JP2006181535A - Combustion ash treatment method - Google Patents
Combustion ash treatment method Download PDFInfo
- Publication number
- JP2006181535A JP2006181535A JP2004380135A JP2004380135A JP2006181535A JP 2006181535 A JP2006181535 A JP 2006181535A JP 2004380135 A JP2004380135 A JP 2004380135A JP 2004380135 A JP2004380135 A JP 2004380135A JP 2006181535 A JP2006181535 A JP 2006181535A
- Authority
- JP
- Japan
- Prior art keywords
- combustion ash
- ash
- calcium
- fluorine
- boron
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000002485 combustion reaction Methods 0.000 title claims description 80
- 238000000034 method Methods 0.000 title claims description 60
- 238000011282 treatment Methods 0.000 title claims description 22
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims abstract description 69
- 229910052796 boron Inorganic materials 0.000 claims abstract description 69
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 claims abstract description 66
- 239000011737 fluorine Substances 0.000 claims abstract description 66
- 229910052731 fluorine Inorganic materials 0.000 claims abstract description 66
- 238000010828 elution Methods 0.000 claims abstract description 60
- 239000011400 blast furnace cement Substances 0.000 claims abstract description 32
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 28
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 claims abstract description 25
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 claims abstract description 24
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 claims abstract description 22
- 239000000920 calcium hydroxide Substances 0.000 claims abstract description 15
- 229910001861 calcium hydroxide Inorganic materials 0.000 claims abstract description 15
- 238000003672 processing method Methods 0.000 claims abstract 6
- 239000002956 ash Substances 0.000 claims description 123
- 235000011116 calcium hydroxide Nutrition 0.000 claims description 24
- 235000012255 calcium oxide Nutrition 0.000 claims description 22
- 235000008733 Citrus aurantifolia Nutrition 0.000 claims description 13
- 235000011941 Tilia x europaea Nutrition 0.000 claims description 13
- 239000007864 aqueous solution Substances 0.000 claims description 13
- 239000004571 lime Substances 0.000 claims description 13
- 239000010802 sludge Substances 0.000 claims description 9
- 239000000446 fuel Substances 0.000 claims description 6
- 239000010883 coal ash Substances 0.000 claims description 5
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 4
- 239000011575 calcium Substances 0.000 claims description 4
- 229910052791 calcium Inorganic materials 0.000 claims description 4
- 235000019738 Limestone Nutrition 0.000 claims description 3
- 241000237503 Pectinidae Species 0.000 claims description 3
- 238000007922 dissolution test Methods 0.000 claims description 3
- 239000010459 dolomite Substances 0.000 claims description 3
- 229910000514 dolomite Inorganic materials 0.000 claims description 3
- 239000006028 limestone Substances 0.000 claims description 3
- 239000010893 paper waste Substances 0.000 claims description 3
- 229920003023 plastic Polymers 0.000 claims description 3
- 239000004033 plastic Substances 0.000 claims description 3
- 235000020637 scallop Nutrition 0.000 claims description 3
- 150000004679 hydroxides Chemical class 0.000 claims description 2
- 238000010304 firing Methods 0.000 claims 1
- 230000033444 hydroxylation Effects 0.000 claims 1
- 238000005805 hydroxylation reaction Methods 0.000 claims 1
- 238000002156 mixing Methods 0.000 abstract description 4
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 abstract description 3
- 238000012360 testing method Methods 0.000 abstract description 3
- 239000000292 calcium oxide Substances 0.000 abstract description 2
- 230000007613 environmental effect Effects 0.000 abstract 1
- 239000003245 coal Substances 0.000 description 21
- 239000000463 material Substances 0.000 description 19
- 230000000052 comparative effect Effects 0.000 description 15
- 238000000691 measurement method Methods 0.000 description 13
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 11
- 229920002554 vinyl polymer Polymers 0.000 description 11
- 239000002689 soil Substances 0.000 description 10
- 238000003756 stirring Methods 0.000 description 9
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 230000033228 biological regulation Effects 0.000 description 6
- 238000011109 contamination Methods 0.000 description 6
- 239000007921 spray Substances 0.000 description 6
- 238000007711 solidification Methods 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 230000001629 suppression Effects 0.000 description 5
- 239000002253 acid Substances 0.000 description 4
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 4
- 239000004568 cement Substances 0.000 description 4
- 239000011790 ferrous sulphate Substances 0.000 description 4
- 235000003891 ferrous sulphate Nutrition 0.000 description 4
- 239000010440 gypsum Substances 0.000 description 4
- 229910052602 gypsum Inorganic materials 0.000 description 4
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 description 4
- 229910000359 iron(II) sulfate Inorganic materials 0.000 description 4
- 230000008023 solidification Effects 0.000 description 4
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 3
- 150000007513 acids Chemical class 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 239000000428 dust Substances 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 229910052938 sodium sulfate Inorganic materials 0.000 description 3
- 235000011152 sodium sulphate Nutrition 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 239000012085 test solution Substances 0.000 description 3
- 241000700159 Rattus Species 0.000 description 2
- -1 acids (for example Chemical class 0.000 description 2
- 239000003463 adsorbent Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 239000010881 fly ash Substances 0.000 description 2
- 229910001385 heavy metal Inorganic materials 0.000 description 2
- 239000002440 industrial waste Substances 0.000 description 2
- 239000000395 magnesium oxide Substances 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 239000002893 slag Substances 0.000 description 2
- 239000003516 soil conditioner Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 239000002351 wastewater Substances 0.000 description 2
- HNSDLXPSAYFUHK-UHFFFAOYSA-N 1,4-bis(2-ethylhexyl) sulfosuccinate Chemical compound CCCCC(CC)COC(=O)CC(S(O)(=O)=O)C(=O)OCC(CC)CCCC HNSDLXPSAYFUHK-UHFFFAOYSA-N 0.000 description 1
- 206010001497 Agitation Diseases 0.000 description 1
- 206010012735 Diarrhoea Diseases 0.000 description 1
- 206010016818 Fluorosis Diseases 0.000 description 1
- 235000002918 Fraxinus excelsior Nutrition 0.000 description 1
- 206010028813 Nausea Diseases 0.000 description 1
- 201000000023 Osteosclerosis Diseases 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000011398 Portland cement Substances 0.000 description 1
- 206010043275 Teratogenicity Diseases 0.000 description 1
- 206010047700 Vomiting Diseases 0.000 description 1
- 208000021017 Weight Gain Diseases 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 159000000007 calcium salts Chemical class 0.000 description 1
- ZOMBKNNSYQHRCA-UHFFFAOYSA-J calcium sulfate hemihydrate Chemical compound O.[Ca+2].[Ca+2].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O ZOMBKNNSYQHRCA-UHFFFAOYSA-J 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 208000002925 dental caries Diseases 0.000 description 1
- 208000004042 dental fluorosis Diseases 0.000 description 1
- 239000000645 desinfectant Substances 0.000 description 1
- 238000001784 detoxification Methods 0.000 description 1
- 239000010791 domestic waste Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003337 fertilizer Substances 0.000 description 1
- 230000001605 fetal effect Effects 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 235000019000 fluorine Nutrition 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000003673 groundwater Substances 0.000 description 1
- 230000008821 health effect Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229920001477 hydrophilic polymer Polymers 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 238000009616 inductively coupled plasma Methods 0.000 description 1
- 238000004255 ion exchange chromatography Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 230000008693 nausea Effects 0.000 description 1
- 210000000653 nervous system Anatomy 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000012488 sample solution Substances 0.000 description 1
- 239000010801 sewage sludge Substances 0.000 description 1
- 239000005413 snowmelt Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000010902 straw Substances 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L sulfate group Chemical group S(=O)(=O)([O-])[O-] QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 231100000211 teratogenicity Toxicity 0.000 description 1
- 239000003440 toxic substance Substances 0.000 description 1
- 230000008673 vomiting Effects 0.000 description 1
- 238000004056 waste incineration Methods 0.000 description 1
- 230000004584 weight gain Effects 0.000 description 1
- 235000019786 weight gain Nutrition 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/91—Use of waste materials as fillers for mortars or concrete
Landscapes
- Processing Of Solid Wastes (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
Abstract
Description
本発明は、燃焼灰の処理方法に関する。特にフッ素やホウ素を含有する燃焼灰の処理剤及び処理方法に関する。また、本発明は、環境省で2003年2月に施行された土壌汚染対策法での規制対象物質であるフッ素やホウ素の溶出規制値に適合するため、これらを含む燃焼灰を、酸化カルシウム類及び又は水酸化カルシウム類、高炉セメント及び硫酸アルミニウム類と水の存在下に混合処理することによって、その燃焼灰中に含まれるフッ素の溶出量を0.8mg/L以下、ホウ素を含有する場合はホウ素の溶出量を1.0mg/L以下にする燃焼灰の処理方法に関する。 The present invention relates to a method for treating combustion ash. In particular, the present invention relates to a treatment agent and a treatment method for combustion ash containing fluorine and boron. In addition, since the present invention conforms to the elution regulation values of fluorine and boron, which are substances regulated by the Soil Contamination Countermeasures Law enacted in February 2003 by the Ministry of the Environment, combustion ash containing them is converted into calcium oxides. And / or by mixing with calcium hydroxide, blast furnace cement and aluminum sulfate in the presence of water, the elution amount of fluorine contained in the combustion ash is 0.8 mg / L or less, and when boron is contained. The present invention relates to a method for treating combustion ash that makes an elution amount of boron 1.0 mg / L or less.
フッ素は、虫歯予防に有効とされてきたが、その過剰摂取は斑状歯に留まらず、フッ素症といわれる骨や関節が変形し、骨硬化症を起こし、神経系に影響を与えることが知られてきている。また、ホウ素は、メッキなどの表面処理、ガラス、殺菌剤、樹脂、化学薬品、肥料などの製造に幅広く使用される基礎素材であるが、一定濃度を超えると農作物の育成を阻害したり、人体への健康影響としては、高濃度の摂取による嘔吐、下痢及び吐き気などの症例が報告されており、ラットの催奇形性試験で胎児の体重増加抑制が認められるとされている。これらの影響を予防するために、フッ素やホウ素の不溶化技術は重要な役割を果たす。 Fluorine has been considered effective in preventing dental caries, but its overdose is not limited to patchy teeth, and bones and joints called fluorosis are deformed, causing osteosclerosis and affecting the nervous system. It is coming. Boron is a basic material that is widely used in the production of surface treatments such as plating, glass, disinfectants, resins, chemicals, and fertilizers. As for the health effects on rats, cases such as vomiting, diarrhea and nausea due to high concentration intake have been reported, and it is said that suppression of fetal weight gain was observed in teratogenicity tests in rats. In order to prevent these effects, insolubilization technology of fluorine and boron plays an important role.
また、フッ素やホウ素は、家庭ゴミ焼却灰、火力発電所からの石炭燃焼灰(石炭灰)、下水汚泥焼却灰、各種産業廃棄物などの燃焼灰の中にも含まれており、中でも石炭灰は、元来石炭にフッ素やホウ素が数〜数百mg/kg含まれているため、フッ素やホウ素の含有量が高い。また、その燃焼灰の多くは土壌改良材や埋戻し材として使用されるので、これが雨などで溶出して地下水汚染を起こす事が心配される。また、燃焼灰を埋め立てる処分場も不足しているので、燃焼灰中のフッ素及びホウ素の不溶出化による有効利用を図ることが望まれている。 Fluorine and boron are also contained in combustion ash such as household waste incineration ash, coal combustion ash (coal ash) from thermal power plants, sewage sludge incineration ash, and various industrial wastes. Since the coal originally contains several to several hundred mg / kg of fluorine and boron, the content of fluorine and boron is high. In addition, since most of the combustion ash is used as a soil conditioner or backfill material, there is a concern that it will elute due to rain and cause groundwater contamination. In addition, since there is also a shortage of landfills where the combustion ash is reclaimed, it is desired to make effective use by making fluorine and boron in the combustion ash non-eluting.
燃焼灰の有害物質の無害化法として、溶融固化法、セメント固化、石灰などを添加、酸又はその他の溶媒による抽出処理等も提案されている。しかしフッ素とホウ素を同時に溶出抑制できる手段は数少なく、実用的なものはさらに少ない。 As methods for detoxifying harmful substances in combustion ash, melt solidification methods, cement solidification, addition of lime, etc., extraction treatment with acids or other solvents, and the like have been proposed. However, there are few means that can suppress elution of fluorine and boron at the same time, and there are still few practical ones.
溶融固化法(特許文献1)は、廃棄物を1400〜1600℃の高温になるまで加熱することによって有機物を分解し、重金属等の有害物質を生成するスラグに封じ込み固定化するものである。しかし、フッ素やホウ素が固定化されるという記述はなく、示唆もない。また、この方式は、安全性は最も高いとされているが、新たに発生するより高濃度の有害物質を含有する飛灰処理の問題等の欠点があり、また設備費を含めた処理コストが最も高いことも問題となっている。 The melt-solidification method (Patent Document 1) decomposes organic matter by heating waste to a high temperature of 1400 to 1600 ° C., and encloses and fixes the waste in slag that generates toxic substances such as heavy metals. However, there is no description or suggestion that fluorine or boron is immobilized. In addition, this method is said to have the highest safety, but there are drawbacks such as the problem of fly ash treatment containing newly generated higher concentration of harmful substances, and the processing cost including equipment costs is low. The highest is also a problem.
石炭灰中のホウ素を高炉セメントで固化して溶出抑制する方法(特許文献2)があるが、固化するまでに養生日数が1週間程度かかるため処理後の灰置場を要するといった制限を受けることに加え、灰の性状により固化しても、その固化物に耐久性がない場合があり、例えばセメントが風化して灰の成分が溶出し、これによる汚染が考えられる。またこの方法で溶出抑制出来るのは、ホウ素のみでありフッ素に関しての効果は期待できない。 There is a method of suppressing elution by solidifying boron in coal ash with blast furnace cement (Patent Document 2), but since it takes about one week to cure before solidifying, it is subject to the restriction that an ash storage place after treatment is required In addition, even if solidified due to the properties of ash, the solidified product may not be durable. For example, cement is weathered and ash components are eluted, and contamination due to this may be considered. Further, elution can be suppressed by this method only with boron, and an effect on fluorine cannot be expected.
また、汚泥に石灰、石炭燃焼灰、石膏を水の存在下で混錬し、フッ素及びホウ素の溶出を抑制する方法(特許文献3)があるが、フッ素及びホウ素溶出量が土壌環境基準値以下となるための養生に約1週間を要し、上記と同様に処理後の灰置場を要するといった制限を受ける。さらに、処理後は固化が進み、土壌改良材や盛土などへの使用は難しくなる。 In addition, there is a method (Patent Document 3) in which lime, coal combustion ash, and gypsum are kneaded in the presence of water to control sludge and elution of fluorine and boron. It takes about one week to cure, and is subject to restrictions such as the need for a post-treatment ash storage place as above. Furthermore, solidification proceeds after the treatment, and it becomes difficult to use it for soil improvement materials or banking.
さらに、排水中のフッ素やホウ素を含水酸化ジルコニウム複合親水性高分子成型体(特許文献4)や1400℃以下の温度で焼成した酸化マグネシウムに吸着除去させる方法(特許文献5)があるが、これらの手法を燃焼灰の無害化に応用する事は技術的に難しく、これらの高価で製造に手間のかかる吸着剤を灰に添加してもフッ素、ホウ素を不溶化させる効果は不明であり、また、吸着剤は回収できず、非常に高価な手法となってしまい現実的ではない。 Furthermore, there are methods of adsorbing and removing fluorine and boron in wastewater by hydrous zirconium oxide composite hydrophilic polymer molding (Patent Document 4) and magnesium oxide baked at a temperature of 1400 ° C. or lower (Patent Document 5). It is technically difficult to apply this method to detoxification of combustion ash, and even if these expensive and time-consuming adsorbents are added to ash, the effect of insolubilizing fluorine and boron is unknown, The adsorbent cannot be recovered and is a very expensive technique, which is not realistic.
