JP2006160138A - Drive device of hybrid vehicle - Google Patents
Drive device of hybrid vehicle Download PDFInfo
- Publication number
- JP2006160138A JP2006160138A JP2004356649A JP2004356649A JP2006160138A JP 2006160138 A JP2006160138 A JP 2006160138A JP 2004356649 A JP2004356649 A JP 2004356649A JP 2004356649 A JP2004356649 A JP 2004356649A JP 2006160138 A JP2006160138 A JP 2006160138A
- Authority
- JP
- Japan
- Prior art keywords
- motor generator
- torque
- engine
- control means
- motor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005540 biological transmission Effects 0.000 claims description 49
- 238000000034 method Methods 0.000 description 22
- 230000007423 decrease Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 238000004880 explosion Methods 0.000 description 4
- 239000000446 fuel Substances 0.000 description 3
- 230000003321 amplification Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 230000002542 deteriorative effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/62—Hybrid vehicles
Landscapes
- Hybrid Electric Vehicles (AREA)
- Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
- Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
Abstract
Description
本発明は、ハイブリッド車両の駆動装置に関するものである。 The present invention relates to a drive device for a hybrid vehicle.
エンジン及びモータによって車両の駆動力を発生させて走行するハイブリッド車両が知られている。 A hybrid vehicle that travels by generating a driving force of the vehicle with an engine and a motor is known.
ハイブリッド車両において、モータのみを駆動力源とする走行モード、エンジンのみを駆動力源とする走行モードまたはモータ及びエンジンの両方を駆動力源とする走行モードを車両の運転状態に応じて切り替えて走行する技術が特許文献1に記載されている。
上記従来の技術において燃費を向上させるためには、比較的低車速のときにモータの駆動力のみで走行し、車速が高くなってモータのみでは要求駆動力を発生させることができなくなると、エンジンを始動して少なくともエンジンの駆動力によって走行するように走行モードを切り替える。このとき、要求駆動力がモータの限界駆動力を超えてからエンジンを始動するとエンジントルクが始動するまでの間に時間を要すること、さらにエンジン始動中はクランキングのための電力が消費されることによりモータの駆動力が低下することによって駆動力の不感帯を生じる。 In order to improve fuel efficiency in the above-described conventional technology, when the vehicle travels only with the driving force of the motor at a relatively low vehicle speed and the vehicle speed becomes high and the required driving force cannot be generated only with the motor, And the travel mode is switched so that the vehicle travels at least by the driving force of the engine. At this time, when the engine is started after the required driving force exceeds the limit driving force of the motor, it takes time until the engine torque starts, and power for cranking is consumed during engine starting. As a result, the driving force of the motor is reduced, thereby generating a dead zone of the driving force.
ここで、モータの限界駆動力を実際の限界駆動力より低く設定するとモータの駆動力が限界に達する前にエンジンを始動することができるので、駆動力の不感帯の発生を抑制することはできるが、その分モータ走行を行う領域が減少して燃費が悪化する。 Here, if the motor limit driving force is set lower than the actual limit driving force, the engine can be started before the motor driving force reaches the limit. Therefore, it is possible to suppress the generation of the dead zone of the driving force. Therefore, the area in which the motor travels is reduced and the fuel consumption is deteriorated.
本発明は、このような従来の問題点に着目してなされたものであり、モータの駆動力のみで走行する領域を拡大しながら、モータ走行からエンジン走行へと移行する際に発生する不感帯を抑制することができるハイブリッド車両の駆動装置を提供することを目的としている。 The present invention has been made paying attention to such a conventional problem, and a dead zone that occurs when shifting from motor traveling to engine traveling while expanding the region that travels only by the driving force of the motor. It aims at providing the drive device of the hybrid vehicle which can be suppressed.
本発明は以下のような解決手段によって前記課題を解決する。なお、理解を容易にするために本発明の実施形態に対応する符号を付するが、これに限定されるものではない。 The present invention solves the above problems by the following means. In addition, in order to make an understanding easy, although the code | symbol corresponding to embodiment of this invention is attached | subjected, it is not limited to this.
本発明は、駆動軸(4)を介して駆動輪(6)に接続されるエンジン(1)と、駆動軸(4)に接続される第1モータジェネレータ(2)と、複数の変速段を有するモータ変速機(19)を介して駆動軸(4)に接続される第2モータジェネレータ(7)と、第1モータジェネレータ(2)または第2モータジェネレータ(7)の駆動力のみで走行中に運転者の要求トルクが所定トルクより大きくなったとき、第1モータジェネレータ(2)を力行させてエンジン(1)をクランキングする第1モータジェネレータ制御手段(S430)と、第1モータジェネレータ制御手段(S430)の実行に合わせてモータ変速機(19)の変速段を変速比のより小さい変速段へ変更する変速制御手段(S510、S520)とを備えることを特徴とする。 The present invention includes an engine (1) connected to drive wheels (6) via a drive shaft (4), a first motor generator (2) connected to the drive shaft (4), and a plurality of shift stages. The second motor / generator (7) connected to the drive shaft (4) via the motor transmission (19) and the first motor / generator (2) or the second motor / generator (7) are running only with the driving force. First motor generator control means (S430) for cranking the engine (1) by powering the first motor generator (2) when the driver's required torque exceeds a predetermined torque, and first motor generator control Shift control means (S510, S520) for changing the gear stage of the motor transmission (19) to a gear stage having a smaller gear ratio in accordance with execution of the means (S430). .
