[go: up one dir, main page]

JP2006156585A - Submount and electronic device using the same - Google Patents

Submount and electronic device using the same Download PDF

Info

Publication number
JP2006156585A
JP2006156585A JP2004342838A JP2004342838A JP2006156585A JP 2006156585 A JP2006156585 A JP 2006156585A JP 2004342838 A JP2004342838 A JP 2004342838A JP 2004342838 A JP2004342838 A JP 2004342838A JP 2006156585 A JP2006156585 A JP 2006156585A
Authority
JP
Japan
Prior art keywords
submount
insulating substrate
line conductor
optical semiconductor
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004342838A
Other languages
Japanese (ja)
Inventor
Hideya Minazu
秀也 水津
Reiji Matsushita
玲治 松下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2004342838A priority Critical patent/JP2006156585A/en
Publication of JP2006156585A publication Critical patent/JP2006156585A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

【課題】 高周波信号の良好な伝送特性、且つ遮熱特性が得られるサブマウントを提供すること。
【解決手段】 矩形状をなす絶縁基板1の一主面に高周波線路導体3を被着させるとともに、線路導体3の上面に絶縁基板1の一端側で外部電子素子に接続される接続部を、接続部よりも他端側に外部電子素子と信号の授受を行なう内部電子素子が実装される実装部を設けてなるサブマウントにおいて、接続部の直下に、絶縁基板1の少なくとも一端側側面を介して外気に通じる切り込み4が形成されている。
【選択図】 図1
PROBLEM TO BE SOLVED: To provide a submount capable of obtaining a good transmission characteristic of a high frequency signal and a heat shielding characteristic.
A high-frequency line conductor is attached to one main surface of a rectangular insulating substrate, and a connection portion connected to an external electronic element on one end side of the insulating substrate is formed on the upper surface of the line conductor. In a submount in which a mounting portion on which an internal electronic element that exchanges signals with an external electronic element is mounted on the other end side than the connection portion is provided directly below the connection portion via at least one side surface of the insulating substrate 1. A notch 4 is formed to communicate with the outside air.
[Selection] Figure 1

Description

本発明は光通信分野等で用いられる、面発光半導体レーザ等に代表される半導体レーザ素子(LD:レーザダイオード)等の電子素子を搭載するためのサブマウントおよびそれを用いた電子装置に関する。   The present invention relates to a submount for mounting an electronic element such as a semiconductor laser element (LD: laser diode) typified by a surface emitting semiconductor laser used in the field of optical communication and the like, and an electronic apparatus using the submount.

光通信分野では従来より、伝送された電気信号を光信号に変換して、光ファイバ等へ伝送させるために光半導体装置が用いられてきた。このような光半導体装置は2.5G(ギガ)ビット/秒(2.5Gbps)あるいはこれを超えるデータ通信のビットレートをもつものが広く用いられており、このような光半導体装置の断面図を図3に、光半導体装置に搭載される従来のサブマウントの斜視図を図4に示す。また、光半導体装置の部分斜視図を図5に示す。   Conventionally, in the optical communication field, an optical semiconductor device has been used to convert a transmitted electrical signal into an optical signal and transmit it to an optical fiber or the like. Such optical semiconductor devices having a data communication bit rate of 2.5 G (giga) bits / second (2.5 Gbps) or higher are widely used. A cross-sectional view of such an optical semiconductor device is shown in FIG. FIG. 4 is a perspective view of a conventional submount mounted on the optical semiconductor device. FIG. 5 is a partial perspective view of the optical semiconductor device.

光半導体装置101を構成する光半導体素子収納パッケージ(以下、光半導体パッケージともいう)102は、主として、基体105と、枠体109と、蓋体110とから構成されており、この光半導体パッケージ102の内部に光半導体素子103等を収納するとともに、枠体109の側面に光ファイバ108等を取着することにより光半導体装置101となる。   An optical semiconductor element housing package (hereinafter also referred to as an optical semiconductor package) 102 constituting the optical semiconductor device 101 is mainly composed of a base body 105, a frame body 109, and a lid body 110. The optical semiconductor package 102 The optical semiconductor element 103 and the like are housed inside, and the optical fiber 108 and the like are attached to the side surface of the frame 109, whereby the optical semiconductor device 101 is obtained.

以下、従来のサブマウント104を図3に、サブマウントを搭載した光半導体装置101を図4および図5に基づいて説明する。   A conventional submount 104 will be described below with reference to FIG. 3, and an optical semiconductor device 101 on which the submount is mounted will be described with reference to FIGS.

基体105上面の中央部に位置する搭載部105aには、サブマウント104等がTEC(サーモエレクトリッククーラー)106を介して載置されている。そして、サブマウント104の上面の素子搭載部104aに光半導体素子103が搭載されている。さらに、光半導体素子103の発光面側には、発光した光を光ファイバ108へ集光するレンズ107がTEC上に載置されている。   A submount 104 and the like are placed on a mounting portion 105 a located at the center of the upper surface of the base 105 via a TEC (thermoelectric cooler) 106. The optical semiconductor element 103 is mounted on the element mounting portion 104a on the upper surface of the submount 104. Further, on the light emitting surface side of the optical semiconductor element 103, a lens 107 for condensing the emitted light onto the optical fiber 108 is placed on the TEC.

また、基体105の上面外周部には、搭載部105aを取り囲むように枠体109がろう材や接着材を介して取着されている。さらに、枠体109は、光半導体素子103がレンズ107を介して対向する側部に、光ファイバ108を挿入するための貫通孔109aを有しており、この貫通孔109aには光ファイバ108を固定するための筒状の固定部材111が挿着されている。   In addition, a frame body 109 is attached to the outer peripheral portion of the upper surface of the base body 105 via a brazing material or an adhesive so as to surround the mounting portion 105a. Further, the frame 109 has a through hole 109a for inserting the optical fiber 108 on a side portion where the optical semiconductor element 103 faces through the lens 107. The optical fiber 108 is inserted into the through hole 109a. A cylindrical fixing member 111 for fixing is inserted.

また、光半導体素子103の各電極をボンディングワイヤを介して、枠体109の側部に設けられたセラミック端子121の線路導体に接続して、光半導体素子103の各電極を外部リード端子に電気的に接続する。また特に光半導体素子103へE/O(電気信号−光信号)変換する高周波信号が伝送される高周波線路導体には枠体109の側部に設けられたコネクタ端子122に接続基板123等を介して電気的に接続する場合もある。そして、枠体109の上面にろう材や接着材を介して蓋体110を取着し、基体105と枠体109と蓋体110とから成る容器内部に光半導体素子103を収容し、最後に、固定部材111に、光ファイバ108の端部に取着されたフランジ(図示せず)をレーザ溶接によって接合し、光ファイバ108を枠体109に固定することによって光半導体装置101となる。   In addition, each electrode of the optical semiconductor element 103 is connected to a line conductor of the ceramic terminal 121 provided on the side portion of the frame 109 via a bonding wire, and each electrode of the optical semiconductor element 103 is electrically connected to an external lead terminal. Connect. In particular, a high-frequency line conductor through which a high-frequency signal for E / O (electrical signal-optical signal) conversion is transmitted to the optical semiconductor element 103 is connected to a connector terminal 122 provided on the side of the frame 109 via a connection substrate 123 or the like. May be electrically connected. Then, the lid body 110 is attached to the upper surface of the frame body 109 via a brazing material or an adhesive, and the optical semiconductor element 103 is accommodated inside the container composed of the base body 105, the frame body 109, and the lid body 110. Then, a flange (not shown) attached to the end of the optical fiber 108 is joined to the fixing member 111 by laser welding, and the optical fiber 108 is fixed to the frame 109, whereby the optical semiconductor device 101 is obtained.

このような光半導体装置101は、外部電気回路から外部リード端子を介して供給される駆動信号によって光半導体素子103に光を励起させ、この励起された光を光ファイバ108を介して外部に伝達することによって高速光通信等に使用される。そして近年、このような光半導体装置101に対して、2.5Gbps以上での良好な高周波特性,小型化,低背化および低コスト化等が益々要求されてきている。   Such an optical semiconductor device 101 excites light to the optical semiconductor element 103 by a drive signal supplied from an external electric circuit via an external lead terminal, and transmits the excited light to the outside via an optical fiber 108. By doing so, it is used for high-speed optical communication. In recent years, such an optical semiconductor device 101 has been increasingly required to have good high-frequency characteristics at 2.5 Gbps or more, miniaturization, low profile, low cost, and the like.

なお、サブマウント104は、図4に斜視図で示すように、セラミック絶縁基板の上面に素子搭載部104aが設けられており、素子搭載部104aに搭載された光半導体素子103へE/O(電気信号−光信号)変換する高周波信号が伝送される。そして、サブマウント104上面に配設された高周波線路導体104bは、光半導体装置101の枠体109の側部に設けられたセラミック端子121の線路導体、もしくはコネクタ端子122に接続基板123等を介して電気的に接続されている。
特開2004-282027号公報
As shown in the perspective view of FIG. 4, the submount 104 is provided with an element mounting portion 104a on the upper surface of the ceramic insulating substrate, and the optical semiconductor element 103 mounted on the element mounting portion 104a is connected to the E / O ( A high frequency signal to be converted is transmitted. The high-frequency line conductor 104b disposed on the upper surface of the submount 104 is connected to the line conductor of the ceramic terminal 121 provided on the side of the frame 109 of the optical semiconductor device 101 or the connector terminal 122 via the connection substrate 123 or the like. Are electrically connected.
Japanese Patent Laid-Open No. 2004-282027

しかしながら、上述の光半導体装置101のように、枠体109の側部に設けられたセラミック端子121の線路導体、もしくはコネクタ端子122に接続基板123等を介した後に、サブマウント104の高周波線路導体104bを介して、光半導体素子103へ2.5Gbps以上の高周波信号を伝送する場合、次のような問題点を有していた。   However, like the above-described optical semiconductor device 101, the line conductor of the ceramic terminal 121 provided on the side portion of the frame body 109, or the high frequency line conductor of the submount 104 after the connector substrate 122 is passed through the connection substrate 123 or the like. When a high-frequency signal of 2.5 Gbps or higher is transmitted to the optical semiconductor element 103 via the 104b, there are the following problems.

すなわち、通常、セラミック端子121、コネクタ端子122、接続基板123および高周波線路導体104bは高周波信号が伝送されるため、高周波特性を良好に保つ様、インピーダンスの整合を確実に取るように設計されている。しかしながら、上述の高周波信号を伝送する際に、高周波信号の伝送源となる外部電気回路に実装された外部電子素子から発生する熱も一緒に、光半導体素子103に伝送される。このため、温度依存性の強い光半導体素子103の温度制御が困難となり、伝送された高周波電気信号を効率よく光信号へ変換することが困難であるという問題点を有していた。   That is, normally, the ceramic terminal 121, the connector terminal 122, the connection substrate 123, and the high-frequency line conductor 104b are designed to ensure impedance matching so as to maintain good high-frequency characteristics because high-frequency signals are transmitted. . However, when the above-described high-frequency signal is transmitted, heat generated from an external electronic element mounted on an external electric circuit serving as a high-frequency signal transmission source is also transmitted to the optical semiconductor element 103 together. For this reason, it is difficult to control the temperature of the optical semiconductor element 103 having a strong temperature dependence, and it is difficult to efficiently convert the transmitted high-frequency electric signal into an optical signal.

従って、外部電子素子からの熱を遮るために、セラミック端子121に低熱伝導率のセラミックスを用いることが考えられるが、光半導体素子収納パッケージ102の枠体109と低熱伝導率セラミックスの熱膨張係数の整合が取れなかったり、光半導体素子収納パッケージ102の気密性が確保できなかったりするという問題点を有していた。   Therefore, in order to block the heat from the external electronic element, it is conceivable to use a ceramic having low thermal conductivity for the ceramic terminal 121. However, the thermal expansion coefficient of the frame 109 of the optical semiconductor element storage package 102 and the low thermal conductivity ceramic is not considered. There is a problem that the alignment cannot be achieved and the airtightness of the optical semiconductor element storage package 102 cannot be ensured.

また、セラミック端子121やコネクタ端子122とサブマウントの間に介する接続基板123に低熱伝導率のセラミックスを用いることも考えられるが、サブマウントを形成する窒化アルミニウム等のセラミックスとの誘電率の違いより、インピーダンス整合をとっても、高周波線路導体とその両脇の接地導体との間隔や、高周波線路導体の幅を、極端に狭めたり広げたりする必要があり、高周波特性が最適となるサブマウントを形成することが困難であるという問題点を有していた。   It is also possible to use ceramics with low thermal conductivity for the connection substrate 123 interposed between the ceramic terminal 121 or the connector terminal 122 and the submount, but due to the difference in dielectric constant from ceramics such as aluminum nitride forming the submount. Even when impedance matching is performed, it is necessary to extremely narrow or widen the distance between the high-frequency line conductor and the ground conductors on both sides of the high-frequency line conductor and the width of the high-frequency line conductor to form a submount that optimizes high-frequency characteristics. It had the problem that it was difficult.

本発明は、かかる従来技術の問題点に鑑みて完成されたものであり、その目的は、2.5Gbpsあるいはこれを超える高周波信号の良好な伝送特性、且つ遮熱特性が得られるサブマウントを提供することにある。   The present invention has been completed in view of the problems of the prior art, and an object of the present invention is to provide a submount capable of obtaining good transmission characteristics and high heat shielding characteristics of high-frequency signals of 2.5 Gbps or higher. There is.

本発明のサブマウントは、矩形状をなす絶縁基板の一主面に高周波線路導体を被着させるとともに、該線路導体の上面に前記絶縁基板の一端側で外部電子素子に接続される接続部を、該接続部よりも他端側に前記外部電子素子と信号の授受を行なう内部電子素子が実装される実装部を設けてなるサブマウントにおいて、前記接続部の直下に、前記絶縁基板の少なくとも一端側側面を介して外気に通じる切り込みが、前記絶縁基板の厚み方向に間隙を形成するように設けられていることを特徴とするものである。   In the submount of the present invention, a high-frequency line conductor is attached to one main surface of a rectangular insulating substrate, and a connection portion connected to an external electronic element on one end side of the insulating substrate is provided on the upper surface of the line conductor. In a submount comprising a mounting portion on which an internal electronic element for exchanging signals with the external electronic element is mounted on the other end side of the connecting portion, at least one end of the insulating substrate is directly below the connecting portion. The notch which leads to outside air through the side surface is provided so as to form a gap in the thickness direction of the insulating substrate.

本発明のサブマウントにおいて好ましくは、前記切り込みに臨む前記絶縁基板の一主面側内面に、金属を主成分とする導体層が被着されていることを特徴とする。   The submount of the present invention is preferably characterized in that a conductor layer mainly composed of a metal is deposited on the inner surface of the main surface of the insulating substrate facing the notch.

本発明のサブマウントにおいて好ましくは、前記導体層が接地端子に電気的に接続されていることを特徴とする。   In the submount of the present invention, preferably, the conductor layer is electrically connected to a ground terminal.

本発明のサブマウントにおいて好ましくは、前記切り込みが前記絶縁基板の一主面と平行に形成されていることを特徴とする。   In the submount according to the present invention, preferably, the cut is formed in parallel with one main surface of the insulating substrate.

本発明の電子装置は、基体上に、上記本発明のサブマウントを搭載するとともに、前記サブマウントの実装部に光半導体素子を実装し、更に前記サブマウントを覆う蓋体を取着させてなることを特徴とする。   An electronic device according to the present invention includes the submount according to the present invention mounted on a base, an optical semiconductor element mounted on a mounting portion of the submount, and a lid covering the submount attached. It is characterized by that.

本発明のサブマウントは、矩形状をなす絶縁基板の一主面に高周波線路導体を被着させるとともに、線路導体の上面に絶縁基板の一端側で外部電子素子に接続される接続部を、接続部よりも他端側に外部電子素子と信号の授受を行なう内部電子素子が実装される実装部を設けてなるサブマウントにおいて、接続部の直下に、絶縁基板の少なくとも一端側側面を介して外気に通じる切り込みが、絶縁基板の厚み方向に間隙を形成するように設けられていることにより、サブマウントの表面積が大きくなって、高周波信号の伝送源となる外部電子素子から発生した熱がサブマウントに伝わっても、切り込みに臨む絶縁基板の表面から効率よく熱を放散できるようになる。その結果、光半導体素子の温度制御が容易となり、伝送された高周波電気信号を効率よく光信号へ変換することができる。   The submount of the present invention attaches a high-frequency line conductor to one main surface of a rectangular insulating substrate, and connects a connection portion connected to an external electronic element on one end side of the insulating substrate on the upper surface of the line conductor. In a submount comprising a mounting portion on which an internal electronic device for exchanging signals with an external electronic device is mounted on the other end side than the portion, outside air is provided directly below the connection portion via at least one side surface of the insulating substrate. Since the notch leading to the gap is formed so as to form a gap in the thickness direction of the insulating substrate, the surface area of the submount increases, and the heat generated from the external electronic element serving as the high-frequency signal transmission source is increased. Even if it is transmitted to the heat, it becomes possible to efficiently dissipate heat from the surface of the insulating substrate facing the cut. As a result, the temperature control of the optical semiconductor element is facilitated, and the transmitted high-frequency electrical signal can be efficiently converted into an optical signal.

また、このようにして外部電子素子で発生した熱を効率よく放散できるため、セラミック端子に低熱伝導率のセラミックスを用いる必要が無くなる。よって、光半導体素子収納パッケージの枠体と低熱伝導率のセラミックスの熱膨張係数の整合が取れなかったり、光半導体素子収納パッケージの気密性が確保できなかったりするという問題を回避できる。   Further, since heat generated in the external electronic element can be efficiently dissipated in this way, it is not necessary to use ceramics having low thermal conductivity for the ceramic terminal. Therefore, it is possible to avoid the problems that the thermal expansion coefficient of the frame of the optical semiconductor element storage package and the low thermal conductivity ceramic cannot be matched, and the airtightness of the optical semiconductor element storage package cannot be secured.

更には、セラミック端子やコネクタ端子とサブマウントの間に介する接続基板に低熱伝導率のセラミックスを用いる必要もなくなるため、インピーダンス整合時に、サブマウントを形成する窒化アルミニウム等のセラミックスとの誘電率の違いのために調節していた、高周波線路導体とその両脇の接地導体との間隔や、高周波線路導体の幅を、極端に狭めたり広げたりする必要がなくなり、高周波特性が最適となるサブマウントを形成できるようになる。   Furthermore, since it is not necessary to use ceramics with low thermal conductivity for the connection substrate between the ceramic terminal or connector terminal and the submount, the difference in dielectric constant from the ceramic such as aluminum nitride that forms the submount during impedance matching A submount that optimizes the high-frequency characteristics, eliminating the need to extremely narrow or widen the distance between the high-frequency line conductor and the ground conductors on both sides and the width of the high-frequency line conductor. It becomes possible to form.

また、この切り込みの幅を変えることで、線路導体と下部導体層とで形成された容量を容易に調節できるようになる。従って、切り込みの幅を変えることによっても、高周波線路導体とその両脇の接地導体との間隔や、高周波線路導体の幅を、極端に狭めたり広げたりする必要がなくなり、高周波特性が最適となるサブマウントを形成できるようになる。   In addition, by changing the width of the cut, the capacitance formed by the line conductor and the lower conductor layer can be easily adjusted. Therefore, even by changing the width of the cut, it is not necessary to extremely narrow or widen the distance between the high-frequency line conductor and the ground conductors on both sides thereof, or the width of the high-frequency line conductor, and the high-frequency characteristics are optimized. Submount can be formed.

本発明のサブマウントは、切り込みに臨む絶縁基板の一主面側内面に、金属を主成分とする導体層が被着されていることによって、この金属が放熱板としての役割を果たし、より良好に放熱することができる。   In the submount of the present invention, a conductive layer mainly composed of a metal is applied to the inner surface of the main surface of the insulating substrate facing the notch, so that the metal serves as a heat sink and is better. Can dissipate heat.

本発明のサブマウントは、導体層が接地端子に電気的に接続されていることにより、この導体層が接地導体として作用し、高周波線路導体とこの導体層間で容量をもつようになり、最適なサブマウントを光半導体装置に搭載できる。なぜなら、高周波線路導体と、その直下の接地導体との間隔を変えることで容量の調節が可能となるため、高周波線路導体とその両脇の接地導体との間隔や高周波線路導体の幅を極端に狭めたり広げたりする必要がないからである。   In the submount of the present invention, since the conductor layer is electrically connected to the ground terminal, the conductor layer acts as a ground conductor, and has a capacity between the high-frequency line conductor and the conductor layer. The submount can be mounted on the optical semiconductor device. Because the capacity can be adjusted by changing the distance between the high-frequency line conductor and the ground conductor directly below it, the distance between the high-frequency line conductor and the ground conductor on both sides and the width of the high-frequency line conductor are extremely limited. It is not necessary to narrow or widen.

本発明のサブマウントは、切り込みが絶縁基板の一主面と平行に形成されていることにより、良好なインピーダンス特性が得られる。これは、高周波線路導体のインピーダンス特性が線路幅だけでなく誘電体厚みにも左右されるためであり、例えば切り込みが絶縁基板の一主面(上面)と平行でない場合には、誘電体の厚みが位置により変動して、良好なインピーダンス特性が得られないが、切り込みを一主面と平行に形成することで、良好なインピーダンス特性が得られるようになる。   In the submount according to the present invention, the notch is formed in parallel with one main surface of the insulating substrate, so that good impedance characteristics can be obtained. This is because the impedance characteristic of the high-frequency line conductor depends not only on the line width but also on the dielectric thickness. For example, when the notch is not parallel to one main surface (upper surface) of the insulating substrate, the thickness of the dielectric The impedance varies depending on the position, and a good impedance characteristic cannot be obtained. However, a good impedance characteristic can be obtained by forming the cut parallel to one main surface.

本発明の電子装置は、基体上に、上記本発明のサブマウントを搭載するとともに、サブマウントの実装部に光半導体素子を実装し、更にサブマウントを覆う蓋体を取着させてなることにより、電子部品の放熱性に優れるとともに電子部品の動作信頼性の高いものとなる。   An electronic device according to the present invention includes the submount according to the present invention mounted on a base, an optical semiconductor element mounted on a mounting portion of the submount, and a lid covering the submount attached. The heat dissipation of the electronic component is excellent and the operation reliability of the electronic component is high.

次に、本発明のサブマウントを添付の図面に基づいて詳細に説明する。   Next, the submount of the present invention will be described in detail with reference to the accompanying drawings.

図1は、本発明のサブマウントの実施の形態の一例を示す斜視図である。そして、1は絶縁基板、2は素子搭載部、3は高周波線路導体、4は絶縁基板1の側面に形成した切り込み、5は切り込み4に形成した導体層であり、主にこれらで本発明のサブマウントが構成される。また、図2(a)〜(f)に本発明のサブマウントの各製造工程を示す。   FIG. 1 is a perspective view showing an example of an embodiment of a submount of the present invention. Reference numeral 1 denotes an insulating substrate, 2 denotes an element mounting portion, 3 denotes a high-frequency line conductor, 4 denotes a cut formed on the side surface of the insulating substrate 1, and 5 denotes a conductor layer formed in the cut 4, and these are mainly used in the present invention. A submount is configured. Moreover, each manufacturing process of the submount of this invention is shown to Fig.2 (a)-(f).

絶縁基板1は、光半導体素子を搭載する機能を有し、例えば、縦0.5〜5mm、横0.5〜5mm、高さ0.5〜5mm程度の直方体であり、酸化アルミニウム(Al)質焼結体や窒化アルミニウム(AlN)質焼結体,炭化珪素(SiC)質焼結体,窒化珪素(Si)質焼結体,ガラスセラミックス等のセラミックス、エポキシ樹脂やポリイミド樹脂,ポリイミドシロキサン樹脂等の樹脂を含む絶縁材料から成る。特に、熱伝導率が40W/m・K以上である材料、例えば窒化アルミニウム質焼結体,炭化珪素質焼結体,窒化珪素質焼結体等を用いると、光半導体素子が駆動時に発する熱を効率良く放散させることが好ましい。 The insulating substrate 1 has a function of mounting an optical semiconductor element, and is, for example, a rectangular parallelepiped having a length of about 0.5 to 5 mm, a width of 0.5 to 5 mm, and a height of about 0.5 to 5 mm, and sintered with aluminum oxide (Al 2 O 3 ). Body, aluminum nitride (AlN) sintered body, silicon carbide (SiC) sintered body, silicon nitride (Si 3 N 4 ) sintered body, ceramics such as glass ceramics, epoxy resin, polyimide resin, polyimide siloxane resin It consists of an insulating material containing resin. In particular, when a material having a thermal conductivity of 40 W / m · K or more, for example, an aluminum nitride sintered body, a silicon carbide sintered body, a silicon nitride sintered body, or the like is used, the heat generated by the optical semiconductor element when it is driven. Is preferably diffused efficiently.

絶縁基板1は、その一主面(上面)に光半導体素子が搭載される素子搭載部2、素子搭載部2と電気的に接続する高周波線路導体3が形成されている。素子搭載部2は光半導体素子を搭載する機能および電気的に接続する機能を、高周波線路導体3は素子搭載部2と外部高周波線路(図示せず)を電気的に接続する機能を有している。   The insulating substrate 1 has an element mounting part 2 on which an optical semiconductor element is mounted and a high-frequency line conductor 3 electrically connected to the element mounting part 2 on one main surface (upper surface). The element mounting portion 2 has a function of mounting an optical semiconductor element and a function of electrical connection, and the high frequency line conductor 3 has a function of electrically connecting the element mounting portion 2 and an external high frequency line (not shown). Yes.

また、絶縁基板1はその側面に切り込み4が、絶縁基板1の厚み方向に間隙を形成するように設けられており、この切り込み4によってサブマウントの表面積が大きくなって、高周波信号の伝送源となる外部電子素子から発生した熱がサブマウントに伝わっても、切り込み4に臨む絶縁基板1の表面から効率よく熱を放散できる。その結果、光半導体素子の温度制御が容易となり、伝送された高周波電気信号を効率よく光信号へ変換することができる。また、切り込み4が形成されることにより、高周波線路導体3と絶縁基板1の他主面(下面)に形成された下部導体層との容量が、(1)線路導体3と切り込み4との間の領域、(2)切り込み4の領域、(3)切り込み4と絶縁基板1の下面との間の領域、に分けられ、この切り込み4の幅を変えることで、線路導体3と下部導体層とで形成された容量を容易に調節できるようになる。このように容量調節が可能となるため、高周波線路導体3とその両脇の接地導体との間隔や、高周波線路導体3の幅を、極端に狭めたり広げたりすることなく、高周波特性が最適となるサブマウントを形成できるようになる。また特に切り込み4に臨む絶縁基板1の一主面側内面を、金属を主成分とする導体層で被着することにより、この金属が放熱板としての役割を果たすため、より放熱性が高くなり好ましい。   Further, the insulating substrate 1 is provided with a notch 4 on the side surface so as to form a gap in the thickness direction of the insulating substrate 1, and the notch 4 increases the surface area of the submount so that a high-frequency signal transmission source can be obtained. Even if the heat generated from the external electronic element is transmitted to the submount, the heat can be efficiently dissipated from the surface of the insulating substrate 1 facing the notch 4. As a result, the temperature control of the optical semiconductor element is facilitated, and the transmitted high-frequency electrical signal can be efficiently converted into an optical signal. Further, since the cut 4 is formed, the capacitance between the high-frequency line conductor 3 and the lower conductor layer formed on the other main surface (lower surface) of the insulating substrate 1 is (1) between the line conductor 3 and the cut 4. (2) the region of the notch 4 and (3) the region between the notch 4 and the lower surface of the insulating substrate 1, and by changing the width of the notch 4, the line conductor 3 and the lower conductor layer The capacity formed by can be easily adjusted. Since the capacity can be adjusted in this way, the high frequency characteristics are optimal without extremely narrowing or widening the distance between the high frequency line conductor 3 and the ground conductors on both sides of the high frequency line conductor 3 or the width of the high frequency line conductor 3. A submount can be formed. In particular, the inner surface of the insulating substrate 1 facing the notch 4 is coated with a conductor layer mainly composed of metal, so that the metal functions as a heat sink, so that heat dissipation is further improved. preferable.

更に、この導体層5は接地端子に電気的に接続されていると好ましく、これにより、最適な大きさのサブマウントが得られる。なぜなら、このように導体層5が接地されている場合、高周波線路導体3と接地導体である導体層5との間で容量成分を形成することができるので、高周波線路導体3の高周波伝送特性を良好に維持したまま、切り込み4より下側の絶縁基板1の厚みを自由に変化させることができる。よって、光半導体装置の構造上サブマウントの厚みを厚くしなければならない場合などに、(3)切り込み4と絶縁基板1の下面との間の領域の高さ調節が可能となり、最適な大きさのサブマウントを形成できる。また、インピーダンス整合を行うために変えていた、高周波線路導体3とその両脇の接地導体との間隔や、高周波線路導体3の幅を変える必要がなくなり、放射電界強度が安定して、高周波の伝播をより小さいノイズで行える。   Further, it is preferable that the conductor layer 5 is electrically connected to the grounding terminal, whereby an optimally sized submount can be obtained. This is because, when the conductor layer 5 is grounded in this way, a capacitive component can be formed between the high-frequency line conductor 3 and the conductor layer 5 that is the ground conductor. The thickness of the insulating substrate 1 below the notch 4 can be freely changed while maintaining good. Therefore, when the thickness of the submount has to be increased due to the structure of the optical semiconductor device, (3) the height of the region between the notch 4 and the lower surface of the insulating substrate 1 can be adjusted, and the optimum size. Submounts can be formed. In addition, it is not necessary to change the distance between the high-frequency line conductor 3 and the ground conductors on both sides of the high-frequency line conductor 3 and the width of the high-frequency line conductor 3, which have been changed for impedance matching, and the radiation electric field strength is stable, Propagation can be done with less noise.

導体層5の接地端子への電気的な接続は、例えば、絶縁基板1の側面に側面導体やキャスタレーション導体等を形成して、導体層5と絶縁基板1の一主面または他主面の接地導体と電気的に接続することにより実施できる。   The electrical connection of the conductor layer 5 to the ground terminal is, for example, by forming a side conductor, a castellation conductor or the like on the side surface of the insulating substrate 1, and This can be implemented by electrically connecting to a ground conductor.

また、更に、切り込み4は、絶縁基板1の一主面と平行に形成されているのが好ましい。これは、高周波線路導体3のインピーダンス特性が、線路幅だけでなく誘電体厚みにも左右されるためであり、例えば切り込み4が絶縁基板1の一主面と平行でない場合には、誘電体の厚みが位置により変動して、良好なインピーダンス特性が得られないが、切り込み4を上面と平行に形成すると、良好なインピーダンス特性が得られる。なお、絶縁基板1の側面に形成された、絶縁基板1の一主面と平行な切り込み4との間隔は、0.1mm以上が好ましい。0.1mmより小さい場合、絶縁基板1の強度的な問題より破壊する可能性が考えられる。また、絶縁基板1の一主面と平行な切り込み4との間隔は、高周波域での共振を抑制して高周波信号の伝送特性を良好にするという観点からは、伝送される高周波信号の波長λの1/2以下の厚みが好ましい。なお、λはc(光速)/{f(周波数)×(ε(絶縁基板の誘電率))1/2}にて求められる。 Furthermore, it is preferable that the notch 4 is formed in parallel with one main surface of the insulating substrate 1. This is because the impedance characteristic of the high-frequency line conductor 3 depends not only on the line width but also on the dielectric thickness. For example, when the notch 4 is not parallel to one main surface of the insulating substrate 1, Although the thickness varies depending on the position and a good impedance characteristic cannot be obtained, a good impedance characteristic can be obtained when the cut 4 is formed parallel to the upper surface. In addition, the distance between the notch 4 formed on the side surface of the insulating substrate 1 and parallel to one main surface of the insulating substrate 1 is preferably 0.1 mm or more. If it is smaller than 0.1 mm, there is a possibility that the insulating substrate 1 is broken due to the strength problem. In addition, the distance between the notch 4 parallel to one main surface of the insulating substrate 1 is such that the wavelength λ of the transmitted high frequency signal is improved from the viewpoint of suppressing the resonance in the high frequency region and improving the transmission characteristic of the high frequency signal. A thickness of 1/2 or less is preferable. Note that λ is obtained by c (speed of light) / {f (frequency) × (ε r (dielectric constant of insulating substrate)) 1/2 }.

また、絶縁基板1の一主面と平行な切り込み4の形成方法について、詳細を後述する。   Details of a method for forming the cuts 4 parallel to one main surface of the insulating substrate 1 will be described later.

これら、素子搭載部2、高周波線路導体3、導体層5は、従来周知の蒸着法やスパッタリング法,CVD法,めっき法等の薄膜形成法により形成され、また従来周知のフォトリソグラフィ法やエッチング法,リフトオフ法等によって所定パターンに加工される。   The element mounting portion 2, the high-frequency line conductor 3, and the conductor layer 5 are formed by a conventionally known thin film forming method such as a vapor deposition method, a sputtering method, a CVD method, or a plating method, and a conventionally known photolithography method or etching method. , And processed into a predetermined pattern by a lift-off method or the like.

なお、このような素子搭載部2、線路導体3、導体層5は、例えば密着金属層、拡散防止層および主導体層が順次積層された3層構造の導体層から成る。   The element mounting portion 2, the line conductor 3, and the conductor layer 5 are composed of a conductor layer having a three-layer structure in which an adhesion metal layer, a diffusion prevention layer, and a main conductor layer are sequentially laminated, for example.

このような密着金属層は、セラミックス等から成る絶縁基板1との密着性を良好にするという観点からは、チタン(Ti),クロム(Cr),タンタル(Ta),ニオブ(Nb),ニッケル−クロム(Ni−Cr)合金,窒化タンタル(TaN)等の、熱膨張率がセラミックスと近い金属のうち少なくとも1種より成るのが好ましく、その厚みは0.01〜0.2μm程度が好ましい。密着金属層の厚みが0.01μm未満では、密着金属層を絶縁基板1に強固に密着することが困難となる傾向があり、0.2μmを超えると、成膜時の内部応力によって密着金属層が絶縁基板1から剥離し易くなる傾向がある。 From the viewpoint of improving the adhesion with the insulating substrate 1 made of ceramics or the like, such an adhesion metal layer is made of titanium (Ti), chromium (Cr), tantalum (Ta), niobium (Nb), nickel- It is preferably made of at least one kind of metal having a thermal expansion coefficient close to that of ceramics, such as chromium (Ni—Cr) alloy, tantalum nitride (Ta 2 N), etc., and its thickness is preferably about 0.01 to 0.2 μm. If the thickness of the adhesion metal layer is less than 0.01 μm, it tends to be difficult to firmly adhere the adhesion metal layer to the insulating substrate 1, and if it exceeds 0.2 μm, the adhesion metal layer is insulated by internal stress during film formation. There is a tendency to be easily peeled from the substrate 1.

また、拡散防止層は、密着金属層と主導体層との相互拡散を防ぐという観点からは、白金(Pt),パラジウム(Pd),ロジウム(Rh),ニッケル(Ni),Ni−Cr合金,Ti−W合金等の熱伝導性の良好な金属のうち少なくとも1種より成ることが好ましく、その厚みは0.05〜1μm程度が好ましい。拡散防止層の厚みが0.05μm未満では、ピンホール等の欠陥が発生して拡散防止層としての機能を果たしにくくなる傾向があり、1μmを超えると、成膜時の内部応力により拡散防止層が密着金属層から剥離し易く成る傾向がある。なお、Ni−Cr合金は、絶縁基板1との密着性が良好なため、拡散防止層にNi−Cr合金を用いる場合は、密着金属層を省くことも可能である。   In addition, the diffusion prevention layer is made of platinum (Pt), palladium (Pd), rhodium (Rh), nickel (Ni), Ni—Cr alloy, from the viewpoint of preventing mutual diffusion between the adhesion metal layer and the main conductor layer. It is preferably made of at least one metal having good thermal conductivity such as Ti—W alloy, and the thickness is preferably about 0.05 to 1 μm. If the thickness of the diffusion prevention layer is less than 0.05 μm, defects such as pinholes tend to be generated, making it difficult to perform the function as the diffusion prevention layer. If the thickness exceeds 1 μm, the diffusion prevention layer is caused by internal stress during film formation. There is a tendency to easily peel from the adhesion metal layer. Since the Ni—Cr alloy has good adhesion to the insulating substrate 1, it is possible to omit the adhesion metal layer when using the Ni—Cr alloy for the diffusion prevention layer.

さらに、主導体層は、高周波線路導体3の電気抵抗を小さくするという観点からは、電気抵抗の小さい金(Au),Cu,Ni,銀(Ag)の少なくとも1種より成ることが好ましく、その厚みは0.1〜5μm程度が好ましい。主導体層の厚みが0.1μm未満では、電気抵抗が大きくなって、高周波線路導体3に要求される電気抵抗の値を満足しにくくなり、5μmを超えると、成膜時の内部応力により主導体層が拡散防止層から剥離し易くなる。なお、Auは高価であることから、低コスト化の点でなるべく薄く形成することが好ましい。また、Cuは酸化し易いので、その上にNiおよびAuからなる保護層を被覆してもよい。   Furthermore, the main conductor layer is preferably made of at least one of gold (Au), Cu, Ni, and silver (Ag) having a low electric resistance from the viewpoint of reducing the electric resistance of the high-frequency line conductor 3. The thickness is preferably about 0.1 to 5 μm. If the thickness of the main conductor layer is less than 0.1 μm, the electric resistance becomes large and it is difficult to satisfy the electric resistance value required for the high-frequency line conductor 3. If the thickness exceeds 5 μm, the main conductor is caused by internal stress during film formation. The layer becomes easy to peel from the diffusion preventing layer. Since Au is expensive, it is preferably formed as thin as possible in terms of cost reduction. Further, since Cu is easily oxidized, a protective layer made of Ni and Au may be coated thereon.

次に、本発明のサブマウントの製造方法を図2に基づき下記工程[1]〜[7]によって説明する。   Next, the manufacturing method of the submount of the present invention will be described with reference to FIG.

[1]図2(a)に示すように、窒化アルミニウムから成るセラミックグリーンシート6を積層し、約1500℃の温度で焼成して、絶縁基板1としてのセラミック基板7を得る。   [1] As shown in FIG. 2A, ceramic green sheets 6 made of aluminum nitride are laminated and fired at a temperature of about 1500 ° C. to obtain a ceramic substrate 7 as an insulating substrate 1.

[2]セラミック基板7の主面をアルミナの砥粒を用いて研磨し、算術平均粗さが0.1μm程度となるようにする。   [2] The main surface of the ceramic substrate 7 is polished with alumina abrasive grains so that the arithmetic average roughness is about 0.1 μm.

[3]図2(b)に示すように、セラミック基板7の研磨された主面に、イオンプレーティング法によって、厚さ0.1μmのTi層(密着金属層)、厚さ0.2μmのPd層(拡散防止層)、厚さ0.2μmのAu層(主導体層)を順次成膜し、フォトリソグラフィ法によりパターン加工後、そのパターン上に電解めっき法によって厚さ3μmのAuめっき層を被着させる。その後、さらにエッチング法により素子搭載部2および高周波線路導体3を形成する。   [3] As shown in FIG. 2B, a 0.1 μm thick Ti layer (adhesion metal layer) and a 0.2 μm thick Pd layer are formed on the polished main surface of the ceramic substrate 7 by ion plating. (Diffusion prevention layer) and 0.2 μm thick Au layer (main conductor layer) are sequentially formed, and after patterning by photolithography, a 3 μm thick Au plating layer is deposited on the pattern by electrolytic plating Let Thereafter, the element mounting portion 2 and the high-frequency line conductor 3 are further formed by an etching method.

[4]図2(c)に示すように、素子搭載部2および高周波線路導体3を形成したセラミック基板7に、ダイサー、スライサー等を用いて短冊状のセラミック短冊基板8に切断加工を行なう。   [4] As shown in FIG. 2 (c), the ceramic substrate 7 on which the element mounting portion 2 and the high-frequency line conductor 3 are formed is cut into a strip-shaped ceramic strip substrate 8 using a dicer, a slicer or the like.

[5]図2(d)に示すように、[4]で切断された面(側面)の切り込み4を形成したい面を上面としてセラミック短冊基板8を切断装置に載せ、[4]同様にして、ダイサー、スライサー等により研削加工によって、切り込み4を形成する。   [5] As shown in FIG. 2D, the ceramic strip substrate 8 is placed on the cutting device with the surface on which the cut 4 of the surface (side surface) cut in [4] is to be formed as the upper surface, and the same as in [4]. The notch 4 is formed by grinding with a dicer, a slicer or the like.

[6]図2(e)に示すように、セラミック短冊基板8の切り込み4を形成した面に、イオンプレーティング法によって、厚さ0.1μmのTi層(密着金属層)、厚さ0.2μmのPt層(拡散防止層)、厚さ0.5μmのAu層(主導体層)を順次成膜して切り込み内部の導体層5を形成する。   [6] As shown in FIG. 2 (e), a 0.1 μm thick Ti layer (adhesive metal layer) and 0.2 μm thick are formed by ion plating on the surface of the ceramic strip substrate 8 where the cuts 4 are formed. A Pt layer (diffusion prevention layer) and a 0.5 μm thick Au layer (main conductor layer) are sequentially formed to form the conductor layer 5 inside the cut.

[7]図2(f)に示すように、多数個取り用の母基板であるセラミック短冊基板8をダイサー、スライサー等による研削加工によって切断し、個々のサブマウントに分割する。   [7] As shown in FIG. 2 (f), the ceramic strip substrate 8 which is a mother substrate for taking a large number of pieces is cut by grinding with a dicer, a slicer or the like, and divided into individual submounts.

また、サブマウントは、窒化アルミニウムから成るセラミックグリーンシートを金型成形にて形成したセラミックグリーンシートを積層したり、窒化アルミニウム粉体をプレス成形したりした後に、約1500℃の温度で焼成することにより、切り込み4を形成したセラミック短冊基板8を形成することもできる。この積層法、プレス法で作製したセラミック基板は、上記[2]、[3]、[6]および[7]の工程の後にスライサー等による研削加工によって切断され個々に分割される。   In addition, the submount is fired at a temperature of about 1500 ° C after laminating ceramic green sheets made of aluminum nitride ceramic green sheets by die molding or press-molding aluminum nitride powder. Thus, the ceramic strip substrate 8 in which the cuts 4 are formed can also be formed. The ceramic substrate produced by this lamination method or press method is cut and divided into individual pieces by grinding using a slicer after the steps [2], [3], [6] and [7].

なお、本発明は上述の実施の最良の形態例に限定されるものではなく、本発明の要旨を逸脱しない範囲内であれば種々の変更を施すことは何等差し支えない。   It should be noted that the present invention is not limited to the above-described best embodiment, and various modifications may be made without departing from the scope of the present invention.

本発明のサブマウントの実施の形態の一例を示す斜視図である。It is a perspective view which shows an example of embodiment of the submount of this invention. (a)〜(f)は本発明のサブマウントの各製造工程を示す図である。(A)-(f) is a figure which shows each manufacturing process of the submount of this invention. 従来のサブマウントを説明するための電子装置の断面図である。It is sectional drawing of the electronic device for demonstrating the conventional submount. 従来のサブマウントの斜視図である。It is a perspective view of the conventional submount. 従来のサブマウントを搭載した光半導体装置の斜視図である。It is a perspective view of the optical semiconductor device carrying the conventional submount.

符号の説明Explanation of symbols

1:絶縁基板
2:素子搭載部
3:高周波線路導体
4:切り込み
5:導体層
1: Insulating substrate 2: Element mounting portion 3: High-frequency line conductor 4: Cut 5: Conductor layer

Claims (5)

矩形状をなす絶縁基板の一主面に高周波線路導体を被着させるとともに、該線路導体の上面に前記絶縁基板の一端側で外部電子素子に接続される接続部を、該接続部よりも他端側に前記外部電子素子と信号の授受を行なう内部電子素子が実装される実装部を設けてなるサブマウントにおいて、前記接続部の直下に、前記絶縁基板の少なくとも一端側側面を介して外気に通じる切り込みが、前記絶縁基板の厚み方向に間隙を形成するように設けられていることを特徴とするサブマウント。 A high-frequency line conductor is attached to one main surface of the rectangular insulating substrate, and a connection portion connected to an external electronic element on one end side of the insulating substrate on the upper surface of the line conductor is different from the connection portion. In a submount comprising a mounting portion on which an internal electronic device for exchanging signals with the external electronic device is mounted on the end side, it is exposed directly to the outside via at least one side surface of the insulating substrate immediately below the connection portion. A submount characterized in that a notch that communicates is provided so as to form a gap in the thickness direction of the insulating substrate. 前記切り込みに臨む前記絶縁基板の一主面側内面に、金属を主成分とする導体層が被着されていることを特徴とする請求項1に記載のサブマウント。 The submount according to claim 1, wherein a conductor layer mainly composed of a metal is attached to an inner surface of the main surface of the insulating substrate facing the notch. 前記導体層が接地端子に電気的に接続されていることを特徴とする請求項2に記載のサブマウント。 The submount according to claim 2, wherein the conductor layer is electrically connected to a ground terminal. 前記切り込みが前記絶縁基板の一主面と平行に形成されていることを特徴とする請求項3に記載のサブマウント。 The submount according to claim 3, wherein the cut is formed in parallel with one main surface of the insulating substrate. 基体上に、請求項1乃至請求項4のいずれかに記載のサブマウントを搭載するとともに、前記サブマウントの実装部に光半導体素子を実装し、更に前記サブマウントを覆う蓋体を取着させてなる電子装置。 A submount according to any one of claims 1 to 4 is mounted on a base, an optical semiconductor element is mounted on a mounting portion of the submount, and a lid that covers the submount is attached. An electronic device.
JP2004342838A 2004-11-26 2004-11-26 Submount and electronic device using the same Withdrawn JP2006156585A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004342838A JP2006156585A (en) 2004-11-26 2004-11-26 Submount and electronic device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004342838A JP2006156585A (en) 2004-11-26 2004-11-26 Submount and electronic device using the same

Publications (1)

Publication Number Publication Date
JP2006156585A true JP2006156585A (en) 2006-06-15

Family

ID=36634495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004342838A Withdrawn JP2006156585A (en) 2004-11-26 2004-11-26 Submount and electronic device using the same

Country Status (1)

Country Link
JP (1) JP2006156585A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018211644A1 (en) * 2017-05-17 2018-11-22 三菱電機株式会社 Light module

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018211644A1 (en) * 2017-05-17 2018-11-22 三菱電機株式会社 Light module
JPWO2018211644A1 (en) * 2017-05-17 2019-12-26 三菱電機株式会社 Optical module

Similar Documents

Publication Publication Date Title
CN103222045B (en) Electro part carrying packaging body and make use of the electronic installation of this packaging body
JP5473583B2 (en) Electronic component mounting package and electronic device using the same
JP6412274B2 (en) Electronic component mounting package and electronic device using the same
JP5616178B2 (en) Electronic component mounting package and communication module
JP2016189431A (en) Package for mounting electronic component and electronic component using the same
JP6825986B2 (en) Wiring boards, electronic component storage packages and electronic devices
JP2010245507A (en) Electronic component mounting package and electronic device using the same
JP2002374028A (en) Wiring board
JP5409456B2 (en) Electronic component mounting package and electronic device using the same
JP5312358B2 (en) Electronic component mounting package and electronic device using the same
JP5404484B2 (en) Electronic component mounting package and electronic device using the same
JP2006156585A (en) Submount and electronic device using the same
JP3987765B2 (en) Subcarrier of optical semiconductor element and optical semiconductor device
JP5460089B2 (en) Electronic component mounting package and electronic device using the same
JP2004282027A (en) Submount
JP4404649B2 (en) Subcarrier of optical semiconductor element and optical semiconductor device
JP3914754B2 (en) Submount and optical semiconductor device using the same
JP2011114104A (en) Sub-mount and electronic device using the same
JP2014146756A (en) Electronic component mounting package and electronic device using the same
JP4467320B2 (en) Subcarrier of optical semiconductor element and optical semiconductor device
JP2003043312A (en) Submount, optical semiconductor device using the same, and method of manufacturing submount
JP2003198025A (en) Submount and optical semiconductor device using the same
JP4035028B2 (en) Subcarrier of optical semiconductor element and optical semiconductor device
JP2004296948A (en) Subcarrier for optical semiconductor element and optical semiconductor device
JP2009054750A (en) Electronic component mounting package and electronic device using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070912

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20100622