酸などの溶媒抽出によるホウ素除去(例えば、非特許文献1)は、処理に大量の水や時間がかかり、さらにホウ素を含む排水の処理といった付帯設備も必要となり、それらを合せると非常に大規模な設備を要し、設備費も莫大となり、実用上には不向きである。また、この手法もフッ素への効果は明らかではない。 Boron removal by extraction of acids such as acids (for example, Non-Patent Document 1) requires a large amount of water and time for the treatment, and also requires ancillary facilities such as treatment of wastewater containing boron. Necessitating a large amount of equipment and the equipment cost is enormous, which is not suitable for practical use. Also, this method has no clear effect on fluorine.
土壌又は焼却灰中のフッ素やホウ素を、セメントにカルシウム塩を加えて固化させて不溶化させる方法(特許文献6)や酸化マグネシウムと石膏を加えて固化させて不溶化させる方法(特許文献7)もあるが養生に7日を要し、固化しているため利用に制限を受ける。燃焼灰を融雪材あるいは酸性土壌を改良するために使われる土壌改良材や建設工事の盛土、埋め戻し材として用いる場合には、フッ素及びホウ素の溶出を同時に抑制する方法は手法が限られ、例えば、セメントで固めて使用するなどの方法も利用する事ができない。さらに、処理に時間や場所を多く要するといった制限があってはならず、さらに、燃焼灰中のフッ素及びホウ素含有量の変動にも確実に対応して抑制効果を発揮しなくてはならない。以上、詳細に述べたように、従来の灰の処理方法にはフッ素及びホウ素の溶出を同時に抑制できる、満足できるものは提案されていなかった。
本発明は、石炭やRPFを燃料としたボイラから排出される燃焼灰や製紙スラッジ等の焼却炉から排出される灰からフッ素やホウ素の溶出を抑制する方法を、上記のようなセメント固化や溶融といった、複雑で手間や費用のかかる方法や、効果が発現するまでに時間のかかる方法に替わる簡便でかつ安価な方法を提供し、フッ素及びホウ素の溶出を同時に抑えることにより土壌汚染、水質汚染を起こす恐れのない燃焼灰を土壌改良材、草地改良材、埋め戻し材、盛土等、種々の用途に有効利用することを目的とする。 The present invention provides a method for suppressing elution of fluorine and boron from ash discharged from an incinerator such as combustion ash and paper sludge discharged from a boiler using coal or RPF as a fuel. Such as complicated, time-consuming and costly methods, and simple and inexpensive methods that replace time-consuming methods to achieve the effects. The purpose is to make effective use of combustion ash, which has no fear of causing, in various applications such as soil improvement material, grassland improvement material, backfilling material, and embankment.
本発明は、燃焼灰に含まれるフッ素やホウ素の溶出抑制方法であり、前述の技術的課題を解決することができる以下の発明を包含する。 The present invention is a method for suppressing elution of fluorine and boron contained in combustion ash, and includes the following inventions that can solve the above-mentioned technical problems.
(1)燃焼灰を、酸化カルシウム類及び/又は水酸化カルシウム類、高炉セメント及び硫酸アルミニウム類と水の存在下に混合処理し、平成15年環境省告示第18号に基づく溶出試験方法によって前記燃焼灰中に含まれるフッ素を溶出させた場合のフッ素の溶出量が0.8mg/L以下であり、ホウ素の溶出量が1.0mg/L以下である燃焼灰を調製することを特徴とする、燃焼灰の処理方法。 (1) Combustion ash is mixed with calcium oxides and / or calcium hydroxide, blast furnace cement and aluminum sulfate in the presence of water, and the above-mentioned is carried out according to the dissolution test method based on Notification No. 18 of the Ministry of the Environment in 2003. Combustion ash having a fluorine elution amount of 0.8 mg / L or less and a boron elution amount of 1.0 mg / L or less when fluorine contained in the combustion ash is eluted is prepared. , Combustion ash treatment method.
(2)前記燃焼灰が、石炭の燃焼灰、RPF(Refused Paper and Plastics Fuel)の燃焼灰及び製紙用スラッジの焼却炉から排出される燃焼灰等から選ばれる少なくとも1種であり、フッ素及び/又はホウ素を含有する燃焼灰であることを特徴とする(1)項記載の燃焼灰の処理方法。 (2) The combustion ash is at least one selected from coal combustion ash, RPF (Refused Paper and Plastics Fuel) combustion ash, combustion ash discharged from a papermaking sludge incinerator, etc. Alternatively, the combustion ash treatment method according to (1), wherein the combustion ash contains boron.
(3)前記燃焼灰の処理に使用される酸化カルシウム類及び/又は水酸化カルシウム類が、石灰石、ドロマイト、帆立貝、ペーパースラッジ及び古紙粕から選ばれるカルシウム源を焼成して得られる石灰、及びその水酸化物の少なくとも1種である(1)項又は(2)項に記載の燃焼灰の処理方法。 (3) lime obtained by calcining a calcium source selected from limestone, dolomite, scallops, paper sludge, and waste paper cake, and the calcium oxides and / or calcium hydroxides used in the treatment of the combustion ash, and The method for treating combustion ash according to item (1) or (2), which is at least one kind of hydroxide.
(4)前記高炉セメントが、JIS R 5211の日本工業規格に定められた品質を有するA種、B種及びC種から選ばれる少なくとも1種である(1)項〜(3)項のいずれか1項に記載の燃焼灰の処理方法。 (4) Any of (1) to (3), wherein the blast furnace cement is at least one selected from Class A, Class B, and Class C having quality defined in Japanese Industrial Standards of JIS R 5211 2. A method for treating combustion ash according to item 1.
(5)前記燃焼灰と酸化カルシウム類及び/又は水酸化カルシウム類の質量比、燃焼灰と高炉セメントの質量比、及び燃焼灰と硫酸アルミニウムの水溶液の質量比は、燃焼灰/酸化カルシウム類及び又は水酸化カルシウム類が100/0.5〜10であり、燃焼灰/高炉セメントが100/0.5〜10であり、燃焼灰/硫酸アルミニウムの水溶液は、燃焼灰/硫酸アルミニウムの比として100/0.5〜10である(1)項〜(4)項のいずれか1項に記載の燃焼灰の処理方法。 (5) The mass ratio of the combustion ash and calcium oxides and / or calcium hydroxide, the mass ratio of combustion ash and blast furnace cement, and the mass ratio of the aqueous solution of combustion ash and aluminum sulfate are: Or calcium hydroxide is 100 / 0.5-10, combustion ash / blast furnace cement is 100 / 0.5-10, and the aqueous solution of combustion ash / aluminum sulfate is 100 as the ratio of combustion ash / aluminum sulfate. The method for treating combustion ash according to any one of (1) to (4), which is /0.5 to 10.
(6)前記燃焼灰と酸化カルシウム類及び/又は水酸化カルシウム類の質量比は、燃焼灰/酸化カルシウム類及び/又は水酸化カルシウム類が100/5〜10である(1)項〜(5)項のいずれか1項に記載の燃焼灰の処理方法。 (6) The mass ratio of the combustion ash to calcium oxides and / or calcium hydroxides is 100/5 to 10 for combustion ash / calcium oxides and / or calcium hydroxides (1) to (5) The method for treating combustion ash according to any one of items 1).
本発明は、石炭やRPFを燃料としたボイラからの燃焼灰や製紙スラッジ等の焼却炉から排出される灰からフッ素及びホウ素の溶出を同時に抑制する方法として、上記のようなセメント固化や溶融と言った複雑で手間のかかる方法や、効果が発現するまでに時間のかかる方法に替わる簡便でかつ安価な方法を提供し得るものであり、フッ素やホウ素の溶出を抑えることにより土壌汚染、水質汚染を起こす恐れのない燃焼灰を融雪材、土壌改良材、草地改良材、埋め戻し材、盛土などとして環境への悪影響もなく利用することを可能とするものである。 The present invention is a method for simultaneously suppressing the elution of fluorine and boron from ash discharged from an incinerator such as combustion ash from a boiler fueled with coal or RPF and paper sludge. It is possible to provide a simple and inexpensive method that replaces the complicated and time-consuming method described above and the method that takes time to achieve the effect. Soil contamination and water contamination by suppressing elution of fluorine and boron. It is possible to use the burned ash that does not cause the occurrence of snow as a snow melting material, soil improving material, grassland improving material, backfilling material, embankment, etc. without adversely affecting the environment.
以下、本発明を具体的に説明する。
燃焼灰などに含まれるフッ素やホウ素の不溶化メカニズムは今のところ明確ではないが、本発明のように処理剤として酸化カルシウム類及び又は水酸化カルシウム類、高炉セメントの存在下で、種々の硫酸根(硫酸、石膏、硫酸ナトリウム、硫酸アルミニウム、硫酸第一鉄など)を含む水溶液の添加を試みたところ、驚くべき事に、硫酸アルミニウム水溶液を用いることで、処理後わずか数時間でフッ素及びホウ素を同時に溶出抑制させる効果があることを見出した。それ故、本発明の方法は、フッ素及びホウ素の両者を含有する燃焼灰の処理に適用することが最も効果的である。
The present invention will be specifically described below.
The insolubilization mechanism of fluorine and boron contained in combustion ash etc. is not clear at present, but various sulfate groups in the presence of calcium oxides and / or calcium hydroxides and blast furnace cement as treatment agents as in the present invention. When trying to add an aqueous solution containing (sulfuric acid, gypsum, sodium sulfate, aluminum sulfate, ferrous sulfate, etc.), surprisingly, by using an aqueous aluminum sulfate solution, fluorine and boron can be added in just a few hours after treatment. At the same time, it was found that there is an effect of suppressing elution. Therefore, the method of the present invention is most effective when applied to the treatment of combustion ash containing both fluorine and boron.
本発明の方法が適用される燃焼灰は、石炭、RPF(Refused Paper & Plastics Fuel)及び製紙スラッジなどを燃焼した際に発生する燃焼灰であり、詳しくは、これらを燃焼した際に排出されるガスを電気集塵器(EP)やバグフィルター等で捕獲した飛灰(それぞれEP灰やバグ灰と略す)等である。 The combustion ash to which the method of the present invention is applied is combustion ash generated when coal, RPF (Refused Paper & Plastics Fuel), papermaking sludge, and the like are burned. Specifically, the ash is discharged when these are burned. Fly ash (abbreviated as EP ash and bag ash, respectively) captured by an electric dust collector (EP) or a bag filter.
本発明で使用される酸化カルシウム類及び又は水酸化カルシウム類は、燃焼灰中のフッ素やホウ素あるいはそれらの化合物を結晶構造に取り込む必要があり、そのためには酸化カルシウム類及び又は水酸化カルシウム類としては、生石灰、消石灰あるいは石灰石、ドロマイト、帆立貝、ペーパースラッジ、古紙粕などのカルシウム源から焼成した石灰及びこれらの水酸化物のいずれか一つ、又は、任意な比率の組み合わせて使用することがフッ素及びホウ素の溶出抑制のために好ましい。 For the calcium oxides and / or calcium hydroxides used in the present invention, it is necessary to incorporate fluorine, boron or their compounds in the combustion ash into the crystal structure, and as such, as calcium oxides and / or calcium hydroxides Fluorine, slaked lime or limestone, dolomite, scallops, paper sludge, lime calcined from calcium sources such as waste paper straw, and any one of these hydroxides, or any combination of fluorine And preferred for suppressing boron elution.
本発明に使用される高炉セメントは、高炉スラグをポルトランドセメントに均一に混合したものとし、その配合率によってA種、B種、C種に分類されるが、限定されるものではない。また、使用には入手が容易な市販のものが好ましいがそれに限定されるものではない。 The blast furnace cement used in the present invention is obtained by uniformly mixing blast furnace slag with Portland cement, and is classified into A type, B type, and C type depending on the mixing ratio, but is not limited thereto. In addition, commercially available products that are easily available are preferred for use, but are not limited thereto.
燃焼灰と酸化カルシウム類及び又は水酸化カルシウム類、高炉セメント及び硫酸アルミニウム水溶液で処理する際の質量比は、燃焼灰/酸化カルシウム類及び又は水酸化カルシウム類と燃焼灰/高炉セメントは200/1から100/10の範囲が好ましく、より好ましくは100/1から100/5が良い。200/1未満の質量比では、フッ素及びホウ素の固定化が十分できず、逆に100/10を越える場合には、処理後の灰の絶対量が増え、利用上の制限を受け、コストも増加するので実際的ではない。一方燃焼灰/硫酸アルミニウムの質量比は200/1から100/10の範囲が好ましく、より好ましくは100/1から100/10が良い。加える水の量は燃焼灰に対して5〜30質量%が好ましい。 Combustion ash and calcium oxides and / or calcium hydroxide, blast furnace cement, and mass ratio when treated with aqueous aluminum sulfate are 200/1 for combustion ash / calcium oxides and / or calcium hydroxide and combustion ash / blast furnace cement. To 100/10 is preferable, and 100/1 to 100/5 is more preferable. If the mass ratio is less than 200/1, fluorine and boron cannot be sufficiently fixed. Conversely, if the mass ratio exceeds 100/10, the absolute amount of ash after treatment increases, the usage is limited, and the cost is also low. It is not practical because it increases. On the other hand, the mass ratio of combustion ash / aluminum sulfate is preferably in the range of 200/1 to 100/10, and more preferably 100/1 to 100/10. The amount of water added is preferably 5 to 30% by mass with respect to the combustion ash.
燃焼灰に酸化カルシウム類及び又は水酸化カルシウム類、高炉セメント及び硫酸アルミニウム水溶液を添加した後はよく攪拌することが好ましく、攪拌する事により添加物がより均一に燃焼灰中に分散し、薬品が最小限の量でフッ素及びホウ素の固定化が行われる。攪拌機としては、市販されている一般的なものが使用されるが、特に限定されるものではない。処理中には、臭気などが発生しないので極めて安全な手法である。 It is preferable to stir well after adding calcium oxides and / or calcium hydroxide, blast furnace cement and aluminum sulfate aqueous solution to the combustion ash. By stirring, the additives are more uniformly dispersed in the combustion ash, Immobilization of fluorine and boron is performed in a minimum amount. As the stirrer, a commercially available general one is used, but it is not particularly limited. It is an extremely safe technique because no odor is generated during processing.
本発明により処理した燃焼灰は僅か3時間後には、平成15年環境省告示第18号の溶出試験方法に基づき溶出させたフッ素及びホウ素の溶出量は、未処理ではフッ素5.2mg/L、ホウ素2.5mg/L以上であったのに対し、フッ素、ホウ素ともに規制値(フッ素:0.8mg/L、ホウ素:1.0mg/L)の半分以下になった。またフッ素、ホウ素以外の重金属の溶出も抑える事が可能である。処理後の形態も固化しておらず、湿潤状態のため取り扱いも容易であり、融雪材、土壌改良材、草地改良材、埋め戻し材、盛土等、種々の用途に利用が可能となる。 The combustion ash treated according to the present invention, after only 3 hours, the amount of fluorine and boron eluted based on the dissolution test method of the Ministry of the Environment Notification No. 18 of 2003 was 5.2 mg / L of fluorine when untreated. While it was 2.5 mg / L or more for boron, both fluorine and boron were less than half of the regulation values (fluorine: 0.8 mg / L, boron: 1.0 mg / L). In addition, elution of heavy metals other than fluorine and boron can be suppressed. The form after the treatment is not solidified and is easy to handle because it is in a wet state, and can be used for various applications such as a snow melting material, a soil improving material, a grassland improving material, a backfilling material, and embankment.