本発明によれば、モータ走行しているときに運転者の要求トルクが所定トルクよりも大きくなったとき、第1モータジェネレータによってクランキングを行ってエンジンを始動させるとともに、要求トルクに基づいて第2モータジェネレータのトルクを制御しながらモータ変速機の変速段をトルク増幅率のより小さい変速段へ切り替える。これにより、バッテリから第2モータジェネレータへの供給電力が低下して車両の駆動力が不足しても、エンジンが始動するまで不足する駆動力を第2モータジェネレータの慣性トルクで補うことができるので、モータ走行できる運転領域を拡大しながらモータ走行からエンジン走行への移行時に生じる駆動力の不感帯を抑制できる。 According to the present invention, when the required torque of the driver becomes larger than the predetermined torque while the motor is running, the engine is started by cranking by the first motor generator, and the first torque is calculated based on the required torque. (2) While controlling the torque of the motor generator, the gear stage of the motor transmission is switched to a gear stage having a smaller torque amplification factor. As a result, even if the power supplied from the battery to the second motor generator is reduced and the driving force of the vehicle is insufficient, the driving force that is insufficient until the engine is started can be supplemented by the inertia torque of the second motor generator. In addition, it is possible to suppress the dead zone of the driving force that occurs at the time of the transition from the motor travel to the engine travel while expanding the operation range in which the motor can travel.
以下では図面等を参照して本発明の実施の形態について詳しく説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
(第1実施形態)
図1は、本実施形態におけるハイブリッド車両の駆動装置を示す全体構成図である。エンジン1は、車両の駆動力を発生させるとともに発電のための駆動力をモータジェネレータ(MG)2へ供給する。エンジン変速機3は、運転者の要求駆動力に応じてエンジン1の回転速度を変速する。エンジン変速機3において変換されたエンジン1の駆動力は駆動軸4及び後輪ディファレンシャルギア5を介して駆動輪である後輪6へ伝達される。また、前輪8は操舵輪であり、従動輪である。
(First embodiment)
FIG. 1 is an overall configuration diagram showing a drive device for a hybrid vehicle in the present embodiment. The
MG(第1モータジェネレータ)2は、車両の駆動力を発生させるとともにエンジン1の駆動力によって回転して発電する。また、MG2はエンジン1に駆動力を伝達してクランキングすることでエンジン1を始動させる。
The MG (first motor generator) 2 generates a driving force of the vehicle and rotates by the driving force of the
MG(第2モータジェネレータ)7は、車両の駆動力を発生させるとともに車両の惰性走行時に後輪6に連れ回されて回転することで車両の運動エネルギーを回生する。 The MG (second motor generator) 7 regenerates the kinetic energy of the vehicle by generating the driving force of the vehicle and rotating with the rear wheel 6 when the vehicle is coasting.
MG変速機(モータ変速機)19は、MG7と駆動軸4との間に設けられ、ローギア9及びローギア9より変速比が小さい、すなわちトルク増幅率が低いハイギア10の2種類の変速段を有する。車両が発進してから低車速の状態においてはローギア9が選択され、それ以上の車速においてはハイギア10が選択される。MG7とローギア9及びハイギア10はそれぞれクラッチ11、12によって断続されクラッチ11の締結力を上げることでローギア9が嵌合され、クラッチ12の締結力を上げることでハイギア10が嵌合される。またクラッチアクチュエータ13は各クラッチ11、12の締結力を発生させる。
The MG transmission (motor transmission) 19 is provided between the MG 7 and the drive shaft 4, and has two types of shift stages of the
インバータ14、15はそれぞれMG2とMG7へ供給する電圧を制御することでMG2、7のトルクを制御する。バッテリ18はインバータ14、15を介してMG2、7へ供給する電力及びMG2、7の発電電力を蓄える。
The
車輪速センサ16は各車輪6、8の回転速度を検出する。MG回転速度センサ20はMG7の回転速度を検出する。ハイブリッドコントロールモジュール(HCM)17は、各車輪6、8の回転速度、MG7の回転速度及びバッテリ18の充電状態(SOC)を受信して、運転者が要求する駆動力を発生させるようにエンジン1、インバータ14、15、エンジン変速機3及びMG変速機19を制御する。
The
次にHCM17で行う制御について図2を参照しながら説明する。図2は本実施形態におけるハイブリッド車両の駆動装置の制御を示したフローチャートである。本制御は、モータ走行からエンジン走行へと移行する際にMG変速機を変速してMG7の慣性トルクを駆動力として利用することでエンジントルクが立ち上がるまでの間の駆動力の低下を抑制しようとするものである。
Next, control performed by the
ステップS100では、MG変速機変速段変更を伴うエンジン始動判定を行う。エンジン始動判定では、モータ走行からエンジン走行へと移行する必要があるか否かを判定する。また、要求トルクに応じてエンジン始動時にMG変速機19による変速段の変更が必要である否かを判定する。
In step S100, engine start determination accompanied by MG transmission gear position change is performed. In engine start determination, it is determined whether or not it is necessary to shift from motor travel to engine travel. Further, it is determined whether or not it is necessary to change the gear position by the
ステップS200では、MG変速機変速段変更を伴うエンジン始動指令が検出されたか否かを判定する。変速指令が検出されればステップS300へ進み、検出されなければ本制御を行う必要はないので処理を終了する。 In step S200, it is determined whether or not an engine start command with a change in the MG transmission gear position has been detected. If a shift command is detected, the process proceeds to step S300. If not detected, it is not necessary to perform this control, and the process ends.
ステップS300では、MG7のトルク目標値を算出する。MG7のトルク目標値はMG7の慣性トルクを加えても要求トルクを超えないように設定される。 In step S300, the torque target value of MG7 is calculated. The torque target value of MG7 is set so as not to exceed the required torque even if the inertia torque of MG7 is added.
ステップS400では、エンジン始動制御を実行する。エンジン始動制御は、モータ走行からエンジン走行へと移行するときに行うエンジン始動であってMG変速機19の変速段の変更を伴うときのエンジン始動制御である。
In step S400, engine start control is executed. The engine start control is engine start that is performed when shifting from motor travel to engine travel and is accompanied by a change in the gear position of the
ステップS500では、MG変速機19の変速制御を実行する。MG変速機19の変速制御はモータ走行からエンジン走行へと移行するときに行う変速制御である。なお、ステップS400とS500とは同時に実行される。
In step S500, the shift control of the
以下、前述のステップS100〜S500の制御について図3〜7を参照しながらさらに詳しく説明する。 Hereinafter, the control in steps S100 to S500 will be described in more detail with reference to FIGS.
図3はステップS100におけるMG変速機19の変速段の変更を伴うエンジン始動判定の制御を示したフローチャートである。
FIG. 3 is a flowchart showing the engine start determination control that involves changing the gear position of the
ステップS110では、車両の要求トルクを読み込む。要求トルクは運転者によるアクセルペダル開度(APO)に基づいて判断される。 In step S110, the required torque of the vehicle is read. The required torque is determined based on the accelerator pedal opening (APO) by the driver.
ステップS120では、要求トルクが所定トルクより大きいか否かを判定する。要求トルクが所定トルクより大きければステップS130へ進み、所定トルク以下であれば処理を終了する。所定トルクとは、MG7のトルクのみでは要求トルクを実現することができなくなると判断できる要求トルク値であり、予め実験などによって求めておく。 In step S120, it is determined whether the required torque is greater than a predetermined torque. If the requested torque is greater than the predetermined torque, the process proceeds to step S130, and if it is equal to or less than the predetermined torque, the process is terminated. The predetermined torque is a required torque value at which it can be determined that the required torque cannot be realized only by the torque of MG7, and is determined in advance through experiments or the like.
ステップS130では、エンジン1の目標回転速度を算出する。エンジン変速機3では車速やAPOに基づいて適切な変速段が選択されており、エンジン1の目標回転速度は車速、APO及びエンジン変速機3の変速段のギア比に基づいて算出される。
In step S130, the target rotational speed of the
ステップS140では、エンジン1の始動に要する電力を算出する。エンジン始動所要電力はエンジン1の目標回転速度及び要求トルクに基づいて算出される。エンジン始動所要電力はエンジン1の目標回転速度が高いほど、また要求トルクが大きいほど大きくなるよう算出される。
In step S140, the electric power required for starting the
ステップS150では、エンジン始動時のMG7のトルクが要求トルク以上であるか否かを判定する。エンジン始動時のMG7のトルクが要求トルク以上であればステップS160へ進み、要求トルク未満であればステップS170へ進む。エンジン1を始動する際にはエンジン1をクランキングするMG2へエンジン始動所要電力を供給する必要があるので、その分だけMG7への供給可能電力は低下する。ここで従来技術における不感体の発生とは、MG7への供給可能電力がMG7に必要な電力を下回った場合に発生するが本発明では以下のステップで不感体の発生を抑えている。
In step S150, it is determined whether the torque of MG7 at the time of engine start is equal to or greater than the required torque. If the torque of MG7 at the time of engine start is equal to or greater than the required torque, the process proceeds to step S160, and if less than the required torque, the process proceeds to step S170. When starting the
ステップS160では、エンジン1を始動する。このエンジン始動はエンジン1が始動するまでMG7によって要求トルクを発生させ、エンジン始動後はエンジン1及びMG7によって要求トルクを発生させる従来のエンジン始動である。
In step S160, the
一方、ステップS150においてエンジン始動時のMG7のトルクが要求トルク未満であると判定されたとき、ステップS170へ進みMG変速機19の変速段変更を伴うエンジン始動指令を出力する。エンジン始動時のMG7のトルクが要求トルク未満であればエンジン始動時にトルクの不感帯を生じることになるので、これを防止するために以下の制御を行う。
On the other hand, when it is determined in step S150 that the torque of the MG 7 at the time of starting the engine is less than the required torque, the process proceeds to step S170 and an engine start command accompanied by a change in the gear position of the
図4はステップS300におけるMG7トルク目標値を算出する制御を示したフローチャートである。 FIG. 4 is a flowchart showing the control for calculating the MG7 torque target value in step S300.
ステップS310では、MG7の目標トルクを読み込む。MG7の目標トルクとはステップS150において判定に用いたエンジン始動時のMG7トルクであり、エンジン始動によってMG7への供給電力が低下することを考慮したときのMG7の最大トルクである。 In step S310, the target torque of MG7 is read. The target torque of MG7 is the MG7 torque at the time of engine start used for the determination in step S150, and is the maximum torque of MG7 when taking into account that the power supplied to MG7 decreases due to engine start.
ステップS320では、MG7の回転速度を読み込む。MG7の回転速度はインバータ15によって検出される。
In step S320, the rotational speed of MG7 is read. The rotation speed of the MG 7 is detected by the
ステップS330では、MG7の慣性トルクTMG7を算出する。MG7の回転速度は車速の上昇と共に上昇しており、この回転速度の上昇率に応じてMG7は慣性トルクTMG7を発生している。慣性トルクTMG7は以下の(1)式に基づいて算出される。 In step S330, an inertia torque TMG7 of MG7 is calculated. The rotational speed of MG7 increases as the vehicle speed increases, and MG7 generates inertia torque TMG7 in accordance with the increase rate of the rotational speed. Inertia torque TMG7 is calculated based on the following equation (1).
TMG7=JMG7×ΔN/Δt ・・・(1)
ここで、JMG7はMG7の回転慣性、ΔNはMG変速機19の変速前後におけるMG7の回転速度差、ΔtはMG変速機19のクラッチ11、12の架け換えに要する時間である。
TMG7 = JMG7 × ΔN / Δt (1)
Here, JMG7 is the rotational inertia of MG7, ΔN is the difference in rotational speed of MG7 before and after the
ステップS340では、MG7目標トルクとMG7慣性トルクとの和が要求トルクより大きいか否かを判定する。MG7目標トルクとMG7慣性トルクとの和が要求トルクより大きければステップS350へ進み、要求トルク以下であれば処理を終了する。 In step S340, it is determined whether or not the sum of the MG7 target torque and the MG7 inertia torque is greater than the required torque. If the sum of the MG7 target torque and the MG7 inertia torque is greater than the required torque, the process proceeds to step S350, and if it is equal to or less than the required torque, the process ends.
ステップS350では、MG7目標トルクを変更する。MG変速機19の変速段を変更すると車両にはMG7の目標トルクに加えてMG7の慣性トルクが加わるので、ステップS340においてMG7目標トルクにMG7慣性トルクを加算した値が要求トルクより大きいと判定されたときはMG7目標トルクを低下させる。
In step S350, the MG7 target torque is changed. When the gear position of the
図5はステップS400におけるエンジン始動制御を示したフローチャートである。 FIG. 5 is a flowchart showing the engine start control in step S400.
ステップS410では、エンジン変速機3の選択ギアのギア比を読み込む。ギア比はギアごとに予めHCMに記憶されている。
In step S410, the gear ratio of the selected gear of the
ステップS420では、エンジン1の目標回転速度を読み込む。目標回転速度はステップS130で算出した回転速度である。
In step S420, the target rotational speed of the
ステップS430では、MG2の回転速度を制御する。MG2の回転速度はバッテリから供給されるエンジン始動所要電力によってエンジン1の目標回転速度となるように制御され、これによりエンジン1をクランキングする。なお、バッテリの出力はクランキングを行うMG2に優先的に供給される。
In step S430, the rotational speed of MG2 is controlled. The rotation speed of the
ステップS440では、エンジン1が完爆したか否かを判定する。エンジン1が完爆していればステップS450へ進み、完爆していなければステップS430へ戻ってクランキングを続行する。エンジン1の完爆は、クランキング中のMG2の回転速度の変化やクランクの回転速度の変化などに基づいて判断する。
In step S440, it is determined whether or not the
ステップS450では、エンジン1のトルクを制御する。エンジントルクはエンジン回転速度が目標回転速度となるように全開トルクを発生させるように制御される。
In step S450, the torque of the
ステップS460では、エンジン回転速度が目標回転速度以上であるか否かを判定する。エンジン回転速度が目標回転速度以上であればステップS470へ進み、目標回転速度未満であればステップS450へ戻ってエンジントルクの制御を続行する。 In step S460, it is determined whether the engine speed is equal to or higher than the target speed. If the engine rotational speed is equal to or higher than the target rotational speed, the process proceeds to step S470. If the engine rotational speed is less than the target rotational speed, the process returns to step S450 and the engine torque control is continued.
ステップS470では、エンジン変速機3のクラッチ締結を開始する。
In step S470, clutch engagement of the
ステップS480では、MG2の回転速度制御を停止する。 In step S480, the rotation speed control of MG2 is stopped.
ステップS490では、エンジントルクを制御する。ここで行うエンジントルク制御はステップS450の制御とは異なり、車両の要求トルクを実現するトルクに制御される。 In step S490, the engine torque is controlled. Unlike the control in step S450, the engine torque control performed here is controlled to a torque that realizes the required torque of the vehicle.
図6はステップS500におけるMG変速機変速制御を示したフローチャートである。 FIG. 6 is a flowchart showing the MG transmission shift control in step S500.
ステップS510では、クラッチ11の締結力を低下させる。 In step S510, the fastening force of the clutch 11 is reduced.
ステップS520では、クラッチ12の締結力を上昇させる。 In step S520, the fastening force of the clutch 12 is increased.
ステップS530では、エンジン1が完爆したか否かを判定する。エンジン1が完爆していればステップS540へ進み、完爆していなければステップS530へ戻って再度エンジン1の完爆を判定する。なお、エンジン1を始動するためのMG2の制御はステップS430において実行されているので、ここでは完爆判定のみを行う。
In step S530, it is determined whether or not the
ステップS540では、MG7目標トルクとMG7慣性トルクとの和が要求トルクより小さいか否かを判定する。MG7目標トルクとMG7慣性トルクとの和が要求トルクより小さければステップS550へ進み、要求トルク以上であれば処理を終了する。 In step S540, it is determined whether or not the sum of the MG7 target torque and the MG7 inertia torque is smaller than the required torque. If the sum of the MG7 target torque and the MG7 inertia torque is smaller than the required torque, the process proceeds to step S550, and if it is equal to or greater than the required torque, the process ends.
ステップS550では、バッテリ電力が所定電力より大きいか否かを判定する。バッテリ電力が所定電力より大きければステップS560へ進み、所定電力以下であれば処理を終了する。所定電力とはMG7へ電力供給する余裕があるか否かを判断する電力値であり、予め実験などによって求めておく。 In step S550, it is determined whether the battery power is greater than a predetermined power. If the battery power is greater than the predetermined power, the process proceeds to step S560, and if the battery power is equal to or lower than the predetermined power, the process ends. The predetermined power is a power value for determining whether or not there is a margin for supplying power to the MG 7 and is obtained in advance by an experiment or the like.
ステップS560では、MG7の目標トルクを変更する。ステップS550にいおいてMG7に電力供給する余裕があると判定されているので、その余裕電力によってMG7の目標トルクを上昇させる。 In step S560, the target torque of MG7 is changed. In step S550, since it is determined that there is a margin for supplying power to MG7, the target torque of MG7 is increased by the marginal power.
次にステップS100においてエンジン始動時のMG変速が必要か否かを判定する方法ついて、さらに理解を容易にするために図7を参照しながら説明する。図7はMG7のトルク特性、エンジントルクの特性及び車両の走行抵抗を示した特性図である。MG7は幅広い等出力領域を有するのでローギア9及びハイギア10を選択したときの等出力線が一部で重複している。なお、等出力線はMG7を供給可能な最大電力で駆動したときの出力特性を示している。また、線図Cはエンジン始動時にMG7への供給電力が低下したときのMG7の最大出力特性であり、線図Dはエンジン始動が必要か否かを判定する閾値である。
Next, a method for determining whether or not the MG speed change at the time of starting the engine in step S100 will be described with reference to FIG. 7 for easier understanding. FIG. 7 is a characteristic diagram showing torque characteristics of MG7, engine torque characteristics, and vehicle running resistance. Since the MG 7 has a wide equi-output region, the equi-output lines when the
車両がA点の状態でモータ走行しているとき運転者による要求トルクがA’点となった場合、A’点は線図Cと線図Dとの間にあるので、エンジン始動が必要であるが、エンジン1が始動するまでの間にMG7のトルクのみで要求トルクを発生させることができる。よって、ステップS160に示す従来のエンジン始動を行って、少なくともエンジン1の駆動力によって走行する。
If the torque required by the driver reaches point A 'when the vehicle is running on a motor with point A, the point A' is between line C and line D, so the engine needs to be started. However, the required torque can be generated only by the torque of the MG 7 until the
また、車両がB点の状態でモータ走行しているとき運転者による要求トルクがB’点となった場合、B’点はMG7の最大出力よりも大きいので要求トルクをMG7のみで発生させることができない。よって、エンジン1を始動させ、さらにエンジン始動制御と同時にMG変速機19の変速制御も実施する。これにより、
エンジン1が始動するまでの間にクラッチ12の締結によってMG7の慣性トルクが駆動軸に伝達されるので、車両の駆動力に不感帯が生じることを抑制できる。
Also, if the driver's required torque reaches point B 'when the vehicle is running on a motor with point B, the required torque is generated only by MG7 because point B' is greater than the maximum output of MG7. I can't. Therefore, the
Since the inertia torque of the MG 7 is transmitted to the drive shaft by the engagement of the clutch 12 until the
次に図8を参照しながら本実施形態の作用について説明する。図8は本実施形態におけるハイブリッド車両の駆動装置の制御を示したタイムチャートである。図8(a)はアクセルペダル開度指令(APO)、図8(b)はエンジントルク、図8(c)はMG2のトルク、図8(d)はMG7のトルク、図8(e)はエンジン1の回転速度、図8(f)はエンジン変速機3のクラッチの締結力、図8(g)はMG7の回転速度、図8(h)はクラッチ11の締結力、図8(i)はクラッチ12の締結力、図8(j)は車両の駆動力をそれぞれ示している。
Next, the operation of this embodiment will be described with reference to FIG. FIG. 8 is a time chart showing the control of the drive device for the hybrid vehicle in the present embodiment. 8A is the accelerator pedal opening command (APO), FIG. 8B is the engine torque, FIG. 8C is the torque of MG2, FIG. 8D is the torque of MG7, and FIG. 8 (f) is the clutch engaging force of the
以下、モータ走行においてエンジン始動を行いエンジン走行へと移行する場合について説明する。なお、本実施形態のエンジン走行はエンジン1のみの駆動力で走行するものではなく、エンジン1の駆動力をMG7の駆動力でアシストしながら走行するものである。
Hereinafter, a description will be given of a case where the engine is started and the engine is shifted to the engine running. Note that the engine traveling of the present embodiment does not travel with the driving force of only the
時刻t0において車両はモータ走行しながら加速しており、MG7の回転速度が上昇している(図8(g))。時刻t1において運転者による要求トルクの増大によってAPOが上昇すると要求トルクを実現するためにMG7トルクを増大させる(図8(a)、(d))。これによって車両の駆動力も上昇する(図8(j))。その後もAPOが上昇して要求トルクが所定トルクを超え、MG7のトルクのみでは要求トルクを発生させることができないと判断されるとMG変速を伴うエンジン始動指令が発せられる。 At time t0, the vehicle is accelerating while running on the motor, and the rotational speed of the MG 7 is increasing (FIG. 8 (g)). When APO increases due to an increase in the required torque by the driver at time t1, the MG7 torque is increased in order to realize the required torque (FIGS. 8A and 8D). As a result, the driving force of the vehicle also increases (FIG. 8 (j)). Thereafter, if it is determined that APO rises and the required torque exceeds the predetermined torque and the required torque cannot be generated only by the torque of MG7, an engine start command with MG shift is issued.
時刻t2において、エンジン始動のために必要な電力をMG2へ供給してエンジン1をクランキングする(図8(b)、(c))。これによりMG7への供給電力は低下するのでMG7のトルクは低下する(図8(d))。その後、エンジン1が完爆して自立回転を開始するとエンジン回転速度は上昇してMG2のトルクは低下する(図8(b)、(c))。これにより、バッテリ18の電力に余裕が生じるのでMG7のトルクは上昇する(図8(d))。
At time t2, electric power necessary for starting the engine is supplied to the
また同じく時刻t2において、クラッチ11の締結力を低下させ、クラッチ12の締結力を上昇させることで、MG7の回転速度は低下する(図8(g)、(h)、(i))。クラッチ12の締結によってMG7のトルクが駆動軸に伝達されるので、車両の駆動力は上昇する(図8(j))。このときエンジン始動のためにMG2へ優先的に電力を配分してMG7の発生トルクが低下しても、クラッチ11、12の架け換えによってMG7の慣性トルクTMG7が車両に伝達されるので、車両の駆動力の落ち込みを抑制することができる。
Similarly, at time t2, the rotational speed of the MG 7 is decreased by decreasing the engagement force of the clutch 11 and increasing the engagement force of the clutch 12 (FIGS. 8G, 8H, and 8I). Since the torque of the MG 7 is transmitted to the drive shaft by the engagement of the clutch 12, the driving force of the vehicle increases (FIG. 8 (j)). At this time, even if electric power is preferentially distributed to MG2 for engine start and the torque generated by MG7 decreases, the inertia torque TMG7 of MG7 is transmitted to the vehicle by switching the
時刻t3においてエンジン始動制御及びクラッチ11、12の締結制御は終了し、エンジン変速機3の締結力を増大させるのでエンジン1の駆動力が駆動軸に伝達され、車両の駆動力は要求トルクに応じた値となる(図8(f)、(j))。
At time t3, the engine start control and the engagement control of the
ここで、MG変速機19の変速段変更中におけるMG7の目標トルクを算出するステップS350の制御方法について図9、図10を参照しながら説明する。図9はAPOに応じたMG7の目標トルクの制御を示したタイムチャートである。図10はMG7の回転速度に応じたMG7の目標トルクの制御を示したタイムチャートである。いずれも(a)はAPO、(b)はMG7の回転速度、(c)はMG7のトルク、(d)はクラッチ11の締結力、(e)はクラッチ12の締結力、(f)は車両の駆動力を示している。なお、図9、図10に示す時刻は図8に示す時刻と対応している。
Here, the control method in step S350 for calculating the target torque of MG7 during the change of the gear position of the
初めにAPOに応じたMG7の目標トルクの制御について図9を用いて説明する。時刻t1において運転者による要求トルクの増大によってAPOが上昇すると要求トルクを実現するためにMG7トルクを増大させる。時刻t2においてクラッチ11、12の締結制御を開始し、このときのMG7の目標トルクはMG7の慣性トルクを加えても要求トルクを超えないように要求トルクが小さいほど小さく設定される。これにより、時刻t3において車両の駆動力は要求トルクに応じた値となる。
First, control of the target torque of MG 7 according to APO will be described with reference to FIG. When APO increases due to an increase in the required torque by the driver at time t1, the MG7 torque is increased to realize the required torque. Engagement control of the
次に車速に応じたMG7の目標トルクの制御について図10を用いて説明する。時刻t1において運転者による要求トルクの増大によってAPOが上昇すると要求トルクを実現するためにMG7トルクを増大させる。時刻t2においてクラッチ11、12の締結制御を開始する。このとき、MG7の慣性トルクはMG7の回転速度すなわち車速が低いほど小さくなるので、その分MG7の目標トルクは大きく設定される。これにより、時刻t3において車両の駆動力は車速によらず要求トルクに応じた値となる。
Next, the control of the target torque of the MG 7 according to the vehicle speed will be described with reference to FIG. When APO increases due to an increase in the required torque by the driver at time t1, the MG7 torque is increased to realize the required torque. Engagement control of the
以上のように本実施形態では、MG7の駆動力のみでモータ走行しているときに運転者の要求トルクが所定トルクよりも大きくなったとき、MG2によってクランキングを行ってエンジン1を始動させるとともに、要求トルクに基づいてMG7のトルクを制御しながらMG変速機19の変速段をハイギア9へ切り替える。これにより、MG2によるクランキングによってバッテリ18からMG7への供給電力が低下して車両の駆動力が不足しても、エンジン1が始動するまで不足する駆動力をMG7の慣性トルクで補うことができる。よって、モータ走行できる運転領域を拡大して燃費を向上できるとともに、エンジン走行への移行時に生じる駆動力の不感帯を抑制して滑らかな走行モードの切り替えを実施できる。
As described above, in the present embodiment, when the driver's required torque becomes larger than the predetermined torque when the motor is running only with the driving force of MG7, the
また、バッテリ18の電力はエンジン始動を行うMG2へ優先的に供給されるので、エンジン1の始動性を悪化させることなく駆動力の不感帯を抑制することができる。
Moreover, since the electric power of the
さらに、クランキング時のMG2の回転速度はエンジン変速機3において選択されたギアのギア比と車速とに基づいて制御されるので、エンジン変速機3の制御系を変更することなくコストアップを抑制しながら駆動力の不感帯を抑制できる。
Further, since the rotational speed of the
さらにまた、MG変速機19の変速段の変更中のMG7のトルクは運転者の要求トルクが大きいほど大きく設定されるので、要求トルクに応じた車両の駆動力を発生させることができる。
Furthermore, since the torque of the MG 7 during the change of the gear position of the
さらにまた、MG変速機19の変速段の変更中のMG7のトルクはMG7の慣性トルクが大きいほど小さく設定されるので、MG7のトルクと慣性トルクとの合計トルクが要求トルクを超えることを防止して常に適切な駆動力制御を行うことができる。
Furthermore, since the torque of the MG 7 during the change of the gear position of the
さらにまた、要求トルクの不足分があるときはエンジン1が始動した後にMG7によって不足するトルクを補うので、エンジン始動を確実に行いかつより確実に要求トルクを実現することができる。
Furthermore, when the required torque is insufficient, the MG 7 compensates for the insufficient torque after the
(第2実施形態)
図11は、本実施形態におけるハイブリッド車両の駆動装置を示す全体構成図である。本実施形態で用いる車両は前輪8を駆動する前輪駆動車両である。全体の構成は第1実施形態とほぼ同様であり、エンジン1及びMG2の駆動力はエンジン変速機3で変速されて駆動ギア30及び前輪ディファレンシャルギア31を介して駆動輪である前輪8へ伝達される。また、MG7の駆動力はMG変速機19で変速されて駆動ギア30及び前輪ディファレンシャルギア31を介して駆動輪である前輪8へ伝達される。
(Second Embodiment)
FIG. 11 is an overall configuration diagram showing a hybrid vehicle drive device in the present embodiment. The vehicle used in the present embodiment is a front wheel drive vehicle that drives the
本実施形態は以上のように構成され、制御については第1実施形態と全く同一である。 The present embodiment is configured as described above, and the control is exactly the same as the first embodiment.
これにより、本実施形態においても第1実施形態と同様の作用効果を得ることができる。 Thereby, also in this embodiment, the same operation effect as a 1st embodiment can be obtained.
以上説明した実施形態に限定されることなく、その技術的思想の範囲内において種々の変形や変更が可能であり、それらも本発明と均等であることは明白である。 The present invention is not limited to the embodiment described above, and various modifications and changes can be made within the scope of the technical idea, and it is obvious that these are equivalent to the present invention.
例えば、本実施形態ではMG変速機19の変速段の変更中のMG7のトルクは運転者の要求トルク及びMG7の慣性トルクに応じて設定しているが、これに限らずいずれか一方のみに基づいて設定してもよい。
For example, in the present embodiment, the torque of the MG 7 during the change of the gear position of the
また、本実施形態で用いるエンジン変速機3は、遊星歯車と多板クラッチとから構成される自動変速機、手動変速機の変速動作を自動化した自動MTまたは無段変速機などのいずれであってもよい。
Further, the
さらに、本実施形態では、MG変速機19は2種類の変速段を有しているが、3種類以上の変速段を有していてもよい。
Furthermore, in the present embodiment, the
1 エンジン
2 MG(モータジェネレータ)
3 エンジン変速機
4 駆動軸
5 後輪ディファレンシャルギア
6 後輪
7 MG(モータジェネレータ)
8 前輪
9 ローギア
10 ハイギア
11 クラッチ
12 クラッチ
13 クラッチアクチュエータ
14 インバータ
15 インバータ
16 車輪速センサ
17 HCM(ハイブリッドコントロールモジュール)
18 バッテリ
19 MG変速機
30 駆動ギア
31 前輪ディファレンシャルギア
1
3 Engine Transmission 4
8
18
Claims (7)
前記駆動軸に接続される第1モータジェネレータと、
複数の変速段を有するモータ変速機を介して前記駆動軸に接続される第2モータジェネレータと、
前記第1モータジェネレータまたは前記第2モータジェネレータの駆動力のみで走行中に運転者の要求トルクが所定トルクより大きくなったとき、前記第1モータジェネレータを力行させて前記エンジンをクランキングする第1モータジェネレータ制御手段と、
前記第1モータジェネレータ制御手段の実行に合わせて前記モータ変速機の変速段を変速比のより小さい変速段へ変更する変速制御手段と、
を備えることを特徴とするハイブリッド車両の駆動装置。 An engine connected to the drive wheels via a drive shaft;
A first motor generator connected to the drive shaft;
A second motor generator connected to the drive shaft via a motor transmission having a plurality of shift stages;
The first motor generator is powered to crank the engine when the driver's required torque becomes larger than a predetermined torque while traveling only with the driving force of the first motor generator or the second motor generator. Motor generator control means;
Shift control means for changing the gear stage of the motor transmission to a gear stage having a smaller gear ratio in accordance with execution of the first motor generator control means;
A drive device for a hybrid vehicle, comprising:
前記第1モータジェネレータ制御手段の作動開始後に前記第2モータジェネレータを力行させる第2モータジェネレータ制御手段と、
をさらに備え、
前記第1モータジェネレータ制御手段は、前記バッテリから供給される電力によって前記第1モータジェネレータを力行させ、前記第2モータジェネレータ制御手段は、前記第1モータジェネレータ制御手段によって消費された残りの電力によって前記第2モータジェネレータを力行させることを特徴とする請求項1に記載のハイブリッド車両の駆動装置。 A battery for supplying electric power to the first motor generator and the second motor generator; second motor generator control means for causing the second motor generator to power after the start of operation of the first motor generator control means;
Further comprising
The first motor generator control means causes the first motor generator to be powered by electric power supplied from the battery, and the second motor generator control means uses the remaining electric power consumed by the first motor generator control means. The hybrid vehicle drive device according to claim 1, wherein the second motor generator is powered.
前記第1モータジェネレータ制御手段は、前記エンジン変速機によって選択されたギアのギア比と車速とに基づいて前記第1モータジェネレータの回転速度を制御することを特徴とする請求項1または2に記載のハイブリッド車両の駆動装置。 An engine transmission for shifting the rotational speeds of the engine and the first motor generator and transmitting it to the drive shaft;
The said 1st motor generator control means controls the rotational speed of the said 1st motor generator based on the gear ratio and vehicle speed of the gear selected by the said engine transmission. Hybrid vehicle drive device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004356649A JP2006160138A (en) | 2004-12-09 | 2004-12-09 | Drive device of hybrid vehicle |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004356649A JP2006160138A (en) | 2004-12-09 | 2004-12-09 | Drive device of hybrid vehicle |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006160138A true JP2006160138A (en) | 2006-06-22 |
Family
ID=36662616
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004356649A Pending JP2006160138A (en) | 2004-12-09 | 2004-12-09 | Drive device of hybrid vehicle |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006160138A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009525224A (en) * | 2006-01-31 | 2009-07-09 | ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング | Monitoring method for a hybrid drive |
JP2010100178A (en) * | 2008-10-23 | 2010-05-06 | Toyota Motor Corp | Device for controlling start of internal combustion engine |
JP2012105461A (en) * | 2010-11-10 | 2012-05-31 | Honda Motor Co Ltd | Controller for electric vehicle |
JP2012121442A (en) * | 2010-12-08 | 2012-06-28 | Aisin Ai Co Ltd | Power transmission control device of vehicle |
-
2004
- 2004-12-09 JP JP2004356649A patent/JP2006160138A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009525224A (en) * | 2006-01-31 | 2009-07-09 | ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング | Monitoring method for a hybrid drive |
JP2010100178A (en) * | 2008-10-23 | 2010-05-06 | Toyota Motor Corp | Device for controlling start of internal combustion engine |
JP2012105461A (en) * | 2010-11-10 | 2012-05-31 | Honda Motor Co Ltd | Controller for electric vehicle |
JP2012121442A (en) * | 2010-12-08 | 2012-06-28 | Aisin Ai Co Ltd | Power transmission control device of vehicle |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4063744B2 (en) | Control device for hybrid vehicle | |
JP4739948B2 (en) | Vehicle engine start method and vehicle engine start control computer program | |
JP4127142B2 (en) | Control device for hybrid vehicle | |
US7617896B2 (en) | Control device for an electric vehicle | |
JP5521151B2 (en) | Vehicle power transmission control device | |
JP2007237775A (en) | Controller of hybrid electric vehicle | |
JP2005162142A (en) | Engine starting method of vehicle with hybrid transmission | |
JP5245560B2 (en) | Vehicle drive control device and control method | |
JP2009120189A (en) | Controller for hybrid electric vehicle | |
JP4135030B1 (en) | Vehicle control device, control method, program for realizing the method, and recording medium recording the program | |
US20200086847A1 (en) | Control system for hybrid vehicle | |
JP2005163807A (en) | Drive device of hybrid vehicle | |
EP3919302B1 (en) | Control system for hybrid vehicle | |
JP5182072B2 (en) | Oil pump drive device for hybrid vehicle | |
JP2005162081A (en) | Method of starting engine of vehicle mounted with hybrid transmission when quickly increasing driving force | |
JP2007261415A (en) | Control device for hybrid vehicle | |
WO2020148973A1 (en) | Vehicle control device | |
JP2006341848A (en) | Control device for hybrid vehicle with transmission | |
JP2001286003A (en) | Parallel hybrid vehicle | |
KR101013879B1 (en) | Braking Control Method for Hybrid Vehicle | |
JP2005120907A (en) | Shift control device for hybrid vehicle | |
JP5842661B2 (en) | Power transmission device for vehicle | |
JP7172894B2 (en) | vehicle controller | |
US10605359B2 (en) | Shift control system for vehicle | |
JP3994969B2 (en) | Control device for hybrid vehicle |