[go: up one dir, main page]

JP2006164680A - 燃料電池システム - Google Patents

燃料電池システム Download PDF

Info

Publication number
JP2006164680A
JP2006164680A JP2004352761A JP2004352761A JP2006164680A JP 2006164680 A JP2006164680 A JP 2006164680A JP 2004352761 A JP2004352761 A JP 2004352761A JP 2004352761 A JP2004352761 A JP 2004352761A JP 2006164680 A JP2006164680 A JP 2006164680A
Authority
JP
Japan
Prior art keywords
fuel cell
hollow
pressure
cell stack
collector plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004352761A
Other languages
English (en)
Inventor
Fumio Kagami
文雄 各務
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2004352761A priority Critical patent/JP2006164680A/ja
Publication of JP2006164680A publication Critical patent/JP2006164680A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

【課題】 起動時に燃料電池スタックの温度上昇を早めることができる燃料電池システムを提供する。
【解決手段】 燃料電池のセル101が複数積層された燃料電池スタックの端部には、内部が空洞の中空集電板3と、エンドプレート102が設けられている。中空集電板3の側面は、中空集電板の内部圧力が低圧状態では、凹面となるように形成されている。図1(a)の通常発電時には、中空集電板3の空洞部は、高圧力の流体103で満たされ、中空集電板3が膨らみ、中空集電板とスタック端部のセル101,及びセル101同士の接触抵抗が低くなり抵抗損失は低下する。図1(b)の昇温時には、中空集電板3の空洞部は、低圧力の流体104で満たされ、中空集電板3が凹み、接触抵抗が高い状態となり、接触抵抗によるジュール熱が大きくなり、燃料電池スタックを素早く昇温できる。
【選択図】 図1

Description

本発明は、燃料電池システムに係り、特に燃料電池スタックの接触抵抗を制御する燃料電池システムに関する。
一般に、燃料電池は、反応ガスである水素などの燃料と空気などの酸化剤を電気化学的に反応させることにより、燃料の持つ化学エネルギーを直接電気エネルギーに変換する装置である。この燃料電池は、電解質の違いなどによりさまざまなタイプのものに分類されるが、その一つとして、電解質に固体高分子電解質を用いる固体高分子電解質形燃料電池が知られている。
この固体高分子型燃料電池の燃料極、酸化剤極の両電極において進行する電極反応は、以下の通りである。
燃料極 : 2H2 →4H+ +4e- …(1)
酸化剤極 : 4H+ +4e- +O2 →2H2O …(2)
そして、燃料極に燃料が供給されると、燃料極では(1)式の反応式が進行して水素イオンが生成する。この生成した水素イオンが水和状態で電解質(固体高分子電解質型燃料電池であれば固体高分子電解質膜)を透過(拡散)して酸化剤極に至り、この酸化剤極に酸素含有ガス、例えば空気が供給されていると、酸化剤極では(2)式の反応式が進行する。この(1)、(2)式の電極反応が各極で進行することで、燃料電池は起電力を生じることとなる。
例えば車両用等の駆動源として考えられている固体高分子型燃料電池は、零下起動時には反応により生成した水分の凍結が性能を低下させる。低負荷ならば運転は可能であるが、取り出せる電力は極めて小さいため、速やかに燃料電池スタックの温度を上昇させて高負荷に移行する必要がある。
しかしながら、燃料電池の零下運転は低負荷であるため、(1)、(2)式の反応による発熱量は極めて小さく、燃料電池スタックの速やかな温度上昇は困難である。
本発明と関連性の高い従来例には、特許文献1記載の技術が知られている。この技術によれば、燃料電池スタック端部と電力取り出し用ターミナル板との間に、波板状の導電性断熱板を設け、断熱効果を高めることで、燃料電池スタックの零下起動時の昇温を促進させている。
特開2004−152502号公報(第4頁、図1)
しかしながら、上記従来例では、部材の接触面積が減少しているため接触抵抗が増大するので、燃料電池電流によるジュール熱が増大し、零下起動時の燃料電池スタックの昇温を促進させることができるが、通常運転時の接触抵抗も大きいため、通常運転時の燃料電池スタックの出力性能を大きく損なうという問題点があった。
上記問題点を解決するために、本発明は、高分子電解質膜の一方の面に燃料極、他方の面に酸化剤極がそれぞれ形成された膜電極接合体と、該膜電極接合体に燃料および酸化剤を供給する流路を形成されたセパレータとを備えた燃料電池を複数積層した燃料電池スタックを備えた燃料電池システムにおいて、前記燃料電池スタックの正極および負極の少なくとも一方に配された内部が空洞の中空集電板と、前記中空集電板の空洞内部の流体の圧力を制御する圧力制御機構とを備えたことを要旨とする。
本発明によれば、燃料電池スタックの正極および負極の少なくとも一方に配された内部が空洞の中空集電板と、中空集電板の空洞内部の流体の圧力を制御する圧力制御機構とを備えたことにより、中空集電板の空洞内部の流体の圧力を変化させることで中空集電板が変形し、燃料電池スタックの接触抵抗を可変とすることができるので、低温からの燃料電池の起動時には、中空集電板の空洞内部の圧力を低下させて燃料電池スタックの接触抵抗を増大させ、通電によるジュール熱を増加させて燃料電池スタックの昇温を促進させることができるという効果がある。
次に図面を参照して、本発明の実施の形態を詳細に説明する。尚、以下に説明する各実施例は、特に限定されないが、気温が零下となる屋外に駐車される燃料電池車両の電源に好適な燃料電池システムである。
図1は、本発明に係る燃料電池システムの各実施例に共通の原理説明図である。図1(a)は、通常発電時を示し、図1(b)は燃料電池スタックの昇温時を示す。
図1において、燃料電池の発電単位であるセル101が複数積層された燃料電池スタックの端部には、内部が空洞の中空集電板3と、エンドプレート102が設けられている。中空集電板3がセル101またはエンドプレートに接する側面は、中空集電板の内部圧力が例えば1気圧程度の低圧状態では、凹面となるように形成されている。尚、中空集電板3とエンドプレート102を一体としてもよい。
図1(a)に示す通常発電時には、中空集電板3の空洞部は、図示しない圧力制御機構により高圧力の流体103で満たされている。これにより、中空集電板3が膨らみ、中空集電板と燃料電池スタックの端部のセル101,及びセル101同士の接触抵抗が低くなり、通常発電時の抵抗損失は低下する。
図1(b)に示す燃料電池スタックの昇温時には、中空集電板3の空洞部は、図示しない圧力制御機構により低圧力の流体104で満たされている。これにより、中空集電板3が凹み、中空集電板3と燃料電池スタックの端部のセル101,及びセル101同士の接触抵抗が高い状態となっている。この状態で燃料電池スタックに燃料ガス及び酸化剤ガスを供給して電流を取り出すと、燃料電池の接触抵抗によるジュール熱が大きくなり、燃料電池スタックを素早く昇温させることができる。
図2は、中空集電板の空洞内部圧力と燃料電池スタックの接触抵抗との関係を示すグラフである。図2に示すように、中空集電板の空洞内部圧力を高めるほど、接触抵抗は低下する。
図3は、本発明に係る燃料電池システム1の実施例1の構成を説明する概略構成図である。本実施例の特徴は、中空集電板の内部空洞を空気で満たし、通常発電時には、この空気圧力を高めて接触抵抗を低下させ、低温からの燃料電池起動時には、この空気圧力を低めて、接触抵抗を増大させ、燃料電池電流によるジュール熱を増加させて、燃料電池スタックの昇温を早めることにある。
図3において、燃料電池システム1は、燃料電池スタック2と、燃料電池スタック2の両端部の正極側の中空集電板3a及び負極側の中空集電板3bと、空気供給配管4、8,9,10と、入口側切換弁5と、コンプレッサ6と、注入側弁7と、空気排出配管11,14,15と、中空集電板の空洞の圧力を検出する圧力計12と、排出側弁13と、出口側切換弁16と、水素供給配管17と、水素排出配管18と、燃料電池スタック2の温度を検出する温度センサ19と、中空集電板3aと3bの空洞部を連結する連結配管20と、コントロールユニット21とを備えている。
コンプレッサ6は、空気供給配管4,入口側切換弁5及び空気供給配管9を介して吸入した空気を圧縮して、注入側弁7及び空気供給配管10を介して、中空集電板3aの空洞部に圧縮空気を供給できるようになっている。
中空集電板3aの空洞部は、連結配管20を介して、中空集電板3bの空洞部と連結されている。また、中空集電板3bの空洞部は、圧力計12,排出側弁13に連通し、空洞部の圧力が圧力計で計測されるようになっている。
排出側弁13は、空気排出配管14,出口側切換弁16を介して、空気排出配管11に接続され、中空集電板3a,3bの空洞部の高圧空気を逃がすことができるようになっている。
ここで、コントロールユニット21は、燃料電池システムの起動時に、温度センサ19の検出値に応じて、コンプレッサ6、入口側切換弁5,注入側弁7、排出側弁13、出口側切換弁16を制御する。コントロールユニット21、温度センサ19、コンプレッサ6、入口側切換弁5,注入側弁7、排出側弁13、及び出口側切換弁16は、中空集電板3a,3bの空洞内部の圧力を制御する圧力制御機構を構成している。
図4は、燃料電池スタック2を構成する固体高分子電解質型燃料電池のセル構造を示す模式断面図である。燃料電池の一単位であるセルは、固体高分子膜からなる高分子電解質膜110と、この高分子電解質膜110を挟持するように電解質膜の両面に配設される燃料極111及び酸化剤極112と、これら両電極の外側に配置された燃料極拡散層113,酸化剤極拡散層114,燃料ガス流路117,酸化剤ガス流路118より構成される。
高分子電解質膜110は、フッ素系樹脂等の固体高分子材料によりプロトン伝導性の膜として形成されている。この高分子電解質膜110の両面に配設される燃料極111及び酸化剤極112は、白金または、白金とその他の金属からなる触媒層を備えている。
燃料ガス流路117及び酸化剤ガス流路118は、ガス不透過である緻密性カーボン材等による燃料極セパレータ115、酸化剤極セパレータ116に配置された多数のリブにより形成され、酸化剤ガス、燃料ガスはそれぞれの図示しないガス入口から供給され、図示しないガス出口から排出される。
次に、図5のフローチャートを参照して、コントロールユニット21が実施する燃料電池システムの起動時の制御内容を説明する。本フローチャートが開始される前の初期状態では、中空集電板3a,3bの空洞内部の圧力は、大気圧と同じとされている。
まずステップ(以下、ステップをSと略す)1において、温度センサ19により燃料電池スタック2の温度Tstackを検出する。次いで、S2で、Tstackが所定温度Ts(例えば70[℃])を超えているか、否かを判定する。S2の判定で、Tstackが所定温度Ts以下である場合は、中空集電板の空洞内部の圧力を上昇させることなく発電へ移行する。これにより、燃料電池スタック2を構成する各セル間の接触抵抗、及び燃料電池スタック2の最端部セルと中空集電板3a、3bの接触抵抗は、高い状態のまま、燃料電池スタック2へ水素ガス及び空気が供給され、発電を開始する。これにより、燃料電池内部及び端部の接触抵抗によるジュール熱の発熱量が多くなり、燃料電池スタック2の昇温を早めることができる。その後、温度センサ19が検出したスタック温度Tstackが所定温度Tsを超えたときに、S3乃至S8の操作が行われ、中空集電板3a、3bの空洞内部の圧力が高められて、接触抵抗を低下する操作が行われる。
S2の判定で、Tstackが所定温度Tsを超えている場合には、S3へ進み、入口側切換弁5をa方向へ、出口側切換弁16をc方向へ切換え、注入側弁7を開く。次いで、S4において排出側弁13を閉じる。次いで、S5においてコンプレッサ6を運転して空気を中空集電板3a、3bの内部へ注入を開始する。S6において、圧力計12の検出値を読み込み、中空集電板内部の空気圧力Paが所定圧力Psを超えたか否かを判定する。空気圧力Paが所定圧力Psを超えていなければ、S6を繰り返す。空気圧力Paが所定圧力Psを超えたら、S7へ進み、コンプレッサ6を停止して空気注入を停止し、S8で入口側切換弁5をb方向へ、出口側切換弁16をd方向へ切換え、注入側弁7を閉じ、中空集電板3a,3bの空洞内部の空気圧力を所定圧力に保ってから発電を開始する。
このような構成にすることで、図2に示すように、中空集電板の空洞内部の空気圧力を上昇させると、燃料電池スタックの接触抵抗が低下するため、TstackがTs以下である場合は、燃料電池スタックの接触抵抗が高い状態で発電させることができ、TstackがTs以上となったら、燃料電池スタックの接触抵抗を小さくすることができる。また、中空集電板の空洞内部に空気を導入しているため、空気の熱伝導率が小さいため、燃料電池スタック端部からの放熱を防止することができる。
本実施例によれば、燃料電池スタックの接触抵抗が高い状態で発電させると、ジュール熱が大きくなるため、燃料電池スタックの昇温を促進させることができ、燃料電池スタック温度Tstackが所定温度Tsに達したら燃料電池スタックの接触抵抗を小さくしているので、発電性能低下を防止することができるという効果がある。
また中空集電板の空洞内部の空気は熱伝導率が小さいため、スタック端部からの放熱を抑制し、燃料電池スタックの昇温をより促進することができるという効果がある。さらに、空気は燃料電池の酸化剤として燃料電池システムに導入されるため、新たに中空集電板の空洞内部に注入する流体を搭載する必要がなくなり、燃料電池システムを簡素化することができる。
図6は、本発明に係る燃料電池システム1の実施例2の構成を説明する概略構成図である。本実施例の燃料電池システムは、中空集電板の空洞内部に、流体として燃料電池を冷却するクーラントを導入し、圧力制御機構は、このクーラントの圧力を制御することを特徴としている。
図6において、燃料電池システム1は、燃料電池スタック2と、燃料電池スタック2の両端部の正極側の中空集電板3a及び負極側の中空集電板3bと、空気供給配管4と、空気排出配管11と、水素供給配管16と、水素排出配管17と、燃料電池スタック2の温度を検出する温度センサ19と、中空集電板3aと3bの空洞部を連結する連結配管20と、コントロールユニット21と、クーラントタンク30と、クーラントポンプ31と、クーラント配管32,36,37,38,39,40,42と、入口側切換弁33と、コンプレッサ35と、注入側弁34と、排出側弁43と、圧力計44と、出口側切換弁45と、ラジエータ41とを備えている。
クーラントタンク30に貯留された不凍液等のクーラントは、クーラントポンプ31により圧送され、入口側切換弁33により燃料電池スタック2を冷却するためのクーラント供給配管36か、或いはコンプレッサ35へクーラントを供給するクーラント供給配管37かが選択される。
クーラント供給配管37は、コンプレッサ35にクーラントを供給し、コンプレッサ35は、クーラントを加圧して注入側弁34を介して、中空集電板3aの空洞内部へ加圧されたクーラントを供給可能となっている。
中空集電板3aの空洞部は、連結配管20を介して、中空集電板3bの空洞部と連結されている。また、中空集電板3bの空洞部は、圧力計44,排出側弁43に連通し、空洞部の圧力が圧力計で計測されるようになっている。
排出側弁43は、クーラント配管38、出口側切換弁45、クーラント配管40,ラジエータ41,クーラント配管42を介してクーラントタンク30へ、中空集電板3a,3bの空洞部のクーラントの圧力を逃がすことができるようになっている。
燃料電池システムの通常運転時には、入口側切換弁33は、クーラント配管32とクーラント配管36とを連通し、出口側切換弁45は、クーラント配管39とクーラント配管40とを連通している。これにより、通常運転時には、クーラントタンク30,クーラントポンプ31,クーラント配管32,クーラント配管36,燃料電池スタック2,クーラント配管39,クーラント配管40,ラジエータ41,クーラント配管42、クーラントタンク30という経路でクーラントが循環して、燃料電池スタック2を適温に維持できるようになっている。
ここで、コントロールユニット21は、燃料電池システムの起動時に、温度センサ19の検出値に応じて、コンプレッサ35、入口側切換弁33,注入側弁34、排出側弁43、出口側切換弁45を制御する。コントロールユニット21、温度センサ19、コンプレッサ35、入口側切換弁33、注入側弁34、排出側弁43、及び出口側切換弁45は、中空集電板3a,3bの空洞内部の圧力を制御する圧力制御機構を構成している。
本実施例におけるコントロールユニット21における制御は、図5に示した実施例1における制御とほぼ同様であるので、フローチャートを参照した説明は省略する。
本実施例によれば、クーラントは燃料電池スタックの冷却媒体として燃料電池システムに搭載されているため、新たに中空集電板の空洞内部に注入する流体を搭載する必要がなくなり、燃料電池システムを簡素化することができる。
図7は、本発明に係る燃料電池システム1の実施例3の構成を説明する概略構成図である。本実施例の燃料電池システムは、中空集電板の空洞内部に、流体として水素を導入し、圧力制御機構は、この水素の圧力を制御することを特徴としている。
図7において、燃料電池システム1は、燃料電池スタック2と、燃料電池スタック2の両端部の正極側の中空集電板3a及び負極側の中空集電板3bと、空気供給配管4と、空気排出配管11と、水素タンク51と、水素供給配管52と、水素圧力調整弁53と、燃料電池スタック2のアノードへ水素を供給する水素供給配管16と、中空集電板3aの空洞内部へ水素を注入する注入側弁54と、中空集電板3bの空洞内部の圧力を検出する圧力計55と、中空集電板3bの空洞内部から水素を排出する排出側弁57と、水素排出配管17と、燃料電池スタック2の温度を検出する温度センサ19と、中空集電板3aと3bの空洞部を連結する連結配管20と、コントロールユニット21とを備えている。
水素タンク51に貯蔵された高圧水素は、水素圧力調整弁53により燃料電池の運転圧力まで減圧されて、燃料電池スタック2のアノードに供給される。燃料電池スタック2のアノードで使用されなかった水素は、水素排出配管17を介して排出される。
また、水素タンク51は、水素供給配管52を介して注入側弁54に水素を供給し、注入側弁54は、水素を減圧して中空集電板3aの空洞内部へ圧力調整された水素を供給可能となっている。水素タンク51に貯蔵された水素は高圧であるため、注入側弁54により減圧するだけで所望の圧力が得られ、中空集電板の空洞内部の圧力を高めるためにエネルギーを消費することがない。
中空集電板3aの空洞部は、連結配管20を介して、中空集電板3bの空洞部と連結されている。また、中空集電板3bの空洞部は、圧力計55,排出側弁57に連通し、空洞部の圧力が圧力計で計測されるようになっている。
排出側弁57は、水素排出配管17を介して、中空集電板3a,3bの空洞部の高圧水素を逃がすことができるようになっている。
ここで、コントロールユニット21は、燃料電池システムの起動時に、温度センサ19の検出値に応じて、注入側弁54、排出側弁57を制御する。コントロールユニット21、温度センサ19、注入側弁54、排出側弁57は、中空集電板3a,3bの空洞内部の圧力を制御する圧力制御機構を構成している。
本実施例におけるコントロールユニット21における制御は、図5に示した実施例1における制御とほぼ同様であるので、フローチャートを参照した説明は省略する。
本実施例によれば、燃料電池スタックの燃料として使用される水素を用いて中空集電板の空洞内部の圧力を制御するため、新たに中空集電板の空洞内部に注入する流体を搭載する必要がなくなり、燃料電池システムを簡素化することができ、中空集電板の空洞内部の圧力を高めるために必要となるエネルギーを節約することができるという効果がある。
本発明に係る燃料電池システムの原理説明図である。 中空集電板空洞の内部圧力と燃料電池スタックの接触抵抗との関係を説明するグラフである。 本発明に係る燃料電池システムの実施例1の構成を説明する概略構成図である。 実施例に用いられる固体高分子型燃料電池のセルを説明する模式断面図である。 実施例1における中空集電板の空洞内部の昇圧制御を説明するフローチャートである。 本発明に係る燃料電池システムの実施例2の構成を説明する概略構成図である。 本発明に係る燃料電池システムの実施例3の構成を説明する概略構成図である。
符号の説明
1:燃料電池システム
2:燃料電池スタック
3a、3b:中空集電板
4,8,9,10:空気供給配管
5:入口側切換弁
6:コンプレッサ
7:注入側弁
11,14,15:空気排出配管
12:圧力計
13:排出側弁
16:出口側切換弁
17:水素供給配管
18:水素排出配管
19:温度センサ
20:連結配管
21:コントロールユニット

Claims (6)

  1. 高分子電解質膜の一方の面に燃料極、他方の面に酸化剤極がそれぞれ形成された膜電極接合体と、該膜電極接合体に燃料および酸化剤を供給する流路を形成されたセパレータとを備えた燃料電池を複数積層した燃料電池スタックを備えた燃料電池システムにおいて、
    前記燃料電池スタックの正極および負極の少なくとも一方に配された内部が空洞の中空集電板と、
    前記中空集電板の空洞内部の流体の圧力を制御する圧力制御機構と、
    を備えたことを特徴とする燃料電池システム。
  2. 前記燃料電池スタックの温度を検出する温度検出手段を備え、
    前記圧力制御機構は、前記温度検出手段が検出した温度が所定温度以下のときは、前記空洞内部の流体の圧力を所定圧力未満とし、前記温度検出手段が検出した温度が前記所定温度以上となったら、前記空洞内部の流体の圧力を所定圧力にすることを特徴とする請求項1記載の燃料電池システム。
  3. 前記空洞内部を低熱伝導性の流体で満たすことを特徴とする請求項2記載の燃料電池システム。
  4. 前記空洞内部を空気で満たすことを特徴とする請求項3記載の燃料電池システム。
  5. 前記空洞内部を燃料電池冷却用のクーラントで満たすことを特徴とする請求項2記載の燃料電池システム。
  6. 前記空洞内部を水素で満たすことを特徴とする請求項2記載の燃料電池システム。
JP2004352761A 2004-12-06 2004-12-06 燃料電池システム Pending JP2006164680A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004352761A JP2006164680A (ja) 2004-12-06 2004-12-06 燃料電池システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004352761A JP2006164680A (ja) 2004-12-06 2004-12-06 燃料電池システム

Publications (1)

Publication Number Publication Date
JP2006164680A true JP2006164680A (ja) 2006-06-22

Family

ID=36666453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004352761A Pending JP2006164680A (ja) 2004-12-06 2004-12-06 燃料電池システム

Country Status (1)

Country Link
JP (1) JP2006164680A (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008047506A (ja) * 2006-08-16 2008-02-28 Hyundai Motor Co Ltd 燃料電池スタック
JP2008226713A (ja) * 2007-03-14 2008-09-25 Honda Motor Co Ltd 燃料電池スタック
KR100993650B1 (ko) 2007-07-13 2010-11-10 현대자동차주식회사 차량용 연료전지 스택
JP2012054124A (ja) * 2010-09-02 2012-03-15 Honda Motor Co Ltd 燃料電池スタック
JP2012054125A (ja) * 2010-09-02 2012-03-15 Honda Motor Co Ltd 燃料電池スタック
JP2012054123A (ja) * 2010-09-02 2012-03-15 Honda Motor Co Ltd 燃料電池スタック
US8377609B2 (en) 2008-06-16 2013-02-19 Hyundai Motor Company Fuel cell bipolar plate and method for manufacturing the same
US9123936B2 (en) 2008-10-02 2015-09-01 Ngk Spark Plug Co., Ltd. Solid oxide fuel cell apparatus
CN109301289A (zh) * 2018-11-20 2019-02-01 安徽明天氢能科技股份有限公司 一种大面积燃料电池内部温度与压力分布的测试装置
CN111725482A (zh) * 2020-07-27 2020-09-29 江西星盈科技有限公司 一种厚电极和电池

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008047506A (ja) * 2006-08-16 2008-02-28 Hyundai Motor Co Ltd 燃料電池スタック
JP2008226713A (ja) * 2007-03-14 2008-09-25 Honda Motor Co Ltd 燃料電池スタック
KR100993650B1 (ko) 2007-07-13 2010-11-10 현대자동차주식회사 차량용 연료전지 스택
US8377609B2 (en) 2008-06-16 2013-02-19 Hyundai Motor Company Fuel cell bipolar plate and method for manufacturing the same
US9123936B2 (en) 2008-10-02 2015-09-01 Ngk Spark Plug Co., Ltd. Solid oxide fuel cell apparatus
JP2012054124A (ja) * 2010-09-02 2012-03-15 Honda Motor Co Ltd 燃料電池スタック
CN102386432A (zh) * 2010-09-02 2012-03-21 本田技研工业株式会社 燃料电池堆
JP2012054123A (ja) * 2010-09-02 2012-03-15 Honda Motor Co Ltd 燃料電池スタック
CN102386432B (zh) * 2010-09-02 2014-03-19 本田技研工业株式会社 燃料电池堆
JP2012054125A (ja) * 2010-09-02 2012-03-15 Honda Motor Co Ltd 燃料電池スタック
CN109301289A (zh) * 2018-11-20 2019-02-01 安徽明天氢能科技股份有限公司 一种大面积燃料电池内部温度与压力分布的测试装置
CN109301289B (zh) * 2018-11-20 2023-08-22 安徽明天氢能科技股份有限公司 一种大面积燃料电池内部温度与压力分布的测试装置
CN111725482A (zh) * 2020-07-27 2020-09-29 江西星盈科技有限公司 一种厚电极和电池

Similar Documents

Publication Publication Date Title
JP4996814B2 (ja) 燃料電池の低温起動方法
JP4595317B2 (ja) 燃料電池システム
JP3840956B2 (ja) 燃料電池システム
US7588844B2 (en) Method of starting up operation of fuel cell at low temperature
JP2005228637A (ja) 燃料電池システム
JP4389996B2 (ja) 燃料電池システム
JP2008059922A (ja) 燃料電池システム
JP2006164680A (ja) 燃料電池システム
JP4505489B2 (ja) 燃料電池システム及びその起動方法
EP1708300B1 (en) Fuel cell system
CN101946352B (zh) 燃料电池系统及燃料电池系统的控制方法
JP4450109B2 (ja) 燃料電池システム
US20050202293A1 (en) Fuel cell conditioning system and related method
JP6313347B2 (ja) 燃料電池システムの制御方法
JP6326439B2 (ja) 燃料電池システムの制御方法
JP6307536B2 (ja) 燃料電池システムの低温起動方法
JP2008181768A (ja) 燃料電池システム
JP2005353561A (ja) 燃料電池
JP4803996B2 (ja) 燃料電池の低温起動方法及び燃料電池システム
JP2009076261A (ja) 燃料電池システム及びその起動方法
CN115769404A (zh) 用于霜冻启动燃料电池装置的方法、燃料电池装置以及具有燃料电池装置的机动车
JP2006147336A (ja) 燃料電池システム
JP2010086933A (ja) 燃料電池システム
JP2005100705A (ja) 燃料電池の始動方法
JP2007035516A (ja) 燃料電池システム