JP2006164535A - Polyelectrolyte fuel cell - Google Patents
Polyelectrolyte fuel cell Download PDFInfo
- Publication number
- JP2006164535A JP2006164535A JP2004349541A JP2004349541A JP2006164535A JP 2006164535 A JP2006164535 A JP 2006164535A JP 2004349541 A JP2004349541 A JP 2004349541A JP 2004349541 A JP2004349541 A JP 2004349541A JP 2006164535 A JP2006164535 A JP 2006164535A
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- polymer electrolyte
- carbon
- hydrogen ion
- fuel cell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 41
- 229920000867 polyelectrolyte Polymers 0.000 title abstract 7
- 239000003054 catalyst Substances 0.000 claims abstract description 109
- 229910052751 metal Inorganic materials 0.000 claims abstract description 32
- 239000002184 metal Substances 0.000 claims abstract description 32
- GPRLSGONYQIRFK-UHFFFAOYSA-N hydron Chemical compound [H+] GPRLSGONYQIRFK-UHFFFAOYSA-N 0.000 claims abstract description 31
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 50
- 229910052799 carbon Inorganic materials 0.000 claims description 41
- 239000005518 polymer electrolyte Substances 0.000 claims description 39
- 239000003792 electrolyte Substances 0.000 claims description 31
- 239000012528 membrane Substances 0.000 claims description 31
- 229920001940 conductive polymer Polymers 0.000 claims description 29
- 239000002322 conducting polymer Substances 0.000 claims description 12
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 10
- 229910052737 gold Inorganic materials 0.000 claims description 10
- 239000010931 gold Substances 0.000 claims description 10
- 230000003197 catalytic effect Effects 0.000 claims description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 33
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 33
- 229910052697 platinum Inorganic materials 0.000 description 16
- 238000000034 method Methods 0.000 description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 14
- 239000002245 particle Substances 0.000 description 11
- 229920000049 Carbon (fiber) Polymers 0.000 description 9
- 239000004917 carbon fiber Substances 0.000 description 9
- -1 hydrogen ions Chemical class 0.000 description 9
- 150000002500 ions Chemical class 0.000 description 9
- 238000002360 preparation method Methods 0.000 description 9
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 8
- 150000001875 compounds Chemical class 0.000 description 8
- 238000009792 diffusion process Methods 0.000 description 8
- 239000002003 electrode paste Substances 0.000 description 7
- 229920005989 resin Polymers 0.000 description 7
- 239000011347 resin Substances 0.000 description 7
- 239000006229 carbon black Substances 0.000 description 6
- 235000019241 carbon black Nutrition 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 239000004745 nonwoven fabric Substances 0.000 description 6
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 5
- 239000004809 Teflon Substances 0.000 description 5
- 229920006362 Teflon® Polymers 0.000 description 5
- 239000007864 aqueous solution Substances 0.000 description 5
- 238000011161 development Methods 0.000 description 5
- 238000001914 filtration Methods 0.000 description 5
- 239000011737 fluorine Substances 0.000 description 5
- 229910052731 fluorine Inorganic materials 0.000 description 5
- 239000001257 hydrogen Substances 0.000 description 5
- 229910052739 hydrogen Inorganic materials 0.000 description 5
- 239000007800 oxidant agent Substances 0.000 description 5
- 230000001590 oxidative effect Effects 0.000 description 5
- 229920000642 polymer Polymers 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- 238000001179 sorption measurement Methods 0.000 description 5
- 125000000542 sulfonic acid group Chemical group 0.000 description 5
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 4
- 239000004695 Polyether sulfone Substances 0.000 description 4
- 229920000265 Polyparaphenylene Polymers 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 239000004744 fabric Substances 0.000 description 4
- 239000000835 fiber Substances 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 239000003273 ketjen black Substances 0.000 description 4
- 229920002492 poly(sulfone) Polymers 0.000 description 4
- 229920002239 polyacrylonitrile Polymers 0.000 description 4
- 229920006393 polyether sulfone Polymers 0.000 description 4
- 229920005649 polyetherethersulfone Polymers 0.000 description 4
- 239000005077 polysulfide Substances 0.000 description 4
- 229920001021 polysulfide Polymers 0.000 description 4
- 150000008117 polysulfides Polymers 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 239000004215 Carbon black (E152) Substances 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 239000010439 graphite Substances 0.000 description 3
- 229910002804 graphite Inorganic materials 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 229930195733 hydrocarbon Natural products 0.000 description 3
- 150000002430 hydrocarbons Chemical class 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- CFQCIHVMOFOCGH-UHFFFAOYSA-N platinum ruthenium Chemical compound [Ru].[Pt] CFQCIHVMOFOCGH-UHFFFAOYSA-N 0.000 description 3
- 238000010248 power generation Methods 0.000 description 3
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 3
- 239000005871 repellent Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 239000002759 woven fabric Substances 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 description 2
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 229920000557 Nafion® Polymers 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 239000004696 Poly ether ether ketone Substances 0.000 description 2
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000003575 carbonaceous material Substances 0.000 description 2
- 238000010000 carbonizing Methods 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 238000010908 decantation Methods 0.000 description 2
- 229920006351 engineering plastic Polymers 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 238000007731 hot pressing Methods 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 229920001643 poly(ether ketone) Polymers 0.000 description 2
- 229920002530 polyetherether ketone Polymers 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 229910052707 ruthenium Inorganic materials 0.000 description 2
- 239000001509 sodium citrate Substances 0.000 description 2
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- TXEYQDLBPFQVAA-UHFFFAOYSA-N tetrafluoromethane Chemical compound FC(F)(F)F TXEYQDLBPFQVAA-UHFFFAOYSA-N 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 229920000297 Rayon Polymers 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- QALPTQQONOJLEC-UHFFFAOYSA-N [Ru].[Pt].[Pt] Chemical compound [Ru].[Pt].[Pt] QALPTQQONOJLEC-UHFFFAOYSA-N 0.000 description 1
- 239000006230 acetylene black Substances 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000002134 carbon nanofiber Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000006258 conductive agent Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000011258 core-shell material Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 125000002228 disulfide group Chemical group 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000003411 electrode reaction Methods 0.000 description 1
- 239000002001 electrolyte material Substances 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000006232 furnace black Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000003456 ion exchange resin Substances 0.000 description 1
- 229920003303 ion-exchange polymer Polymers 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000006233 lamp black Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910000476 molybdenum oxide Inorganic materials 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 229910021392 nanocarbon Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 125000000962 organic group Chemical group 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- PQQKPALAQIIWST-UHFFFAOYSA-N oxomolybdenum Chemical compound [Mo]=O PQQKPALAQIIWST-UHFFFAOYSA-N 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 1
- OJMIONKXNSYLSR-UHFFFAOYSA-N phosphorous acid Chemical group OP(O)O OJMIONKXNSYLSR-UHFFFAOYSA-N 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920005596 polymer binder Polymers 0.000 description 1
- 239000002491 polymer binding agent Substances 0.000 description 1
- 229920005597 polymer membrane Polymers 0.000 description 1
- 239000011164 primary particle Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000002964 rayon Substances 0.000 description 1
- 239000012495 reaction gas Substances 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 238000002407 reforming Methods 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 150000003457 sulfones Chemical class 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 239000006234 thermal black Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 125000000101 thioether group Chemical group 0.000 description 1
- 125000003396 thiol group Chemical group [H]S* 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Fuel Cell (AREA)
- Inert Electrodes (AREA)
Abstract
Description
本発明は、高分子電解質型燃料電池に関する。 The present invention relates to a polymer electrolyte fuel cell.