以下に、実施例及び比較例を挙げて本発明をより具体的に説明するが、勿論、本発明はこれらの実施例によって限定されるものではなく、本発明の趣旨に逸脱しない限り、その実施態様を変更することができる。 EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. However, the present invention is of course not limited by these examples, and the implementation thereof is not departed from the spirit of the present invention. Aspects can be changed.
なお、以下に実施例及び比較例でフッ素及びホウ素の溶出抑制試料として用いた燃焼灰は、石炭を燃料としたストーカー炉の電気集塵器(EP)で捕獲したEP灰である。化学組成及びフッ素、ホウ素の含有量、溶出量は下記表1に示す通りである。 In addition, the combustion ash used as an elution suppression sample of fluorine and boron in Examples and Comparative Examples below is EP ash captured by an electric dust collector (EP) of a stalker furnace using coal as fuel. The chemical composition, fluorine and boron contents, and elution amounts are as shown in Table 1 below.
1)フッ素及びホウ素の溶出方法
以下に示す各実施例及び比較例では、ホウ素の溶出試験は平成15年環境省告示第18号に準拠して行なった。すなわち、ストーカー炉の煙道にある電気集塵器(EP)で集塵された飛灰の未処理あるいは処理された灰試料を風乾し、中小礫、木片などを除き、団粒を粉砕した後、非金属製である目開き2mmの篩を通過させ、それらを良く混合する。この試料から50gを1000mlの蓋つきのポリエチレン容器に取り、純水(pH5.8〜6.3)を500ml加える。この調製した試料液を常温、大気圧下で、産廃溶出振とう機(タイテック社製)を用いて6時間連続して振とう(振とう幅4〜5cm、振動数 200回/分)した。この液を30分静置した後、毎分約3000回転で20分間遠心分離した。上澄み液を孔径0.45μmのメンブレンフィルターでろ過し、濾液をとり、定量に必要な量を正確に計り取り、これを検液とした。
1) Fluorine and boron elution method In each of the following examples and comparative examples, the boron elution test was conducted in accordance with 2003 Ministry of the Environment Notification No. 18. In other words, air-dried untreated or treated ash samples collected by the electric dust collector (EP) in the stalker's flue, air-dried, crushed the aggregates, removing medium pebbles, wood chips, etc. Pass through a non-metallic mesh 2 mm sieve and mix them well. 50 g of this sample is put into a 1000 ml polyethylene container with a lid, and 500 ml of pure water (pH 5.8 to 6.3) is added. This prepared sample solution was shaken continuously (shaking width: 4 to 5 cm, vibration frequency: 200 times / min) at room temperature and atmospheric pressure using an industrial waste elution shaker (manufactured by Taitec Corporation) for 6 hours. This solution was allowed to stand for 30 minutes and then centrifuged at about 3000 rpm for 20 minutes. The supernatant was filtered through a membrane filter having a pore size of 0.45 μm, the filtrate was taken, the amount required for quantification was accurately measured, and this was used as a test solution.
2)フッ素の測定方法
検液をイオンクロマトグラフィ(DX−120/DIONEX社製)で分析し、溶出したフッ素を定量した。
2) Fluorine measurement method The test solution was analyzed by ion chromatography (DX-120 / DIONEX), and the eluted fluorine was quantified.
3)ホウ素の測定方法
検液を、ICP−OES(誘導結合プラズマ発光分光分析装置、リガク/SPECTORO社製、CIROS−120型)で分析し、溶出したホウ素量を定量した。
3) Measuring method of boron The test solution was analyzed with ICP-OES (inductively coupled plasma emission spectrophotometer, Rigaku / Spectoro, CIROS-120 type), and the amount of boron eluted was quantified.
実施例1
石炭ボイラのEP灰を500gビニル袋に計り取り、キルン焼成生石灰を25g、高炉セメントBを15g添加した後十分に攪拌し、灰(絶乾)100質量部に対して硫酸アルミニウムが5質量部、添加水が25質量部となるように調整した硫酸アルミニウム水溶液をスプレーで均一に噴霧後、よく攪拌した。養生日数を3時間、1日、3日、10日として、各養生日数毎に上記の溶出法と測定法で分析し、フッ素及びホウ素の溶出量を求めた。その結果を表2に示す。
Example 1
The coal ash EP ash was weighed into a 500 g vinyl bag, and 25 g of kiln calcined quicklime and 15 g of blast furnace cement B were added and stirred well. 5 parts by mass of aluminum sulfate with respect to 100 parts by mass of ash (absolutely dry), The aluminum sulfate aqueous solution adjusted so that the amount of added water was 25 parts by mass was uniformly sprayed and then stirred well. The curing days were 3 hours, 1 day, 3 days, and 10 days, and analysis was performed for each curing day by the above elution method and measurement method, and the elution amounts of fluorine and boron were determined. The results are shown in Table 2.
実施例2
石炭ボイラのEP灰500gをビニル袋に計り取り、キルン焼成石灰を25g、高炉セメントBを15g添加した後十分に攪拌し、灰(絶乾)100質量部に対して硫酸アルミニウムが3.5質量部、添加水が10質量部なるように調整した硫酸アルミニウム水溶液をスプレーで均一に噴霧後、よく攪拌した。養生日数を3時間、1日、3日、10日として、養生日数毎に上記の溶出法と測定法で分析し、フッ素及びホウ素の溶出量を求めた。その結果を表2に示す。
Example 2
Weigh 500 g of coal boiler EP ash in a vinyl bag, add 25 g of kiln calcined lime and 15 g of blast furnace cement B, and then stir well. 3.5 mass of aluminum sulfate per 100 mass parts of ash (absolutely dry) The aqueous solution of aluminum sulfate adjusted to 10 parts by weight and 10 parts by weight of the added water was uniformly sprayed and then stirred well. The curing days were set to 3 hours, 1 day, 3 days, and 10 days, and the above elution method and measurement method were used for each curing day to determine the elution amounts of fluorine and boron. The results are shown in Table 2.
実施例3
石炭ボイラのEP灰500gをビニル袋に計り取り、消石灰を25g、高炉セメントBを15g添加した後十分に攪拌し、灰(絶乾)100質量部に対して硫酸アルミニウムが3.5質量部、添加水が10質量部となるように調整した硫酸アルミニウム水溶液をスプレーで均一に噴霧後、よく攪拌した。養生日数を3時間、1日、3日、10日として、養生日数毎に上記の溶出法と測定法で分析し、フッ素及びホウ素の溶出量を求めた。その結果を表2に示す。
Example 3
Weigh 500g of coal boiler EP ash in a vinyl bag, add 25g of slaked lime and 15g of blast furnace cement B, and then stir well. The aluminum sulfate aqueous solution adjusted so that the amount of added water was 10 parts by mass was uniformly sprayed and then stirred well. The curing days were 3 hours, 1 day, 3 days, and 10 days, and analysis was carried out for each curing day by the above elution method and measurement method to determine the elution amounts of fluorine and boron. The results are shown in Table 2.
実施例4
石炭ボイラのEP灰500gをビニル袋に計り取り、消石灰を15g、高炉セメントBを15g添加した後十分に攪拌し、灰(絶乾)100質量部に対して硫酸アルミニウムが3.5質量部、添加水が10質量部となるように調整した硫酸アルミニウム水溶液をスプレーで均一に噴霧後、よく攪拌した。養生日数を3時間、1日、3日、10日として、養生日数毎に上記の溶出法と測定法で分析し、フッ素及びホウ素の溶出量を求めた。その結果を表2に示す。
Example 4
Weigh 500 g of coal ash EP ash in a vinyl bag, add 15 g of slaked lime, and 15 g of blast furnace cement B, and then stir well. The aluminum sulfate aqueous solution adjusted so that the amount of added water was 10 parts by mass was uniformly sprayed and then stirred well. The curing days were set to 3 hours, 1 day, 3 days, and 10 days, and the above elution method and measurement method were used for each curing day to determine the elution amounts of fluorine and boron. The results are shown in Table 2.
比較例1
石炭ボイラのEP灰を上記の溶出法と測定法で分析し、フッ素及びホウ素の溶出量を求めた。その結果を表2に示す。
Comparative Example 1
The coal boiler EP ash was analyzed by the above elution method and measurement method, and the elution amounts of fluorine and boron were determined. The results are shown in Table 2.
比較例2
石炭ボイラのEP灰500gをビニル袋に計り取り、純水125mlをスプレーで均一に噴霧後、よく攪拌した。養生日数を3時間、1日、3日、10日として、各養生日数毎に上記の溶出法と測定法で分析し、フッ素及びホウ素の溶出量を求めた。その結果を表2に示す。
Comparative Example 2
500 g of EP ash of a coal boiler was weighed into a vinyl bag, and 125 ml of pure water was sprayed uniformly with a spray and then stirred well. The curing days were 3 hours, 1 day, 3 days, and 10 days, and each of the curing days was analyzed by the above elution method and measurement method to determine the elution amounts of fluorine and boron. The results are shown in Table 2.
比較例3
石炭ボイラのEP灰500gをビニル袋に計り取り、高炉セメントBを15g添加した後十分に攪拌し、純水125mlをスプレーで均一に噴霧後、よく攪拌した。養生日数を3時間、1日、3日、10日として、各養生日数毎に上記の溶出法と測定法で分析し、フッ素及びホウ素の溶出量を求めた。その結果を表2に示す。
Comparative Example 3
500 g of EP ash of a coal boiler was weighed into a vinyl bag, 15 g of blast furnace cement B was added, and the mixture was sufficiently stirred, and 125 ml of pure water was sprayed uniformly with a spray and then stirred well. The curing days were 3 hours, 1 day, 3 days, and 10 days, and each of the curing days was analyzed by the above elution method and measurement method to determine the elution amounts of fluorine and boron. The results are shown in Table 2.
比較例4
石炭ボイラのEP灰500gをビニル袋に計り取り、キルン焼成石灰を25g、高炉セメントBを15g添加した後十分に攪拌し、灰(絶乾)に対して純水125mlをスプレーで均一に噴霧後、よく攪拌した。養生日数を3時間、1日、3日、10日として、各養生日数毎に上記の溶出法と測定法で分析し、フッ素及びホウ素の溶出量を求めた。その結果を表2に示す。
Comparative Example 4
Weigh 500g of coal boiler EP ash in a vinyl bag, add 25g of kiln calcined lime and 15g of blast furnace cement B, and stir well. After spraying 125ml of pure water uniformly with ash (absolutely dry) Stir well. The curing days were 3 hours, 1 day, 3 days, and 10 days, and each of the curing days was analyzed by the above elution method and measurement method to determine the elution amounts of fluorine and boron. The results are shown in Table 2.
比較例5
石炭ボイラのEP灰500gをビニル袋に計り取り、キルン焼成石灰を25g、高炉セメントBを15g及び濃硫酸を灰(絶乾)100質量部に対して5質量部、添加水が25質量部となるように調製した硫酸水溶液をスプレーで均一に噴霧後、よく攪拌した。養生日数を3時間、1日、3日、10日として、各養生日数毎に上記の溶出法と測定法で分析し、フッ素及びホウ素の溶出量を求めた。その結果を表2に示す。
Comparative Example 5
500 g of EP ash of a coal boiler is weighed into a vinyl bag, 25 g of kiln calcined lime, 15 g of blast furnace cement B and 5 parts by mass of concentrated sulfuric acid with respect to 100 parts by mass of ash (absolutely dry) and 25 parts by mass of added water The aqueous sulfuric acid solution thus prepared was uniformly sprayed and then stirred well. The curing days were 3 hours, 1 day, 3 days, and 10 days, and each of the curing days was analyzed by the above elution method and measurement method to determine the elution amounts of fluorine and boron. The results are shown in Table 2.
比較例6
石炭ボイラのEP灰500gをビニル袋に計り取り、キルン焼成石灰を25g、高炉セメントBを15g及び半水石膏を硫酸カルシウムとして灰(絶乾)100質量部に対して5質量部となるように添加し、添加水及び半水石膏の結晶水を合せた量が灰100質量部に対して25質量部となるように純水をスプレーで均一に噴霧後、よく攪拌した。養生日数を3時間、1日、3日、10日として、各養生日数毎に上記の溶出法と測定法で分析し、フッ素及びホウ素の溶出量を求めた。その結果を表2に示す。
Comparative Example 6
Weigh 500g of coal boiler EP ash into a vinyl bag, 25g of kiln calcined lime, 15g of blast furnace cement B and calcium sulfate as calcium sulfate so that it becomes 5 parts by mass with respect to 100 parts by mass of ash (absolutely dry). The pure water was sprayed uniformly with a spray so that the total amount of the added water and the crystal water of hemihydrate gypsum was 25 parts by mass with respect to 100 parts by mass of ash, and then stirred well. The curing days were 3 hours, 1 day, 3 days, and 10 days, and analysis was performed for each curing day by the above elution method and measurement method, and the elution amounts of fluorine and boron were determined. The results are shown in Table 2.
比較例7
石炭ボイラのEP灰500gをビニル袋に計り取り、キルン焼成石灰を25g、高炉セメントBを15g、硫酸ナトリウムを25g添加した後十分に攪拌し、純水125mlをスプレーで均一に噴霧後、よく攪拌した。養生日数を3時間、1日、3日、10日として、各養生日数毎に上記の溶出法と測定法で分析し、フッ素及びホウ素の溶出量を求めた。その結果を表2に示す。
Comparative Example 7
Weigh 500g of coal boiler EP ash in a vinyl bag, add 25g of kiln calcined lime, 15g of blast furnace cement B and 25g of sodium sulfate, stir well, spray 125ml of pure water uniformly with a spray, and stir well did. The curing days were 3 hours, 1 day, 3 days, and 10 days, and each of the curing days was analyzed by the above elution method and measurement method to determine the elution amounts of fluorine and boron. The results are shown in Table 2.
比較例8
石炭ボイラのEP灰500gをビニル袋に計り取り、キルン焼成石灰を25g、高炉セメントBを15g、硫酸第一鉄をFeSO4として25g(有姿では48g)添加した後十分に攪拌し、灰100質量部に対して、硫酸第一鉄の結晶水を含めて添加水が25質量部となるように純水をスプレーで均一に噴霧後、よく攪拌した。養生日数を3時間、1日、3日、10日として、各養生日数毎に上記の溶出法と測定法で分析し、フッ素及びホウ素の溶出量を求めた。その結果を表2に示す。
Comparative Example 8
Weighed EP ash 500g of coal boiler vinyl bag, the kiln lime 25 g, blast furnace cement B 15 g, thoroughly stirred after addition (48 g in BASIS) 25 g of ferrous sulfate as FeSO 4, ashes 100 Pure water was sprayed uniformly with a spray so that the added water was 25 parts by mass including the crystal water of ferrous sulfate with respect to parts by mass, and then stirred well. The curing days were 3 hours, 1 day, 3 days, and 10 days, and each of the curing days was analyzed by the above elution method and measurement method to determine the elution amounts of fluorine and boron. The results are shown in Table 2.
表2から明らかなように、実施例1〜4では、石炭EP灰に酸化カルシウム類あるいは消石灰、高炉セメント及び硫酸アルミニウム水溶液を加えて攪拌するのみで、処理後僅か3時間で基準値を大幅に下回り、フッ素及びホウ素の不溶出化を同時に達成した。 As can be seen from Table 2, in Examples 1 to 4, the calcium oxides or slaked lime, blast furnace cement and aluminum sulfate aqueous solution were added to the coal EP ash and stirred, and the reference value was greatly increased in only 3 hours after the treatment. Below, fluorine and boron non-eluting were simultaneously achieved.
一方、比較例2のように石炭EP灰に水のみで加湿した場合は乾灰のままよりも、フッ素及びホウ素の溶出量を若干減少できるが、規制値を上回っている。また、比較例3で高炉セメントと水のみ、比較例4で焼成石灰と高炉セメント及び水を添加した場合、ホウ素の溶出抑制効果は見られるが、フッ素の溶出抑制効果はゆっくりと現れ、規制値以下になるには10日の養生を要する。比較例5〜8において、焼成石灰/高炉セメントの存在下で硫酸、石膏、硫酸ナトリウム又は硫酸第一鉄と言った各種硫酸根を含む水溶液の添加を行った場合には、フッ素とホウ素の両者を同時に規制値以下に溶出抑制できるようになるには10日の養生を要する。 On the other hand, when the coal EP ash is humidified only with water as in Comparative Example 2, the elution amount of fluorine and boron can be slightly reduced as compared with the dry ash, but it exceeds the regulation value. Further, when only blast furnace cement and water were added in Comparative Example 3 and calcined lime, blast furnace cement and water were added in Comparative Example 4, the boron elution suppression effect was observed, but the fluorine elution suppression effect appeared slowly, and the regulation value It takes 10 days to cure. In Comparative Examples 5 to 8, when addition of an aqueous solution containing various sulfate radicals such as sulfuric acid, gypsum, sodium sulfate or ferrous sulfate in the presence of calcined lime / blast furnace cement, both fluorine and boron In order to be able to suppress elution to below the regulation value at the same time, curing for 10 days is required.
以上のように、燃焼灰に酸化カルシウム類及び/又は水酸化カルシウム類、高炉セメント及び硫酸アルミニウム水溶液を添加して攪拌処理を行い、僅か3時間で燃焼灰中のフッ素及びホウ素の溶出を同時に抑制し、土壌汚染対策法の規制値以下にすることができる本発明は、迅速かつ簡便で極めて有効な方法であることがわかる。 As mentioned above, calcium oxides and / or calcium hydroxide, blast furnace cement and aluminum sulfate aqueous solution are added to the combustion ash and agitation treatment is performed, and elution of fluorine and boron in the combustion ash is simultaneously suppressed in only 3 hours. However, it can be seen that the present invention, which can be reduced to the regulation value of the Soil Contamination Countermeasures Law, is a quick, simple and extremely effective method.
本発明の方法は、石炭ボイラやRPFを燃料としたRPFボイラから排出される灰に、煙道や排出口で、前記の酸化カルシウム類及び/又は水酸化カルシウム類、高炉セメント及び硫酸アルミニウム類と水を添加して処理するだけで無害化することが可能であり、また、得られた灰は固化していないために、利用先を制限されず、融雪材、土壌改良材、草地改良材、埋め戻し材、盛土等に有効利用することができる。 In the method of the present invention, the ash discharged from a coal boiler or an RPF boiler using RPF as fuel, the above-mentioned calcium oxides and / or calcium hydroxides, blast furnace cement and aluminum sulfates at a flue or outlet. It is possible to detoxify by simply adding water, and because the obtained ash is not solidified, the application destination is not limited, snow melting material, soil improvement material, grassland improvement material, It can be used effectively for backfilling and embankment.
Claims (6)
The mass ratio of the combustion ash to calcium oxides and / or calcium hydroxides is 100/5 to 10 for combustion ash / calcium oxides and / or calcium hydroxides. The processing method of combustion ash as described in 2.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004380135A JP4826089B2 (en) | 2004-12-28 | 2004-12-28 | Combustion ash treatment method |
CNB2005100230752A CN100569400C (en) | 2004-12-28 | 2005-12-26 | The processing method of combustion ash |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004380135A JP4826089B2 (en) | 2004-12-28 | 2004-12-28 | Combustion ash treatment method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006181535A true JP2006181535A (en) | 2006-07-13 |
JP4826089B2 JP4826089B2 (en) | 2011-11-30 |
Family
ID=36735021
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004380135A Expired - Fee Related JP4826089B2 (en) | 2004-12-28 | 2004-12-28 | Combustion ash treatment method |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP4826089B2 (en) |
CN (1) | CN100569400C (en) |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006289306A (en) * | 2005-04-13 | 2006-10-26 | Hideaki Suito | Method of suppressing elution of fluorine and heavy metal from waste and stabilizing agent |
JP2006316195A (en) * | 2005-05-13 | 2006-11-24 | Daio Paper Corp | Soil-improving material |
JP2008275181A (en) * | 2007-01-12 | 2008-11-13 | Chugoku Electric Power Co Inc:The | Method of inhibiting elution of harmful trace element |
JP2008273994A (en) * | 2006-10-18 | 2008-11-13 | Murakashi Sekkai Kogyo Kk | Composition for insolubilizing harmful substance |
JP2008273997A (en) * | 2007-01-12 | 2008-11-13 | Chugoku Electric Power Co Inc:The | Elution inhibitor for controlling elution of harmful trace element, method for controlling elution and method for combustion of dust coal |
JP2010222430A (en) * | 2009-03-23 | 2010-10-07 | Daio Paper Corp | Soil improving material and method for producing the same |
JP2012213713A (en) * | 2011-03-31 | 2012-11-08 | Nippon Paper Industries Co Ltd | Method for treating incineration ash |
JP2013119586A (en) * | 2011-12-07 | 2013-06-17 | Taiheiyo Materials Corp | Earthwork material |
JP2013139545A (en) * | 2011-12-07 | 2013-07-18 | Taiheiyo Materials Corp | Civil engineering material |
JP2014005350A (en) * | 2012-06-22 | 2014-01-16 | Taiheiyo Material Kk | Earthwork material |
JP2014024745A (en) * | 2012-06-22 | 2014-02-06 | Taiheiyo Material Kk | Civil engineering material |
JP2015071522A (en) * | 2013-06-24 | 2015-04-16 | 株式会社トクヤマ | Powdered composition using coal ash |
JP2015085244A (en) * | 2013-10-29 | 2015-05-07 | 宇部興産株式会社 | Insolubilizer, production method of the same and insolubilizing method |
JP2015107882A (en) * | 2013-10-25 | 2015-06-11 | 株式会社トクヤマ | Powdery composition using coal ash |
JP2015182057A (en) * | 2014-03-26 | 2015-10-22 | 王子ホールディングス株式会社 | Combustion ash treatment method and use thereof |
JP2016047519A (en) * | 2014-08-25 | 2016-04-07 | 太平洋セメント株式会社 | Method for insolubilization of heavy metal in coal ash, and method for manufacturing construction material in which heavy metal is insolubilized |
JP5913675B1 (en) * | 2015-03-30 | 2016-04-27 | 吉澤石灰工業株式会社 | Hazardous substance insolubilizing agent and method for insolubilizing hazardous substances |
JP2016125031A (en) * | 2015-01-08 | 2016-07-11 | 株式会社トクヤマ | Method for effectively utilizing coal ash |
JP7465402B1 (en) | 2023-10-11 | 2024-04-10 | 株式会社トクヤマ | Manufacturing method for modified wood biomass ash |
JP7465386B1 (en) | 2023-03-31 | 2024-04-10 | 株式会社トクヤマ | Manufacturing method of modified incineration ash |
JP7465322B1 (en) | 2022-10-24 | 2024-04-10 | 株式会社トクヤマ | Method for producing modified incineration ash, and modified incineration ash |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105188968B (en) * | 2013-03-22 | 2017-05-10 | 新日铁住金不锈钢株式会社 | dust cleaning device and dust cleaning method |
JP5874695B2 (en) * | 2013-08-01 | 2016-03-02 | 栗田工業株式会社 | Detoxification method for solid waste containing heavy metals |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004008854A (en) * | 2002-06-04 | 2004-01-15 | Kurita Water Ind Ltd | Method of insolubilizing heavy metals in contaminated soil |
JP2004105944A (en) * | 2002-07-25 | 2004-04-08 | Toshio Kitahara | Stabilizing material for heavy metals, method of stabilizing heavy metals and method of treating substance containing heavy metals |
JP2004167374A (en) * | 2002-11-20 | 2004-06-17 | Kawasaki Heavy Ind Ltd | Method and apparatus for stabilizing contaminated soil and waste |
JP2004243192A (en) * | 2003-02-13 | 2004-09-02 | Hitachi Constr Mach Co Ltd | Method and system for treating contaminated soil and contaminated soil treatment machine |
JP2005169379A (en) * | 2003-11-17 | 2005-06-30 | Shikoku Electric Power Co Inc | Granulator, method for producing ground material using the same, ground material obtained thereby, and method for reusing the same |
-
2004
- 2004-12-28 JP JP2004380135A patent/JP4826089B2/en not_active Expired - Fee Related
-
2005
- 2005-12-26 CN CNB2005100230752A patent/CN100569400C/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004008854A (en) * | 2002-06-04 | 2004-01-15 | Kurita Water Ind Ltd | Method of insolubilizing heavy metals in contaminated soil |
JP2004105944A (en) * | 2002-07-25 | 2004-04-08 | Toshio Kitahara | Stabilizing material for heavy metals, method of stabilizing heavy metals and method of treating substance containing heavy metals |
JP2004167374A (en) * | 2002-11-20 | 2004-06-17 | Kawasaki Heavy Ind Ltd | Method and apparatus for stabilizing contaminated soil and waste |
JP2004243192A (en) * | 2003-02-13 | 2004-09-02 | Hitachi Constr Mach Co Ltd | Method and system for treating contaminated soil and contaminated soil treatment machine |
JP2005169379A (en) * | 2003-11-17 | 2005-06-30 | Shikoku Electric Power Co Inc | Granulator, method for producing ground material using the same, ground material obtained thereby, and method for reusing the same |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006289306A (en) * | 2005-04-13 | 2006-10-26 | Hideaki Suito | Method of suppressing elution of fluorine and heavy metal from waste and stabilizing agent |
JP2006316195A (en) * | 2005-05-13 | 2006-11-24 | Daio Paper Corp | Soil-improving material |
JP2008273994A (en) * | 2006-10-18 | 2008-11-13 | Murakashi Sekkai Kogyo Kk | Composition for insolubilizing harmful substance |
JP2008275181A (en) * | 2007-01-12 | 2008-11-13 | Chugoku Electric Power Co Inc:The | Method of inhibiting elution of harmful trace element |
JP2008273997A (en) * | 2007-01-12 | 2008-11-13 | Chugoku Electric Power Co Inc:The | Elution inhibitor for controlling elution of harmful trace element, method for controlling elution and method for combustion of dust coal |
JP2010222430A (en) * | 2009-03-23 | 2010-10-07 | Daio Paper Corp | Soil improving material and method for producing the same |
JP2012213713A (en) * | 2011-03-31 | 2012-11-08 | Nippon Paper Industries Co Ltd | Method for treating incineration ash |
JP2013119586A (en) * | 2011-12-07 | 2013-06-17 | Taiheiyo Materials Corp | Earthwork material |
JP2013139545A (en) * | 2011-12-07 | 2013-07-18 | Taiheiyo Materials Corp | Civil engineering material |
JP2014024745A (en) * | 2012-06-22 | 2014-02-06 | Taiheiyo Material Kk | Civil engineering material |
JP2014005350A (en) * | 2012-06-22 | 2014-01-16 | Taiheiyo Material Kk | Earthwork material |
JP2014024746A (en) * | 2012-06-22 | 2014-02-06 | Taiheiyo Material Kk | Civil engineering material |
JP2015071522A (en) * | 2013-06-24 | 2015-04-16 | 株式会社トクヤマ | Powdered composition using coal ash |
JP2015107882A (en) * | 2013-10-25 | 2015-06-11 | 株式会社トクヤマ | Powdery composition using coal ash |
JP2015085244A (en) * | 2013-10-29 | 2015-05-07 | 宇部興産株式会社 | Insolubilizer, production method of the same and insolubilizing method |
JP2015182057A (en) * | 2014-03-26 | 2015-10-22 | 王子ホールディングス株式会社 | Combustion ash treatment method and use thereof |
JP2016047519A (en) * | 2014-08-25 | 2016-04-07 | 太平洋セメント株式会社 | Method for insolubilization of heavy metal in coal ash, and method for manufacturing construction material in which heavy metal is insolubilized |
JP2016125031A (en) * | 2015-01-08 | 2016-07-11 | 株式会社トクヤマ | Method for effectively utilizing coal ash |
JP5913675B1 (en) * | 2015-03-30 | 2016-04-27 | 吉澤石灰工業株式会社 | Hazardous substance insolubilizing agent and method for insolubilizing hazardous substances |
JP7465322B1 (en) | 2022-10-24 | 2024-04-10 | 株式会社トクヤマ | Method for producing modified incineration ash, and modified incineration ash |
JP7465386B1 (en) | 2023-03-31 | 2024-04-10 | 株式会社トクヤマ | Manufacturing method of modified incineration ash |
JP7465402B1 (en) | 2023-10-11 | 2024-04-10 | 株式会社トクヤマ | Manufacturing method for modified wood biomass ash |
Also Published As
Publication number | Publication date |
---|---|
JP4826089B2 (en) | 2011-11-30 |
CN100569400C (en) | 2009-12-16 |
CN1796014A (en) | 2006-07-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4826089B2 (en) | Combustion ash treatment method | |
JP2009195791A (en) | Treatment method of incineration ash | |
JP2013202550A (en) | Method of producing solidified material from biomass incineration ash | |
JP2008231389A (en) | Soil depurating and stabilizing agent | |
JP2012076009A (en) | Method of producing granulated and solidified body from biomass incineration ash | |
JP2005313147A (en) | Combustion ash treatment method | |
JPWO2019009303A1 (en) | Solid waste treatment method | |
JPH10137716A (en) | Waste treating material and treatment of waste | |
JP2005232341A (en) | Treatment agent of hexavalent chromium-containing soil | |
JP2008264627A (en) | Waste treatment material and treatment method for detoxifying fly ash (soot and dust) and burned ash or the like | |
JP4209223B2 (en) | Hexavalent chromium elution suppression method | |
JP6248739B2 (en) | Combustion ash treatment method and use thereof | |
JP2006198505A (en) | Combustion ash treatment method | |
US8663585B1 (en) | System, method, and composition for flue gas desulfurization (FGD) purge water disposal | |
KR100948658B1 (en) | Method for solidifying sewage sludge | |
KR100258773B1 (en) | Waste treatment method | |
JP2004269822A (en) | Method for producing calcium sulfide-based heavy metal fixing agent | |
JP2013256779A (en) | Roadbed material and manufacturing method thereof | |
JP4865199B2 (en) | Method for treating boron-containing combustion ash | |
JP5171350B2 (en) | Solid waste treatment method | |
JP2003226562A (en) | Environmental improvement cement composition | |
JP2001038321A (en) | Method for solidifying heavy metal-containing waste and solid material | |
JP2007313382A (en) | Method of treating combustion ash containing fluorine and chromium | |
JP2005329343A (en) | Method for treating boron-containing combustion ash | |
JPS6041589A (en) | Solidification process of waste material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070404 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080822 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100406 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100604 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110621 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110705 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110816 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110829 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140922 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4826089 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |