difference ΔL with the hue standard plate (hue standard contrast shade side lightness difference, NISSAN COLOR ANALYZER), and the results are shown in Table 1.

《実施例2》
ベルカップの表面全体に、表面粗度Raが20μm、最大高さRyが100μmの凹凸処理を施した以外は実施例1と同じ条件で平均微粒化径(μm)、色差ΔL、表面洗浄性を測定、評価した。この結果を表1に示す。
Example 2
The average atomization diameter (μm), color difference ΔL, and surface cleanability under the same conditions as in Example 1 except that the entire surface of the bell cup was subjected to unevenness treatment with a surface roughness Ra of 20 μm and a maximum height Ry of 100 μm. Measurement and evaluation. The results are shown in Table 1.

《実施例3》
ベルカップの表面全体に、表面粗度Raが50μm、最大高さRyが180μmの凹凸処理を施した以外は実施例1と同じ条件で平均微粒化径(μm)、色差ΔL、表面洗浄性を測定、評価した。この結果を表1に示す。
Example 3
The average atomization diameter (μm), color difference ΔL, and surface cleanability under the same conditions as in Example 1 except that the entire surface of the bell cup was subjected to unevenness treatment with a surface roughness Ra of 50 μm and a maximum height Ry of 180 μm. Measurement and evaluation. The results are shown in Table 1.

《実施例4》
ベルカップの表面全体に、表面粗度Raが60μm、最大高さRyが200μmの凹凸処理を施した以外は実施例1と同じ条件で平均微粒化径(μm)、色差ΔL、表面洗浄性を測定、評価した。この結果を表1に示す。
Example 4
The average atomization diameter (μm), color difference ΔL, and surface cleanability under the same conditions as in Example 1 except that the entire surface of the bell cup was subjected to unevenness treatment with a surface roughness Ra of 60 μm and a maximum height Ry of 200 μm. Measurement and evaluation. The results are shown in Table 1.

《実施例5》
ベルカップの表面全体に、表面粗度Raが70μm、最大高さRyが220μmの凹凸処理を施した以外は実施例1と同じ条件で平均微粒化径(μm)、色差ΔL、表面洗浄性を測定、評価した。この結果を表1に示す。
Example 5
The average atomization diameter (μm), color difference ΔL, and surface cleanability under the same conditions as in Example 1 except that the entire surface of the bell cup was subjected to unevenness treatment with a surface roughness Ra of 70 μm and a maximum height Ry of 220 μm. Measurement and evaluation. The results are shown in Table 1.

《比較例1》
実施例1〜5の比較例として、ベルカップの表面全体に凹凸処理を施さず、表面粗度を5μm未満のままにした以外は実施例1と同じ条件で平均微粒化径(μm)、色差ΔL、表面洗浄性を測定、評価した。この結果を表1に示す。
<< Comparative Example 1 >>
As a comparative example of Examples 1 to 5, the average atomization diameter (μm) and color difference under the same conditions as in Example 1 except that the entire surface of the bell cup was not subjected to unevenness treatment and the surface roughness was kept below 5 μm. ΔL and surface cleanability were measured and evaluated. The results are shown in Table 1.

《実施例6》
実施例1〜5及び比較例1は水系メタリックベース塗料を用いたのに対し、実施例6は有機溶剤系メタリックベース塗料(シルバー,日本油脂BASFコーティングス社製ベルコート6010)を用い、これ以外は実施例1と同じ条件で平均微粒化径(μm)、色差ΔL、表面洗浄性を測定、評価した。この結果を表1に示す。
Example 6
Examples 1 to 5 and Comparative Example 1 used a water-based metallic base paint, while Example 6 used an organic solvent-based metallic base paint (Silver, Bell Coat 6010 manufactured by Nippon Oil & Fats BASF Coatings). Measured and evaluated the average atomization diameter (μm), color difference ΔL, and surface cleanability under the same conditions as in Example 1. The results are shown in Table 1.

《実施例7》
ベルカップの表面全体に、表面粗度Raが20μm、最大高さRyが100μmの凹凸処理を施した以外は実施例6と同じ条件で平均微粒化径(μm)、色差ΔL、表面洗浄性を測定、評価した。この結果を表1に示す。
Example 7
The average atomization diameter (μm), color difference ΔL, and surface cleanability under the same conditions as in Example 6 except that the entire surface of the bell cup was subjected to unevenness treatment with a surface roughness Ra of 20 μm and a maximum height Ry of 100 μm. Measurement and evaluation. The results are shown in Table 1.