基本的には、燃料電池は水素と酸素を反応させて電気を発生させる発電装置であり、発電反応で水しか生成されないという優れた性質を有しているので、温暖化やオゾン層破壊といった地球環境問題に対処する省エネルギーの技術として注目されている。 Basically, a fuel cell is a power generation device that generates electricity by reacting hydrogen and oxygen, and has the excellent property that only water is generated by the power generation reaction. It is attracting attention as an energy-saving technology that addresses environmental issues.
燃料電池には固体高分子型燃料電池、りん酸型燃料電池、溶融炭酸塩型燃料電池、固体酸化物型燃料電池がある。これらの中でも、固体高分子型燃料電池は作動温度が低い、電解質が固体(高分子の薄膜)であるという利点がある。固体高分子形燃料電池は、メタノールを改質器を用いて水素に変換する改質型と改質器を用いずに直接メタノールを使用する直接型(DMFC、Direct Methanol Polymer Fuel Cell)の二つに大別される。DMFCは改質器が不要であるため、小型、軽量化が可能であり、来るべきユビキタス社会に向けた個人用の携帯情報端末(PDA、Personal Digital Assistance)等の電池や専用バッテリーとして、その実用化が期待されている。 Fuel cells include solid polymer fuel cells, phosphoric acid fuel cells, molten carbonate fuel cells, and solid oxide fuel cells. Among these, the polymer electrolyte fuel cell has an advantage that the operating temperature is low and the electrolyte is solid (polymer thin film). There are two types of polymer electrolyte fuel cells: a reforming type that converts methanol into hydrogen using a reformer, and a direct type that uses methanol directly without using a reformer (DMFC, Direct Methanol Polymer Fuel Cell). It is divided roughly into. Since DMFC does not require a reformer, it can be reduced in size and weight, and it can be used as a battery or a dedicated battery for personal digital assistants (PDAs) for the coming ubiquitous society. Is expected.
DMFCは電解質膜にプロトン伝導性固体高分子膜を用い、この電解質膜を介して、拡散層となる多孔性カーボンペーパー上に触媒を塗布してなるアノード極とカソード極を接合し、アノード極側には燃料としてのメタノール水溶液を供給するための流路溝を有するアノード極側セパレータが設けられ、カソード極側には酸化剤ガスとしての空気を供給するための流路溝を有するカソード極側セパレータが設けられた構造となっているのが一般的である。 DMFC uses a proton-conducting solid polymer membrane as an electrolyte membrane, and through this electrolyte membrane, an anode electrode and a cathode electrode formed by applying a catalyst on porous carbon paper serving as a diffusion layer are joined, and the anode electrode side Is provided with an anode electrode side separator having a channel groove for supplying a methanol aqueous solution as a fuel, and a cathode electrode side separator having a channel groove for supplying air as an oxidant gas on the cathode electrode side. In general, the structure is provided with.
アノード極にメタノール水溶液を供給し、カソード極に空気を供給するとアノード極ではメタノールと水との酸化反応によって、炭酸ガスが生成すると共に水素イオンと電子が放出され(CH3OH+H2O→CO2+6H++6e-)、カソード極では電解質膜を通過してきた前記水素イオンと空気との還元反応によって水が生成して(6H++(3/2)O2+6e-→3H2O)、アノード極とカソード極を繋ぐ外部回路に電気エネルギーを得ることができる。従って、DMFCの全反応はメタノールと酸素から水と二酸化炭素が生成する反応である。 When an aqueous methanol solution is supplied to the anode electrode and air is supplied to the cathode electrode, carbon dioxide gas is generated and hydrogen ions and electrons are released (CH 3 OH + H 2 O → CO 2) by the oxidation reaction of methanol and water at the anode electrode. + 6H + + 6e − ), water is generated by the reduction reaction between the hydrogen ions that have passed through the electrolyte membrane and air at the cathode (6H + + (3/2) O 2 + 6e − → 3H 2 O), and the anode Electrical energy can be obtained in an external circuit connecting the pole and the cathode pole. Therefore, the total reaction of DMFC is a reaction in which water and carbon dioxide are generated from methanol and oxygen.
一般にアノード極とカソード極は、白金などの金属触媒とカーボンブラックなどの導電性カーボンまたは触媒担持カーボン及び高分子電解質を含む混合体によって構成される。燃料電池用電極に使用する白金触媒のコストは燃料電池全体の数十%を占めるので、燃料電池のコストを下げるためには、使用する白金触媒量を低減することが必要である。 In general, the anode and cathode are composed of a mixture containing a metal catalyst such as platinum and conductive carbon such as carbon black or catalyst-supporting carbon and a polymer electrolyte. Since the cost of the platinum catalyst used for the fuel cell electrode occupies several tens of percent of the entire fuel cell, it is necessary to reduce the amount of platinum catalyst used in order to reduce the cost of the fuel cell.
一方、従来の触媒層の作製法では、触媒層として使用した白金のうちの20〜30%しか電極反応に関与していない。反応後のプロトン伝導は高分子電解質が接触する3相界面でのみ起こる。3相界面に燃料が供給され、反応後カーボンが電子を伝導し、高分子電解質がプロトンを伝導する。しかし、従来の触媒層の作製法では白金触媒の周辺に高分子電解質が存在する割合が小さいので、速やかな物質移動が行われ難い環境にある。 On the other hand, in the conventional method for producing a catalyst layer, only 20 to 30% of platinum used as the catalyst layer is involved in the electrode reaction. Proton conduction after the reaction occurs only at the three-phase interface where the polymer electrolyte contacts. Fuel is supplied to the three-phase interface, and after the reaction, carbon conducts electrons, and the polymer electrolyte conducts protons. However, in the conventional method for producing the catalyst layer, since the ratio of the polymer electrolyte present around the platinum catalyst is small, it is difficult to perform rapid mass transfer.
触媒の利用率を高めるため、コアの触媒金属をコアの触媒金属とは異なる触媒金属で被覆したコアシェルタイプの触媒金属を用いると共に、高分子電解質のプロトン伝導経路に接するカーボン粒子の表面に担持された触媒金属量を全触媒金属量の50質量%以上とする技術(例えば、特許文献1参照。)、触媒担持カーボンのカーボンとして、スルホン酸基のような水素イオン解離が可能な有機基を有するカーボンを用いる技術(例えば、特許文献2参照。)、カーボンブラックの一次粒子の表面に、少なくとも一つのイオン性官能基を持つカーボン材料に触媒を担持した電極触媒(例えば、特許文献3参照。)が開示されている。 In order to increase the utilization rate of the catalyst, a core-shell type catalyst metal in which the core catalyst metal is coated with a catalyst metal different from the core catalyst metal is used, and supported on the surface of carbon particles in contact with the proton conduction path of the polymer electrolyte. A technology for setting the amount of catalyst metal to 50% by mass or more of the total amount of catalyst metal (see, for example, Patent Document 1), and carbon of the catalyst-supporting carbon has an organic group capable of hydrogen ion dissociation such as a sulfonic acid group. A technique using carbon (for example, see Patent Document 2), an electrode catalyst in which a catalyst is supported on a carbon material having at least one ionic functional group on the surface of primary particles of carbon black (for example, see Patent Document 3). Is disclosed.
また高分子電解質と触媒を十分且つ均一に接触させ、電極内部の反応面積を増大させるために、水素イオン伝導性高分子電解質の分子長を30〜200nmとし、これを触媒担持カーボンと溶媒を介して混合するとき、溶媒の誘電率を適切に選択することが重要であることが開示されている(例えば、特許文献4参照。)。 In addition, in order to sufficiently and uniformly contact the polymer electrolyte and the catalyst and increase the reaction area inside the electrode, the molecular length of the hydrogen ion conductive polymer electrolyte is set to 30 to 200 nm, and this is passed through the catalyst-supporting carbon and the solvent. It is disclosed that it is important to appropriately select the dielectric constant of the solvent when mixing (see, for example, Patent Document 4).
また触媒粒子、他の粒子及び多孔質膜から選ばれる表面に、電解質として機能するイオン伝導性官能基を含む分子が化学結合させた技術(例えば、特許文献5参照。)。 In addition, a technique in which a molecule containing an ion conductive functional group that functions as an electrolyte is chemically bonded to a surface selected from catalyst particles, other particles, and a porous membrane (see, for example, Patent Document 5).
更に白金触媒の利用効率を高める技術として、モノマーをカーボン表面で反応させて化学結合させることにより、電解質ポリマーをカーボン表面に固定化したグラフト化白金担持触媒が開示されている(例えば、非特許文献1参照。)。 Further, as a technique for increasing the utilization efficiency of the platinum catalyst, a grafted platinum-supported catalyst in which an electrolyte polymer is immobilized on the carbon surface by reacting the monomer on the carbon surface and chemically bonding is disclosed (for example, non-patent document). 1).
これらの技術では必ずしも触媒近傍にプロトン移動経路が作製されず、効率向上巾が小さい。プロトン伝導経路の有効作製、触媒利用率が高い電極の開発が望まれている。
以上のように、燃料電池の発電効率を高めるために、触媒の利用効率を高める画期的な技術開発が望まれていた。本発明はこれらの課題を解決するものであり、触媒の利用効率が高められた高分子電解質型燃料電池を提供することを目的とする。 As described above, in order to increase the power generation efficiency of the fuel cell, an epoch-making technology development for increasing the utilization efficiency of the catalyst has been desired. The present invention solves these problems, and an object of the present invention is to provide a polymer electrolyte fuel cell in which the utilization efficiency of a catalyst is enhanced.
本発明の上記課題は下記構成により達成された。 The above object of the present invention has been achieved by the following constitution.
(請求項1)
水素イオン伝導性高分子電解質膜及び前記水素イオン伝導性高分子電解質膜を挟む一対の電極を具備し、前記電極は前記水素イオン伝導性高分子電解質膜に接触する触媒層を具備し、前記触媒層は水素イオン伝導性高分子電解質及び触媒金属を含み、前記触媒金属近傍のイオン伝導性基の密度が電極全体の平均密度に対して大きいことを特徴とする高分子電解質型燃料電池。
(Claim 1)
A hydrogen ion conducting polymer electrolyte membrane and a pair of electrodes sandwiching the hydrogen ion conducting polymer electrolyte membrane, the electrodes comprising a catalyst layer in contact with the hydrogen ion conducting polymer electrolyte membrane, and the catalyst The layer includes a hydrogen ion conductive polymer electrolyte and a catalyst metal, and the density of the ion conductive group in the vicinity of the catalyst metal is larger than the average density of the entire electrode.
(請求項2)
水素イオン伝導性高分子電解質膜及び前記水素イオン伝導性高分子電解質膜を挟む一対の電極を具備し、前記電極は前記水素イオン伝導性高分子電解質膜に接触する触媒層を具備し、前記触媒層は水素イオン伝導性高分子電解質及び触媒金属を担持したカーボンを含み、前記触媒金属近傍のイオン伝導性基の密度がカーボン表面の平均密度に対して大きいことを特徴とする高分子電解質型燃料電池。
(Claim 2)
A hydrogen ion conducting polymer electrolyte membrane and a pair of electrodes sandwiching the hydrogen ion conducting polymer electrolyte membrane, the electrodes comprising a catalyst layer in contact with the hydrogen ion conducting polymer electrolyte membrane, and the catalyst The layer includes a hydrogen ion conductive polymer electrolyte and carbon carrying a catalyst metal, and the density of the ion conductive group in the vicinity of the catalyst metal is larger than the average density of the carbon surface. battery.
(請求項3)
前記触媒金属がその表面に金を吸着させていることを特徴とする請求項1または2に記載の高分子電解質型燃料電池。
(Claim 3)
The polymer electrolyte fuel cell according to claim 1 or 2, wherein the catalytic metal has gold adsorbed on the surface thereof.
本発明により、触媒の利用効率が高められ、電流−電圧特性が向上した高分子電解質型燃料電池を提供することができた According to the present invention, it was possible to provide a polymer electrolyte fuel cell in which the utilization efficiency of the catalyst was increased and the current-voltage characteristics were improved.
本発明は、水素イオン伝導性高分子電解質膜及び前記水素イオン伝導性高分子電解質膜を挟む一対の電極を具備し、前記電極は前記水素イオン伝導性高分子電解質膜に接触して、水素イオン伝導性高分子電解質と触媒金属、または水素イオン伝導性高分子電解質と触媒金属担持カーボンを含む触媒層を具備した高分子電解質型燃料電池において、該触媒金属近傍のイオン伝導性基の密度が平均密度に対して大きいことを特徴とし、触媒金属近傍のイオン伝導性基の密度が平均密度に対して大きいことによって、触媒の利用効率が向上することを見出した。 The present invention comprises a hydrogen ion conductive polymer electrolyte membrane and a pair of electrodes sandwiching the hydrogen ion conductive polymer electrolyte membrane, the electrodes being in contact with the hydrogen ion conductive polymer electrolyte membrane, In a polymer electrolyte fuel cell having a catalyst layer including a conductive polymer electrolyte and a catalyst metal, or a hydrogen ion conductive polymer electrolyte and a catalyst metal-supported carbon, the density of ion conductive groups in the vicinity of the catalyst metal is an average. It has been found that the utilization efficiency of the catalyst is improved when the density of the ion conductive group in the vicinity of the catalyst metal is larger than the average density.
触媒金属近傍のイオン伝導性基の密度を高めるためには、触媒金属と親和性を有するスルフィド基、ジスルフィド基、メルカプト基、アミノ基等を有し、イオン伝導性基としてカルボキシル基、リン酸基、亜リン酸基、スルホン酸基等を有する化合物を用いることができる。 In order to increase the density of the ion conductive group in the vicinity of the catalyst metal, it has a sulfide group, a disulfide group, a mercapto group, an amino group, etc. having an affinity for the catalyst metal, and the carboxyl group, phosphate group as the ion conductive group A compound having a phosphorous acid group, a sulfonic acid group, or the like can be used.
以下に、図面を参照して本発明の燃料電池の一実施形態について説明する。 Hereinafter, an embodiment of a fuel cell of the present invention will be described with reference to the drawings.
図1は、本発明の燃料電池の単セルIを示す模式図である。水素イオン伝導性高分子電解質膜1は、アノード極側触媒層2とカソード極側触媒層3に挟まれる形で配置されている。アノード極側触媒層2とカソード極側触媒層3は、それぞれカーボンペーパーのような多孔質導電性シートで形成された拡散層4、5の上に設けられている。ここでは便宜上、拡散層4とその上に設けられたアノード極側触媒層2を含めてアノード極と称し、拡散層5とその上に設けられたカソード極側触媒層3を含めてカソード極と称する。
FIG. 1 is a schematic view showing a single cell I of a fuel cell according to the present invention. The hydrogen ion conductive
アノード極側触媒層2及びカソード極側触媒層3の少なくとも一方は、触媒または触媒担持カーボンを含むことが必須である。本発明においては、アノード極側触媒層2に、本発明に係る触媒または触媒担持カーボンを含むことが好ましいが、アノード極側触媒層2及びカソード極側触媒層3の両者に本発明に係る触媒または触媒担持カーボンを含むことがより好ましくい。
At least one of the anode electrode side catalyst layer 2 and the cathode electrode
本発明に係る触媒に用いることができる触媒金属としては、例えば、白金、ルテニウム、ロジウム、パラジウム、イリジウム、金、銀、鉄、コバルト、ニッケル、クロム、タングステン、マガジン、バナジウム、酸化モリブデンまたはこれらの多元合金である。これらの中で、本発明において好ましく用いることができる触媒金属としては、白金または白金表面に金を吸着させたものである。 Examples of the catalyst metal that can be used in the catalyst according to the present invention include platinum, ruthenium, rhodium, palladium, iridium, gold, silver, iron, cobalt, nickel, chromium, tungsten, magazine, vanadium, molybdenum oxide, or these. It is a multi-component alloy. Among these, the catalyst metal that can be preferably used in the present invention is platinum or a metal having gold adsorbed on the platinum surface.
本発明では、これらの触媒金属をカーボン粒子に担持させることにより得られる触媒金属担持カーボンを用いることができる。 In the present invention, catalyst metal-supported carbon obtained by supporting these catalyst metals on carbon particles can be used.
触媒金属を担持するカーボン粒子としては、活性炭、カーボンブラック、グラファイト及びそれらの混合物を好ましく採用することができる。例えば、カーボンブラックとしてはアセチレンブラック、ケッチェンブラック、ファーネスブラック、ランプブラック、サーマルブラック等が挙げられ、ケッチェンブラックが特に好ましい。市販で入手できるカーボンブラックとしては、Denka BLACK(電気化学工業社製)、Valcan XC−72(キャボット社製)、Black Pearl 2000(同前)、Ketjen Black EC300J(ケェチェンブラック・インターナショナル社製)等を挙げることができる。また、カーボン粒子を親水化処理をして用いることもできる。特に、カルボキシル基を有する化合物で処理してカルボキシル化したもの、スルホン酸基を有する化合物で処理してスルホン化したものが好ましい。 As the carbon particles supporting the catalyst metal, activated carbon, carbon black, graphite and a mixture thereof can be preferably used. Examples of carbon black include acetylene black, ketjen black, furnace black, lamp black, and thermal black. Ketjen black is particularly preferable. Examples of commercially available carbon blacks include Denka BLACK (manufactured by Denki Kagaku Kogyo Co., Ltd.), Valcan XC-72 (manufactured by Cabot), Black Pearl 2000 (same as above), Ketjen Black EC300J (manufactured by Ketjen Black International), and the like. Can be mentioned. Also, the carbon particles can be used after being hydrophilized. In particular, those treated with a compound having a carboxyl group and carboxylated and those treated with a compound having a sulfonic acid group and sulfonated are preferred.
金属触媒をカーボン粒子に担持させる方法としては、例えば、カーボンブラック分散液に白金やルテニウム等の金属触媒の塩を加え、次いでヒドラジン等を用いて還元し、ろ過、乾燥する方法が挙げられる。また、本発明においては、乾燥後に更に熱処理を行ってもよい。カーボン粒子として市販されているValcan XC−72に白金または白金−ルテニウム触媒を担持させたもの(田中貴金属社製)等を用いることもできる。 Examples of the method of supporting the metal catalyst on the carbon particles include a method of adding a salt of a metal catalyst such as platinum or ruthenium to the carbon black dispersion liquid, and then reducing with hydrazine or the like, filtering and drying. In the present invention, heat treatment may be further performed after drying. It is also possible to use Valcan XC-72 commercially available as carbon particles (Platinum-Platinum-Ruthenium catalyst) supported on Platinum XC-72 (manufactured by Tanaka Kikinzoku Co., Ltd.).
本発明に係る高分子電解質型燃料電池用電極は、本発明に係る触媒担持カーボンに加え、水素イオン伝導性高分子電解質を含有する。含有することができる水素イオン伝導性高分子電解質としては、イオン導電性を有する電解質であれば特に制限は無く、例えば、フッ素系電解質、部分フッ素系電解質、炭化水素系電解質等が挙げられる。例えば、有機系の含フッ素高分子を骨格とするイオン交換樹脂、例えば、パーフルオロカーボンスルホン酸樹脂等が挙げられる。パーフルオロカーボンスルホン酸樹脂としては、DE520、DE521、DE1020、DE1021(以上、デュポン社製)等が商品として入手できる。その他に、スルホン化ポリエーテルケトン、スルホン化ポリエーテルスルホン、スルホン化ポリエーテルエーテルスルホン、スルホン化ポリスルホン、スルホン化ポリスルフィド、スルホン化ポリフェニレン等のスルホン化プラスチック系電解質、スルホアルキル化ポリエーテルエーテルケトン、スルホアルキル化ポリエーテルスルホン、スルホアルキル化ポリエーテルエーテルスルホン、スルホアルキル化ポリスルホン、スルホアルキル化ポリスルフィド、スルホアルキル化ポリフェニレン等のスルホアルキル化プラスチック系電解質等を挙げることができる。 The electrode for a polymer electrolyte fuel cell according to the present invention contains a hydrogen ion conductive polymer electrolyte in addition to the catalyst-supporting carbon according to the present invention. The hydrogen ion conductive polymer electrolyte that can be contained is not particularly limited as long as it is an electrolyte having ion conductivity, and examples thereof include a fluorine-based electrolyte, a partial fluorine-based electrolyte, and a hydrocarbon-based electrolyte. For example, an ion exchange resin having an organic fluorine-containing polymer as a skeleton, for example, a perfluorocarbon sulfonic acid resin or the like can be used. As perfluorocarbon sulfonic acid resins, DE520, DE521, DE1020, DE1021 (manufactured by DuPont) and the like are commercially available. In addition, sulfonated polyether ketone, sulfonated polyethersulfone, sulfonated polyetherethersulfone, sulfonated polysulfone, sulfonated polysulfide, sulfonated polyphenylene and other sulfonated plastic electrolytes, sulfoalkylated polyetheretherketone, sulfone Examples thereof include sulfoalkylated plastic electrolytes such as alkylated polyethersulfone, sulfoalkylated polyetherethersulfone, sulfoalkylated polysulfone, sulfoalkylated polysulfide, and sulfoalkylated polyphenylene.
本発明に係る触媒金属担持カーボンと高分子電解質の使用比率は、必要とされる電極特性に応じて適宜決められるべきものであり、特に限定されるものではない。例えば、本発明に係る触媒金属担持カーボン/高分子電解質の質量比率で、5/95〜95/5が好ましく、40/60〜85/15がさらに好ましいものである。 The use ratio of the catalyst metal-supporting carbon and the polymer electrolyte according to the present invention should be appropriately determined according to the required electrode characteristics, and is not particularly limited. For example, the mass ratio of catalytic metal-supported carbon / polymer electrolyte according to the present invention is preferably 5/95 to 95/5, and more preferably 40/60 to 85/15.
触媒層には種々の添加物を加えることができる。例えば、電子伝導性向上のための炭素等の導電剤や、結着性向上のための高分子バインダー、撥水性向上のための撥水性付与剤等の添加物などがある。撥水性付与剤としては、例えば、テフロン(登録商標)等のポリテトラフロロエチレン(PTFE)、テトラフロロエチレン−パーフロロアルキルビニルエーテル共重合体、テトラフロロエチレン−ヘキサフロロプロピレン共重合体等の含フッ素樹脂が挙げられる。 Various additives can be added to the catalyst layer. Examples thereof include additives such as a conductive agent such as carbon for improving electronic conductivity, a polymer binder for improving binding property, and a water repellency imparting agent for improving water repellency. Examples of the water repellency-imparting agent include fluorine-containing compounds such as polytetrafluoroethylene (PTFE) such as Teflon (registered trademark), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, and tetrafluoroethylene-hexafluoropropylene copolymer. Resin.
拡散層4、5は、アノード極側触媒層2とカソード極側触媒層3への反応ガスの供給及び電子の授受を行い、その電子を集電層と受け渡しするための層であり、一般に多孔質であり、且つ電子伝導性を有する材料が用いられる。多孔質であり、且つ電子伝導性を有する材料としては、電気抵抗が低く、集電できる機能を有する材料であればよい。導電性物質を主とするものが挙げられ、例えば、ポリアクリロニトリルからの焼成体、ピッチからの焼成体、黒鉛及び膨張黒鉛等の炭素材、ナノカーボン材料、ステンレススチール、モリブデン、チタン等が挙げられる。
The diffusion layers 4 and 5 are layers for supplying reaction gas to and receiving electrons from the anode electrode side catalyst layer 2 and the cathode electrode
導電性物質の形態は特に限定されず、例えば、繊維状ないしは粒子状で用いることができる。ガス透過性の点から、繊維状導電性無機物質、例えば、炭素繊維等の無機導電性繊維が好ましい。無機導電性繊維としては、織布或いは不織布いずれの構造も使用可能である。例えば、東レ(株)製カーボンペーパーTGPシリーズ、SOシリーズ、E−TEK社製カーボンクロスなどが用いられる。織布としては、平織、斜文織、朱子織、紋織、綴織など、特に限定されること無く用いられる。また、不織布としては抄紙法、ニードルパンチ法、スパンボンド法、ウォータージェットパンチ法、メルトブロー法によるもの等、特に限定されること無く用いられる。また、編物であってもよい。 The form of the conductive substance is not particularly limited, and for example, it can be used in the form of fibers or particles. From the viewpoint of gas permeability, fibrous conductive inorganic substances such as inorganic conductive fibers such as carbon fibers are preferable. As the inorganic conductive fiber, a woven fabric or non-woven fabric structure can be used. For example, carbon paper TGP series, SO series manufactured by Toray Industries, Inc., carbon cloth manufactured by E-TEK, etc. are used. As the woven fabric, a plain weave, a twill weave, a satin weave, a crest weave, a binding weave and the like are used without particular limitation. The nonwoven fabric can be used without any particular limitation, such as a paper making method, a needle punch method, a spun bond method, a water jet punch method, a melt blow method, and the like. Moreover, a knitted fabric may be sufficient.
炭素繊維を用いた場合、耐炎化紡績糸を用いた平織物を炭化または黒鉛化した織布、耐炎化糸をニードルパンチ法やウォータージェットパンチ法等による不織布加工した後に炭化あるいは黒鉛化した不織布、耐炎化糸、炭化糸または黒鉛化糸を用いた抄紙法によるマット不織布等が好ましく用いられる。特に、薄く強度のある布帛が得られる点から不織布を用いるのが好ましい。また、特開2003−109618号公報に記載されているようなカーボンナノファイバ等を用いることも有効である。 When carbon fiber is used, a woven fabric obtained by carbonizing or graphitizing a plain fabric using flame-resistant spun yarn, a nonwoven fabric obtained by carbonizing or graphitizing a flame-resistant yarn after processing the nonwoven fabric by a needle punch method or a water jet punch method, A mat nonwoven fabric produced by a paper making method using flame-resistant yarn, carbonized yarn or graphitized yarn is preferably used. In particular, it is preferable to use a non-woven fabric because a thin and strong fabric can be obtained. It is also effective to use carbon nanofibers as described in Japanese Patent Application Laid-Open No. 2003-109618.
炭素繊維からなる無機導電性繊維を用いた場合、炭素繊維としてはポリアクリロニトリル(PAN)系炭素繊維、フェノール系炭素繊維、ピッチ系炭素繊維、レーヨン系炭素繊維等が挙げられる。中でもPAN系炭素繊維が好ましい。 When inorganic conductive fibers made of carbon fibers are used, examples of the carbon fibers include polyacrylonitrile (PAN) -based carbon fibers, phenol-based carbon fibers, pitch-based carbon fibers, and rayon-based carbon fibers. Of these, PAN-based carbon fibers are preferred.
拡散層4にアノード極側触媒層2を塗布し、次いで熱処理することによりアノード極を作製することができる。また同様に拡散層5にカソード極側触媒層3を塗布し、次いで熱処理することによりカソード極を作製することができる。
The anode electrode can be produced by applying the anode electrode side catalyst layer 2 to the diffusion layer 4 and then performing heat treatment. Similarly, the cathode electrode
プロトン導電性を有する水素イオン伝導性高分子電解質膜1としては、スルホン化ポリイミド系高分子電解質膜、フッ素系高分子電解質膜、炭化水素系高分子電解質膜、複合材料等公知のものを採用することができる。
As the hydrogen ion conductive
例えば、炭化水素系高分子電解質材料としては、スルホン化ポリエーテルケトン、スルホン化ポリエーテルスルホン、スルホン化ポリエーテルエーテルスルホン、スルホン化ポリスルホン、スルホン化ポリスルフィド、スルホン化ポリフェニレン等のスルホン化エンジニアリングプラスチック系電解質、スルホアルキル化ポリエーテルエーテルケトン、スルホアルキル化ポリエーテルスルホン、スルホアルキル化ポリエーテルエーテルスルホン、スルホアルキル化ポリスルホン、スルホアルキル化ポリスルフィド、スルホアルキル化ポリフェニレン等のスルホアルキル化エンジニアリングプラスチック系電解質等がある。 For example, sulfonated engineering plastic electrolytes such as sulfonated polyetherketone, sulfonated polyethersulfone, sulfonated polyetherethersulfone, sulfonated polysulfone, sulfonated polysulfide, and sulfonated polyphenylene as hydrocarbon polymer electrolyte materials , Sulfoalkylated polyether ether ketone, sulfoalkylated polyethersulfone, sulfoalkylated polyetherethersulfone, sulfoalkylated polysulfone, sulfoalkylated polysulfide, sulfoalkylated engineering plastic electrolytes such as polyphenylene, etc. .
これらの電解質材料のスルホン酸当量としては、0.5〜2.0ミリ当量/g乾燥樹脂、好ましくは0.7〜1.6ミリ当量/g乾燥樹脂である。スルホン酸当量が0.5ミリ当量/g乾燥樹脂より小さい場合はイオン伝導抵抗が大きくなり、2.0ミリ当量/g乾燥樹脂より大きい場合には水に膨潤しやすくなる傾向にある。 The sulfonic acid equivalent of these electrolyte materials is 0.5 to 2.0 meq / g dry resin, preferably 0.7 to 1.6 meq / g dry resin. When the sulfonic acid equivalent is less than 0.5 meq / g dry resin, the ionic conduction resistance increases, and when it is greater than 2.0 meq / g dry resin, it tends to swell in water.
アノード極とカソード極とで水素イオン伝導性高分子電解質膜1を挟持し、水素イオン伝導性高分子電解質膜1と同一の電解質溶液をアノード極側触媒層2とカソード極側触媒層3のそれぞれに塗布し、ホットプレスすることにより、電解質膜−電極接合体(MEA)を作製することができる。
The hydrogen ion conductive
以上のようにして作製した電解質膜−電極接合体(MEA)の外側に、燃料流路と酸化剤流路を形成する溝が形成された集電体としてのセパレータ6(燃料配流板)と、セパレータ7酸化剤配流板(酸化剤配流板)とを配したものを単セルとし、この単セルを複数個、冷却板等を介して積層することにより燃料電池が構成される。燃料電池は単セルでもよいし、またセパレータを設けず集電部をメッキ等で構成する形でもよい。 A separator 6 (fuel distribution plate) as a current collector in which grooves for forming a fuel flow path and an oxidant flow path are formed outside the electrolyte membrane-electrode assembly (MEA) produced as described above; A fuel cell is constituted by stacking a plurality of single cells via a cooling plate or the like, with a separator 7 and an oxidant distribution plate (oxidant distribution plate) arranged thereon. The fuel cell may be a single cell, or may have a shape in which the current collector is formed by plating or the like without providing a separator.
本発明の高分子電解質型燃料電池に採用できる燃料としては、水素ガス、メタノール、エタノール、1−プロパノール、ジメチルエーテル、アンモニア等が挙げられるが、メタノールが好ましい。また、本発明においては酸化剤ガスとして空気を使用することが好ましい。 Examples of the fuel that can be used in the polymer electrolyte fuel cell of the present invention include hydrogen gas, methanol, ethanol, 1-propanol, dimethyl ether, ammonia, and the like, and methanol is preferable. In the present invention, it is preferable to use air as the oxidant gas.
以下、実施例により本発明を詳細に説明するが、本発明はこれらに限定されるものではない。 EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to these.
〈触媒の作製〉
(触媒1の作製)白金黒に金粒子を吸着
白金ルテニウム黒(TEC090110(田中貴金属社製))0.4gを1000ml中に混合した。その後、1mol/Lの塩化金酸水溶液40mlを添加した。還元剤として100mmolとなるように、2mol/Lのクエン酸ナトリウム水溶液を添加した。この溶液を95℃で7時間、撹拌、混合した。その後、濾過乾燥を行い、金を白金ルテニウム黒上に析出させ、触媒1を作製した。
<Production of catalyst>
(Preparation of catalyst 1) Adsorption of gold particles on platinum black 0.4 g of platinum ruthenium black (TEC090110 (Tanaka Kikinzoku Co., Ltd.)) was mixed in 1000 ml. Thereafter, 40 ml of a 1 mol / L chloroauric acid aqueous solution was added. A 2 mol / L sodium citrate aqueous solution was added so as to be 100 mmol as a reducing agent. This solution was stirred and mixed at 95 ° C. for 7 hours. Then, filtration drying was performed and gold was deposited on platinum ruthenium black, and the
(触媒2の作製)白金ルテニウム担持カーボンに金粒子を吸着
白金ルテニウム担持カーボン触媒(TEC81E81(田中貴金属社製))0.4g(白金量換算として)を1000ml中に混合した。その後、1mol/Lの塩化金酸水溶液40mlを添加した。還元剤として100mmolとなるように、2mol/Lのクエン酸ナトリウム水溶液を添加した。この溶液を95℃で7時間、撹拌、混合した。その後、濾過、乾燥を行い、金を触媒上に析出させ、触媒2を作製した。
(Preparation of Catalyst 2) Adsorption of gold particles on platinum-ruthenium-supported carbon 0.4 g of platinum-ruthenium-supported carbon catalyst (TEC81E81 (manufactured by Tanaka Kikinzoku Co., Ltd.)) was mixed in 1000 ml. Thereafter, 40 ml of a 1 mol / L chloroauric acid aqueous solution was added. A 2 mol / L sodium citrate aqueous solution was added so as to be 100 mmol as a reducing agent. This solution was stirred and mixed at 95 ° C. for 7 hours. Then, filtration and drying were performed, gold was deposited on the catalyst, and the catalyst 2 was produced.
(修飾触媒1、2の作製)金吸着触媒表面にスルホン酸含有分子を吸着
触媒1、0.4gを水1000ml中に分散させ、表1に示す下記の化合物を1×10-4mol/L添加し、触媒金属近傍にプロトン受容性基を持つ化合物を吸着させた。未吸着分子はデカンテーションにより除去し、濾過によりスルホン酸含有分子吸着済みの修飾触媒1を取り出した。触媒2について同様の処理を行い、修飾触媒2を作製した。
(Preparation of modified
(修飾触媒3、4の作製)金未吸着触媒表面にスルホン酸含有分子を吸着
白金ルテニウム黒、0.4gを水1000ml中に分散させ、表1に示す下記の化合物を1×10-4mol/L添加し、触媒金属近傍にプロトン受容性基を持つ化合物を吸着させた。未吸着分子はデカンテーションにより除去し、濾過によりスルホン酸含有分子吸着済みの修飾触媒3を取り出した。白金担持カーボンについて同様の処理を行い、修飾触媒4作製した。
(Preparation of
〈電極用ペーストの作製〉
(負極用ペーストの作製)
表1記載のアノード触媒、蒸留水、60質量%のテフロン(登録商標)分散液、5質量%のナフィオン溶液(デュポン社製)を、固形分としてテフロン(登録商標)量が12質量%となるように混合し、超音波で均一に分散させて、負極用ペースト(実施例1〜4、比較例1〜4)を作製した。
<Preparation of electrode paste>
(Preparation of negative electrode paste)
The amount of Teflon (registered trademark) is 12% by mass as the solid content of the anode catalyst, distilled water, 60% by mass of Teflon (registered trademark) dispersion, 5% by mass of Nafion solution (manufactured by DuPont) listed in Table 1. Thus, the paste for negative electrodes (Examples 1-4, Comparative Examples 1-4) was produced by uniformly dispersing with ultrasonic waves.
(正極用ペーストの作製)
負極用ペーストの作製において、触媒を白金担持カーボン(TEC10E60E(田中貴金属社製))に変更した以外は同様の操作を行い、正極用ペーストを作製した。
(Preparation of positive electrode paste)
In the preparation of the negative electrode paste, the same operation was performed except that the catalyst was changed to platinum-supported carbon (TEC10E60E (manufactured by Tanaka Kikinzoku Co., Ltd.)), and a positive electrode paste was prepared.
〈撥水処理カーボンペーパ−の作製〉
空隙率75%、厚み0.40mmのカーボンペーパーをテフロン(登録商標)分散液(三井デュポンフロロケミカル社製)に浸漬し、表面に0.5mg/cm2のテフロン(登録商標)をとりつけ、撥水処理カーボンペーパーを作製した。
<Production of water-repellent carbon paper>
Carbon paper with a porosity of 75% and a thickness of 0.40 mm is immersed in a Teflon (registered trademark) dispersion (manufactured by Mitsui DuPont Fluorochemical Co., Ltd.), and 0.5 mg / cm 2 of Teflon (registered trademark) is attached to the surface. Water-treated carbon paper was produced.
〈電解質膜/電極接合体(MEA)の作製〉
表1の組み合わせで、撥水処理カーボンペーパ−の表面に負極用ペーストを白金量が3.0mg/cm2となるように均一に塗布し、窒素雰囲気下80℃で1時間乾燥し負極を作製した。同様に撥水処理カーボンペーパ−の表面に、正極用ペーストを白金量が3.0mg/cm2となるように塗布し、正極を作製した。次いでこれらの正極及び負極でナフィオン112膜(デュポン社製)を挟み、ホットプレスを行い、電解質膜/電極接合体を作製した。
<Preparation of electrolyte membrane / electrode assembly (MEA)>
With the combinations shown in Table 1, a negative electrode paste was uniformly applied to the surface of a water-repellent carbon paper so that the amount of platinum was 3.0 mg / cm 2 and dried at 80 ° C. for 1 hour in a nitrogen atmosphere to produce a negative electrode. did. Similarly, a positive electrode paste was applied to the surface of a water-repellent carbon paper so that the amount of platinum was 3.0 mg / cm 2 to produce a positive electrode. Next, a Nafion 112 membrane (manufactured by DuPont) was sandwiched between these positive and negative electrodes, and hot pressing was performed to prepare an electrolyte membrane / electrode assembly.
(評価1)
白金表面にスルホン酸基が局在している状態は、電界放出型電子銃を備えた分析透過電子顕微鏡(ATEM:Analytical Transmission Electron Microscope)のスポット分析で確認することができる。具体的にはマイクログリッドを貼ったグリッドメッシュ上に載せた試料について透過像で確認した後、1nm程度に絞った電子線を分析位置に照射し、そこから発生する特性X線をエネルギー分散型X線分析装置(EDS:Energy Dispersive X−ray Spectrometer)で、スペクトルのS(硫黄)強度を比較した。
(Evaluation 1)
The state in which the sulfonic acid group is localized on the platinum surface can be confirmed by spot analysis with an analytical transmission electron microscope (ATEM) equipped with a field emission electron gun (ATEM: Analytical Transmission Electron Microscope). Specifically, after confirming a sample placed on a grid mesh with a microgrid by a transmission image, an electron beam focused to about 1 nm is irradiated to an analysis position, and characteristic X-rays generated therefrom are converted into energy dispersive X-rays. The S (sulfur) intensities of the spectra were compared with a line analyzer (EDS: Energy Dispersive X-ray Spectrometer).
実施例1、2、3、4では白金表面はS強度が高かった。特に実施例1、2が顕著であった。また比較例ではSが検出されないことから、実施例の白金表面にはスルホン酸基が局在している部分があり、電極作製後、他部分よりもイオン伝導性基が高いことがわかる。 In Examples 1, 2, 3, and 4, the platinum surface had high S strength. In particular, Examples 1 and 2 were remarkable. Moreover, since S is not detected in the comparative example, it can be seen that there are portions where sulfonic acid groups are localized on the platinum surface of the example, and that the ion conductive group is higher than other portions after the electrode is manufactured.
(評価2)
作製した電解質膜/電極接合体(MEA)を用いて、直接メタノール形燃料電池の単電池を組み立て、温度を60℃、大気圧下における燃料の流速を30ml/分、空気の流速を100ml/分とした条件で、負極側に2mol/Lのメタノールを、正極側に空気を供給し、電流−電圧特性を測定した。0.6Vでの電流値を表1に示す。
(Evaluation 2)
Using the prepared electrolyte membrane / electrode assembly (MEA), a direct methanol fuel cell unit was assembled, the temperature of the fuel was 60 ° C., the flow rate of fuel at atmospheric pressure was 30 ml / min, and the flow rate of air was 100 ml / min. Then, 2 mol / L of methanol was supplied to the negative electrode side and air was supplied to the positive electrode side, and current-voltage characteristics were measured. Table 1 shows the current value at 0.6V.
表1から明らかなように、本発明の燃料電池は比較に比べて、電流−電圧特性が良好であることがわかる。 As can be seen from Table 1, the fuel cell of the present invention has better current-voltage characteristics than the comparison.
I 燃料電池の単セル
1 水素イオン伝導性高分子電解質膜
2 アノード極側触媒層
3 カソード極側触媒層
4、5 拡散層
6、7 セパレータ
I Fuel
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004349541A JP2006164535A (en) | 2004-12-02 | 2004-12-02 | Polyelectrolyte fuel cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004349541A JP2006164535A (en) | 2004-12-02 | 2004-12-02 | Polyelectrolyte fuel cell |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006164535A true JP2006164535A (en) | 2006-06-22 |
Family
ID=36666323
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004349541A Pending JP2006164535A (en) | 2004-12-02 | 2004-12-02 | Polyelectrolyte fuel cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006164535A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007046239A1 (en) * | 2005-10-17 | 2007-04-26 | Kaneka Corporation | Electrolyte composition for fuel cell, membrane-electrode assembly for fuel cell using same, and fuel cell |
JP2008270180A (en) * | 2007-03-28 | 2008-11-06 | Univ Nagoya | Electrocatalyst composition, electrode and fuel cell |
JP2009510705A (en) * | 2005-08-01 | 2009-03-12 | ブルックヘヴン サイエンス アソシエイツ | Electrocatalyst comprising a gold monoatomic layer on a platinum nanoparticle core and use thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000228204A (en) * | 1999-02-05 | 2000-08-15 | Matsushita Electric Ind Co Ltd | Electrode for fuel cell and its manufacture |
JP2004172098A (en) * | 2002-11-05 | 2004-06-17 | Matsushita Electric Ind Co Ltd | Fuel cell |
-
2004
- 2004-12-02 JP JP2004349541A patent/JP2006164535A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000228204A (en) * | 1999-02-05 | 2000-08-15 | Matsushita Electric Ind Co Ltd | Electrode for fuel cell and its manufacture |
JP2004172098A (en) * | 2002-11-05 | 2004-06-17 | Matsushita Electric Ind Co Ltd | Fuel cell |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009510705A (en) * | 2005-08-01 | 2009-03-12 | ブルックヘヴン サイエンス アソシエイツ | Electrocatalyst comprising a gold monoatomic layer on a platinum nanoparticle core and use thereof |
WO2007046239A1 (en) * | 2005-10-17 | 2007-04-26 | Kaneka Corporation | Electrolyte composition for fuel cell, membrane-electrode assembly for fuel cell using same, and fuel cell |
JPWO2007046239A1 (en) * | 2005-10-17 | 2009-04-23 | 株式会社カネカ | Electrolyte composition for fuel cell, membrane-electrode assembly for fuel cell using the same, and fuel cell |
JP2008270180A (en) * | 2007-03-28 | 2008-11-06 | Univ Nagoya | Electrocatalyst composition, electrode and fuel cell |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1624514B1 (en) | Membrane electrode complex and solid polymer type fuel cell using it | |
JP7544203B2 (en) | Electrode catalyst layer, membrane electrode assembly and polymer electrolyte fuel cell | |
JP2005276746A (en) | Fuel cell and membrane electrode assembly | |
JP2017517107A (en) | Membrane electrode assembly | |
KR20190118355A (en) | The composition for manufacturing electrode of membrane-electrode assembly for fuel cell and method for manufacturing electrode of membrane-electrode assembly for fuel cell using the same | |
WO2022124407A1 (en) | Electrode catalyst layer, membrane electrode assembly, and solid polymer fuel cell | |
US8247521B2 (en) | Acid-doped polyelectrolyte modified carbon nanotubes and their use in high temperature PEM fuel cell electrodes | |
JP2006216503A (en) | Catalyst layer of solid polymer fuel cell | |
JP2006252967A (en) | Solid polymer electrolyte membrane for fuel cell, and fuel cell using the same | |
KR100959117B1 (en) | Electrode for fuel cell and fuel cell system comprising same | |
JP5066916B2 (en) | Fuel cell electrode catalyst, fuel cell electrode and fuel cell | |
JP2006164535A (en) | Polyelectrolyte fuel cell | |
JP2006079917A (en) | Mea for fuel cell, and fuel cell using this | |
JP2006012449A (en) | Membrane electrode junction body and solid polymer fuel cell using above | |
JP2005174836A (en) | Solid polymer fuel cell | |
JP2006079840A (en) | Electrode catalyst for fuel cell, and mea for fuel cell using this | |
JP2006344449A (en) | Electrode for fuel cell and fuel cell | |
JP4591029B2 (en) | Method for producing electrode catalyst for fuel cell | |
Phua et al. | Effect of carbon nanotube-based catalyst layer surface roughness on polymer electrolyte membrane fuel cell performance | |
JP2004063409A (en) | Manufacturing method of solid high molecular fuel cell | |
JP2009099520A (en) | Membrane electrode assembly and its manufacturing method, and polymer electrolyte fuel cell | |
JP2006252910A (en) | Fuel cell | |
KR101125651B1 (en) | A membrane/electrode assembly for fuel cell and a fuel cell comprising the same | |
JP2004273387A (en) | Method for producing gas diffusion layer of membrane-electrode assembly, membrane-electrode assembly, and fuel cell | |
JP2006252908A (en) | Fuel cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20071119 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100614 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100713 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20101207 |