[go: up one dir, main page]

JP2006156914A - Method for manufacturing nitride semiconductor device - Google Patents

Method for manufacturing nitride semiconductor device Download PDF

Info

Publication number
JP2006156914A
JP2006156914A JP2004355368A JP2004355368A JP2006156914A JP 2006156914 A JP2006156914 A JP 2006156914A JP 2004355368 A JP2004355368 A JP 2004355368A JP 2004355368 A JP2004355368 A JP 2004355368A JP 2006156914 A JP2006156914 A JP 2006156914A
Authority
JP
Japan
Prior art keywords
nitride semiconductor
semiconductor device
manufacturing
semiconductor layer
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004355368A
Other languages
Japanese (ja)
Inventor
Tadayoshi Deguchi
忠義 出口
Eiji Waki
英司 脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Japan Radio Co Ltd
Original Assignee
New Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Japan Radio Co Ltd filed Critical New Japan Radio Co Ltd
Priority to JP2004355368A priority Critical patent/JP2006156914A/en
Publication of JP2006156914A publication Critical patent/JP2006156914A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Element Separation (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a nitride semiconductor device with a planar structure which is capable of executing high-resistance element isolation. <P>SOLUTION: The manufacturing method is used for manufacturing a nitride semiconductor device composed of the Group III-V nitride semiconductor layer laminated on a substrate. A coating film including at least one of iron, carbon, and zinc or magnesium is formed on the surface of an element isolation region. After that, one of iron, carbon, and zinc or magnesium is dispersed in the nitride semiconductor layer as impurities by heat treatment. The element isolation region is formed with high insulation properties. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、能動層に窒化物半導体を用いた窒化物半導体装置の製造方法に関し、特にリーク電流が少なく、プレーナー構造の素子分離を行うことができる窒化物半導体装置の製造方法に関する。   The present invention relates to a method for manufacturing a nitride semiconductor device using a nitride semiconductor as an active layer, and more particularly to a method for manufacturing a nitride semiconductor device that can reduce the leakage current and perform planar element isolation.

図3は、従来のIII−V族窒化物半導体からなる窒化物半導体装置の平面図(図3a)及び断面図(図3aのA−A’面の断面図を図3bに示し、図3aのB−B’面の断面図を図3cに示す)である。図3に示す窒化物半導体装置は、いわゆるHEMT構造であり、炭化珪素(SiC)からなる基板11上には、窒化アルミニウム(AlN)からなるバッファ層12、窒化ガリウム(GaN)からなるチャネル層13、ノンドープの窒化アルミニウムガリウム(AlGaN)からなるスペーサ層14、n型窒化アルミニウムガリウムからなるキャリア供給層15、ノンドープの窒化アルミニウムガリウムからなるショットキ層16が順次積層した構造となっており、チャネル層13とスペーサ層14とからなるヘテロ接合界面近傍には、ポテンシャル井戸からなる電子移動度が極めて大きい2次元電子ガス層が形成される。このような構造の窒化物半導体装置では、ショットキ層16にショットキ接触するゲート電極21に印加する電圧を制御することにより、ソース電極20aとドレイン電極20bとの間を流れるキャリア(2次元電子ガス)を制御している。   3A and 3B are a plan view (FIG. 3a) and a cross-sectional view of a nitride semiconductor device made of a conventional group III-V nitride semiconductor (FIG. FIG. 3c shows a cross-sectional view of the BB ′ plane). The nitride semiconductor device shown in FIG. 3 has a so-called HEMT structure, on a substrate 11 made of silicon carbide (SiC), a buffer layer 12 made of aluminum nitride (AlN), and a channel layer 13 made of gallium nitride (GaN). The channel layer 13 has a structure in which a spacer layer 14 made of non-doped aluminum gallium nitride (AlGaN), a carrier supply layer 15 made of n-type aluminum gallium nitride, and a Schottky layer 16 made of non-doped aluminum gallium nitride are sequentially laminated. In the vicinity of the heterojunction interface consisting of the spacer layer 14, a two-dimensional electron gas layer consisting of a potential well and having extremely high electron mobility is formed. In the nitride semiconductor device having such a structure, the carrier (two-dimensional electron gas) flowing between the source electrode 20a and the drain electrode 20b is controlled by controlling the voltage applied to the gate electrode 21 in Schottky contact with the Schottky layer 16. Is controlling.

このような窒化物半導体装置の素子分離は、窒化物半導体装置形成領域を区画する領域の半導体層をドライエッチング法による除去し、凹部22を形成することで行われる(図3a、図3b)。このような構造では、ゲート電極21は凹部22の段差を横切り、パッド等の引き出し部は、凹部22の底面部に形成される構造となっていた(図3c)。このように凹部22を形成する構造の素子分離方法は、メサ構造と呼ばれるもので、この種の半導体装置の製造工程において、慣用的に行われている方法である。   Such element isolation of the nitride semiconductor device is performed by removing a semiconductor layer in a region partitioning the nitride semiconductor device formation region by a dry etching method to form a recess 22 (FIGS. 3a and 3b). In such a structure, the gate electrode 21 crosses the level difference of the concave portion 22, and a lead portion such as a pad is formed on the bottom surface portion of the concave portion 22 (FIG. 3c). The element isolation method having the structure in which the concave portion 22 is formed in this way is called a mesa structure, and is a method conventionally used in the manufacturing process of this type of semiconductor device.

また、エッチングの代わりに、例えば窒素イオンを加速エネルギー20keV、100keV、ドーズ量がいずれも1×1014cm-2として、二重にイオン注入することにより、シート抵抗が1×108Ω/□の素子分離領域を形成することにより、プレーナー構造の素子分離を行う方法が報告されている(非特許文献1)。
中山他、「フィールドプレートを有する高耐圧・高出力AlGaN/GaNリセスゲートFET」、電子情報通信学会技術研究報告、社団法人電子通信学会、2004年1月12日、Vol.103、No.558、p.57〜62
Further, instead of etching, for example, nitrogen ions are accelerated at 20 keV, 100 keV, and the dose amount is 1 × 10 14 cm −2 , so that the sheet resistance is 1 × 10 8 Ω / □. A method of isolating a planar structure by forming the element isolation region is reported (Non-Patent Document 1).
Nakayama et al., “High Voltage / High Output AlGaN / GaN Recessed Gate FET with Field Plate”, IEICE Technical Report, IEICE, January 12, 2004, Vol. 103, no. 558, p. 57-62

このような従来のメサ構造の素子分離では、ゲート電極をリフトオフ法で形成する場合、少なくとも凹部22の段差以上の膜厚のホトレジストを形成する必要があり、ゲート長の短いゲート電極を形成することができないという問題があった。   In such conventional mesa structure element isolation, when the gate electrode is formed by the lift-off method, it is necessary to form a photoresist having a film thickness that is at least as large as the step of the recess 22 and to form a gate electrode having a short gate length. There was a problem that could not.

また、従来報告されているプレーナー構造の素子分離において、さらにゲート電極のリーク電流を低減するため、シート抵抗の大きい素子分離領域を形成する必要があった。   Further, in the element isolation of the planar structure reported so far, it has been necessary to form an element isolation region having a large sheet resistance in order to further reduce the leakage current of the gate electrode.

本発明は上記問題を解消し、プレーナー構造で、かつ高抵抗の素子分離が可能な窒化物半導体装置及びその製造方法を提供することを目的とする。   SUMMARY OF THE INVENTION An object of the present invention is to provide a nitride semiconductor device that solves the above problems and has a planar structure and enables high-resistance element isolation, and a method for manufacturing the same.

上記目的を達成するため、本願請求項1に係る発明は、ガリウム、アルミニウム、ホウ素及びインジウムからなる群のうち少なくとも1つからなるIII族元素と、窒素、リン及び砒素からなる群のうちの少なくとも窒素を含むV族元素で構成されたIII−V族窒化物半導体層からなる窒化物半導体装置の製造方法において、基板上に、前記III−V族窒化物半導体層からなる窒化物半導体層を形成する工程と、該窒化物半導体層表面の前記窒化物半導体装置形成領域を区画する領域に、鉄、炭素、亜鉛あるいはマグネシウムの少なくとも1つを不純物として含む被覆膜を形成した後、加熱処理を行い、前記窒化物半導体層中に前記不純物を拡散させ、前記窒化物半導体装置の素子分離領域を形成する工程と、前記被覆膜を除去し、前記窒化物半導体装置形成領域を露出する工程とを含むことを特徴とするものである。   In order to achieve the above object, the invention according to claim 1 of the present application provides at least one group III element consisting of at least one of the group consisting of gallium, aluminum, boron and indium, and at least one of the group consisting of nitrogen, phosphorus and arsenic. In a method of manufacturing a nitride semiconductor device including a group III-V nitride semiconductor layer composed of a group V element containing nitrogen, the nitride semiconductor layer including the group III-V nitride semiconductor layer is formed on a substrate. And forming a coating film containing at least one of iron, carbon, zinc or magnesium as an impurity in a region defining the nitride semiconductor device formation region on the surface of the nitride semiconductor layer, and then performing a heat treatment. Performing a step of diffusing the impurity in the nitride semiconductor layer to form an element isolation region of the nitride semiconductor device; removing the coating film; and It is characterized in that a step of exposing a location formation region.

本願請求項2に係る発明は、請求項1記載の窒化物半導体装置の製造方法において、前記窒化物半導体装置形成領域の前記窒化物半導体層表面に、前記窒化物半導体装置形成領域を被覆し、該窒化物半導体装置形成領域を区画する領域を露出するようにマスク材をパターニングし、該マスク材及び露出する前記窒化物半導体層表面に、前記被覆膜を形成する工程を含むことを特徴とするものである。   The invention according to claim 2 of the present application is the method for manufacturing a nitride semiconductor device according to claim 1, wherein the nitride semiconductor device formation region is covered on the surface of the nitride semiconductor layer of the nitride semiconductor device formation region, And a step of patterning a mask material so as to expose a region defining the nitride semiconductor device forming region, and forming the coating film on the mask material and the exposed surface of the nitride semiconductor layer. To do.

請求項3に係る発明は、請求項1または請求項2いずれか記載の窒化物半導体装置の製造方法において、前記被覆膜としてSOG膜を用いることを特徴とするものである。   The invention according to claim 3 is the nitride semiconductor device manufacturing method according to claim 1 or 2, wherein an SOG film is used as the coating film.

本発明の製造方法によれば、被覆膜から鉄、炭素、亜鉛あるいはマグネシウムの少なくとも1つを不純物として窒化物半導体層に熱拡散させて素子分離領域とすることで、素子分離領域のシート抵抗が1×109Ω/□以上となり、従来よりリーク電流を低減することができる。特に、素子分離領域にゲート電極が形成される構造の半導体装置では、ゲート電極からのリーク電流を少なくすることができる。 According to the manufacturing method of the present invention, the element isolation region is formed by thermally diffusing from the coating film into the nitride semiconductor layer using at least one of iron, carbon, zinc, and magnesium as an impurity, thereby forming the element isolation region. Is 1 × 10 9 Ω / □ or more, and the leakage current can be reduced as compared with the prior art. In particular, in a semiconductor device having a structure in which a gate electrode is formed in the element isolation region, leakage current from the gate electrode can be reduced.

また本発明の製造方法は、通常の窒化物半導体装置の製造工程に従う、マスク膜のパターニング、SOG膜の形成、加熱処理など、通常の製造工程のみで構成されるため、製造工程の制御性が良く、素子分離特性の優れた窒化物半導体装置を歩留まり良く製造することができる。   In addition, since the manufacturing method of the present invention includes only normal manufacturing processes such as mask film patterning, SOG film formation, and heat treatment according to a normal nitride semiconductor device manufacturing process, the controllability of the manufacturing process is improved. In addition, a nitride semiconductor device having excellent element isolation characteristics can be manufactured with a high yield.

以下、本発明の窒化物半導体装置について、主に不純物として鉄をドーピングする場合を例にとり、その製造工程に従い、説明する。   Hereinafter, the nitride semiconductor device of the present invention will be described in accordance with its manufacturing process, taking as an example a case where iron is mainly doped as an impurity.

本発明について、III−V族窒化物半導体層からなる窒化物半導体装置であるHEMTを例にとり、製造工程に従い、詳細に説明する。図1は本発明により形成した窒化物半導体装置の平面図(図1a)及び断面図(図1aのA−A’面の断面図を図1bに示し、図1aのB−B’面の断面図を図1cに示す)である。図2は、本発明の窒化物半導体装置の製造工程を示している。   The present invention will be described in detail according to a manufacturing process, taking as an example a HEMT which is a nitride semiconductor device composed of a III-V group nitride semiconductor layer. FIG. 1 is a plan view (FIG. 1a) and a sectional view of a nitride semiconductor device formed according to the present invention (a sectional view taken along the line AA 'in FIG. 1a is shown in FIG. 1b, and a sectional view taken along the line BB' in FIG. 1a). The figure is shown in FIG. 1c). FIG. 2 shows a manufacturing process of the nitride semiconductor device of the present invention.

まず、図2(a)に示すように炭化珪素(SiC)からなる基板11上に、厚さ200nm程度の窒化アルミニウム(AlN)からなるバッファ層12、厚さ2.5μmのノンドープ窒化ガリウム(GaN)からなるチャネル層13、厚さ7nmのノンドープの窒化アルミニウムガリウム(AlGaN)からなるスペーサ層14、厚さ15nmのn型窒化アルミニウムガリウムからなるキャリア供給層15、厚さ3nmのノンドープの窒化アルミニウムガリウムからなるショットキ層16が順次積層された構造の半導体基板を用意する。ここで、窒化物半導体層は、通常のMOCVD(有機金属化学的気相堆積)法あるいはMBE(分子線ビームエピタキシャル)法で成長させることができる。   First, as shown in FIG. 2A, on a substrate 11 made of silicon carbide (SiC), a buffer layer 12 made of aluminum nitride (AlN) having a thickness of about 200 nm, and a non-doped gallium nitride (GaN having a thickness of 2.5 μm). ), A spacer layer 14 made of undoped aluminum gallium nitride (AlGaN) having a thickness of 7 nm, a carrier supply layer 15 made of n-type aluminum gallium nitride having a thickness of 15 nm, and an undoped aluminum gallium nitride having a thickness of 3 nm. A semiconductor substrate having a structure in which the Schottky layers 16 are sequentially stacked is prepared. Here, the nitride semiconductor layer can be grown by an ordinary MOCVD (metal organic chemical vapor deposition) method or MBE (molecular beam epitaxial) method.

次に窒化物半導体装置の形成予定領域を覆うように、鉄の拡散マスクとなる酸化シリコン膜17をパターニングする。次に、ショットキ層16及び酸化シリコン膜17表面に、鉄化合物を添加したSOG(スピンオングラス)膜18(被覆膜)を形成する。具体的には、シラノール化合物(RnSi(OH)4-n)を含む有機溶剤(例えば、東京応化社製OCDtype−1)100mlに対し、鉄化合物(Fe(NO3)・9H2O)を1g添加した溶液を用意し、ショットキ層16及び酸化シリコン膜17上に回転塗布する。これを焼成してSOG膜18を形成する。その後加熱処理することで、SOG膜18に添加されている鉄(Fe)を拡散させ、鉄(Fe)が拡散した窒化ガリウム層、つまり鉄ドープ層19を形成する。この鉄ドープ層19は、高い絶縁性(シート抵抗が1×109Ω/□以上)を示し、SOG膜18を除去した表面は、HEMT形成領域と同一面となる(図2c)。 Next, the silicon oxide film 17 serving as an iron diffusion mask is patterned so as to cover the region where the nitride semiconductor device is to be formed. Next, an SOG (spin-on-glass) film 18 (coating film) to which an iron compound is added is formed on the surfaces of the Schottky layer 16 and the silicon oxide film 17. Specifically, an iron compound (Fe (NO 3 ) · 9H 2 O) with respect to 100 ml of an organic solvent containing a silanol compound (R n Si (OH) 4-n ) (for example, OCDtype-1 manufactured by Tokyo Ohka Kogyo Co., Ltd.) A solution with 1 g added is prepared and spin-coated on the Schottky layer 16 and the silicon oxide film 17. This is fired to form the SOG film 18. Thereafter, heat treatment is performed to diffuse iron (Fe) added to the SOG film 18 to form a gallium nitride layer in which iron (Fe) is diffused, that is, an iron-doped layer 19. The iron-doped layer 19 exhibits high insulation (sheet resistance is 1 × 10 9 Ω / □ or more), and the surface from which the SOG film 18 is removed is the same surface as the HEMT formation region (FIG. 2c).

次に、酸化シリコン膜17を除去し、露出したショットキ層16上にチタン(Ti)/アルミニウム(Al)の積層体等からなるソース電極20a、ドレイン電極20bをパターン形成し、800℃、30秒の急速加熱処理によりオーミック接触を形成した後、ニッケル(Ni)/金(Au)の積層体等からなるゲート電極21をパターン形成し、ショットキ層16との間にショットキ接触を形成する(図2d)。以下、通常の製造工程により、HEMTを形成することができる。   Next, the silicon oxide film 17 is removed, and a source electrode 20a and a drain electrode 20b made of a laminate of titanium (Ti) / aluminum (Al) or the like are formed on the exposed Schottky layer 16, and patterned at 800 ° C. for 30 seconds. After the ohmic contact is formed by the rapid heating process, a gate electrode 21 made of a nickel (Ni) / gold (Au) laminate or the like is patterned to form a Schottky contact with the Schottky layer 16 (FIG. 2d). ). Hereinafter, the HEMT can be formed by a normal manufacturing process.

このようにして形成した窒化物半導体装置は、高い絶縁性の鉄ドープ層19を備えたプレーナー構造となり(図1c)、ゲート電極の段間切れを心配することがないので、製造工程の歩留まりや信頼性が向上する。   The nitride semiconductor device formed in this way has a planar structure with a highly insulating iron-doped layer 19 (FIG. 1c), and there is no concern about gate electrode breakage. Reliability is improved.

また、そのシート抵抗は、1×109Ω/□以上となり、従来提案されていたイオン注入法より、10倍以上大きなシート抵抗の素子分離領域を形成することができる。 Further, the sheet resistance is 1 × 10 9 Ω / □ or more, and an element isolation region having a sheet resistance 10 times or more larger than that of the conventionally proposed ion implantation method can be formed.

なお本発明では、拡散マスクとして酸化シリコン膜17を使用したが、拡散マスクとなり、窒化物半導体装置形成領域に鉄を拡散させず、除去可能な材料であれば、これに限定されることはない。同様に被覆膜としてSOG膜19を使用したが、鉄(Fe)を不純物として含み、加熱処理することにより、その鉄を窒化物半導体層に拡散させることができる膜であれば、これに限定されることはない。さらにパターニングすることができる被覆膜を用いると、素子分離領域を被覆するように被覆膜をパターニングした後、加熱処理を行うことができ、拡散マスクの形成が不要となる。   In the present invention, the silicon oxide film 17 is used as a diffusion mask. However, the present invention is not limited to this as long as it becomes a diffusion mask and can be removed without diffusing iron in the nitride semiconductor device formation region. . Similarly, the SOG film 19 is used as the coating film, but it is limited to this as long as the film contains iron (Fe) as an impurity and can diffuse the iron into the nitride semiconductor layer by heat treatment. It will never be done. When a coating film that can be further patterned is used, after the coating film is patterned so as to cover the element isolation region, heat treatment can be performed, and the formation of a diffusion mask becomes unnecessary.

以上、不純物として鉄(Fe)を熱拡散させる場合について詳細に説明したが、本発明は、鉄(Fe)の他、炭素(C)、亜鉛(Zn)、マグネシウム(Mg)を熱拡散させることもできる。これらの不純物を熱拡散する場合には、周知の製造方法に従い、加熱処理することにより、被覆膜中に含まれる上記不純物を窒化物半導体層に拡散させればよい。たとえば、SOG膜を用いて亜鉛(Zn)、マグネシウム(Mg)を拡散させる場合には、シラノール化合物(RnSi(OH)4-n)を含む有機溶剤にこれらの金属化合物を添加した溶液を用意し、半導体層上に回転塗布した後、焼成して被覆膜形成することができる。 As described above, the case of thermally diffusing iron (Fe) as an impurity has been described in detail, but the present invention thermally diffuses carbon (C), zinc (Zn), and magnesium (Mg) in addition to iron (Fe). You can also. In the case of thermally diffusing these impurities, the impurities contained in the coating film may be diffused into the nitride semiconductor layer by heat treatment according to a known manufacturing method. For example, zinc using an SOG film (Zn), in the case of diffusing magnesium (Mg) is a solution obtained by addition of these metal compounds in an organic solvent containing a silanol compound (R n Si (OH) 4 -n) After preparing and spin-coating on the semiconductor layer, it can be baked to form a coating film.

本発明により形成された窒化物半導体装置の説明図で、(a)は平面図を、(b)及び(c)は断面図を示している。BRIEF DESCRIPTION OF THE DRAWINGS It is explanatory drawing of the nitride semiconductor device formed by this invention, (a) is a top view, (b) And (c) has shown sectional drawing. 本発明の窒化物半導体装置の製造方法の説明図である。It is explanatory drawing of the manufacturing method of the nitride semiconductor device of this invention. 従来のこの種の窒化物半導体装置の説明図で、(a)は平面図を、(b)及び(c)は断面図を示している。It is explanatory drawing of this kind of conventional nitride semiconductor device, (a) is a top view, (b) And (c) has shown sectional drawing.

符号の説明Explanation of symbols

11;基板、12;バッファ層、13;チャネル層、14;スペーサ層、
15;キャリア供給層、16;ショットキ層、17;酸化シリコン膜、18;SOG膜、
19;鉄ドープ層、20a;ソース電極、20b;ドレイン電極、21;ゲート電極、
22;凹部
11; substrate; 12; buffer layer; 13; channel layer; 14; spacer layer;
15; carrier supply layer, 16; Schottky layer, 17; silicon oxide film, 18; SOG film,
19; iron doped layer, 20a; source electrode, 20b; drain electrode, 21; gate electrode,
22; recess

Claims (3)

ガリウム、アルミニウム、ホウ素及びインジウムからなる群のうち少なくとも1つからなるIII族元素と、窒素、リン及び砒素からなる群のうちの少なくとも窒素を含むV族元素で構成されたIII−V族窒化物半導体層からなる窒化物半導体装置の製造方法において、
基板上に、前記III−V族窒化物半導体層からなる窒化物半導体層を形成する工程と、
該窒化物半導体層表面の前記窒化物半導体装置形成領域を区画する領域に、鉄、炭素、亜鉛あるいはマグネシウムの少なくとも1つを不純物として含む被覆膜を形成した後、加熱処理を行い、前記窒化物半導体層中に前記不純物を拡散させ、前記窒化物半導体装置の素子分離領域を形成する工程と、
前記被覆膜を除去し、前記窒化物半導体装置形成領域を露出する工程とを含むことを特徴とする窒化物半導体装置の製造方法。
Group III-V nitride composed of a group III element consisting of at least one of the group consisting of gallium, aluminum, boron and indium and a group V element containing at least nitrogen from the group consisting of nitrogen, phosphorus and arsenic In a method for manufacturing a nitride semiconductor device comprising a semiconductor layer,
Forming a nitride semiconductor layer comprising the group III-V nitride semiconductor layer on a substrate;
A coating film containing at least one of iron, carbon, zinc, and magnesium as an impurity is formed in a region defining the nitride semiconductor device formation region on the surface of the nitride semiconductor layer, and then heat treatment is performed, and the nitridation is performed. Diffusing the impurities in the oxide semiconductor layer to form an element isolation region of the nitride semiconductor device;
Removing the coating film and exposing the nitride semiconductor device formation region. A method of manufacturing a nitride semiconductor device, comprising:
請求項1記載の窒化物半導体装置の製造方法において、
前記窒化物半導体装置形成領域の前記窒化物半導体層表面に、前記窒化物半導体装置形成領域を被覆し、該窒化物半導体装置形成領域を区画する領域を露出するようにマスク材をパターニングし、該マスク材及び露出する前記窒化物半導体層表面に、前記被覆膜を形成する工程を含むことを特徴とする窒化物半導体装置の製造方法。
In the manufacturing method of the nitride semiconductor device according to claim 1,
A surface of the nitride semiconductor layer in the nitride semiconductor device formation region is covered with the nitride semiconductor device formation region, and a mask material is patterned so as to expose a region partitioning the nitride semiconductor device formation region, A method of manufacturing a nitride semiconductor device, comprising: forming a covering film on a mask material and the exposed surface of the nitride semiconductor layer.
請求項1または請求項2いずれか記載の窒化物半導体装置の製造方法において、
前記被覆膜としてSOG膜を用いることを特徴とする窒化物半導体装置の製造方法。
In the manufacturing method of the nitride semiconductor device according to claim 1 or 2,
A method of manufacturing a nitride semiconductor device, wherein an SOG film is used as the covering film.
JP2004355368A 2004-10-26 2004-12-08 Method for manufacturing nitride semiconductor device Pending JP2006156914A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004355368A JP2006156914A (en) 2004-10-26 2004-12-08 Method for manufacturing nitride semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004311022 2004-10-26
JP2004355368A JP2006156914A (en) 2004-10-26 2004-12-08 Method for manufacturing nitride semiconductor device

Publications (1)

Publication Number Publication Date
JP2006156914A true JP2006156914A (en) 2006-06-15

Family

ID=36634775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004355368A Pending JP2006156914A (en) 2004-10-26 2004-12-08 Method for manufacturing nitride semiconductor device

Country Status (1)

Country Link
JP (1) JP2006156914A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010062320A (en) * 2008-09-03 2010-03-18 Toshiba Corp Semiconductor device and fabrication method for the same
JP2010062321A (en) * 2008-09-03 2010-03-18 Toshiba Corp Semiconductor device and fabrication method for the same
US8133776B2 (en) 2008-09-03 2012-03-13 Kabushiki Kaisha Toshiba Semiconductor device and fabrication method for the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03286567A (en) * 1990-04-03 1991-12-17 Ricoh Co Ltd Semiconductor device and its manufacture
JPH1154792A (en) * 1997-07-30 1999-02-26 Oki Electric Ind Co Ltd Element isolation structure, element isolation method and light emitting element array
JP2004095640A (en) * 2002-08-29 2004-03-25 Mitsubishi Electric Corp Semiconductor device and its manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03286567A (en) * 1990-04-03 1991-12-17 Ricoh Co Ltd Semiconductor device and its manufacture
JPH1154792A (en) * 1997-07-30 1999-02-26 Oki Electric Ind Co Ltd Element isolation structure, element isolation method and light emitting element array
JP2004095640A (en) * 2002-08-29 2004-03-25 Mitsubishi Electric Corp Semiconductor device and its manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010062320A (en) * 2008-09-03 2010-03-18 Toshiba Corp Semiconductor device and fabrication method for the same
JP2010062321A (en) * 2008-09-03 2010-03-18 Toshiba Corp Semiconductor device and fabrication method for the same
US8133776B2 (en) 2008-09-03 2012-03-13 Kabushiki Kaisha Toshiba Semiconductor device and fabrication method for the same
US8445341B2 (en) 2008-09-03 2013-05-21 Kabushiki Kaisha Toshiba Semiconductor device and fabrication method for the same

Similar Documents

Publication Publication Date Title
KR101910973B1 (en) High hlectron mobility transistor and method of manufacturing the same
CN209747521U (en) High electron mobility transistor
US6329677B1 (en) Field effect transistor
JP6627408B2 (en) Semiconductor device and method of manufacturing semiconductor device
JP2009283915A (en) Semiconductor device including shallow ion-implanted region and method for manufacturing the same
JP2008235613A (en) Semiconductor device
CN105814673B (en) Semiconductor device and its manufacturing method
JP2006222160A (en) Field effect transistor and its manufacturing method
CN1638143A (en) Field effect transistor and method of manufacturing the same
TW201216472A (en) Compound semiconductor device
US20080090395A1 (en) Method for producing p-type group III nitride semiconductor and method for producing electrode for p-type group III nitride semiconductor
CN101621079B (en) Field effect transistor, method of manufacturing the same, and semiconductor device
TWI235436B (en) Semiconductor device and manufacturing method for the same
CN112289683B (en) High electron mobility transistor and method for manufacturing the same
JP2010503994A (en) Field effect heterostructure transistor
CN110459473B (en) Semiconductor device and method for manufacturing the same
CN219832664U (en) A high-performance p-GaN gate enhancement mode transistor based on oxygen treatment
CN111712925B (en) Semiconductor device with a semiconductor device having a plurality of semiconductor chips
JP2006156914A (en) Method for manufacturing nitride semiconductor device
US20150091021A1 (en) Method of Manufacturing Semiconductor Device and the Semiconductor Device
JP2010080493A (en) Nitride semiconductor device, and method of manufacturing the same
JP4850410B2 (en) Nitride semiconductor device and manufacturing method thereof
JP5087235B2 (en) Manufacturing method of nitride semiconductor device
JP2006135274A (en) Nitride semiconductor device and its manufacturing method
JP4869585B2 (en) Manufacturing method of nitride semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110510

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111011