[go: up one dir, main page]

JP2006179658A - Light emitting device - Google Patents

Light emitting device Download PDF

Info

Publication number
JP2006179658A
JP2006179658A JP2004370996A JP2004370996A JP2006179658A JP 2006179658 A JP2006179658 A JP 2006179658A JP 2004370996 A JP2004370996 A JP 2004370996A JP 2004370996 A JP2004370996 A JP 2004370996A JP 2006179658 A JP2006179658 A JP 2006179658A
Authority
JP
Japan
Prior art keywords
light
wavelength conversion
emitting device
conversion unit
phosphor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004370996A
Other languages
Japanese (ja)
Inventor
Takuo Murai
卓生 村井
Yasuo Imai
康雄 今井
Takeshi Maekawa
武之 前川
Hideki Fukuda
秀樹 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Mitsubishi Electric Lighting Corp
Original Assignee
Mitsubishi Electric Corp
Mitsubishi Electric Lighting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp, Mitsubishi Electric Lighting Corp filed Critical Mitsubishi Electric Corp
Priority to JP2004370996A priority Critical patent/JP2006179658A/en
Publication of JP2006179658A publication Critical patent/JP2006179658A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a light emitting device of high light emitting efficiency wherein light is subjected to effective visible light conversion and heat dissipation property is improved, while restraining reflected transmitting light of a light source such as an LED which becomes an excitation light in a light emitting device using a light emitting source such as a short wavelength LED. <P>SOLUTION: The light emitting device comprises a light source using a purple-blue or blue LED; a reflected wavelength converter which is constituted of a phosphor for reflexively performing wavelength conversion to other color light using light from the light source part as excitation light, and its bind material or the like; and a housing having a permeable surface transmitting material which picks up color light subjected to wavelength conversion in the reflected wavelength converter to a surface. The device is provided with a permeable wavelength converter constituted of the phosphor which has light distribution not allowing emitted light from a light source light emitter to be directly injected into a permeable surface transmitting material, and permeably carries out color light conversion using light source light which is reflected in a reflection wavelength converter without being subjected to color light conversion and reaches a surface transmitting material as excitation light, and a bind material or the like. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、高効率可視発光を実現する、例えば発光ダイオード(LED;Lighting・Emitting・Diode)などの紫外線、青紫、あるいは青色光源を用いた発光装置に関する。   The present invention relates to a light-emitting device that realizes high-efficiency visible light emission, and uses an ultraviolet, blue-violet, or blue light source such as a light-emitting diode (LED).

従来の発光装置においては、紫外線、青色や青紫色の光を発する発光ダイオードとこの発光ダイオードの光を励起光として発光する蛍光変換材料とを組合わせて白色光を得る発光装置が数多く提案されている。例えば、短波長LEDの発光素子からの特定色光を反射凹曲面で反射させた後、外部に放射するように構成し、前記反射凹曲面に、反射する特定色光を変換するための色光変換樹脂膜を膜形成することによって、特定色光が色光変換樹脂膜内を往復透過して色変換させる発光装置がある(例えば、特許文献1参照)。   In conventional light emitting devices, many light emitting devices that obtain white light by combining a light emitting diode that emits ultraviolet, blue, or blue-violet light and a fluorescent conversion material that emits light from the light emitting diode as excitation light have been proposed. Yes. For example, a color light conversion resin film configured to reflect specific color light from a light emitting element of a short wavelength LED on a reflection concave surface and then radiate to the outside, and convert the specific color light reflected on the reflection concave surface There is a light emitting device in which specific color light is reciprocally transmitted through a color light conversion resin film to convert colors by forming a film (see, for example, Patent Document 1).

特開2001−230451号公報(第3〜4頁、第2図)Japanese Patent Laid-Open No. 2001-230451 (pages 3 to 4, FIG. 2)

従来の発光装置では、特に青紫色LEDを光源とした場合、色光変換樹脂膜に入射した青紫色光が色光変換(波長変換)されずにそのまま発光装置の外部発光面から透過する割合が少なくなく、さらに青紫光自体は視感効率が低く発光効率向上への寄与が低いため、結果として高い可視効率が得られないという問題点があった。   In a conventional light emitting device, particularly when a blue-violet LED is used as a light source, the proportion of blue-violet light incident on the color light conversion resin film is not transmitted through the external light emitting surface of the light emitting device as it is without color light conversion (wavelength conversion). Furthermore, the blue-violet light itself has a problem that the visual efficiency is low and the contribution to the improvement of the light emission efficiency is low, and as a result, high visible efficiency cannot be obtained.

さらに、その色光変換されない青紫光は可視光域の中でも短い波長であるためにその光エネルギーが高く、被使用者が長時間その発光装置を利用した照明環境に曝される場合、危険度は低いながらも眼や皮膚などに障害を与えかねないといった生体面への影響も懸念される。   Further, the blue-violet light that is not converted into color light has a high light energy because it has a short wavelength in the visible light range, and the danger is low when the user is exposed to an illumination environment using the light-emitting device for a long time. However, there are also concerns about the effects on the body surface that may damage the eyes and skin.

また、従来の発光装置を照明用途に用いる場合には、主に下向きで(外部発光面を下にして)用いることになるが、LED光源が発熱源となりかつその放熱路を確保できず、LED光源と反射凹曲面との間の空間に熱がこもり結果的にLED光源の周囲温度が上昇してしまいLED光源自体の発光効率が低下するという問題点もあった。   In addition, when a conventional light emitting device is used for illumination, it is mainly used downward (with the external light emitting surface facing down), but the LED light source becomes a heat source and its heat dissipation path cannot be secured, and the LED There is also a problem that heat is accumulated in the space between the light source and the reflective concave curved surface, and as a result, the ambient temperature of the LED light source increases and the luminous efficiency of the LED light source itself decreases.

この発明は、上述のような課題を解決するためになされたもので、短波長LED光源などの発光源を用いる発光装置において、励起光となるLED光源の直接反射透過光を抑制しつつ、その励起光を効率よく可視光変換させる発光効率の高い発光装置を得るものである。   The present invention has been made to solve the above-described problems. In a light-emitting device using a light source such as a short-wavelength LED light source, while suppressing direct reflected and transmitted light of the LED light source serving as excitation light, A light emitting device with high luminous efficiency that efficiently converts excitation light into visible light is obtained.

この発明に係る発光装置においては、紫外線、青紫色あるいは青色の発光ダイオードからなる光源部と、前記光源部からの光を励起光として反射的に他の色光に波長変換する反射波長変換部と、波長変換された発光光を装置外部に放射する表面透過材からなる外部発光面を備えた筺体とからなる発光装置において、前記外部発光部もしくはその近傍に、前記反射波長変換部からの反射光を透過的に波長変換して発光する透過波長変換部を配設したものである。   In the light-emitting device according to the present invention, a light source unit composed of ultraviolet light, blue-violet or blue light-emitting diodes, a reflection wavelength conversion unit that reflects the wavelength of light from the light source unit into other color light as excitation light, In a light-emitting device comprising a housing having an external light-emitting surface made of a surface transmitting material that radiates wavelength-converted emitted light to the outside of the device, the reflected light from the reflection wavelength conversion unit is placed on or near the external light-emitting unit. A transmission wavelength conversion unit that emits light by wavelength conversion transparently is disposed.

この発明は、反射波長変換部からの反射光を透過的に波長変換する透過波長変換部を表面透過材からなる外部発光面もしくはその近傍に設けることにより、可視光変換が向上され、高い可視効率を得ることができる。   In this invention, visible light conversion is improved and high visible efficiency is provided by providing a transmission wavelength conversion unit that transparently converts the reflected light from the reflection wavelength conversion unit at or near the external light emitting surface made of a surface transmitting material. Can be obtained.

実施の形態1.
図1は、この発明を実施するための実施の形態1における発光装置の断面図、図2は図1のA−A断面図である。図において、発光装置1の光源部2は、単一あるいは複数のLEDチップ3と、LEDチップ3を封止する封止樹脂4と、LEDチップ3からの光源の配光を制御するための高反射率の反射板5と、LEDチップ3を実装するための実装基板6とから構成される。
Embodiment 1 FIG.
FIG. 1 is a cross-sectional view of a light-emitting device according to Embodiment 1 for carrying out the present invention, and FIG. 2 is a cross-sectional view taken along line AA of FIG. In the figure, the light source unit 2 of the light emitting device 1 includes a single or a plurality of LED chips 3, a sealing resin 4 for sealing the LED chips 3, and a high light source for controlling the light distribution of the light sources from the LED chips 3. The reflecting plate 5 is composed of a reflectance plate 5 and a mounting substrate 6 on which the LED chip 3 is mounted.

封止樹脂4は、LEDチップ3からの光源光の取出し効率をあげるため、ベアチップ屈折率と空気屈折率の中間に屈折率を有する、例えばエポキシやシリコーンなどの材料で表面湾曲状などにモールドする。なお、図1で、LEDチップ3を複数まとめて封止樹脂4で封止しているが、単一のLEDチップ3を個別に封止するような構成(図3参照)や、複数の市販のLEDパッケージ(面実装型やリード型)を用いてもよい。   The sealing resin 4 is molded into a curved surface or the like with a material such as epoxy or silicone having a refractive index between the bare chip refractive index and the air refractive index in order to increase the light source light extraction efficiency from the LED chip 3. . In FIG. 1, a plurality of LED chips 3 are collectively sealed with a sealing resin 4. However, a configuration in which a single LED chip 3 is individually sealed (see FIG. 3) or a plurality of commercially available products. LED packages (surface mount type or lead type) may be used.

発光装置1の筺体7は、内面を凹部7aに形成し、この凹部7a面にLEDチップ3からの光源光を励起光として反射的に波長変換する反射波長変換部8を設ける。この反射波長変換部8は、例えば蛍光体とその蛍光体をバインドする蛍光体バインド材料などから構成されて、凹部7aに加工が施される。このとき、反射波長変換部8へ入射された光源光、あるいは変換された光を効率よく凹部7a面で反射するように、凹部7aの表面を鏡面あるいは拡散状の高反射率部材7bで形成する。   The housing 7 of the light-emitting device 1 has an inner surface formed in a recess 7a, and a reflection wavelength conversion unit 8 that converts the wavelength of the light source light from the LED chip 3 as excitation light is provided on the surface of the recess 7a. The reflection wavelength converter 8 is made of, for example, a phosphor and a phosphor binding material that binds the phosphor, and the recess 7a is processed. At this time, the surface of the recess 7a is formed of a mirror surface or a diffused high reflectance member 7b so that the light source light or the converted light incident on the reflection wavelength converter 8 is efficiently reflected by the surface of the recess 7a. .

そして、この反射波長変換部8には、LEDチップ3の光源波長を青紫光(波長360〜420nm程度)の励起光として、赤、緑、青の発光を行う3種類の蛍光体を用いる。これら3種類の蛍光体を組合わせることで白色発光が実現する。例えば、青:BaMgAl1017:Eu、緑:BaMgAl1017:Eu,Mn、赤:LaS:Euの蛍光体を用いて構成する。なお、蛍光体はこれらの組み合わせに限定されるものではない。 The reflection wavelength converter 8 uses three types of phosphors that emit red, green, and blue light with the light source wavelength of the LED chip 3 as excitation light of blue-violet light (wavelength of about 360 to 420 nm). By combining these three kinds of phosphors, white light emission is realized. For example, the phosphor is composed of blue: BaMgAl 10 O 17 : Eu, green: BaMgAl 10 O 17 : Eu, Mn, and red: La 2 O 2 S: Eu. The phosphor is not limited to these combinations.

反射波長変換部8は、図5に示すように、蛍光体バインダ9をシリコーンとして、その中に蛍光体10を混入してシート状に形成する。そして、凹部7aの表面に形成する高反射率部材7bを、反射率の高い鏡面状のシートで形成し、その上に上述したシート状の反射波長変換部8を形成する。鏡面状のシートとは、例えば、表面がPETやシリコーン樹脂で被膜された銀、アルミ、あるいは拡散性のシートなどである。このような構成にすることで、波長変換の機能を保ちながら、凹部7aのような湾曲形状にも対応した反射面を形成できる。   As shown in FIG. 5, the reflection wavelength conversion unit 8 is formed in a sheet shape by using the phosphor binder 9 as silicone and mixing the phosphor 10 therein. And the high reflectance member 7b formed in the surface of the recessed part 7a is formed with a highly reflective mirror-like sheet | seat, and the sheet-like reflection wavelength conversion part 8 mentioned above is formed on it. The specular sheet is, for example, silver, aluminum, or a diffusive sheet whose surface is coated with PET or silicone resin. By adopting such a configuration, it is possible to form a reflecting surface corresponding to a curved shape such as the recess 7a while maintaining the wavelength conversion function.

また、反射波長変換部8の形成は、上述したような蛍光体混入シリコーン材料を印刷(転写)もしくは吹き付けによって行うようにしてもよく、凹部7aの表面に直接蛍光体混入バインダの液体を塗布あるいは吹き付けるなどして乾燥や温度を加える方法で形成してもよい。また、凹部7aを上記鏡面シートではなく、筺体表面を蒸着や高反射率の塗布によって高反射面を形成しても良い。   In addition, the reflection wavelength conversion unit 8 may be formed by printing (transferring) or spraying the phosphor-mixed silicone material as described above, or by directly applying the phosphor-mixed binder liquid to the surface of the recess 7a. You may form by the method of applying drying and temperature, such as spraying. Moreover, you may form a highly reflective surface not only the said mirror surface sheet but the surface of a housing | casing by vapor deposition or application | coating of a high reflectance for the recessed part 7a.

そして、発光装置1の表面(特許請求の範囲でいう外部発光面)には、ガラスやアクリルなどの表面透過材11を設け、この表面透過材11の内側あるいは外側には、LEDチップ3の光源光を励起光として透過的に波長変換できる透過波長変換部12とを設ける。この透過波長変換部12は、反射波長変換部8にて色光変換されずに反射されたLEDチップ3の光源光(V3)を波長変換材料で励起して表面透過材11を介して外部発光を行うとともに、反射波長変換部8で変換された可視域波長(V1)の光を透過的に発光装置1外に外部発光させる。   A surface transmitting material 11 such as glass or acrylic is provided on the surface of the light emitting device 1 (external light emitting surface in the claims), and the light source of the LED chip 3 is provided inside or outside the surface transmitting material 11. A transmission wavelength conversion unit 12 capable of transparently converting the wavelength of light as excitation light is provided. This transmission wavelength conversion unit 12 excites the light source light (V3) of the LED chip 3 reflected without being converted into color light by the reflection wavelength conversion unit 8 with the wavelength conversion material, and emits external light via the surface transmission material 11. At the same time, the light of the visible wavelength (V1) converted by the reflection wavelength converter 8 is transmitted to the outside of the light emitting device 1 in a transparent manner.

次に、発光装置1の光源部2の配置について説明する。発光装置1の光源部2は、表面透過材11から直接光が透過して発光装置1の外部に出ることがないように、筺体7の凹部7a内の反射波長変換部8を直接照射するように配置する。つまり、光源部2の光源光軸(図1でいうUV1やUV2の光線の軸)を反射波長変換部8へ向けて配置する(図1参照)。   Next, the arrangement of the light source unit 2 of the light emitting device 1 will be described. The light source unit 2 of the light emitting device 1 directly irradiates the reflected wavelength conversion unit 8 in the concave portion 7a of the housing 7 so that light is not directly transmitted from the surface transmitting material 11 and exits the light emitting device 1. To place. That is, the light source optical axis of the light source unit 2 (the axis of the UV1 or UV2 light in FIG. 1) is arranged toward the reflection wavelength conversion unit 8 (see FIG. 1).

次に、反射波長変換部8の膜厚についてであるが、一般的には膜厚調整により、透過波長変換部12における波長変換よりも、反射波長変換部8での波長変換において波長変換効率を高く作用させることができる(図6参照:高効率電光変換化合物半導体開発(21世紀のあかり計画)成果報告書(平成14年度P238)新エネルギー・産業技術総合開発機構(NEDO)委託研究、金属系材料研究開発センター15年3月)。したがって、反射波長変換部8の膜厚を調整することで、LEDチップ3からの光源光(1次励起光)を反射波長変換部8でまず効率よく波長変換させてその後に透過波長変換部12において可視光変換を行うように構成することができる   Next, with regard to the film thickness of the reflection wavelength conversion unit 8, in general, the wavelength conversion efficiency in the wavelength conversion in the reflection wavelength conversion unit 8 is more improved than the wavelength conversion in the transmission wavelength conversion unit 12 by adjusting the film thickness. (See Fig. 6: Development of high-efficiency electro-optic conversion compound semiconductor (lighting plan for the 21st century) Result report (2002 P238) New Energy and Industrial Technology Development Organization (NEDO) commissioned research, metal-based Materials Research and Development Center, March 2015). Therefore, by adjusting the film thickness of the reflection wavelength conversion unit 8, the light source light (primary excitation light) from the LED chip 3 is first wavelength-converted efficiently by the reflection wavelength conversion unit 8 and then the transmission wavelength conversion unit 12. Can be configured to perform visible light conversion

また、透過波長変換部12の役割について説明する。図7は反射波長変換部8における励起反射光とそれにより波長変換され発する発光光を示す図であり、図に示すとおり、反射波長変換部8において波長変換されずに反射される励起光の割合は少なくない(光線としては図1のUV2(近紫外)→UV3(近紫外))。その場合、反射波長変換部8で波長変換されなかった励起光はそのまま表面透過材11を透過して外部発光してしまう。そこで、この反射波長変換部8において波長変換されずに反射された励起光を二次的な励起光源として利用して、透過的に波長変換を行う役割を有するものが透過波長変換部12である(光線としては図1のUV2(近紫外)→UV3(近紫外)→V2(可視))。   The role of the transmission wavelength converter 12 will be described. FIG. 7 is a diagram showing excitation reflected light in the reflected wavelength conversion unit 8 and emitted light that is wavelength-converted thereby and emitted, and as shown in the figure, the ratio of excitation light reflected without being wavelength converted in the reflected wavelength conversion unit 8 There are many cases (the light rays are UV2 (near ultraviolet) → UV3 (near ultraviolet) in FIG. 1). In that case, the excitation light that has not been wavelength-converted by the reflection wavelength conversion unit 8 passes through the surface transmitting material 11 as it is and emits external light. Therefore, the transmission wavelength conversion unit 12 has a role of performing wavelength conversion in a transparent manner by using the excitation light reflected without being converted by the reflection wavelength conversion unit 8 as a secondary excitation light source. (The light rays are UV2 (near ultraviolet) → UV3 (near ultraviolet) → V2 (visible) in FIG. 1).

このように構成された発光装置においては、光源部2のLEDチップ3からのLED光源光は、まず反射波長変換部8において可視光変換(波長変換)が行なわれ、反射波長変換部8で可視光変換(波長変換)されなかったLED光源光は、筺体7の表面(外部発光面)に設けた透過的波長変換部12により可視光変換(波長変換)が行なわれた後、可視光として外部に発光される。したがって、全体としてLED放射束(光源励起)に対する装置外部へ放射される光放射束をあげることができ、発光効率のよい可視光(白色)発光装置を得ることができる。さらに、発光装置1から直接発光装置1外へ照射される励起光放射束(波長変換されずに外部に放射されるLED発光光)を低く抑えることができ、使用上生体面に対して安全な発光装置を実現することも可能としている。   In the light emitting device configured as described above, the LED light source light from the LED chip 3 of the light source unit 2 is first subjected to visible light conversion (wavelength conversion) in the reflection wavelength conversion unit 8 and visible in the reflection wavelength conversion unit 8. The LED light source light that has not undergone light conversion (wavelength conversion) is subjected to visible light conversion (wavelength conversion) by the transparent wavelength conversion unit 12 provided on the surface (external light emitting surface) of the housing 7, and then is converted into visible light as external light. Is emitted. Therefore, the light radiant flux radiated to the outside of the device with respect to the LED radiant flux (light source excitation) as a whole can be raised, and a visible light (white) light emitting device with high luminous efficiency can be obtained. Furthermore, the excitation light radiant flux (LED light emitted to the outside without being wavelength-converted) irradiated directly from the light emitting device 1 to the outside of the light emitting device 1 can be kept low, and is safe for use on the living body. It is also possible to realize a light emitting device.

実施の形態2.
また、図1に示すように、光源部2を筺体7の側面側に配置したことは、LEDチップ3からの光源光の照射範囲が筺体7の凹部7aに形成される反射波長変換部8面内にすることを可能とするとともに、LEDチップ3からの発生熱を実装基板6及び筐体7を介して発光装置1の外部へ容易に放出させることができ、LEDチップ3の周囲温度の温度上昇を防ぎ、LEDチップ3自体の励起光発光効率も高く維持するができる。
Embodiment 2. FIG.
Further, as shown in FIG. 1, the light source unit 2 is arranged on the side surface side of the housing 7 because the irradiation range of the light source light from the LED chip 3 is formed in the concave portion 7 a of the housing 7. The generated heat from the LED chip 3 can be easily released to the outside of the light emitting device 1 through the mounting substrate 6 and the housing 7, and the ambient temperature of the LED chip 3 The rise can be prevented and the excitation light emission efficiency of the LED chip 3 itself can be kept high.

また、光源部2を筺体7の側面側(端部側)に配置する方法として、図1のように、筺体7の側面上端部に反射波長変換部8側に傾斜する取付部を形成して光源部2を取り付けてもよい。また、図3のように、光源部2を筺体7の側面側に配置することで光源部2の光源光が反射波長変換部8を直接照射できない場合、光源光を配光制御する射出光反射板13を設けるようにしたり、光源部2の光源光軸を反射波長変換部8へ向けるようにしても良い。なお、この射出光反射板13は、少なくとも反射面を励起波長に対し高い鏡面反射率を有する材料(例えば銀やアルミ)で形成し、それ以外の部分は高反射率となるように形成する。なお、光源部2は、筺体7の両側面側ではなく、筺体7の片側のみであってもよい。また、上記した射出光反射板13を用いれば、筺体7の内面の形状を半球型凹部形状以外にも、例えば長方形などどのような形状であっても上記と同様の効果を奏することができる。   Further, as a method of arranging the light source unit 2 on the side surface side (end side) of the housing 7, as shown in FIG. 1, an attachment portion that is inclined toward the reflection wavelength conversion unit 8 side is formed on the upper end of the side surface of the housing 7. The light source unit 2 may be attached. In addition, as shown in FIG. 3, when the light source unit 2 is arranged on the side surface side of the housing 7 and the light source light of the light source unit 2 cannot directly irradiate the reflection wavelength conversion unit 8, the reflected light emitted from the light source light is controlled. A plate 13 may be provided, or the light source optical axis of the light source unit 2 may be directed to the reflection wavelength conversion unit 8. In addition, this emission light reflecting plate 13 is formed so that at least the reflection surface is made of a material having a high specular reflectance with respect to the excitation wavelength (for example, silver or aluminum), and other portions have a high reflectance. In addition, the light source part 2 may be only one side of the housing 7 instead of the both side surfaces of the housing 7. Further, if the above-described emission light reflecting plate 13 is used, the same effect as described above can be obtained regardless of the shape of the inner surface of the housing 7 other than the hemispherical concave shape, for example, a rectangular shape.

実施の形態3.
上記実施の形態1において、発光装置1の外部発光面に設ける透過波長変換部12は、その膜厚を極端に厚くしたり、透過波長変換部12内の蛍光体の濃度を極端に多くすると反射波長変換部8で可視光に変換された光が、吸収および反射される割合が大きくなってしまう(透過光が少なくなってしまう)。また、透過波長変換部12内のバインダは、その種類により絶対量は異なるが基本的に光を吸収する性質を有しており、その厚みが増加すれば光吸収の割合が増加し、また蛍光体も量が極端に大きいと光の反射の割合が大きくなる。
Embodiment 3 FIG.
In the first embodiment, the transmission wavelength conversion unit 12 provided on the external light emitting surface of the light emitting device 1 is reflected when the film thickness is extremely increased or the concentration of the phosphor in the transmission wavelength conversion unit 12 is extremely increased. The ratio that the light converted into visible light by the wavelength converter 8 is absorbed and reflected increases (transmitted light decreases). The binder in the transmission wavelength conversion unit 12 has a property of absorbing light basically, although the absolute amount varies depending on the type. If the thickness of the binder increases, the ratio of light absorption increases. If the amount of the body is extremely large, the ratio of light reflection increases.

そこで、透過波長変換部12の膜厚を反射波長変換部8の膜厚と同等以下の厚みに構成したり、透過波長変換部12内の蛍光体に対するバインダの重量濃度比を反射波長変換部8内の蛍光体に対するバインダの重量濃度比に比較して同等以上であるように構成する。このような構成により、透過波長変換部12内のバインダの厚みを薄くすることで、透過光の光吸収の割合を低くするとともに、その透過波長変換部12内の蛍光体の割合が少なくなる。したがって、反射波長変換部8で可視光に変換された光の透過波長変換部12での透過性を保つことが可能となる。   Therefore, the thickness of the transmission wavelength conversion unit 12 is configured to be equal to or less than the thickness of the reflection wavelength conversion unit 8, or the weight concentration ratio of the binder to the phosphor in the transmission wavelength conversion unit 12 is set to the reflection wavelength conversion unit 8. It is configured to be equal to or higher than the weight concentration ratio of the binder to the inner phosphor. With such a configuration, by reducing the thickness of the binder in the transmission wavelength conversion unit 12, the ratio of light absorption of the transmitted light is reduced and the ratio of the phosphor in the transmission wavelength conversion unit 12 is reduced. Therefore, it is possible to maintain the transparency of the transmission wavelength conversion unit 12 of the light converted into visible light by the reflection wavelength conversion unit 8.

また、透過波長変換部12の形成方法としては、表面透過材11をアクリル板やガラスで形成し、その表面に転写やスクリーン印刷方法などを用いてドット状や網目状に透過波長変換部12を形成しても良く、また、CVD法により表面透過材11に蛍光体を蒸着して薄膜蛍光体層を形成するようにしても上記と同様の効果を得ることができる。   In addition, as a method for forming the transmission wavelength conversion unit 12, the surface transmission material 11 is formed of an acrylic plate or glass, and the transmission wavelength conversion unit 12 is formed in a dot shape or a mesh shape on the surface using a transfer or screen printing method. The thin film phosphor layer may be formed by depositing the phosphor on the surface transmitting material 11 by the CVD method, and the same effect as described above can be obtained.

実施の形態4.
図8は、この発明を実施するための実施の形態4における発光装置を示す発光装置の外部発光面の断面図である。これは、上記実施の形態1の発光装置にて、反射波長変換部8でのLED光源光の変換可視光を効率よく得るとともに、この変換可視光の外部発光の透過性も保つ構成としたものである。その構成は、LEDチップ3からの光源光の発光波長より長い波長の光は透過させるとともに光源光の発光波長より短い波長の光は反射させる波長選択透過反射面14を、外部発光面である表面透過材11の筺体7の内面側に配設し、さらに波長選択透過反射面14の筺体7の内面側に透過波長変換部8を設けるようにしたものである。このような構成の外部発光面とすることにより、表面透過材11に入射する光のうちLEDチップ3の発光波長近辺の光によって、透過波長変換部12の蛍光体が励起されて可視光に変換され、そのまま波長選択透過反射面14を透過して発光装置1の外部発光面へ照射される。さらに、透過波長変換部12内の蛍光体で波長変換されない光は、そのまま波長選択透過反射面14において反射され、一部は筺体7内に戻され反射波長変換部8へ入射されるかあるいは再度透過波長変換部12内で可視光に変換される
Embodiment 4 FIG.
FIG. 8 is a cross-sectional view of the external light emitting surface of the light emitting device showing the light emitting device in the fourth embodiment for carrying out the present invention. This is a configuration in which the visible light of the LED light source light in the reflection wavelength conversion unit 8 is efficiently obtained in the light emitting device of the first embodiment, and the transparency of the external light emission of the converted visible light is also maintained. It is. The configuration is such that the wavelength selective transmission / reflection surface 14 that transmits light having a wavelength longer than the light emission wavelength of the light source light from the LED chip 3 and reflects light having a wavelength shorter than the light emission wavelength of the light source light is a surface that is an external light emission surface. The transmission wavelength converter 8 is provided on the inner surface side of the casing 7 of the transmission material 11 and further on the inner surface side of the casing 7 of the wavelength selective transmission / reflection surface 14. By adopting an external light emitting surface having such a configuration, the phosphor of the transmission wavelength conversion unit 12 is excited and converted into visible light by light in the vicinity of the light emission wavelength of the LED chip 3 out of light incident on the surface transmitting material 11. Then, the light is transmitted through the wavelength selective transmitting / reflecting surface 14 as it is and irradiated onto the external light emitting surface of the light emitting device 1. Further, the light that is not wavelength-converted by the phosphor in the transmission wavelength converter 12 is reflected as it is at the wavelength selective transmission / reflection surface 14, and part of the light is returned into the housing 7 and incident on the reflection wavelength converter 8 or again. Converted to visible light in the transmission wavelength converter 12

したがって、発光装置1内での励起光活用の割合を高めることができるため、発光装置1の発光効率をも高めることができる。   Therefore, since the ratio of utilization of excitation light in the light emitting device 1 can be increased, the light emission efficiency of the light emitting device 1 can also be increased.

実施の形態5.
また、図9(a)や図9(b)は上記実施の形態4で示した波長選択透過反射面14を筺体7側から見た平面図であり、波長選択透過反射面14の筺体7の内面側に透過波長変換部12をドット状やメッシュ状に形成したものであり、図9(c)はその断面図である。このような構成にすると、直接波長選択透過反射面14に入射したLEDチップ3の光源光の発光波長付近の光は反射されて反射波長変換部8へ入射されて可視光に変換される。そして、ドット状の透過波長変換部12に入射したLEDチップ3の光源光の発光波長付近の光は、可視光に変換され、そのまま波長選択透過反射面14を透過して発光装置1の外部へ発光される。
Embodiment 5. FIG.
9 (a) and 9 (b) are plan views of the wavelength selective transmission / reflection surface 14 shown in the fourth embodiment as viewed from the housing 7 side. The transmission wavelength conversion part 12 is formed in a dot shape or a mesh shape on the inner surface side, and FIG. 9C is a sectional view thereof. With such a configuration, light in the vicinity of the emission wavelength of the light source light of the LED chip 3 that is directly incident on the wavelength selective transmission / reflection surface 14 is reflected and incident on the reflection wavelength converter 8 to be converted into visible light. Then, light in the vicinity of the emission wavelength of the light source light of the LED chip 3 incident on the dot-shaped transmission wavelength conversion unit 12 is converted into visible light, and directly passes through the wavelength selective transmission / reflection surface 14 to the outside of the light emitting device 1. Emits light.

なお、図9(d)のように、表面透過材11にドット状やメッシュ状の透過波長変換部12をパターンを持って形成し、このパターンの形成されていない部分に波長選択透過反射面14を形成した構成としてもよい。これにより、反射波長変換部8で反射され、表面透過材11に入射する励起光を一部反射し、発光装置1内で再活用しつつ、透過波長変換可能とするため、発光装置の発光効率を向上することができる。   As shown in FIG. 9D, a dot-shaped or mesh-shaped transmission wavelength conversion portion 12 is formed on the surface transmission material 11 with a pattern, and the wavelength selective transmission / reflection surface 14 is formed on a portion where this pattern is not formed. It is good also as a structure which formed. As a result, the excitation light reflected by the reflection wavelength conversion unit 8 and partially incident on the surface transmissive material 11 is partially reflected and reused in the light emitting device 1 so that the transmission wavelength can be converted. Can be improved.

また、近紫外透過光量が大きい場合には、透過波長変換部12に近紫外域での波長選択性の強い紫外線吸収のフィラーを混入することで、発光装置1の光源部2から照射される全光に対する透過近紫外光の割合を低くする構成としてもよい。   Further, when the near-ultraviolet transmitted light amount is large, all of the light emitted from the light source unit 2 of the light-emitting device 1 is mixed into the transmission wavelength conversion unit 12 by mixing an ultraviolet-absorbing filler having strong wavelength selectivity in the near-ultraviolet region. It is good also as a structure which makes low the ratio of the transmission near-ultraviolet light with respect to light.

実施の形態6.
また、上記実施の形態1〜5における反射波長変換部8および透過波長変換部12の波長変換層は、白色を作成するRGB蛍光体で形成しているが、例えば粒子径あるいは比重の大きい蛍光材料をベースに反射波長変換部8を形成し、粒子径あるいは比重の小さい蛍光材料をベースに透過波長変換部12を形成することも可能である。このような構成とすることで、各蛍光体の重量比率が大きくて均一な波長変換層とすることが困難であった場合などでも、各波長変換部材8、12で蛍光体混合比を設計すれば、効率よく色むらの少ない白色発光を行う発光装置を得ることができる。
Embodiment 6 FIG.
Moreover, although the wavelength conversion layer of the reflection wavelength conversion part 8 and the transmission wavelength conversion part 12 in the said Embodiment 1-5 is formed with the RGB fluorescent substance which produces white, for example, a fluorescent material with a large particle diameter or specific gravity It is also possible to form the reflection wavelength converter 8 based on the base material and to form the transmission wavelength converter 12 based on a fluorescent material having a small particle diameter or specific gravity. By adopting such a configuration, even when it is difficult to obtain a uniform wavelength conversion layer because the weight ratio of each phosphor is large, the phosphor mixture ratio should be designed with each wavelength conversion member 8, 12. Thus, it is possible to obtain a light emitting device that efficiently emits white light with little color unevenness.

また、反射波長変換部8と透過波長変換部12の蛍光体を同一材料のものとして、RGB混合比を変える方法をとったり、あるいは両波長変換部8、12に組み合わせの異なるRGB混合体を混入させたりすることで、発光装置1からの発光光色を意図的に変えることもできる。   Further, the reflection wavelength conversion unit 8 and the transmission wavelength conversion unit 12 are made of the same material, and a method of changing the RGB mixing ratio is used, or both wavelength conversion units 8 and 12 are mixed with different combinations of RGB mixtures. By doing so, the color of light emitted from the light emitting device 1 can be changed intentionally.

実施の形態7.
また、反射波長変換部8の膜厚を、LEDチップ3からの光源光の配光分布に従うよう、つまり、反射波長変換部8への光源光の照射照度の変化に対応させて厚みを形成することで、反射波長変換部8の変換部材料の量を少なくしつつ、効率よく波長変換を行うことができる。例えば、図10や図11のように、反射波長変換部8の膜厚を、筺体7の凹部7aの端部よりも光源光の照射密度の高い筺体7の凹部7aの中央部を厚くすることで、波長変換が効率よく行なわれ、コスト的にも安価な発光装置を得ることができる。
Embodiment 7 FIG.
Further, the thickness of the reflection wavelength conversion unit 8 is formed so as to follow the light distribution of the light source light from the LED chip 3, that is, corresponding to the change in the illumination intensity of the light source light to the reflection wavelength conversion unit 8. Thus, wavelength conversion can be performed efficiently while reducing the amount of the conversion part material of the reflection wavelength conversion part 8. For example, as shown in FIGS. 10 and 11, the thickness of the reflection wavelength conversion portion 8 is made thicker at the central portion of the recess 7 a of the housing 7 where the irradiation density of the light source light is higher than the end of the recess 7 a of the housing 7. Thus, wavelength conversion is efficiently performed, and a light-emitting device that is inexpensive in terms of cost can be obtained.

実施の形態8.
図12と図13は、この発明を実施するための実施の形態8における発光装置を示す断面図と図12のC−C断面図であり、反射波長変換部8における波長変換効率を向上させるものである。図において、光源部2からの直接照射量が多くなる反射波長変換部8の表面を凹部8aと凸部8bからなる凹凸形状としたものであって、反射波長変換部8における波長変換可能面積を増加させることができ、LEDチップ3からの光源光の波長変換を効率よく行うことができる。
Embodiment 8 FIG.
12 and 13 are a sectional view showing a light emitting device according to an eighth embodiment for carrying out the present invention and a sectional view taken along the line CC in FIG. 12, and improve the wavelength conversion efficiency in the reflection wavelength conversion section 8. It is. In the figure, the surface of the reflection wavelength conversion unit 8 in which the amount of direct irradiation from the light source unit 2 increases is formed into a concavo-convex shape composed of a recess 8a and a projection 8b, and the wavelength convertible area in the reflection wavelength conversion unit 8 is The wavelength conversion of the light source light from the LED chip 3 can be performed efficiently.

さらに、反射波長変換部8の表面に形成する凹凸形状の凹部8aと凸部8bとの面積比率を、光源部2からの照射量に応じて部分的に変化させるようしてもよく、効率的でかつコスト的にも安価な発光装置を得ることができる。また、例えば、光源部2からの照射量に応じて部分的に変化させる構成として、光源部2からの光源光線方向に沿って反射波長変換部8の表面に発光装置1の長手方向にストライプ状の凸形状8cを形成する構成でも良い(図14参照)。なお、反射波長変換部8の表面に形成する凹凸形状の凸部の先端は、緩やかな曲面であっても鋭角をもつ形状でも構わない。   Further, the area ratio between the concave and convex concave portions 8a and 8b formed on the surface of the reflection wavelength converting portion 8 may be partially changed in accordance with the amount of irradiation from the light source unit 2, and efficient. In addition, an inexpensive light emitting device can be obtained. Further, for example, as a configuration that is partially changed according to the irradiation amount from the light source unit 2, stripes are formed in the longitudinal direction of the light emitting device 1 on the surface of the reflection wavelength conversion unit 8 along the light source beam direction from the light source unit 2. The convex shape 8c may be formed (see FIG. 14). The tip of the concavo-convex convex portion formed on the surface of the reflection wavelength conversion portion 8 may be a gently curved surface or a shape having an acute angle.

また、上記実施の形態7および上記本実施の形態8では、反射波長変換部8を対象に説明しているが、膜厚の変化や表面の凹凸形状は透過波長変換部12に施しても構わない。   In the seventh embodiment and the eighth embodiment described above, the reflection wavelength conversion unit 8 is described as an object. However, the change in film thickness and the uneven shape of the surface may be applied to the transmission wavelength conversion unit 12. Absent.

また、上記各実施の形態では、筺体7の凹部7a内面に反射波長変換部8を設けているが、この反射波長変換部8を設けていない発光装置1の筐体7の凹部7a内面部分を、光源部2からの光源光を波長変換する波長変換材料で構成するようにして、筐体7の凹部7a内での波長変換効率を高めて発光効率の高い発光装置を得るようにしてもよい。なお、この波長変換材料は反射波長変換部8や透過波長変換部12と同じ材料であっても構わない。   Moreover, in each said embodiment, although the reflective wavelength conversion part 8 is provided in the recessed part 7a inner surface of the housing 7, the recessed part 7a inner surface part of the housing | casing 7 of the light-emitting device 1 which does not provide this reflected wavelength converting part 8 is provided. The light source unit 2 may be made of a wavelength conversion material that converts the wavelength of the light source, and the wavelength conversion efficiency in the recess 7a of the housing 7 may be increased to obtain a light emitting device with high light emission efficiency. . The wavelength conversion material may be the same material as the reflection wavelength conversion unit 8 and the transmission wavelength conversion unit 12.

実施の形態9.
また、上記実施の形態1〜8に示した発光装置は、同時に複数用いれば、大型の発光装置を実現することも可能である。図15と図16は、発光装置15を複数組み合わせた縦連結の断面図と横連結の断面図であり、図において、複合発光装置筺体16内に複数の発光装置15と給電部17を配設したものである。このような基本構成をもとに、ある程度任意形状の大光束を発する発光装置を得ることもできる。
Embodiment 9 FIG.
In addition, when a plurality of the light-emitting devices described in Embodiments 1 to 8 are used at the same time, a large light-emitting device can be realized. FIGS. 15 and 16 are a cross-sectional view of a longitudinal connection and a cross-connection of a plurality of light emitting devices 15, in which a plurality of light emitting devices 15 and a power feeding unit 17 are arranged in a composite light emitting device housing 16. It is a thing. Based on such a basic configuration, it is possible to obtain a light emitting device that emits a large luminous flux having an arbitrary shape to some extent.

なお、上記実施の形態1〜9においては、光源部2のLEDチップ3からの放熱性を考慮して、LEDチップ3を実装する実装基板6を、例えばセラミクスやアルミ基板などの放熱性基板を用いて形成したり、筐体7のうち少なくとも実装基盤6の背面と接する部分を、例えばアルミなどの放熱性の材料で構成したり、光源部2を筐体7の側部つまり端部に設置することで、LEDチップ3の発生熱を実装基板6や筐体7を介して筐体7外部へ放出可能な構成としている。したがって、少なくとも、LEDチップ3を連続点灯した際に、LEDチップ3の発生熱による筐体7内部の温度特性が極端に上昇するような状況は避けられ、LEDチップ3自体の発光効率も高い状態に保つことが可能になっている。   In the first to ninth embodiments, in consideration of heat dissipation from the LED chip 3 of the light source unit 2, the mounting substrate 6 on which the LED chip 3 is mounted is replaced with a heat dissipation substrate such as a ceramic or an aluminum substrate. Or at least a portion of the housing 7 that contacts the back surface of the mounting base 6 is made of a heat-dissipating material such as aluminum, or the light source unit 2 is installed on the side of the housing 7, that is, at the end. Thus, the heat generated by the LED chip 3 can be released to the outside of the housing 7 via the mounting substrate 6 and the housing 7. Therefore, at least when the LED chip 3 is continuously lit, a situation in which the temperature characteristics inside the housing 7 are extremely increased due to the heat generated by the LED chip 3 is avoided, and the light emission efficiency of the LED chip 3 itself is also high. It is possible to keep on.

なお、LEDチップ3は、各変換部の蛍光体を励起して白色変換するための励起光の役割をなすもので、その形態はフェースアップ型/フリップチップ型、小出力型/大出力型の区別を問うものではない。   The LED chip 3 serves as excitation light for exciting the phosphors of the respective conversion units to convert white, and the form thereof is a face-up type / flip chip type, a small output type / a large output type. There is no question of distinction.

また、上記各実施の形態における構成において、例えば、表面透過材と筺体を密着させ、内部を真空状態、あるいは窒素ガスを封入するなどして、気密性を高める構成にしてもよい。このような構成により、 性のよい長寿命で発光効率の高い発光装置を得ることができる。   Moreover, in the structure in each said embodiment, you may make it the structure which raises airtightness, for example by making a surface permeation | transmission material and a housing closely_contact | adhere and enclosing a vacuum state or nitrogen gas. With such a structure, a light-emitting device with good characteristics and long lifetime and high luminous efficiency can be obtained.

この発明は以上説明したように、発光装置として用いることができ、屋内外の照明装置や乗り物の照明装置、また表示装置用光源としても活用できる利点がある。   As described above, the present invention can be used as a light emitting device, and has an advantage that it can be used as an indoor and outdoor lighting device, a vehicle lighting device, and a light source for a display device.

この発明の実施の形態1を示す発光装置の断面図である。It is sectional drawing of the light-emitting device which shows Embodiment 1 of this invention. この発明の実施の形態1を示す発光装置の図1のA−A断面図である。It is AA sectional drawing of the light-emitting device which shows Embodiment 1 of this invention of FIG. この発明の実施の形態1を示す発光装置の断面図である。It is sectional drawing of the light-emitting device which shows Embodiment 1 of this invention. この発明の実施の形態1を示す発光装置の図3のB−B断面図である。It is BB sectional drawing of FIG. 3 of the light-emitting device which shows Embodiment 1 of this invention. この発明の実施の形態1を示す発光装置の反射波長変換部の平面図である。It is a top view of the reflective wavelength conversion part of the light-emitting device which shows Embodiment 1 of this invention. この発明の実施の形態1を示す紫外LED励起発光特性図である。It is an ultraviolet LED excitation light emission characteristic view which shows Embodiment 1 of this invention. この発明の実施の形態1を示す反射波長変換部における励起反射光と波長変換され発する発光光を示す図である。It is a figure which shows the emitted reflected light which is wavelength-converted and the excitation reflected light in the reflective wavelength conversion part which shows Embodiment 1 of this invention. この発明の実施の形態4を示す発光装置の外部発光面の断面図である。It is sectional drawing of the external light emission surface of the light-emitting device which shows Embodiment 4 of this invention. (a)この発明の実施の形態5を示す発光装置の波長選択透過反射面の平面図である。 (b)この発明の実施の形態5を示す発光装置の波長選択透過反射面の平面図である。 (c)この発明の実施の形態5を示す発光装置の図9(a)または図9(b)の断面図である。 (d)この発明の実施の形態5を示す発光装置の断面図である。(A) It is a top view of the wavelength selection transmission reflection surface of the light-emitting device which shows Embodiment 5 of this invention. (B) It is a top view of the wavelength selection transmission reflection surface of the light-emitting device which shows Embodiment 5 of this invention. (C) It is sectional drawing of FIG. 9 (a) or FIG.9 (b) of the light-emitting device which shows Embodiment 5 of this invention. (D) It is sectional drawing of the light-emitting device which shows Embodiment 5 of this invention. この発明の実施の形態7を示す発光装置の断面図である。It is sectional drawing of the light-emitting device which shows Embodiment 7 of this invention. この発明の実施の形態7を示す発光装置の断面図である。It is sectional drawing of the light-emitting device which shows Embodiment 7 of this invention. この発明の実施の形態8を示す発光装置の断面図である。It is sectional drawing of the light-emitting device which shows Embodiment 8 of this invention. この発明の実施の形態8を示す発光装置の図12のC−C断面図である。It is CC sectional drawing of FIG. 12 of the light-emitting device which shows Embodiment 8 of this invention. この発明の実施の形態9を示す発光装置の断面図である。It is sectional drawing of the light-emitting device which shows Embodiment 9 of this invention. この発明の実施の形態9を示す発光装置の断面図である。It is sectional drawing of the light-emitting device which shows Embodiment 9 of this invention. この発明の実施の形態9を示す発光装置の断面図である。It is sectional drawing of the light-emitting device which shows Embodiment 9 of this invention.

符号の説明Explanation of symbols

1 発光装置、2 光源部、3 LEDチップ、4 封止樹脂、5
反射板、6 実装基板、7 筺体、7a 凹部、8 反射波長変換部、9 蛍光体バインダ、10 蛍光体、11 表面透過材(外部発光面)、12 透過波長変換部、13 噴出光反射板、14 波長選択透過反射面、15 発光装置、16 複合発光装置筺体、17 給電部。
DESCRIPTION OF SYMBOLS 1 Light-emitting device, 2 light source part, 3 LED chip, 4 sealing resin, 5
Reflector, 6 mounting substrate, 7 housing, 7a recess, 8 reflection wavelength converter, 9 phosphor binder, 10 phosphor, 11 surface transmission material (external light emitting surface), 12 transmission wavelength converter, 13 ejected light reflector, 14 wavelength selective transmission / reflection surface, 15 light emitting device, 16 composite light emitting device housing, 17 power feeding unit.

Claims (10)

紫外線、青紫色あるいは青色の発光ダイオードからなる光源部と、前記光源部からの光を励起光として反射的に他の色光に波長変換する反射波長変換部と、波長変換された発光光を装置外部に放射する表面透過材からなる外部発光面を備えた筺体とからなる発光装置において、前記外部発光部もしくはその近傍に、前記反射波長変換部からの反射光を透過的に波長変換して発光する透過波長変換部を配設したことを特徴とする発光装置。 A light source unit composed of ultraviolet, blue-violet or blue light emitting diodes, a reflection wavelength conversion unit that converts the wavelength of the light from the light source unit into other color light in a reflective manner as excitation light, and the wavelength-converted emitted light outside the device In a light-emitting device comprising a housing having an external light-emitting surface made of a surface transmitting material that radiates to the external light-emitting device, the reflected light from the reflection wavelength conversion unit is transparently converted to emit light at or near the external light-emitting unit. A light emitting device characterized in that a transmission wavelength converter is provided. 前記光源部、前記筺体に配設され、その光源光軸が前記反射波長変換部に向かうように配設することを特徴とする請求項1記載の発光装置。 The light-emitting device according to claim 1, wherein the light-emitting device is disposed on the light source unit and the housing, and is disposed so that an optical axis of the light source is directed to the reflection wavelength conversion unit. 前記反射波長変換部は、蛍光体とそれをバインドする透過性材料とでシート状に構成するとともに、前記筺体の前記反射波長変換部配設部分の表面が励起波長に対して高反射率であることを特徴とする請求項1記載の発光装置。 The reflection wavelength conversion unit is configured in a sheet shape with a phosphor and a transmissive material that binds the phosphor, and the surface of the reflection wavelength conversion unit disposition portion of the housing has a high reflectance with respect to the excitation wavelength. The light-emitting device according to claim 1. 前記反射波長変換部及び前記透過波長変換部は、蛍光体とそれをバインドする蛍光体バインダとで構成され、前記透過波長変換部の膜厚は、前記反射波長変換部の膜厚と同等以下の厚みとしたことを特徴とする請求項1〜3いずれか記載の発光装置。 The reflection wavelength conversion unit and the transmission wavelength conversion unit are configured by a phosphor and a phosphor binder that binds the phosphor, and the film thickness of the transmission wavelength conversion unit is equal to or less than the film thickness of the reflection wavelength conversion unit. The light-emitting device according to claim 1, wherein the light-emitting device has a thickness. 前記反射波長変換部及び前記透過波長変換部は、蛍光体とそれをバインドする蛍光体バインダとで構成され、前記透過波長変換部の蛍光体に対する蛍光体バインダの重量濃度比は、前記反射波長変換部の蛍光体に対する蛍光体バインダの重量濃度比と同等以上としたことを特徴とする請求項1〜3いずれか記載の発光装置。 The reflection wavelength conversion unit and the transmission wavelength conversion unit include a phosphor and a phosphor binder that binds the phosphor, and the weight concentration ratio of the phosphor binder to the phosphor of the transmission wavelength conversion unit is the reflection wavelength conversion. The light emitting device according to any one of claims 1 to 3, wherein the weight concentration ratio of the phosphor binder to the phosphor of the portion is equal to or higher than the weight concentration ratio. 前記反射波長変換部及び透過波長変換部のうち、少なくとも前記反射波長変換部の厚みを、前記光源部からの光の照射強度分布に対応して調整したことを特徴とする請求項1〜4いずれか記載の発光装置。 The thickness of at least the reflection wavelength conversion unit among the reflection wavelength conversion unit and the transmission wavelength conversion unit is adjusted corresponding to the irradiation intensity distribution of light from the light source unit. Or a light-emitting device. 前記反射波長変換部と透過波長変換部とは、それぞれ異なる発光波長分布を有するように構成することを特徴とする請求項1〜6いずれか記載の発光装置。 The light emitting device according to claim 1, wherein the reflection wavelength conversion unit and the transmission wavelength conversion unit are configured to have different emission wavelength distributions. 前記反射波長変換部の表面側を、凹凸形状としたことを特徴とする請求項1〜7いずれか記載の発光装置。 The light emitting device according to any one of claims 1 to 7, wherein a surface side of the reflection wavelength conversion portion is formed in an uneven shape. 前記外部発光部もしくはその近傍に、前記発光ダイオードの少なくとも発光波長以上の波長は透過し、少なくとも発光ダイードの中心発光波長以下の波長は反射させる波長選択透過反射面を配設したことを特徴とする請求項1記載の発光装置。 A wavelength-selective transmission / reflection surface is disposed in or near the external light-emitting portion so as to transmit at least a wavelength equal to or greater than the emission wavelength of the light-emitting diode and reflect at least a wavelength equal to or less than the center emission wavelength of the light-emitting diode. The light emitting device according to claim 1. 前記発光装置の筺体内の反射波長変換部以外の表面に、前記光源部からの照射光を波長変換する波長変換材料を施すことを特徴とする請求項1記載の発光装置。 The light emitting device according to claim 1, wherein a wavelength conversion material that converts the wavelength of the irradiation light from the light source unit is applied to a surface other than the reflection wavelength conversion unit in the housing of the light emitting device.
JP2004370996A 2004-12-22 2004-12-22 Light emitting device Pending JP2006179658A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004370996A JP2006179658A (en) 2004-12-22 2004-12-22 Light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004370996A JP2006179658A (en) 2004-12-22 2004-12-22 Light emitting device

Publications (1)

Publication Number Publication Date
JP2006179658A true JP2006179658A (en) 2006-07-06

Family

ID=36733477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004370996A Pending JP2006179658A (en) 2004-12-22 2004-12-22 Light emitting device

Country Status (1)

Country Link
JP (1) JP2006179658A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008047851A1 (en) * 2006-10-12 2008-04-24 Panasonic Corporation Light-emitting apparatus
WO2009039827A1 (en) * 2007-09-28 2009-04-02 Osram Opto Semiconductors Gmbh Semiconductor light source having a primary radiation source and a luminescence conversion element
CN102072425A (en) * 2009-11-09 2011-05-25 Lg伊诺特有限公司 Lighting device
JP2011517029A (en) * 2008-04-03 2011-05-26 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Improved white light emitting device
JP2011124000A (en) * 2009-12-08 2011-06-23 Ritsumeikan Deep ultraviolet light emitting element and its manufacturing method
US8425101B2 (en) 2007-05-29 2013-04-23 Koninklijke Philips Electronics N.V. Illumination system, luminaire and backlighting unit
JP2015508572A (en) * 2011-12-30 2015-03-19 ザクリトエ アクツィオネルノエ オブシェストヴォ ”ナウチノ−プロイズヴォドストヴェナヤ コメルチェスカヤ フィルマ ”エルタン リミテッド” White LED light source combined with remote photoluminescence converter
JP2016207922A (en) * 2015-04-27 2016-12-08 シチズン電子株式会社 Light-emitting device
CN108916665A (en) * 2017-04-14 2018-11-30 湖北晶瓷激光照明技术有限公司 High color rendering index (CRI) laser white light obtains device and its implementation
WO2018221316A1 (en) * 2017-05-31 2018-12-06 セイコーエプソン株式会社 Light-emitting device and projector
WO2018221317A1 (en) * 2017-05-31 2018-12-06 セイコーエプソン株式会社 Light-emitting device and projector
EP4016650A1 (en) * 2006-09-27 2022-06-22 Seoul Semiconductor Co., Ltd. Semiconductor light emitting device and display device comprising the semiconductor light emitting device

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4016650A1 (en) * 2006-09-27 2022-06-22 Seoul Semiconductor Co., Ltd. Semiconductor light emitting device and display device comprising the semiconductor light emitting device
US8104923B2 (en) 2006-10-12 2012-01-31 Panasonic Corporation Light-emitting apparatus
US8356913B2 (en) 2006-10-12 2013-01-22 Panasonic Corporation Light-emitting apparatus
WO2008047851A1 (en) * 2006-10-12 2008-04-24 Panasonic Corporation Light-emitting apparatus
US8425101B2 (en) 2007-05-29 2013-04-23 Koninklijke Philips Electronics N.V. Illumination system, luminaire and backlighting unit
WO2009039827A1 (en) * 2007-09-28 2009-04-02 Osram Opto Semiconductors Gmbh Semiconductor light source having a primary radiation source and a luminescence conversion element
US8564185B2 (en) 2007-09-28 2013-10-22 Osram Opto Semiconductors Gmbh Semiconductor light source having a primary radiation source and a luminescence conversion element
JP2011517029A (en) * 2008-04-03 2011-05-26 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Improved white light emitting device
CN102072425A (en) * 2009-11-09 2011-05-25 Lg伊诺特有限公司 Lighting device
US8573802B2 (en) 2009-11-09 2013-11-05 Lg Innotek Co., Ltd. LED lighting device for indirect illumination
US9200761B2 (en) 2009-11-09 2015-12-01 Lg Innotek Co., Ltd. Lighting device for indirect illumination
JP2011124000A (en) * 2009-12-08 2011-06-23 Ritsumeikan Deep ultraviolet light emitting element and its manufacturing method
JP2015508572A (en) * 2011-12-30 2015-03-19 ザクリトエ アクツィオネルノエ オブシェストヴォ ”ナウチノ−プロイズヴォドストヴェナヤ コメルチェスカヤ フィルマ ”エルタン リミテッド” White LED light source combined with remote photoluminescence converter
JP2016207922A (en) * 2015-04-27 2016-12-08 シチズン電子株式会社 Light-emitting device
CN108916665A (en) * 2017-04-14 2018-11-30 湖北晶瓷激光照明技术有限公司 High color rendering index (CRI) laser white light obtains device and its implementation
WO2018221316A1 (en) * 2017-05-31 2018-12-06 セイコーエプソン株式会社 Light-emitting device and projector
WO2018221317A1 (en) * 2017-05-31 2018-12-06 セイコーエプソン株式会社 Light-emitting device and projector
JP2018205438A (en) * 2017-05-31 2018-12-27 セイコーエプソン株式会社 Light emitting device and projector
CN110710068A (en) * 2017-05-31 2020-01-17 精工爱普生株式会社 Light emitting device and projector
CN110710067A (en) * 2017-05-31 2020-01-17 精工爱普生株式会社 Lighting fixtures and projectors
US10942432B2 (en) 2017-05-31 2021-03-09 Seiko Epson Corporation Light emitting apparatus and projector
US11061311B2 (en) 2017-05-31 2021-07-13 Seiko Epson Corporation Light emitter and projector

Similar Documents

Publication Publication Date Title
KR101046079B1 (en) LED element and LED luminaire using the same
JP6246622B2 (en) Light source device and lighting device
JP6068395B2 (en) High power white light emitting diode and method for manufacturing the same
CA2565339C (en) High efficiency light source using solid-state emitter and down-conversion material
JP4804429B2 (en) Light emitting device and lighting apparatus using the same
JP4172196B2 (en) Light emitting diode
JP5519552B2 (en) Phosphor material
JP4088932B2 (en) Light emitting device and lighting apparatus using the same
CN102693971B (en) Light emitting apparatus
CN103348476B (en) White LED light source with luminescence generated by light transducer
JP5899507B2 (en) LIGHT EMITTING DEVICE AND LIGHTING DEVICE USING THE SAME
CA2672214A1 (en) Lighting system using multiple colored light emitting sources and diffuser element
JP2013546142A (en) Solid state lamp with light guide and photoluminescent material
JP2016523443A (en) Solid light emitter package, light emitting device, flexible LED strip, and luminaire
EP3095142A1 (en) Led module with uniform phosphor illumination
JP2006179658A (en) Light emitting device
JP2007059864A (en) LIGHTING DEVICE AND LIGHT EMITTING DIODE DEVICE
CN109751564B (en) Phosphor module
CN101252160A (en) light emitting semiconductor device
JP2012204349A (en) Light-emitting device
CN106918008A (en) A kind of lighting device
JP2002299692A (en) Reflection type led light source
US20120147586A1 (en) Led module and lamp having the same
JP6085204B2 (en) Light emitting device
TWI463097B (en) LED module and lamp structure

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090126

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090126

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090519

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090715

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090901