《実施例8》
ベルカップの表面全体に、表面粗度Raが50μm、最大高さRyが180μmの凹凸処理を施した以外は実施例6と同じ条件で平均微粒化径(μm)、色差ΔL、表面洗浄性を測定、評価した。この結果を表1に示す。
Example 8
The average atomization diameter (μm), color difference ΔL, and surface cleanability were the same as in Example 6 except that the entire surface of the bell cup was subjected to unevenness treatment with a surface roughness Ra of 50 μm and a maximum height Ry of 180 μm. Measurement and evaluation. The results are shown in Table 1.

《実施例9》
ベルカップの表面全体に、表面粗度Raが60μm、最大高さRyが200μmの凹凸処理を施した以外は実施例6と同じ条件で平均微粒化径(μm)、色差ΔL、表面洗浄性を測定、評価した。この結果を表1に示す。
Example 9
The average atomization diameter (μm), color difference ΔL, and surface cleanability were the same as in Example 6 except that the entire surface of the bell cup was subjected to unevenness treatment with a surface roughness Ra of 60 μm and a maximum height Ry of 200 μm. Measurement and evaluation. The results are shown in Table 1.

《実施例10》
ベルカップの表面全体に、表面粗度Raが70μm、最大高さRyが220μmの凹凸処理を施した以外は実施例6と同じ条件で平均微粒化径(μm)、色差ΔL、表面洗浄性を測定、評価した。この結果を表1に示す。
Example 10
The average atomization diameter (μm), color difference ΔL, and surface cleanability were the same as in Example 6 except that the entire surface of the bell cup was subjected to unevenness treatment with a surface roughness Ra of 70 μm and a maximum height Ry of 220 μm. Measurement and evaluation. The results are shown in Table 1.

《比較例2》
実施例6〜10の比較例として、ベルカップの表面全体に凹凸処理を施さず、表面粗度を5μm未満のままにした以外は実施例1と同じ条件で平均微粒化径(μm)、色差ΔL、表面洗浄性を測定、評価した。この結果を表1に示す。

Figure 2006181556
<< Comparative Example 2 >>
As a comparative example of Examples 6 to 10, the average atomization diameter (μm) and color difference were the same as in Example 1 except that the entire surface of the bell cup was not subjected to unevenness treatment and the surface roughness was kept below 5 μm. ΔL and surface cleanability were measured and evaluated. The results are shown in Table 1.
Figure 2006181556

実施例1及び比較例1、実施例6及び比較例2の結果から、ベルカップの表面の表面粗度Raを5μm以上、最大高さRyを20μm以上にすると、水系塗料でも有機溶剤系塗料でも、平均微粒化径が小さくなり色相標準板との色差も小さくなり、しかも表面洗浄性も問題ないことが理解される。   From the results of Example 1 and Comparative Example 1, Example 6 and Comparative Example 2, when the surface roughness Ra of the bell cup surface is 5 μm or more and the maximum height Ry is 20 μm or more, both water-based paints and organic solvent-based paints are used. It is understood that the average atomization diameter is reduced, the color difference from the hue standard plate is reduced, and the surface cleanability is not a problem.

また、実施例1〜5及び実施例6〜10の結果から、ベルカップの表面の表面粗度Ra,最大高さRyを大きくすればするほど、水系塗料でも有機溶剤系塗料でも、平均微粒化径が小さくなり色相標準板との色差も小さくなることが理解される。   In addition, from the results of Examples 1 to 5 and Examples 6 to 10, as the surface roughness Ra and the maximum height Ry of the bell cup surface are increased, the average atomization of both water-based paints and organic solvent-based paints is increased. It is understood that the diameter is reduced and the color difference from the hue standard plate is also reduced.

ただし、実施例3〜5の結果から、水系塗料を塗装する場合には、ベルカップの表面の表面粗度が60μm以上になるとベルカップの表面洗浄性が低下し、同様に実施例9〜10の結果から、有機溶剤系塗料を塗装する場合には、ベルカップの表面の表面粗度が70μm以上になるとベルカップの表面洗浄性が低下することが理解される。   However, from the results of Examples 3 to 5, when the water-based paint is applied, when the surface roughness of the surface of the bell cup is 60 μm or more, the surface cleanability of the bell cup is lowered. From these results, it is understood that when the organic solvent-based paint is applied, the surface cleanability of the bell cup is lowered when the surface roughness of the bell cup surface is 70 μm or more.

本発明に係るベルカップの第1実施形態を示す断面図である。It is sectional drawing which shows 1st Embodiment of the bell cup which concerns on this invention. 本発明に係るベルカップの第1実施形態を示す正面図である。It is a front view which shows 1st Embodiment of the bell cup which concerns on this invention. 本発明に係るベルカップの第2実施形態を示す正面図である。It is a front view which shows 2nd Embodiment of the bell cup which concerns on this invention. 本発明に係るベルカップの第3実施形態を示す正面図である。It is a front view which shows 3rd Embodiment of the bell cup which concerns on this invention.

符号の説明Explanation of symbols

1…ベルカップ
2…ベルカップの表面
3…回転軸
4…ハブ
5…塗料供給孔、塗料供給スリット
6…塗料管
7…切り込み溝
8…外筒部材
9,10…エアー通路
11…エアー吹出口
DESCRIPTION OF SYMBOLS 1 ... Bell cup 2 ... Bell cup surface 3 ... Rotating shaft 4 ... Hub 5 ... Paint supply hole, paint supply slit 6 ... Paint pipe 7 ... Cut groove 8 ... Outer cylinder member 9, 10 ... Air passage 11 ... Air outlet

Claims (9)

回転軸と、前記回転軸に装着されてその表面に塗料が供給されるベルカップとを有する回転霧化式塗装装置において、前記ベルカップの表面の表面粗度Raが、5μm以上であることを特徴とする回転霧化式塗装装置のベルカップ。 In a rotary atomizing coating apparatus having a rotating shaft and a bell cup attached to the rotating shaft and supplied with paint on the surface thereof, the surface roughness Ra of the surface of the bell cup is 5 μm or more. The bell cup of the rotary atomizing type coating equipment. 前記ベルカップの表面の最大高さRyが、20μm以上であることを特徴とする請求項1記載の回転霧化式塗装装置のベルカップ。 The bell cup of the rotary atomizing coating apparatus according to claim 1, wherein the maximum height Ry of the surface of the bell cup is 20 µm or more. 前記ベルカップの表面の表面粗度Raが、50μm以下であることを特徴とする請求項1又は2記載の回転霧化式塗装装置のベルカップ。 The bell cup of the rotary atomizing coating apparatus according to claim 1 or 2, wherein the surface roughness Ra of the surface of the bell cup is 50 µm or less. 前記ベルカップの表面の最大高さRyが、180μm以上であることを特徴とする請求項3記載の回転霧化式塗装装置のベルカップ。 The bell cup of the rotary atomizing coating apparatus according to claim 3, wherein the maximum height Ry of the surface of the bell cup is 180 µm or more. 前記ベルカップの表面の表面粗度Raが、60μm以下であることを特徴とする請求項1又は2記載の回転霧化式塗装装置のベルカップ。 The bell cup of the rotary atomizing coating apparatus according to claim 1 or 2, wherein the surface roughness Ra of the surface of the bell cup is 60 µm or less. 前記ベルカップの表面の表面粗度Raが、200μm以下であることを特徴とする請求項5記載の回転霧化式塗装装置のベルカップ。 The bell cup of the rotary atomizing coating apparatus according to claim 5, wherein the surface roughness Ra of the surface of the bell cup is 200 μm or less. 塗料が供給されるベルカップの表面のうち、表面粗度Raが5μm以上である範囲の面積割合が10%以上であり、その他の範囲の表面粗度Raは5μm未満であることを特徴とする請求項1〜6の何れかに記載の回転霧化式塗装装置のベルカップ。 Of the surface of the bell cup to which the paint is supplied, the area ratio in the range where the surface roughness Ra is 5 μm or more is 10% or more, and the surface roughness Ra in the other range is less than 5 μm. A bell cup of the rotary atomizing coating apparatus according to any one of claims 1 to 6. 前記表面粗度Raが5μm以上である範囲は、ベルカップの表面の外側に形成されていることを特徴とする請求項7記載の回転霧化式塗装装置のベルカップ。 The bell cup of the rotary atomizing coating apparatus according to claim 7, wherein the range where the surface roughness Ra is 5 µm or more is formed outside the surface of the bell cup. 前記ベルカップの表面に凹凸を形成することで表面粗度Raを5μm以上とする請求項1〜8の何れかに記載の回転霧化式塗装装置のベルカップ。

The bell cup of the rotary atomizing coating apparatus according to any one of claims 1 to 8, wherein the surface roughness Ra is 5 µm or more by forming irregularities on the surface of the bell cup.

JP2004381420A 2004-12-28 2004-12-28 Bell cup for rotary atomizing type coating apparatus Pending JP2006181556A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004381420A JP2006181556A (en) 2004-12-28 2004-12-28 Bell cup for rotary atomizing type coating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004381420A JP2006181556A (en) 2004-12-28 2004-12-28 Bell cup for rotary atomizing type coating apparatus

Publications (1)

Publication Number Publication Date
JP2006181556A true JP2006181556A (en) 2006-07-13

Family

ID=36735040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004381420A Pending JP2006181556A (en) 2004-12-28 2004-12-28 Bell cup for rotary atomizing type coating apparatus

Country Status (1)

Country Link
JP (1) JP2006181556A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007131661A1 (en) * 2006-05-11 2007-11-22 Dürr Systems GmbH Application element for a rotary sprayer and associated operating method
WO2015114924A1 (en) * 2014-01-29 2015-08-06 本田技研工業株式会社 Rotary atomizing coating device and spray head
JP2016155089A (en) * 2015-02-25 2016-09-01 トヨタ自動車株式会社 Rotary atomization type electrostatic coating machine and bell cup
EP2509714B1 (en) 2009-12-08 2018-02-07 Dürr Systems AG Painting system component having a modified surface
WO2018163343A1 (en) * 2017-03-09 2018-09-13 トリニティ工業株式会社 Rotary atomizing head for electrostatic coating machine
CN115350827A (en) * 2021-05-17 2022-11-18 本田技研工业株式会社 Rotary atomizing type coating device
JP2023049676A (en) * 2021-09-29 2023-04-10 本田技研工業株式会社 Rotary atomization type coating device
US20230285988A1 (en) * 2022-03-09 2023-09-14 GM Global Technology Operations LLC Paint bell cup for vehicle paint application

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7837135B2 (en) 2006-05-11 2010-11-23 Durr Systems Gmbh Application element for a rotary sprayer and associated operating method
WO2007131661A1 (en) * 2006-05-11 2007-11-22 Dürr Systems GmbH Application element for a rotary sprayer and associated operating method
EP2509714B1 (en) 2009-12-08 2018-02-07 Dürr Systems AG Painting system component having a modified surface
EP2509714B2 (en) 2009-12-08 2020-06-24 Dürr Systems AG Painting system component having a modified surface
EP2612710B1 (en) 2009-12-08 2018-02-07 Dürr Systems AG Painting system component having a modified surface
US10343178B2 (en) 2014-01-29 2019-07-09 Honda Motor Co., Ltd. Rotary atomizing coating device and spray head
JPWO2015114924A1 (en) * 2014-01-29 2017-03-23 本田技研工業株式会社 Rotating atomizing coating device and spray head
CN105939787A (en) * 2014-01-29 2016-09-14 本田技研工业株式会社 Rotary atomizing coating device and spray head
WO2015114924A1 (en) * 2014-01-29 2015-08-06 本田技研工業株式会社 Rotary atomizing coating device and spray head
JP2016155089A (en) * 2015-02-25 2016-09-01 トヨタ自動車株式会社 Rotary atomization type electrostatic coating machine and bell cup
WO2018163343A1 (en) * 2017-03-09 2018-09-13 トリニティ工業株式会社 Rotary atomizing head for electrostatic coating machine
CN115350827A (en) * 2021-05-17 2022-11-18 本田技研工业株式会社 Rotary atomizing type coating device
JP2023049676A (en) * 2021-09-29 2023-04-10 本田技研工業株式会社 Rotary atomization type coating device
US20230285988A1 (en) * 2022-03-09 2023-09-14 GM Global Technology Operations LLC Paint bell cup for vehicle paint application

Similar Documents

Publication Publication Date Title
JP6392706B2 (en) Spraying device having a parabolic flow surface
US8720797B2 (en) Rotary atomizing head, rotary atomization coating apparatus, and rotary atomization coating method
JP5830612B2 (en) Bell cup of rotary atomizing electrostatic coating equipment
JP5552537B2 (en) Rotary atomization coating equipment
JP5412278B2 (en) How the rotary atomizer works
GB2294214A (en) Two-step metallic coating process using different speed rotary atomisers
JP2006181556A (en) Bell cup for rotary atomizing type coating apparatus
JP4606065B2 (en) Coating machine and its rotating atomizing head
JPH0919651A (en) Spray gun and granulation coating method using the same
JP2009045518A (en) Atomization head for rotation atomization type coating apparatus
JP2973075B2 (en) Metallic coating method
JP2003225592A (en) Rotary spray coating apparatus
CN110650808B (en) Bell-shaped cup of rotary atomizing coating device
JP4194911B2 (en) Coating method and coating apparatus
JP5301974B2 (en) Painting method
JP4957219B2 (en) Atomizing head of rotary atomizing coating equipment
JP2006263554A (en) Atomizing head for rotary atomization type coating apparatus
JP6974214B2 (en) Painting equipment
JP2016036771A (en) Bell cup of rotary atomization type coating apparatus
JPS6314917Y2 (en)
JPH0422452A (en) Bell shape rotary atomizing head
JP3622869B2 (en) Rotating atomizing electrostatic coating method
JP2023049676A (en) Rotary atomization type coating device
JP3838042B2 (en) Rotary atomizing coating equipment
JP2000126653A (en) Rotary atomizing coating device