[go: up one dir, main page]

JP2006160577A - Hydraulic composition - Google Patents

Hydraulic composition Download PDF

Info

Publication number
JP2006160577A
JP2006160577A JP2004357166A JP2004357166A JP2006160577A JP 2006160577 A JP2006160577 A JP 2006160577A JP 2004357166 A JP2004357166 A JP 2004357166A JP 2004357166 A JP2004357166 A JP 2004357166A JP 2006160577 A JP2006160577 A JP 2006160577A
Authority
JP
Japan
Prior art keywords
compound
fine aggregate
hydraulic
slag fine
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004357166A
Other languages
Japanese (ja)
Other versions
JP4407941B2 (en
Inventor
Hodaka Yamamuro
穂高 山室
Toshiharu Kojima
俊治 小島
Koji Koyanagi
幸治 小柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2004357166A priority Critical patent/JP4407941B2/en
Publication of JP2006160577A publication Critical patent/JP2006160577A/en
Application granted granted Critical
Publication of JP4407941B2 publication Critical patent/JP4407941B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

【課題】 細骨材中のスラグ細骨材の比率を高めても、ブリージングが出ない、流動保持性に優れる、硬化後の寸法安定性に優れる、といった良好な性能を示す、セルフレベリング材用組成物として好適な水硬性組成物を提供する。
【解決手段】 カチオン性界面活性剤〔化合物(A)〕と、アニオン性芳香族化合物及び臭化化合物からなる群より選ばれる1種以上の化合物〔化合物(B)〕と、水と、水硬性粉体と、スラグ細骨材とを含有する水硬性組成物であって、前記化合物(A)の水溶液と前記化合物(B)の水溶液が特定の粘度挙動を示す水硬性組成物。
【選択図】 なし
PROBLEM TO BE SOLVED: To provide good performance such as no bleeding, excellent fluid retention, excellent dimensional stability after curing even when the ratio of slag fine aggregate in the fine aggregate is increased. A hydraulic composition suitable as a composition is provided.
SOLUTION: A cationic surfactant [compound (A)], one or more compounds selected from the group consisting of an anionic aromatic compound and a bromide compound [compound (B)], water, and hydraulic properties A hydraulic composition containing powder and slag fine aggregate, wherein the aqueous solution of the compound (A) and the aqueous solution of the compound (B) exhibit a specific viscosity behavior.
[Selection figure] None

Description

本発明は、一般建造物の床下地材調製等に使用されるセルフレベリング材用組成物等の水硬性組成物に関する。   The present invention relates to a hydraulic composition such as a composition for a self-leveling material used for preparing a floor base material of a general building.

高炉スラグ細骨材は、精錬時に鉱石から金属を取り出す際に副生されるスラグ骨材の1種であり、骨材資源問題や資源の有効活用の観点から、これを水硬性組成物に使用する検討がなされてきた。   Blast furnace slag fine aggregate is a kind of slag aggregate that is produced as a by-product when metal is extracted from ore during refining, and is used in hydraulic compositions from the viewpoint of aggregate resource problems and effective utilization of resources. Consideration has been made.

特許文献1には、スラグ細骨材を含有するグラウト材が開示されている。特許文献2には、スラグ細骨材と石灰石砕砂を含有するコンクリートが開示されている。特許文献3には、特定の高炉スラグ細骨材用分散剤を使用した高炉スラグ細骨材含有コンクリートが開示されている。特許文献4には、多量の無機粉体を含有するセルフレベリング性組成物が開示されている。   Patent Document 1 discloses a grout material containing slag fine aggregate. Patent Document 2 discloses a concrete containing slag fine aggregate and limestone crushed sand. Patent Document 3 discloses blast furnace slag fine aggregate-containing concrete using a specific dispersant for blast furnace slag fine aggregate. Patent Document 4 discloses a self-leveling composition containing a large amount of inorganic powder.

一方、特許文献5には、スラリーのレオロジーを改質する観点から、水と水硬性粉体との重量比が0.5〜30という高い領域の水硬性組成物に対して、特定2種の水溶性低分子化合物を併用することが提案されている。
特開平7−309658号 特開2000−302499号 特開2001−322853号 特開2002−47051号 特開2004−91217号公報
On the other hand, in Patent Document 5, from the viewpoint of modifying the rheology of the slurry, two specific types of hydraulic compositions with a high weight ratio of water to hydraulic powder of 0.5 to 30 are used. It has been proposed to use a water-soluble low-molecular compound in combination.
JP-A-7-309658 JP 2000-302499 A JP 2001-322853 A JP 2002-47051 A JP 2004-91217 A

流動保持性に優れる、ブリージング抑制に優れる、硬化後の寸法安定性に優れる、等のセルフレベリング材に要求される特性を維持しつつ、産業廃棄物であるスラグ細骨材を多量に使用できれば、新たな骨材資源の展開が可能となるため、当業界において望ましいものである。しかし、スラグ細骨材は水硬性組成物のうちセルフレベリング材の細骨材として用いるには不向きと考えられており、これを多量に配合するための検討は、従来、十分にはなされていない。   If you can use a large amount of slag fine aggregate, which is industrial waste, while maintaining the properties required for self-leveling materials such as excellent fluidity retention, excellent breathing suppression, excellent dimensional stability after curing, etc. This is desirable in the industry as it enables the development of new aggregate resources. However, slag fine aggregate is considered to be unsuitable for use as a fine aggregate of self-leveling material among hydraulic compositions, and studies for blending it in large quantities have not been made sufficiently in the past. .

本発明は、スラグ細骨材を多量に使用した場合でも、水硬性組成物、中でもセルフレベリング材に要求される、流動保持性に優れる、ブリージング抑制に優れる、硬化後の寸法安定性に優れる、等の特性を維持できる水硬性組成物を提供することを課題とする。   Even when a large amount of slag fine aggregate is used, the present invention is required for a hydraulic composition, particularly a self-leveling material, excellent in fluid retention, excellent in breathing suppression, and excellent in dimensional stability after curing. It is an object of the present invention to provide a hydraulic composition capable of maintaining the characteristics such as the above.

本発明は、カチオン性界面活性剤(以下、化合物(A)という)と、アニオン性芳香族化合物及び臭化化合物からなる群より選ばれる1種以上の化合物(以下、化合物(B)という)と、水と、水硬性粉体と、スラグ細骨材とを含有する水硬性組成物であって、
化合物(A)と化合物(B)の組み合わせが、化合物(A)の水溶液SA(20℃での粘度が100mPa・s以下のもの)と化合物(B)の水溶液SB(20℃での粘度が100mPa・s以下のもの)とを50/50の重量比で混合した水溶液の20℃における粘度が、混合前のいずれの水溶液(20℃)の粘度よりも少なくとも2倍高くなる組み合わせである水硬性組成物に関する。また、本発明は、該本発明の水硬性組成物を硬化させてなる硬化体に関する。
The present invention relates to a cationic surfactant (hereinafter referred to as compound (A)) and one or more compounds selected from the group consisting of an anionic aromatic compound and bromide compound (hereinafter referred to as compound (B)). A hydraulic composition containing water, hydraulic powder, and slag fine aggregate,
The combination of the compound (A) and the compound (B) is an aqueous solution S A of the compound (A) (having a viscosity at 20 ° C. of 100 mPa · s or less) and an aqueous solution S B of the compound (B) (viscosity at 20 ° C. Is a combination in which the viscosity at 20 ° C. of an aqueous solution mixed with a 50/50 weight ratio is at least twice as high as the viscosity of any aqueous solution (20 ° C.) before mixing. It relates to a hard composition. The present invention also relates to a cured product obtained by curing the hydraulic composition of the present invention.

また、本発明は、上記本発明に係る特定の化合物(A)と特定の化合物(B)とを、水、水硬性粉体、及びスラグ細骨材と混合する工程を有する水硬性組成物の製造方法に関する。   The present invention also provides a hydraulic composition having a step of mixing the specific compound (A) and the specific compound (B) according to the present invention with water, hydraulic powder, and slag fine aggregate. It relates to a manufacturing method.

本発明によれば、スラグ細骨剤を多量に使用した場合でも、可使時間が長い、ブリージングが抑制される、硬化後の寸法安定性に優れる、といった要求特性を維持できる、セルフレベリング材用組成物として好適な水硬性組成物を提供することができる。   According to the present invention, even when a large amount of slag fine bone is used, it is possible to maintain required characteristics such as long pot life, suppression of breathing, and excellent dimensional stability after curing. A hydraulic composition suitable as a composition can be provided.

上記のように、従来、スラグ細骨材をセルフレベリング材用途に適用する検討は、十分にはなされていなかった。セルフレベリング材は、建築物の床面形成用に使用され、ビルのフロアー等の広大な面積を、過剰な振動を加えることなく、流動拡散し、表面が平滑に早期に硬化することが要求される。従って、SL材用組成物は、高度な流動性と早硬性が必要であり、従来は、水セメント比(W/C)をあまり高くせずに流動性を確保するため、細骨材よりも微粒な無機粉体を多量に含有する場合が一般的である(特許文献4)。   As mentioned above, conventionally, examination which applies a slag fine aggregate to a self-leveling material use was not fully made | formed. Self-leveling materials are used for building floor surfaces, and are required to diffuse and diffuse large areas such as building floors without excessive vibration and to harden the surface smoothly and quickly. The Therefore, the composition for SL material requires high fluidity and fast curing, and conventionally, in order to ensure fluidity without increasing the water-cement ratio (W / C), the SL material composition is more than fine aggregate. In general, a large amount of fine inorganic powder is contained (Patent Document 4).

一方、スラグ細骨材は、微粒分がほとんど無く、粒径も角張っているので、流動性を確保するには水量を多く必要とし、材料分離に伴うブリージングが発生し易い。また、流動性にとって重要な物性である実積率がJISに規定がなく、製造場所、製造ロット等により品質にバラツキが生じやすく、安定した流動性が得難い。   On the other hand, slag fine aggregate has almost no fine particles and has a square particle size. Therefore, a large amount of water is required to secure fluidity, and breathing easily occurs due to material separation. In addition, the actual volume ratio, which is a physical property important for fluidity, is not stipulated in JIS, and quality tends to vary depending on the production location, production lot, etc., and stable fluidity is difficult to obtain.

従って、スラグ細骨材は、セルフレベリング材用途には不向きとされており、セルフレベリング材用途への展開が十分に検討されてこなかった。特許文献1〜3、更に特許文献5でも、スラグ細骨材のセルフレベリング材への使用は開示されていない。   Therefore, the slag fine aggregate is not suitable for the use of a self-leveling material, and development to the use of a self-leveling material has not been sufficiently studied. Patent Documents 1 to 3 and Patent Document 5 do not disclose the use of slag fine aggregates for self-leveling materials.

本発明者等は、かかるスラグ細骨材のセルフレベリング材用途としての欠点を補い、さらに、セルフレベリング材として良好な特性付与するため詳細な検討をした結果、特定の化合物(A)と化合物(B)とを併用することで、多量にスラグ細骨材を含有するセルフレベリング材を得られることを見出し、本発明を完成するに至った。   The present inventors made up for the shortcomings of the slag fine aggregate as a self-leveling material, and, as a result of detailed investigations for imparting good properties as a self-leveling material, the specific compound (A) and the compound ( In combination with B), it has been found that a self-leveling material containing a large amount of slag fine aggregate can be obtained, and the present invention has been completed.

本発明に係る化合物(A)、化合物(B)は、化合物(A)又は化合物(B)それぞれ単独の水溶液では、水中に、単分子又は会合体・ミセル・液晶等の構造体を形成した状態及びそれらの混在した状態で水溶液の粘性が低く、化合物(A)の水溶液と化合物(B)の水溶液を混合することで、混合液の粘度が大きく増大できる点に特徴がある。従って、本発明に用いる化合物(A)と化合物(B)は、化合物(A)及び化合物(B)を組合わせたときに特定の粘性発現を有することが要件であり、化合物(A)又は化合物(B)は各々単独では特定することができず、「化合物(A)及び化合物(B)とを混合することによって上記の要件を発現する」ことでのみ特定できる。   In the compound (A) and compound (B) according to the present invention, in a single aqueous solution of the compound (A) or compound (B), a single molecule or a structure such as an aggregate, micelle, or liquid crystal is formed in water. In addition, the viscosity of the aqueous solution is low in the mixed state, and the viscosity of the mixed solution can be greatly increased by mixing the aqueous solution of the compound (A) and the aqueous solution of the compound (B). Therefore, it is a requirement that the compound (A) and the compound (B) used in the present invention have a specific viscosity expression when the compound (A) and the compound (B) are combined. (B) cannot be specified individually, but can be specified only by “expressing the above requirements by mixing the compound (A) and the compound (B)”.

<化合物(A)>
化合物(A)のうち、カチオン性界面活性剤から選ばれるものとして、4級塩型カチオン性界面活性剤が好ましく、4級塩型のカチオン性界面活性剤としては、構造中に、10から26個の炭素原子を含む飽和又は不飽和の直鎖又は分岐鎖アルキル基を、少なくとも1つ有しているものが好ましい。例えば、アルキル(炭素数10〜26)トリメチルアンモニウム塩、アルキル(炭素数10〜26)ピリジニウム塩、アルキル(炭素数10〜26)イミダゾリニウム塩、アルキル(炭素数10〜26)ジメチルベンジルアンモニウム塩等が挙げられ、具体的には、ヘキサデシルトリメチルアンモニウムクロライド、ヘキサデシルトリメチルアンモニウムブロマイド、ヘキサデシルトリメチルアンモニウムメトサルフェート、オクタデシルトリメチルアンモニウムクロライド、オクタデシルトリメチルアンモニウムブロマイド、タロートリメチルアンモニウムクロライド、タロートリメチルアンモニウムブロマイド、水素化タロートリメチルアンモニウムクロライド、水素化タロートリメチルアンモニウムブロマイド、ヘキサデシルエチルジメチルアンモニウムクロライド、オクタデシルエチルジメチルアンモニウムクロライド、ヘキサデシルプロピルジメチルアンモニウムクロライド、ヘキサデシルピリジニウムクロライド、1,1−ジメチル−2−ヘキサデシルイミダゾリニウムクロライド、ヘキサデシルジメチルベンジルアンモニウムクロライド等が挙げられ、これらを2種以上併用してもよい。水溶性と増粘効果の観点から、具体的には、ヘキサデシルトリメチルアンモニウムクロライド、オクタデシルトリメチルアンモニウムクロライド、ヘキサデシルピリジニウムクロライド等が好ましい。また、増粘性能の観点から上記のアルキル鎖長の異なるカチオン界面活性剤を2種以上併用して用いてもよい。
<Compound (A)>
Among the compounds (A), a quaternary salt type cationic surfactant is preferable as a compound selected from cationic surfactants, and the quaternary salt type cationic surfactant includes 10 to 26 in the structure. Those having at least one saturated or unsaturated linear or branched alkyl group containing 1 carbon atom are preferred. For example, alkyl (10 to 26 carbon atoms) trimethylammonium salt, alkyl (10 to 26 carbon atoms) pyridinium salt, alkyl (10 to 26 carbon atoms) imidazolinium salt, alkyl (10 to 26 carbon atoms) dimethylbenzylammonium salt Specifically, hexadecyl trimethyl ammonium chloride, hexadecyl trimethyl ammonium bromide, hexadecyl trimethyl ammonium methosulfate, octadecyl trimethyl ammonium chloride, octadecyl trimethyl ammonium bromide, tallow trimethyl ammonium chloride, tallow trimethyl ammonium bromide, hydrogen Tallow trimethylammonium chloride, hydrogenated tallow trimethylammonium bromide, hexadecylethyldi Examples include tillammonium chloride, octadecylethyldimethylammonium chloride, hexadecylpropyldimethylammonium chloride, hexadecylpyridinium chloride, 1,1-dimethyl-2-hexadecylimidazolinium chloride, hexadecyldimethylbenzylammonium chloride, and the like. Two or more kinds may be used in combination. Specifically, from the viewpoint of water solubility and thickening effect, hexadecyltrimethylammonium chloride, octadecyltrimethylammonium chloride, hexadecylpyridinium chloride and the like are preferable. Further, from the viewpoint of thickening performance, two or more cationic surfactants having different alkyl chain lengths may be used in combination.

<化合物(B)>
化合物(B)のうち、アニオン性芳香族化合物から選ばれるものとして、芳香環を有するカルボン酸及びその塩、ホスホン酸及びその塩、スルホン酸及びその塩が挙げられ、具体的には、サリチル酸、p−トルエンスルホン酸、スルホサリチル酸、安息香酸、m−スルホ安息香酸、p−スルホ安息香酸、4−スルホフタル酸、5−スルホイソフタル酸、p−フェノールスルホン酸、m−キシレン−4−スルホン酸、クメンスルホン酸、メチルサリチル酸、スチレンスルホン酸、クロロ安息香酸等であり、これらは塩を形成していても良く、これらを2種以上併用してもよい。ただし、重合体である場合は、重量平均分子量(例えば、ゲルーパーミエーションクロマトグラフィー法/ポリエチレンオキシド換算)500未満であることが好ましい。
<Compound (B)>
Among the compounds (B), those selected from anionic aromatic compounds include carboxylic acids having an aromatic ring and salts thereof, phosphonic acids and salts thereof, sulfonic acids and salts thereof, specifically, salicylic acid, p-toluenesulfonic acid, sulfosalicylic acid, benzoic acid, m-sulfobenzoic acid, p-sulfobenzoic acid, 4-sulfophthalic acid, 5-sulfoisophthalic acid, p-phenolsulfonic acid, m-xylene-4-sulfonic acid, Cumene sulfonic acid, methyl salicylic acid, styrene sulfonic acid, chlorobenzoic acid, and the like. These may form a salt, and two or more of these may be used in combination. However, in the case of a polymer, the weight average molecular weight (for example, gel permeation chromatography method / polyethylene oxide conversion) is preferably less than 500.

また、化合物(B)のうち、臭化化合物から選ばれるものとして、無機塩が好ましく、臭化ナトリウム、臭化カリウム、臭化水素等が挙げられる。   Of the compounds (B), those selected from bromide compounds are preferably inorganic salts such as sodium bromide, potassium bromide, and hydrogen bromide.

<スラグ細骨材>
JIS A 5011に規定されているスラグ骨材として、(1)高炉スラグ骨材、(2)フェロニッケルスラグ骨材、(3)銅スラグ骨材、(4)電気炉酸化スラグ骨材、(5)溶融スラグ骨材が挙げられる。本発明ではこれらを用いることができるが、特に、高炉スラグ骨材が有用である。一般に、スラグ細骨材は、これらスラグ骨材の中で、平均粒径が0.5〜3mm程度のものが知られており、本発明でもそれらを使用することができる。また、スラグ細骨材は密度(JIS A 5011)が2.5g/cm3以上のものを使用できる。
<Slag fine aggregate>
As slag aggregates defined in JIS A 5011, (1) blast furnace slag aggregate, (2) ferronickel slag aggregate, (3) copper slag aggregate, (4) electric furnace oxidation slag aggregate, (5 ) Molten slag aggregate. Although these can be used in the present invention, blast furnace slag aggregate is particularly useful. In general, slag fine aggregates having an average particle diameter of about 0.5 to 3 mm are known among these slag aggregates, and they can also be used in the present invention. In addition, a slag fine aggregate having a density (JIS A 5011) of 2.5 g / cm 3 or more can be used.

<水硬性組成物>
本発明の水硬性組成物、特にセルフレベリング材用組成物では、化合物(A)と化合物(B)の合計の有効分含有量が水100重量部に対して0.01〜20重量部、更に0.1〜15重量部、特に0.3〜10重量部の範囲であることが、ブリージング水等の材料分離を抑制する点で好ましい。
<Hydraulic composition>
In the hydraulic composition of the present invention, particularly the self-leveling material composition, the total effective content of the compound (A) and the compound (B) is 0.01 to 20 parts by weight with respect to 100 parts by weight of water, The range of 0.1 to 15 parts by weight, particularly 0.3 to 10 parts by weight is preferable in terms of suppressing the separation of materials such as breathing water.

また、本発明の水硬性組成物、特にセルフレベリング材用組成物においては、化合物(A)と化合物(B)のモル比(有効分モル比)は、化合物(A)と化合物(B)の組み合わせによって増粘効果の高い領域が異なり、目的とする増粘の程度に応じて適宜決めればよいが、得られる粘度と会合体の形状の観点から、化合物(A)/化合物(B)=1/20〜20/1、好ましくは1/20〜4/1、より好ましくは1/3〜2/1、特に好ましくは1/1〜2/3が適している。   Moreover, in the hydraulic composition of the present invention, particularly the composition for a self-leveling material, the molar ratio (effective molar ratio) of the compound (A) to the compound (B) is the ratio of the compound (A) to the compound (B). The region where the thickening effect is high differs depending on the combination, and may be appropriately determined according to the target degree of thickening. From the viewpoint of the obtained viscosity and the shape of the aggregate, compound (A) / compound (B) = 1. / 20 to 20/1, preferably 1/20 to 4/1, more preferably 1/3 to 2/1, and particularly preferably 1/1 to 2/3.

本発明の水硬性組成物に用いられる水硬性粉体とは、水和反応により硬化する物性を有する粉体のことであり、セメント、石膏等が挙げられる。好ましくは普通ポルトランドセメント、高ビーライトセメント、中庸熱セメント、早強セメント、超早強セメント、耐硫酸セメント、高炉スラグセメント、フライアッシュセメント等のセメントである。また、本発明の水硬性組成物、特にセルフレベリング材用組成物では、水/水硬性粉体比〔スラリー中の水と粉体の重量百分率(重量%)、通常W/Pと略記されるが、水硬性粉体がセメントの場合、W/Cと略記される。〕は50重量%以下、更に30〜50重量%、特に35〜45重量%が好ましい。   The hydraulic powder used in the hydraulic composition of the present invention is a powder having physical properties that are cured by a hydration reaction, and examples thereof include cement and gypsum. Preferred are cements such as ordinary Portland cement, high belite cement, medium heat cement, early-strength cement, ultra-high strength cement, sulfuric acid resistant cement, blast furnace slag cement, fly ash cement and the like. Further, in the hydraulic composition of the present invention, particularly the self-leveling material composition, the water / hydraulic powder ratio [weight percentage of water and powder in slurry (wt%), usually abbreviated as W / P. However, when the hydraulic powder is cement, it is abbreviated as W / C. ] Is preferably 50% by weight or less, more preferably 30 to 50% by weight, and particularly preferably 35 to 45% by weight.

また、本発明の水硬性組成物、特にセルフレベリング材用組成物では、スラグ細骨材と水硬性粉体の重量比が、スラグ細骨材/水硬性粉体=1〜3、更に1.2〜2であることが、流動性とフレッシュ状態での性状の点で好ましい。また、スラグ骨材の配合量が組成物中35体積%以上、更に37.5〜47.5体積%であることが、作業性の点で好ましい。なお、組成物中のスラグ細骨材の体積%は、組成物1m3中のスラグ細骨材の重量(kg)をスラグ細骨材の密度(kg/m3)で除した値に100を乗することにより得ることができる。 Further, in the hydraulic composition of the present invention, particularly the self-leveling material composition, the weight ratio of the slag fine aggregate to the hydraulic powder is as follows: slag fine aggregate / hydraulic powder = 1 to 3; 2 or 2 is preferable in terms of fluidity and properties in a fresh state. Moreover, it is preferable from the point of workability | operativity that the compounding quantity of slag aggregate is 35 volume% or more in a composition, and also 37.5-47.5 volume%. In addition, the volume% of the slag fine aggregate in the composition is obtained by dividing 100 by the value obtained by dividing the weight (kg) of the slag fine aggregate in the composition 1 m 3 by the density (kg / m 3 ) of the slag fine aggregate. It can be obtained by riding.

本発明の水硬性組成物、特にセルフレベリング材用組成物は分散剤を含有しても良い。分散剤は、減水剤としてリグニンスルホン酸塩及びその誘導体、オキシカルボン酸塩、ポリオール誘導体、高性能減水剤及び高性能AE減水剤として、ナフタレン系(花王(株)製:マイテイ150)、メラミン系(花王(株)製:マイテイ150V−2)、ポリカルボン酸系、アニオン界面活性剤として、ポリカルボン酸型界面活性剤(花王(株)製:ポイズシリーズ)等が挙げられる。その中でも、ポリカルボン酸系高性能減水剤及びポリカルボン酸型界面活性剤、中でもカルボン酸系単量体と片末端アルキル封鎖ポリエチレングリコール(エチレンオキシド平均付加モル数5〜150)(メタ)アクリル酸エステル単量体との共重合体がスラリーの流動性と粘性を両立出来るという意味で、好適である。ポリカルボン酸系分散剤としては、例えば、花王(株)製:マイテイ3000、NMB社製:レオビルドSP、日本触媒社製:アクアロックFC600、アクアロックFC900等が挙げられる。   The hydraulic composition of the present invention, particularly the self-leveling material composition, may contain a dispersant. Dispersants include lignin sulfonate and its derivatives as water reducing agents, oxycarboxylates, polyol derivatives, high-performance water reducing agents and high-performance AE water reducing agents such as naphthalene (manufactured by Kao Corporation: Mighty 150), melamine (Kao Co., Ltd. product: Mighty 150V-2), polycarboxylic acid type surfactants, polycarboxylic acid type surfactants (manufactured by Kao Co., Ltd .: Poise series) and the like can be mentioned. Among them, polycarboxylic acid-based high-performance water reducing agents and polycarboxylic acid-type surfactants, among them carboxylic acid-based monomers and one-end alkyl-capped polyethylene glycol (average number of moles of added ethylene oxide of 5 to 150) (meth) acrylic acid ester A copolymer with a monomer is preferred in the sense that both the fluidity and viscosity of the slurry can be achieved. Examples of the polycarboxylic acid dispersant include Kao Corporation: Mighty 3000, NMB: Leo Build SP, Nippon Shokubai Co., Ltd .: Aqualock FC600, Aqualock FC900, and the like.

本発明の水硬性組成物、特にセルフレベリング材用組成物に含有される化合物(A)と化合物(B)の他に、既存の増粘剤を用いることができる。他の既存の増粘剤としては、例えばセルロース誘導体、ポリアクリル系ポリマー、ポリエチレンオキシド、ポリビニールアルコール、ガム系多糖類、微生物発酵多糖類等が挙げられる。   In addition to the compound (A) and the compound (B) contained in the hydraulic composition of the present invention, in particular, the self-leveling material composition, an existing thickener can be used. Examples of other existing thickeners include cellulose derivatives, polyacrylic polymers, polyethylene oxide, polyvinyl alcohol, gum polysaccharides, and microbial fermentation polysaccharides.

本発明の水硬性組成物、特にセルフレベリング材用組成物は、本剤の性能に支障がなければ他の成分、例えば、AE剤、遅延剤、早強剤、促進剤、気泡剤、発泡剤、消泡剤、防錆剤、着色剤、防黴剤、ひび割れ低減剤、膨張剤、染料、顔料、吸水性樹脂、吸水性高分子、吸水性繊維等を含有していてよい。   The hydraulic composition of the present invention, particularly the composition for a self-leveling material, may be other components such as an AE agent, a retarding agent, an early strengthening agent, an accelerator, a foaming agent, and a foaming agent as long as the performance of the agent is not impaired. Further, it may contain an antifoaming agent, a rust preventive agent, a colorant, an antifungal agent, a crack reducing agent, a swelling agent, a dye, a pigment, a water absorbent resin, a water absorbent polymer, a water absorbent fiber and the like.

本発明の水硬性組成物、特にセルフレベリング材用組成物には骨材を混合することができ、骨材には他の細骨材や粗骨材が使用でき、特に限定されるものではないが、吸水率が低くて骨材強度が高いものが好ましい。粗骨材としては、川、陸、山、海、石灰砂利、これらの砕石、高炉スラグ粗骨材、フェロニッケルスラグ粗骨材、軽量粗骨材(人工及び天然)及び再生粗骨材等が挙げられる。細骨材としては、川、陸、山、海、石灰砂、珪砂及びこれらの砕砂、軽量細骨材(人工及び天然)、並びに再生細骨材等が挙げられる。なお、本発明の水硬性組成物、特にセルフレベリング材用組成物において、スラグ細骨材の比率は、全細骨材中(スラグ細骨材と他の細骨材の合計中)、50〜100重量%が好ましい。ここで、スラグ細骨材と他の細骨材との区別は、JIS A 5011−1、2、3に記載されるスラグ骨材の組成及び化学成分分析方法に基づき行うことができる。   Aggregates can be mixed in the hydraulic composition of the present invention, particularly the composition for a self-leveling material, and other fine aggregates and coarse aggregates can be used as the aggregate, and are not particularly limited. However, those having low water absorption and high aggregate strength are preferred. Coarse aggregates include rivers, land, mountains, sea, lime gravel, crushed stones, blast furnace slag coarse aggregate, ferronickel slag coarse aggregate, lightweight coarse aggregate (artificial and natural) and recycled coarse aggregate Can be mentioned. Examples of the fine aggregate include rivers, land, mountains, sea, lime sand, quartz sand and crushed sand thereof, lightweight fine aggregates (artificial and natural), and regenerated fine aggregates. In the hydraulic composition of the present invention, particularly the self-leveling material composition, the ratio of the slag fine aggregate is 50% in the total fine aggregate (in the total of the slag fine aggregate and other fine aggregates). 100% by weight is preferred. Here, the slag fine aggregate can be distinguished from other fine aggregates based on the slag aggregate composition and chemical component analysis method described in JIS A 5011-1, 2, 3.

なお、本発明において、セルフレベリング材とは、セメント等の水硬性粉体と水を含む水硬性組成物のうち、建築物の床下地や基礎の天端部分を水平に調整するために用いられる材をいい、高度な流動性、早硬性が要求されるため、配合中の単位水量はあまり高くされないのが一般的である。こうした性質により、比較的単位水量の高い、例えば特許文献5のような水硬性組成物とは区別される。   In the present invention, the self-leveling material is used to adjust the floor base of a building and the top end of the foundation horizontally among hydraulic compositions containing hydraulic powder such as cement and water. Since it is a material and requires high fluidity and fast curing, the unit water amount during compounding is generally not so high. Due to these properties, it is distinguished from a hydraulic composition having a relatively high unit water amount, for example, as disclosed in Patent Document 5.

<水硬性組成物の製造方法>
本発明の水硬性組成物、特にセルフレベリング材用組成物は、特定の組み合わせで選定した上記化合物(A)と上記化合物(B)とを、水、水硬性粉体、スラグ細骨材と混合することで得られる。その際、水硬性組成物の体積基準で、空気量を好ましくは0.5〜6体積%、更に好ましくは1〜3体積%、また、スラグ細骨材を35体積%以上、好ましくは37.5〜47.5体積%とする。また、水硬性組成物の体積基準で、水硬性粉体の量を500〜1000kg/m3、更に600〜850kg/m3とすることが好ましい。また、水硬性粉体とスラグ細骨材は、スラグ細骨材/水硬性粉体=1〜3、更に1.2〜2の重量比で用いることが好ましい。また、W/Pを50重量%以下、更に30〜50重量%、特に35〜45重量%とすることが好ましい。これらの材料及び空気(気泡源となる気体)、更に必要に応じて他の材料を、合計が100体積%となるように混合して本発明の水硬性組成物、特にセルフレベリング材用組成物を得ることができる。
<Method for producing hydraulic composition>
The hydraulic composition of the present invention, particularly the self-leveling material composition, is prepared by mixing the compound (A) and the compound (B) selected in a specific combination with water, hydraulic powder, and slag fine aggregate. It is obtained by doing. At that time, the amount of air is preferably 0.5 to 6% by volume, more preferably 1 to 3% by volume, and the slag fine aggregate is 35% by volume or more, preferably 37.%, based on the volume of the hydraulic composition. 5 to 47.5% by volume. Moreover, it is preferable that the quantity of hydraulic powder shall be 500-1000 kg / m < 3 >, and also 600-850 kg / m < 3 > on the volume basis of a hydraulic composition. Moreover, it is preferable to use hydraulic powder and slag fine aggregate by the weight ratio of slag fine aggregate / hydraulic powder = 1-3, and also 1.2-2. The W / P is preferably 50% by weight or less, more preferably 30 to 50% by weight, and particularly preferably 35 to 45% by weight. The hydraulic composition of the present invention, particularly the composition for the self-leveling material, is prepared by mixing these materials and air (gas which becomes a bubble source), and further, if necessary, other materials so that the total amount becomes 100% by volume. Can be obtained.

本発明の水硬性組成物、特にセルフレベリング材用組成物は、化合物(A)と化合物(B)とを、水、水硬性粉体、及びスラグ細骨材と混合する工程を経て製造することができる。その際、化合物(A)と化合物(B)は同時に添加しても、別々に添加してもよいが、化合物(A)以外の材料を混合した後に、化合物(A)を添加することが、連行する空気量を制御する観点で好ましい。   The hydraulic composition of the present invention, particularly the self-leveling material composition, is produced through a process of mixing the compound (A) and the compound (B) with water, hydraulic powder, and slag fine aggregate. Can do. In that case, the compound (A) and the compound (B) may be added simultaneously or separately, but after mixing materials other than the compound (A), adding the compound (A) This is preferable from the viewpoint of controlling the amount of air taken.

(セルフレベリング材用組成物の調製方法)
表1の化合物(A)及び化合物(B)を用い、表2に示すセルフレベリング材用組成物の配合に従い、水、粉体、骨材と所定量の化合物(B)をモルタルミキサーで低速63rpmで、30秒間攪拌した後、化合物(A)を所定量添加し60秒間攪拌し、セルフレベリング材用組成物を調製した。
(Method for preparing composition for self-leveling material)
Using the compound (A) and the compound (B) shown in Table 1, water, powder, aggregate and a predetermined amount of the compound (B) were mixed at a low speed of 63 rpm with a mortar mixer in accordance with the composition of the self-leveling material composition shown in Table 2. Then, after stirring for 30 seconds, a predetermined amount of the compound (A) was added and stirred for 60 seconds to prepare a composition for a self-leveling material.

Figure 2006160577
Figure 2006160577

Figure 2006160577
Figure 2006160577

(注)表2中の成分は以下のものである。
・水(W):水道水
・セメント(C):普通ポルトランドセメント、市販品、密度3.16g/cm3
・細骨材(S):高炉スラグ細骨材、新日本製鐵(株)名古屋製鉄所品、表乾密度2.72g/cm3
(Note) The components in Table 2 are as follows.
Water (W): Tap water Cement (C): Ordinary Portland cement, commercially available, density 3.16 g / cm 3
・ Fine Aggregate (S): Blast Furnace Slag Fine Aggregate, Nippon Steel Corp. Nagoya Steel Works, Surface Dry Density 2.72 g / cm 3

(測定項目)
得られたセルフレベリング材用組成物について、以下の評価を行った。結果を表3に示す。
(Measurement item)
The following evaluation was performed about the obtained composition for self-leveling materials. The results are shown in Table 3.

(1)流動性と流動保持性
直径50mm×高さ50mmのコーンを使用し、製造直後、1時間、3時間後のフロー値を測定した。尚、高性能減水剤の量を調整し、初期モルタルフロー値を200±10mmとした。
(1) Fluidity and fluidity retention A cone having a diameter of 50 mm and a height of 50 mm was used, and the flow values were measured immediately after production, 1 hour and 3 hours later. The amount of the high-performance water reducing agent was adjusted, and the initial mortar flow value was 200 ± 10 mm.

(2)ブリージング水量測定
混練り後のセルフレベリング材用組成物を500mLビーカーに300mL投入し、30分毎に浮き水が発生しなくなるまで採取した。最終採取量を測定し、下記の基準で評価した。
◎:最終採取量が0mL
○:最終採取量が5mL未満
△:最終採取量が5mL以上、50mL以下
×:最終採取量が50mL超
(2) Breathing water amount measurement 300 mL of the kneaded composition for a self-leveling material was put into a 500 mL beaker and collected until no floating water was generated every 30 minutes. The final collected amount was measured and evaluated according to the following criteria.
A: Final collection amount is 0 mL
○: Final collection amount is less than 5 mL Δ: Final collection amount is 5 mL or more and 50 mL or less ×: Final collection amount is more than 50 mL

(3)硬化後の寸法安定性
製造したセルフレベリング材用組成物500mLを、長さ25cm×横幅20cm×高さ3.5cmのホウロウ製のバットに投入し、2日間後の硬化体とバットとの間に生じる隙間について観察し、さらにバットをひっくり返しモルタルとバットの接着性について以下の基準で評価した。
○:隙間無し。ひっくり返してもバットから硬化体が落下しない。
×:0.5〜1mmほどの隙間を生じ、ひっくり返すとバットから硬化体が外れる。
(3) Dimensional stability after curing 500 mL of the produced self-leveling material composition was put into a bat made of enamel having a length of 25 cm, a width of 20 cm, and a height of 3.5 cm. The vacancies between the mortar and the bat were evaluated according to the following criteria.
○: No gap. The hardened body does not fall from the bat even if it is turned over.
X: A gap of about 0.5 to 1 mm is formed, and when turned over, the cured body is detached from the bat.

(4)粘性
J14ロート流下時間(秒)を測定した。10秒〜12秒の間が良好な性状である。
(4) Viscosity J14 funnel flow time (seconds) was measured. Good properties are between 10 seconds and 12 seconds.

Figure 2006160577
Figure 2006160577

(注)
*1:混合水溶液の増粘は、化合物(A)の水溶液SA(20℃での粘度が100mPa・s以下のもの)と化合物(B)の水溶液SB(20℃での粘度が100mPa・s以下のもの)とを50/50の重量比で混合した水溶液の20℃における粘度を測定したものであり、混合前のいずれの水溶液の粘度よりも少なくとも2倍高くできるものを「○」とした。
*2:化合物(A)、(B)の重量%は、有効分添加量である。
*3:高性能減水剤は、ポリカルボン酸系高性能減水剤〔メタクリル酸とメトキシポリエチレングリコール・メタクリル酸エステル(エチレンオキシド平均付加モル数7)との共重合体〕であり、重量%は、対セメント重量%である。
(note)
* 1: The thickening of the mixed aqueous solution is carried out with the aqueous solution S A of the compound (A) (having a viscosity at 20 ° C. of 100 mPa · s or less) and the aqueous solution S B of the compound (B) (the viscosity at 20 ° C. of 100 mPa · s). s or less) was measured at a viscosity of 20 ° C. of an aqueous solution mixed at a weight ratio of 50/50, and “○” indicates that it can be at least twice as high as the viscosity of any aqueous solution before mixing. did.
* 2: The weight% of the compounds (A) and (B) is the effective amount added.
* 3: The high-performance water reducing agent is a polycarboxylic acid-based high-performance water reducing agent [copolymer of methacrylic acid and methoxypolyethylene glycol / methacrylic acid ester (ethylene oxide average added mole number 7)]. It is cement weight%.

Claims (9)

カチオン性界面活性剤(以下、化合物(A)という)と、アニオン性芳香族化合物及び臭化化合物からなる群より選ばれる1種以上の化合物(以下、化合物(B)という)と、水と、水硬性粉体と、スラグ細骨材とを含有する水硬性組成物であって、
化合物(A)と化合物(B)の組み合わせが、化合物(A)の水溶液SA(20℃での粘度が100mPa・s以下のもの)と化合物(B)の水溶液SB(20℃での粘度が100mPa・s以下のもの)とを50/50の重量比で混合した水溶液の20℃における粘度が、混合前のいずれの水溶液(20℃)の粘度よりも少なくとも2倍高くなる組み合わせである水硬性組成物。
A cationic surfactant (hereinafter referred to as compound (A)), one or more compounds selected from the group consisting of an anionic aromatic compound and bromide compound (hereinafter referred to as compound (B)), water, A hydraulic composition containing hydraulic powder and slag fine aggregate,
The combination of the compound (A) and the compound (B) is an aqueous solution S A of the compound (A) (having a viscosity at 20 ° C. of 100 mPa · s or less) and an aqueous solution S B of the compound (B) (viscosity at 20 ° C. Is a combination in which the viscosity at 20 ° C. of an aqueous solution mixed with a 50/50 weight ratio is at least twice as high as the viscosity of any aqueous solution (20 ° C.) before mixing. Hard composition.
スラグ細骨材と水硬性粉体を重量比で、スラグ細骨材/水硬性粉体=1〜3の割合で含有し、スラグ骨材の配合量が組成物中35体積%以上である請求項1記載の水硬性組成物。   The slag fine aggregate and the hydraulic powder are contained in a weight ratio of slag fine aggregate / hydraulic powder = 1 to 3, and the blending amount of the slag aggregate is 35% by volume or more in the composition. Item 1. The hydraulic composition according to Item 1. スラグ細骨材が高炉スラグ細骨材である請求項1〜3の何れか1項記載の水硬性組成物。   The hydraulic composition according to any one of claims 1 to 3, wherein the slag fine aggregate is a blast furnace slag fine aggregate. 水硬性組成物がセルフレベリング材である請求項1〜3の何れか1項記載の水硬性組成物。   The hydraulic composition according to any one of claims 1 to 3, wherein the hydraulic composition is a self-leveling material. 請求項1〜4の何れか1項記載の水硬性組成物を硬化させてなる硬化体。   A cured product obtained by curing the hydraulic composition according to any one of claims 1 to 4. カチオン性界面活性剤(以下、化合物(A)という)と、アニオン性芳香族化合物及び臭化化合物からなる群より選ばれる1種以上の化合物(以下、化合物(B)という)とを、水、水硬性粉体、及びスラグ細骨材と混合する工程を有する水硬性組成物の製造方法であって、
化合物(A)と化合物(B)の組み合わせが、化合物(A)の水溶液SA(20℃での粘度が100mPa・s以下のもの)と化合物(B)の水溶液SB(20℃での粘度が100mPa・s以下のもの)とを50/50の重量比で混合した水溶液の20℃における粘度が、混合前のいずれの水溶液(20℃)の粘度よりも少なくとも2倍高くなる組み合わせである、水硬性組成物の製造方法。
Cationic surfactant (hereinafter referred to as compound (A)) and one or more compounds selected from the group consisting of an anionic aromatic compound and bromide compound (hereinafter referred to as compound (B)), water, A hydraulic powder and a method for producing a hydraulic composition having a step of mixing with slag fine aggregate,
The combination of the compound (A) and the compound (B) is an aqueous solution S A of the compound (A) (having a viscosity at 20 ° C. of 100 mPa · s or less) and an aqueous solution S B of the compound (B) (viscosity at 20 ° C. Is a combination in which the viscosity at 20 ° C. of an aqueous solution mixed with a 50/50 weight ratio is at least twice as high as the viscosity of any aqueous solution (20 ° C.) before mixing. A method for producing a hydraulic composition.
スラグ細骨材を混合物中35体積%以上となる量で用いる請求項6記載の製造方法。   The production method according to claim 6, wherein the slag fine aggregate is used in an amount of 35% by volume or more in the mixture. 水硬性粉体とスラグ細骨材とを、スラグ細骨材/水硬性粉体=1〜3の重量比となる量で用いる請求項6又は7記載の製造方法。   The manufacturing method of Claim 6 or 7 which uses hydraulic powder and slag fine aggregate in the quantity used as the weight ratio of slag fine aggregate / hydraulic powder = 1-3. 水硬性組成物がセルフレベリング材である請求項6〜8の何れか1項記載の製造方法。   The method according to any one of claims 6 to 8, wherein the hydraulic composition is a self-leveling material.
JP2004357166A 2004-12-09 2004-12-09 Hydraulic composition Expired - Fee Related JP4407941B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004357166A JP4407941B2 (en) 2004-12-09 2004-12-09 Hydraulic composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004357166A JP4407941B2 (en) 2004-12-09 2004-12-09 Hydraulic composition

Publications (2)

Publication Number Publication Date
JP2006160577A true JP2006160577A (en) 2006-06-22
JP4407941B2 JP4407941B2 (en) 2010-02-03

Family

ID=36663007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004357166A Expired - Fee Related JP4407941B2 (en) 2004-12-09 2004-12-09 Hydraulic composition

Country Status (1)

Country Link
JP (1) JP4407941B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008194589A (en) * 2007-02-09 2008-08-28 Kao Corp Fluid pressure feeding method
JP2012091973A (en) * 2010-10-28 2012-05-17 Ube Industries Ltd Self-flowing hydraulic composition
JP2016190747A (en) * 2015-03-31 2016-11-10 日油株式会社 Drying shrinkage reducing agent for premixed mortar, premixed mortar and hardened cement
CN109133697A (en) * 2018-08-03 2019-01-04 武汉苏博新型建材有限公司 A kind of Compositional type polycarboxylate water-reducer and the preparation method for preparing polycarboxylate water-reducer in the Compositional type polycarboxylate water-reducer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107321128B (en) * 2017-05-31 2020-11-03 南京威尔药业集团股份有限公司 Reaction system for producing high-purity monomethoxy polyethylene glycol

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008194589A (en) * 2007-02-09 2008-08-28 Kao Corp Fluid pressure feeding method
JP2012091973A (en) * 2010-10-28 2012-05-17 Ube Industries Ltd Self-flowing hydraulic composition
JP2016190747A (en) * 2015-03-31 2016-11-10 日油株式会社 Drying shrinkage reducing agent for premixed mortar, premixed mortar and hardened cement
CN109133697A (en) * 2018-08-03 2019-01-04 武汉苏博新型建材有限公司 A kind of Compositional type polycarboxylate water-reducer and the preparation method for preparing polycarboxylate water-reducer in the Compositional type polycarboxylate water-reducer

Also Published As

Publication number Publication date
JP4407941B2 (en) 2010-02-03

Similar Documents

Publication Publication Date Title
JP5913705B2 (en) Hydraulic composition
JP6359772B2 (en) Cement additive, cement composition, and raw material for cement additive
JP2016138019A (en) Alkanolamine based cement additive, and cement composition
JP2018140920A (en) Additive for cement, and cement composition
JP4056828B2 (en) Hydraulic composition
JP2010150073A (en) Cement mortar
JP4439904B2 (en) Hydraulic composition
JP4407941B2 (en) Hydraulic composition
JP2002226245A (en) Concrete mixing material and concrete composition
JP5676238B2 (en) Dispersant composition for hydraulic composition
JP4407939B2 (en) Composition for void filler
JP4097965B2 (en) Injection material for submerged ground improvement
JP2006342012A (en) Foaming agent composition for hydraulic composition
JP2004175651A (en) Concrete admixture
JP4842229B2 (en) Self-flowing hydraulic composition and slurry and cured product using the same
JP2004211078A (en) Rheology modifier
JP2009155173A (en) Admixture for hydraulic composition
JP2020055748A (en) Rapid hardening grout composition
JP2007099561A (en) Rheology modifier
JP2005314154A (en) Admixture for grout
JP7510379B2 (en) Wet shotcrete
JP4514670B2 (en) High water reduction rate and high strength cement composition
JP6924688B2 (en) Injectable material for submerged ground improvement
JPH0535100B2 (en)
JP2024073730A (en) Additive composition for extrusion-molded hydraulic compositions

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090623

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091104

R151 Written notification of patent or utility model registration

Ref document number: 4407941

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131120

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees