JP2006150275A - Method for filter material - Google Patents
Method for filter material Download PDFInfo
- Publication number
- JP2006150275A JP2006150275A JP2004346534A JP2004346534A JP2006150275A JP 2006150275 A JP2006150275 A JP 2006150275A JP 2004346534 A JP2004346534 A JP 2004346534A JP 2004346534 A JP2004346534 A JP 2004346534A JP 2006150275 A JP2006150275 A JP 2006150275A
- Authority
- JP
- Japan
- Prior art keywords
- softening point
- heat
- breathable
- porous membrane
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000463 material Substances 0.000 title claims abstract description 54
- 238000000034 method Methods 0.000 title claims description 24
- 238000010438 heat treatment Methods 0.000 claims abstract description 20
- 230000035699 permeability Effects 0.000 claims abstract description 17
- 238000002844 melting Methods 0.000 claims abstract description 10
- 230000008018 melting Effects 0.000 claims abstract description 10
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 64
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 64
- 239000012528 membrane Substances 0.000 claims description 52
- 238000007789 sealing Methods 0.000 claims description 26
- 230000004927 fusion Effects 0.000 claims description 23
- 238000004519 manufacturing process Methods 0.000 claims description 23
- 239000004745 nonwoven fabric Substances 0.000 claims description 22
- -1 polytetrafluoroethylene Polymers 0.000 claims description 4
- 239000000047 product Substances 0.000 description 21
- 230000000052 comparative effect Effects 0.000 description 11
- 239000000428 dust Substances 0.000 description 9
- 239000000843 powder Substances 0.000 description 9
- 239000000853 adhesive Substances 0.000 description 6
- 230000001070 adhesive effect Effects 0.000 description 6
- 239000010687 lubricating oil Substances 0.000 description 6
- 239000002390 adhesive tape Substances 0.000 description 4
- 239000000470 constituent Substances 0.000 description 4
- 239000000835 fiber Substances 0.000 description 4
- 238000010030 laminating Methods 0.000 description 4
- 239000011148 porous material Substances 0.000 description 4
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 238000003475 lamination Methods 0.000 description 3
- 239000000155 melt Substances 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 229920000728 polyester Polymers 0.000 description 3
- 230000000007 visual effect Effects 0.000 description 3
- 239000004743 Polypropylene Substances 0.000 description 2
- YACLQRRMGMJLJV-UHFFFAOYSA-N chloroprene Chemical compound ClC(=C)C=C YACLQRRMGMJLJV-UHFFFAOYSA-N 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- SNRUBQQJIBEYMU-UHFFFAOYSA-N dodecane Chemical compound CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 239000012943 hotmelt Substances 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 229920000098 polyolefin Polymers 0.000 description 2
- 238000009824 pressure lamination Methods 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229920002994 synthetic fiber Polymers 0.000 description 2
- 239000012209 synthetic fiber Substances 0.000 description 2
- 239000011800 void material Substances 0.000 description 2
- 239000002759 woven fabric Substances 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- MQIUGAXCHLFZKX-UHFFFAOYSA-N Di-n-octyl phthalate Natural products CCCCCCCCOC(=O)C1=CC=CC=C1C(=O)OCCCCCCCC MQIUGAXCHLFZKX-UHFFFAOYSA-N 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004962 Polyamide-imide Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- 229920000297 Rayon Polymers 0.000 description 1
- 241000209140 Triticum Species 0.000 description 1
- 235000021307 Triticum Nutrition 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- BJQHLKABXJIVAM-UHFFFAOYSA-N bis(2-ethylhexyl) phthalate Chemical compound CCCCC(CC)COC(=O)C1=CC=CC=C1C(=O)OCC(CC)CCCC BJQHLKABXJIVAM-UHFFFAOYSA-N 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 235000013339 cereals Nutrition 0.000 description 1
- 239000013065 commercial product Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- DIOQZVSQGTUSAI-UHFFFAOYSA-N decane Chemical compound CCCCCCCCCC DIOQZVSQGTUSAI-UHFFFAOYSA-N 0.000 description 1
- 238000004455 differential thermal analysis Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004049 embossing Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 235000013312 flour Nutrition 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000003350 kerosene Substances 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 229940057995 liquid paraffin Drugs 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000002984 plastic foam Substances 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920002312 polyamide-imide Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000013076 target substance Substances 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Images
Landscapes
- Filtering Materials (AREA)
Abstract
Description
本発明は、集塵や目的物質の回収に使用するフィルタ濾材およびそれを用いたフィルタユニットに関する。 The present invention relates to a filter medium used for collecting dust and collecting a target substance, and a filter unit using the filter medium.
従来、ダスト除去や、有価粉体や化学合成物等の回収のために、各種集塵機が使用されており、近年、小型化や取り扱い性に優れることから、それらの塵埃捕集部には、カートリッジ式フィルタ濾材が広く使用されている。 Conventionally, various dust collectors have been used for dust removal and collection of valuable powders and chemical compounds, and in recent years they are excellent in miniaturization and handling. Type filter media are widely used.
前記フィルタ濾材は、一般に、フィルタと通気性支持体とを含む構成であり、前記通気性支持材としては、ポリエステルやポリプロピレンを主成分とした比較的硬くコシのあるスパンボンド形成された部材を、容積内で面積を大きくするためにプリーツ加工した円筒状や平板状のものが使用されている。なお、このようなフィルタをカートリッジ式に成形する方法もすでに開示されている(例えば、特許文献1、特許文献2参照)。
The filter medium is generally configured to include a filter and a breathable support, and as the breathable support, a relatively hard and firm spunbond formed member mainly composed of polyester or polypropylene, Cylindrical or flat plates that are pleated to increase the area within the volume are used. A method of forming such a filter into a cartridge type has already been disclosed (see, for example,
一方、近年では、前記フィルタとして、高い捕集性能、耐熱性、耐薬品性、低エネルギー洗浄性等の物性に優れることから、PTFE多孔質膜が広く使用されており、通常、フェルトや織布、帆布等の通気性支持体と積層した形態で使用されている。このPTFE多孔質膜と通気性支持材とのラミネートは、例えば、接着剤を用いた方法や、前記通気性支持材を熱溶融させてPTFE多孔質膜と融着させる方法等によって行われている。しかしながら、前記通気性支持材は、一般的にその表面形状に凹凸があるものが多いため、ラミネートの際に、その凹凸によってPTFE多孔質膜がダメージを受け、クラックが生じるおそれがある。また、従来のラミネート技術では、例えば、前記通気性支持材の表面凸部のみにPTFE多孔質膜が接着され、表面凹部においてはPTFE多孔質膜が接着されない状態となり易い。このため、フィルタ濾材の使用時や、フィルタ濾材を最終的にプリーツ加工する際に、PTFE多孔質膜が破壊され、結果として十分な捕集効率が得られず、ダストの離脱性も悪化し、圧力損失の上昇を招くおそれがある。 On the other hand, in recent years, PTFE porous membranes have been widely used as the filter because of its excellent collection properties, heat resistance, chemical resistance, low energy detergency, etc. It is used in a form laminated with a breathable support such as canvas. Lamination of the PTFE porous membrane and the air-permeable support material is performed by, for example, a method using an adhesive, a method of thermally melting the air-permeable support material and fusing the PTFE porous membrane, and the like. . However, since the air-permeable support material generally has irregularities in the surface shape thereof, the PTFE porous membrane may be damaged by the irregularities during lamination, which may cause cracks. In the conventional laminating technique, for example, the PTFE porous membrane is adhered only to the surface convex portion of the air-permeable support material, and the PTFE porous membrane is not adhered to the surface concave portion. For this reason, when the filter medium is used or when the filter medium is finally pleated, the PTFE porous membrane is destroyed, and as a result, sufficient collection efficiency cannot be obtained, and the dust detachability also deteriorates. There is a risk of increased pressure loss.
そこで、この問題を解決するために、PTFE多孔質膜と通気性支持材との間に、ホットメルト系不織布等の通気性熱融着部材を配置し、これを熱溶融させることによってPTFE多孔質膜と通気性支持材とを一体化させる方法が検討されている(例えば、特許文献3)。このような方法によれば、前記通気性支持材の表面凹凸によるダメージを回避できる。
しかしながら、最近では、前記特許文献3に開示されるようなフィルタ濾剤に比べて、さらにPTFE多孔質膜と通気性支持材との接着性に優れるものが求められている。 However, recently, there is a demand for a material having superior adhesion between the porous PTFE membrane and the air-permeable support material as compared with the filter medium disclosed in Patent Document 3.
本発明は、このような事情を鑑みてなされたものであり、通気性を損なうことなく、且つ、優れた接着力でPTFE多孔質膜と通気性支持材とを一体化できる、フィルタ濾材の製造方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and manufacture of a filter medium that can integrate a PTFE porous membrane and a breathable support material with an excellent adhesive force without impairing the breathability. It aims to provide a method.
前記目的を達成するために、本発明のフィルタ濾材の製造方法は、ポリテトラフルオロエチレン(PTFE)多孔質膜、通気性熱融着部材および通気性支持材をこの順序で積層し、前記PTFE多孔質膜もしくは通気性支持材のいずれか一方の表面から加熱処理を施して、前記通気性熱融着部材を熱溶融させることにより前記PTFE多孔質膜と通気性支持材とを一体化するフィルタ濾材の製造方法であって、
前記通気性熱融着部材が、軟化点が異なる2層の通気性熱融着部材であり、
前記積層体の加熱処理側に、軟化点が高い層が位置するように熱融着部材を配置することを特徴とするフィルタ濾材の製造方法である。なお、以下、2層の通気性熱融着部材のうち、軟化点が高い層を「高軟化点層」、軟化点が低い層を「低軟化点層」という。
In order to achieve the above object, a method for producing a filter medium according to the present invention includes laminating a polytetrafluoroethylene (PTFE) porous membrane, a breathable heat-fusible member, and a breathable support material in this order. A filter medium that integrates the PTFE porous membrane and the breathable support material by heat-treating the surface of either the porous membrane or the breathable support material and thermally melting the breathable heat-fusible member A manufacturing method of
The breathable heat fusion member is a two-layer breathable heat fusion member having different softening points,
A method for producing a filter medium, wherein a heat-sealing member is arranged so that a layer having a high softening point is located on the heat treatment side of the laminate. Hereinafter, of the two breathable heat-sealing members, a layer having a high softening point is referred to as a “high softening point layer”, and a layer having a low softening point is referred to as a “low softening point layer”.
従来のように、前記ホットメルト系不織布によってPTFE多孔質膜と通気性支持材とを熱融着させる場合、一般に、前記積層体のPTFE多孔質膜側から加熱処理が行われていた。そこで、本発明者らはこの熱融着によるラミネート方法について検討した。この結果、従来の方法によると、例えば、通気性支持体の凹凸形状の影響回避等を目的として前記不織布の厚みを厚くすると、PTFE多孔質膜からの熱が、前記不織布の通気性支持体側に十分に伝達されないため、前記不織布が十分溶融していない状態で前記通気性支持体と接着(融着)されるおそれがあるという知見を得た。特に、前記通気性支持体が、例えば、エンボス加工等による凹凸形状の表面であれば、融着部分は凸部分に限定されるため、接着面積も少なくなる。このため、全体としての接着性が著しく低下するのである。一方、前記不織布の厚みを薄くすると、熱が急速かつ十分に伝達されるため、前記不織布が十分に溶融することにより接着性は優れるものの、前記不織布の溶融物が前記通気性支持体の空孔部に入ってしまい、そのため目付け量の低下、通気性の低下が起こってしまうのである。 Conventionally, when the PTFE porous membrane and the air-permeable support material are heat-sealed with the hot-melt nonwoven fabric, heat treatment is generally performed from the PTFE porous membrane side of the laminate. Therefore, the present inventors examined a laminating method by this heat fusion. As a result, according to the conventional method, for example, when the thickness of the nonwoven fabric is increased for the purpose of avoiding the influence of the uneven shape of the breathable support, the heat from the PTFE porous membrane is directed to the breathable support side of the nonwoven fabric. Since it was not sufficiently transmitted, it was found that the nonwoven fabric may be bonded (fused) to the breathable support in a state where the nonwoven fabric is not sufficiently melted. In particular, if the air-permeable support is a concavo-convex surface formed by embossing or the like, the fusion-bonded portion is limited to the convex portion, so that the adhesion area is reduced. For this reason, the adhesiveness as a whole is significantly reduced. On the other hand, when the thickness of the non-woven fabric is reduced, heat is rapidly and sufficiently transferred, so that the non-woven fabric is sufficiently melted and the adhesion is excellent, but the melt of the non-woven fabric is a void in the breathable support. As a result, the weight per unit area and the air permeability are reduced.
そこで、本発明者らは、これらの知見から、軟化点が異なる2層の通気性熱融着部材を使用し、加熱処理を施すPTFE側に高軟化点層を、通気性支持材側に低軟化点層を配置し、PTFE多孔質膜側から加熱処理を行うことによって、前述のような従来の問題を解決できることを見出したのである。このようにして2層の通気性熱融着部材を配置すれば、高軟化点層が溶融する温度でPTFE多孔質膜側から加熱処理を施せば、前記高軟化点層を十分に溶融できる。そして、前記低軟化点層は前記高軟化点層よりも軟化点が低いため、例えば、高軟化点層を通じて低軟化点層に熱が十分に伝達されなくとも、低軟化点層は十分に溶融できるのである。このため、PTFE多孔質膜と高軟化点層、高軟化点層と低軟化点層、低軟化点層と通気性支持材は、それぞれ十分に熱融着され、前記通気熱融着部材の溶融物が、通気性支持材の空孔部に入って目付け量が低下したり、通気性が低下することもない。また、通気性支持材の表面が凹凸形状であって、その凸部のみで通気性熱融着部材と接着している場合でも、低軟化点層の溶融が十分に起こっているため、接着面積が小さいものの、接着部分の接着力は従来よりも十分な強度となる。なお、加熱処理が通気性支持材側である場合には、前記通気性支持材側に前記高軟化点層が位置するように通気性熱融着部材を配置すれば、同様の効果を得ることができる。以上のように、このような本発明の製造方法によれば、優れた通気性を保ちつつ、且つ、接着性に優れたフィルタ濾材の提供が可能となるのである。 Therefore, the present inventors, based on these findings, use a two-layer breathable heat-sealing member having different softening points, and provide a high softening point layer on the PTFE side subjected to heat treatment and a low softening point side on the breathable support material side. It has been found that the conventional problem as described above can be solved by disposing a softening point layer and performing heat treatment from the PTFE porous membrane side. If two layers of the breathable heat-sealing member are arranged in this manner, the high softening point layer can be sufficiently melted by performing heat treatment from the PTFE porous membrane side at a temperature at which the high softening point layer melts. Since the low softening point layer has a lower softening point than the high softening point layer, for example, even if heat is not sufficiently transferred to the low softening point layer through the high softening point layer, the low softening point layer is sufficiently melted. It can be done. For this reason, the PTFE porous membrane and the high softening point layer, the high softening point layer and the low softening point layer, the low softening point layer and the breathable support material are sufficiently thermally fused, respectively, The material does not enter the pores of the air-permeable support material, and the weight per unit area does not decrease or the air permeability does not decrease. In addition, even when the surface of the air-permeable support material has an uneven shape and is bonded to the air-permeable heat-sealing member only by the convex portions, the low softening point layer is sufficiently melted, However, the adhesive strength of the bonded portion is sufficiently stronger than before. In the case where the heat treatment is on the breathable support material side, the same effect can be obtained if the breathable heat fusion member is arranged so that the high softening point layer is located on the breathable support material side. Can do. As described above, according to the production method of the present invention, it is possible to provide a filter medium having excellent air permeability and excellent adhesiveness.
つぎに、本発明のフィルタ濾材の製造方法について具体的に説明する。以下、特に言及しない限りは、PTFE多孔質膜側に高軟化点層、通気性支持材側に低軟化点層が位置するように通気性熱融着部材を配置し、この積層体を前記PTFE多孔質膜側から加熱処理を施す形態についての説明とする。なお、通気性支持材側から加熱処理を施す場合には、前記通気性支持材側に高軟化点層、PTFE多孔質膜側に低軟化点層が位置するように通気性熱融着部材を配置すればよく、その他の条件は特に制限されない。 Below, the manufacturing method of the filter material of this invention is demonstrated concretely. Hereinafter, unless otherwise specified, a breathable heat-sealing member is disposed so that a high softening point layer is located on the PTFE porous membrane side and a low softening point layer is located on the breathable support material side, and this laminate is referred to as the PTFE. It is set as the description about the form which heat-processes from the porous membrane side. In the case where the heat treatment is performed from the breathable support material side, the breathable heat fusion member is arranged so that the high softening point layer is located on the breathable support material side and the low softening point layer is located on the PTFE porous membrane side. What is necessary is just to arrange | position and other conditions are not restrict | limited in particular.
「軟化点」とは、一般に、加熱された物質が軟化し、変形し始める温度を言い、本発明においては、通気性熱融着部材の各層について示差熱分析(DSC)を行い、そのピーク値を示す温度を前記各層の軟化点とする。前記DSCは、例えば、商品名DSC−6200(SEIKO Instrument Inc.社製)を用いて測定できる。なお、この軟化点の決定方法は、軟化点を特定するためのみに用いられるものであって、本発明のフィルタ濾材の製造方法、使用や用途等を何ら制限するものではない。 “Softening point” generally refers to the temperature at which a heated substance begins to soften and begin to deform. In the present invention, differential thermal analysis (DSC) is performed on each layer of the breathable heat-sealing member, and the peak value is obtained. Is the softening point of each layer. The DSC can be measured using, for example, trade name DSC-6200 (manufactured by SEIKO Instrument Inc.). This softening point determination method is used only for specifying the softening point, and does not limit the manufacturing method, use, application, etc. of the filter medium of the present invention.
本発明において、高軟化点層と低軟化点層との軟化点の差は、特に制限されないが、5℃以上であることが好ましい。前記軟化点の差が5℃以上であれば、例えば、実用上、高軟化点層を溶融するために必要な熱が、低軟化点層まで伝達されなくとも、前記低軟化点層を十分に溶融することができる。このため、連続的にラミネートを行う場合であっても、例えば、熱を伝達させるための時間設定等の重要性が極めて軽減でき、所望の生産速度を確保できる。 In the present invention, the difference in softening point between the high softening point layer and the low softening point layer is not particularly limited, but is preferably 5 ° C. or higher. If the difference between the softening points is 5 ° C. or more, for example, even if the heat necessary for melting the high softening point layer in practice is not transferred to the low softening point layer, the low softening point layer is sufficiently Can be melted. For this reason, even when laminating continuously, for example, the importance of setting time for transferring heat can be greatly reduced, and a desired production rate can be secured.
前記軟化点の差の上限は特に制限されないが、60℃以下であることが好ましい。60℃以下であれば、例えば、高軟化点層を溶融するために高温で処理しても、他方の融着部材への熱によるダメージが極めて抑制され、また、前記低軟化点層の溶融が進行しすぎることによって通気性支持体の空隙が詰まることも十分に回避できる。前記差は、より好ましくは5〜30℃である。 The upper limit of the difference between the softening points is not particularly limited, but is preferably 60 ° C. or less. If it is 60 ° C. or lower, for example, even if it is treated at a high temperature to melt the high softening point layer, damage to the other fusion member due to heat is extremely suppressed, and melting of the low softening point layer is prevented. It can be sufficiently avoided that the air-permeable support is clogged due to the excessive progress. The difference is more preferably 5 to 30 ° C.
前記高軟化点層の軟化点は、例えば、140〜235℃である。一方、低軟化点層の軟化点は、例えば、105〜200℃である。 The softening point of the high softening point layer is, for example, 140 to 235 ° C. On the other hand, the softening point of the low softening point layer is, for example, 105 to 200 ° C.
前記通気性熱融着部材の各層の材料としては、熱による溶融および融着が可能であれば特に制限されず、例えば、ポリエステル系、ナイロン系、ポリオレフィン系、ウレタン系等の各種樹脂があげられる。また、前記各層の形態としては、通気性を示すものであれば特に制限されず、例えば、前述のような樹脂製の繊維から形成された不織布、織布、編物、ネット等、前記樹脂製の多孔質膜等があげられ、中でも不織布が好ましい。なお、2層の通気性熱融着部材は、フィルタ濾材の製造時に、独立した高軟化点層と低軟化点層とを順次配置してもよいし、高軟化点層と低軟化点層が予め一体化された積層体を使用してもよい。 The material of each layer of the breathable heat fusion member is not particularly limited as long as it can be melted and fused by heat, and examples thereof include various resins such as polyester, nylon, polyolefin, and urethane. . In addition, the form of each layer is not particularly limited as long as it exhibits air permeability. For example, the nonwoven fabric, woven fabric, knitted fabric, net, etc. formed from resin fibers as described above are used. Examples thereof include a porous film, and a nonwoven fabric is particularly preferable. Note that the two-layer breathable heat-sealing member may be arranged with an independent high softening point layer and a low softening point layer in order during the production of the filter medium, or a high softening point layer and a low softening point layer. You may use the laminated body integrated previously.
前記高軟化点層と低軟化点層の組み合わせは、例えば、市販品から軟化点の差が5℃以上となる二種類の融着部材を選択すればよい。市販品の融着部材としては、例えば、各種不織布が好ましく、ユニチカ社製の商品名エルベス、商品名ナイエース、商品名マリックス等、シンワ社製の商品名スーパーレース、商品名Haibon、東洋紡社製の商品名シャンファイン、商品名バルコンポ、商品名ボランス、旭化成社製の商品名スパッシュ、商品名エルタス、鐘紡社製の商品名エスパンシオーネ、大紀商事社製の商品名オキロン、日石プラスト社製の商品名ミライフ等があげられる。また、軟化点が異なる2層の不織布が予め一体化された積層体として、例えば、商品名ミライフTLY0505E(日石プラスト社製)等の市販品も使用できる。 For the combination of the high softening point layer and the low softening point layer, for example, two types of fusion members having a softening point difference of 5 ° C. or more may be selected from commercially available products. As the commercially available fusion member, for example, various non-woven fabrics are preferable. The product name Elves, the product name Niace, the product name Marix, etc., manufactured by Unitika Co., Ltd., the product name Superlace, the product name Haibon, manufactured by Toyobo Co., Ltd. Product name Shan Fine, product name Balcompo, product name Borans, product name Spash made by Asahi Kasei Co., Ltd. product name Eltus, product name Espancione made by Kanebo Co., Ltd., product name Okiron made by Daiki Shoji Co., Ltd. The brand name is Milife. Moreover, as a laminated body in which two layers of nonwoven fabrics having different softening points are integrated in advance, for example, a commercial product such as trade name Milife TLY0505E (manufactured by Nisseki Plast Co., Ltd.) can be used.
また、高軟化点層はPTFE多孔質膜との融着、低軟化点層は通気性支持材との融着を、それぞれ主目的とすることから、軟化点の差に加えて、さらに、PTFEの種類や通気性支持材の種類に応じて適宜決定することもできる。 Further, since the high-softening point layer is mainly intended for fusion with the PTFE porous membrane and the low-softening point layer is fusion with the air-permeable support material, in addition to the difference in softening point, PTFE is further added. It can also be determined appropriately according to the type of the material and the type of the breathable support material.
また、前記各層は、前記軟化点に加えて、さらに、目付けや強度、通気性等の特性に基づいて選択することが好ましい。前記各層のフラジール通気度は、得られるフィルタ濾材の通気性を十分に確保できることから、それぞれ50cm3/cm2/sec以上であることが好ましく、好ましくは100cm3/cm2/sec以上、より好ましくは200〜400cm3/cm2/secの範囲であり、上限は特に制限されないが、例えば、500cm3/cm2/sec以下である。また、通気性熱融着部材が、高軟化点層と低軟化点層が予め一体化された積層体の場合も、同様の範囲であることが好ましい。 In addition to the softening point, each layer is preferably selected based on characteristics such as basis weight, strength, and air permeability. The fragile air permeability of each layer is preferably 50 cm 3 / cm 2 / sec or more, preferably 100 cm 3 / cm 2 / sec or more, more preferably, since the air permeability of the obtained filter medium can be sufficiently secured. Is in the range of 200 to 400 cm 3 / cm 2 / sec, and the upper limit is not particularly limited, but is, for example, 500 cm 3 / cm 2 / sec or less. Moreover, when the air-permeable heat fusion member is a laminate in which a high softening point layer and a low softening point layer are integrated in advance, the same range is preferable.
前記各層の厚みは、例えば、10〜300μmであり、好ましくは10〜200μmであり、より好ましくは10〜100μmである。また、高軟化点層と低軟化点層との全体厚みは、例えば、20〜600μmであり、好ましくは20〜400μmであり、より好ましくは20〜200μmである。 The thickness of each layer is, for example, 10 to 300 μm, preferably 10 to 200 μm, and more preferably 10 to 100 μm. Moreover, the total thickness of the high softening point layer and the low softening point layer is, for example, 20 to 600 μm, preferably 20 to 400 μm, and more preferably 20 to 200 μm.
前記PTFE多孔質膜のフラジール通気度は、得られるフィルタ濾材の通気性を十分に確保でき、例えば、集塵機に使用した際の圧損の増大を十分に抑制できることから、4cm3/cm2/sec以上が好ましく、上限は特に制限されないが30cm3/cm2/sec以下が好ましく、より好ましい範囲は8〜20cm3/cm2/secである。 The fragile air permeability of the PTFE porous membrane can sufficiently ensure the air permeability of the obtained filter medium, and for example, it can sufficiently suppress an increase in pressure loss when used in a dust collector, so that it is at least 4 cm 3 / cm 2 / sec. The upper limit is not particularly limited, but is preferably 30 cm 3 / cm 2 / sec or less, and more preferably 8 to 20 cm 3 / cm 2 / sec.
前記PTFE多孔質膜の厚みは、例えば、作製するフィルタ濾材の大きさ等により適宜決定できるが、例えば、2〜100μmの範囲であり、その孔径は、例えば、0.5〜50μmの範囲である。 The thickness of the PTFE porous membrane can be determined as appropriate depending on, for example, the size of the filter medium to be produced. For example, the thickness is in the range of 2 to 100 μm, and the pore diameter is in the range of 0.5 to 50 μm, for example. .
前記PTFE多孔質膜は、例えば、つぎのようにして製造できる。すなわち、まず、未焼成のPTFE微粉末に液状潤滑剤を加えて均一に混和する。前記PTFE微粉末としては、特に制限されず、市販のものが使用できる。前記液状潤滑剤としては、前記PTFE粉末を濡らすことができ、後に除去できるものであれば特に制限されず、ナフサ、ホワイトオイル、流動パラフィン、トルエン、キシレン等の炭化水素油や、アルコール類、ケトン類およびエステル類の溶媒等が使用できる。これらは、単独で使用しても良く、二種類以上を併用してもよい。 The PTFE porous membrane can be manufactured, for example, as follows. That is, first, a liquid lubricant is added to the unfired PTFE fine powder and mixed uniformly. The PTFE fine powder is not particularly limited, and a commercially available product can be used. The liquid lubricant is not particularly limited as long as it can wet the PTFE powder and can be removed later. Hydrocarbon oils such as naphtha, white oil, liquid paraffin, toluene, xylene, alcohols, ketones And solvents of esters and the like can be used. These may be used alone or in combination of two or more.
前記PTFE微粉末に対する液状潤滑剤の添加割合は、前記PTFE微粉末の種類、液状潤滑油の種類および後述するシート成形の条件等により適宜決定できるが、例えば、PTFE微粉末100重量部に対して、液状潤滑剤5〜50重量部の範囲である。 The addition ratio of the liquid lubricant to the PTFE fine powder can be appropriately determined according to the type of the PTFE fine powder, the type of the liquid lubricant, and the conditions of sheet molding described later. For example, for 100 parts by weight of the PTFE fine powder The liquid lubricant is in the range of 5 to 50 parts by weight.
つぎに、前記混和物を未焼成状態でシート状に成形する。前記成形方法としては、例えば、前記混和物をロッド状に押し出した後、対になったロールにより圧延する圧延法や、板状に押し出してシート状にする押し出し法があげられる。また、両方法を組み合わせてもよい。このシート状成形体の厚みは、後に行う延伸の条件等により適宜決定できるが、例えば、0.1〜0.5mmの範囲である。 Next, the mixture is formed into a sheet in an unfired state. Examples of the forming method include a rolling method in which the mixture is extruded into a rod shape and then rolled with a pair of rolls, and an extrusion method in which the mixture is extruded into a plate shape to form a sheet. Moreover, you may combine both methods. Although the thickness of this sheet-like molded object can be suitably determined according to the conditions of the extending | stretching performed later, etc., it is the range of 0.1-0.5 mm, for example.
なお、得られたシート状成形体に含まれる前記液状潤滑剤は、続いて行う延伸工程前に、例えば、加熱法または抽出法等により除去しておくことが好ましい。前記抽出法に使用する溶媒は、特に制限されないが、例えば、ノルマルデカン、ドデカン、ナフサ、ケロシン、スモイル等があげられる。 The liquid lubricant contained in the obtained sheet-like molded body is preferably removed by, for example, a heating method or an extraction method before the subsequent stretching step. The solvent used in the extraction method is not particularly limited, and examples thereof include normal decane, dodecane, naphtha, kerosene, and sumoyl.
続いて、前記シート状成形体に対して延伸を行う。前記シート状成形体をPTFEの融点(327℃)以下の温度で、一軸延伸または二軸延伸で延伸し多孔質化する。例えば、前記シート状成形体の長手方向において、その長さが、延伸前の長さに対して2〜30倍の範囲になるように、温度150〜327℃で延伸し、続いて、前記シート状成形体の幅方向において、その長さが延伸前の長さに対して2〜30倍の範囲になるように、温度30〜320℃で延伸する。前記延伸後、その延伸状態を保持して、PTFEの融点(327℃)以上の温度に加熱して焼成することにより、機械的強度の向上と寸法安定性の増加を図る。以上のようにして、PTFE多孔質膜が製造できる。なお、本発明において、PTFE多孔質膜の製造方法は、前述の方法に限定されず、他の方法で作成してもよいし、市販品を使用してもよい。 Then, it extends | stretches with respect to the said sheet-like molded object. The sheet-like molded body is made porous by uniaxial stretching or biaxial stretching at a temperature not higher than the melting point (327 ° C.) of PTFE. For example, in the longitudinal direction of the sheet-like molded body, the sheet is stretched at a temperature of 150 to 327 ° C. so that the length thereof is in the range of 2 to 30 times the length before stretching, and then the sheet is formed. In the width direction of the shaped molded body, it is stretched at a temperature of 30 to 320 ° C. so that its length is in a range of 2 to 30 times the length before stretching. After the stretching, the stretched state is maintained and heated to a temperature equal to or higher than the melting point (327 ° C.) of PTFE and fired to improve mechanical strength and increase dimensional stability. Thus, a PTFE porous membrane can be produced. In addition, in this invention, the manufacturing method of a PTFE porous membrane is not limited to the above-mentioned method, You may create with another method and may use a commercial item.
前記通気性支持材は、例えば、その表面形状(例えば、凹凸の形状や数等)等は特に制限されないが、プリーツ加工が可能なものが好ましい。また、通気性支持材の構成材料としては、例えば、織布、融着部材、金属ないしプラスチックのメッシュ、金属ないしプラスチックのネット、プラスチック発泡体等が使用できる。前記構成材料の中でも繊維部材が好ましく、特に費用の点から、融着部材が好ましい。前記繊維としては、例えば、セルロース、ビスコース等の半合成繊維、ポリエステル、ポリオレフィン、ポリアミド、アクリル、ポリスルフォン、ポリアミドイミド、ポリイミド、ポリフェニレンサルファイド、ポリフッ化ビニリデン等の合成繊維が使用できる。なお、前記通気性支持材は市販品を使用してもよく、例えば、東レ社製の商品名アクスターシリーズ、日本バイリーン社製の商品名VC‐1シリーズ、東洋紡社製の商品名ボランス、商品名ベストショット等があげられる。 The air-permeable support material is not particularly limited, for example, in terms of the surface shape (for example, the shape and number of irregularities), but is preferably one that can be pleated. Further, as a constituent material of the breathable support material, for example, a woven fabric, a fusion member, a metal or plastic mesh, a metal or plastic net, a plastic foam, or the like can be used. Among the constituent materials, a fiber member is preferable, and a fusion member is particularly preferable from the viewpoint of cost. Examples of the fibers include semi-synthetic fibers such as cellulose and viscose, and synthetic fibers such as polyester, polyolefin, polyamide, acrylic, polysulfone, polyamideimide, polyimide, polyphenylene sulfide, and polyvinylidene fluoride. The breathable support material may be a commercially available product. For example, the product name Acter series manufactured by Toray Industries, Inc., the product name VC-1 series manufactured by Japan Vilene Co., Ltd., the product name Borance manufactured by Toyobo Co., Ltd. Name best shots.
つぎに、本発明の製造方法の一例を、図1を用いて説明する。図1は、本発明の製造方法において、使用する構成部材の積層形態の一例を示す断面図である。 Next, an example of the production method of the present invention will be described with reference to FIG. FIG. 1 is a cross-sectional view showing an example of a laminated form of components used in the manufacturing method of the present invention.
まず、図1に示すように、PTFE多孔質膜11、2層の通気性熱融着部材121、122および通気性支持体13をこの順序で積層する。前述のように、通気性熱融着部材は軟化点が異なる高軟化点層と低軟化点層とを含み、高軟化点層121がPTFE多孔質膜側、低軟化点層122が通気性支持材側に位置するように配置されている。なお、PTFE多孔質膜側ではなく、通気性支持体側から加熱処理を行う場合には、反対に、PTFE多孔質膜側に低軟化点層、通気性支持材側に高軟化点層が位置するように通気性熱融着部材を配置すればよい。
First, as shown in FIG. 1, the PTFE
そして、図1に示す積層体1に対して、PTFE多孔質膜11側から加熱処理を施すことによって、本発明のフィルタ濾材を形成できる。具体的には、前記加熱処理によって高軟化点層121および低軟化点層122を熱溶融させ、PTFE多孔質膜11と高軟化点層121、高軟化点層121と低軟化点層122、低軟化点層と通気性支持材13を、それぞれ熱融着することによって、全体として一体化されるのである。そして、前記通気性熱融着部材は、その材料の溶融により融着が起こるため、例えば、繊維のない部分、空孔部分で通気性が確保される。なお、このフィルタ濾材には、さらにプリーツ加工を施してもよい。
And the filter medium of this invention can be formed by heat-processing with respect to the
前記加熱処理の条件は、使用する高軟化点層および低軟化点層の軟化点に応じて設定することができる。加熱温度は、例えば、高軟化点層の軟化点より5℃以上離れた温度であることが好ましく、より好ましくは5〜30℃離れた温度であり、特に好ましくは5〜15℃離れた温度である。また、加熱時間は、通気性熱融着部材の厚み、それを構成する各層の厚み、加熱温度に応じて適宜決定できるが、例えば、20秒以下であり、特に好ましくは5秒以下である。 The conditions for the heat treatment can be set according to the softening points of the high softening point layer and the low softening point layer to be used. The heating temperature is preferably, for example, a temperature 5 ° C. or more away from the softening point of the high softening point layer, more preferably 5-30 ° C., particularly preferably 5-15 ° C. is there. The heating time can be appropriately determined according to the thickness of the breathable heat-sealing member, the thickness of each layer constituting the member, and the heating temperature, and is, for example, 20 seconds or less, particularly preferably 5 seconds or less.
前記積層体の熱融着は、前記積層体に適当な圧力をかけながら行うことが好ましい。前記圧力は、例えば、0.1〜0.7MPaであり、好ましくは0.3〜0.5MPaであり、この条件で、ロール等によりニップすることが好ましい。 It is preferable that the thermal fusion of the laminate is performed while applying an appropriate pressure to the laminate. The pressure is, for example, 0.1 to 0.7 MPa, and preferably 0.3 to 0.5 MPa. Under these conditions, it is preferable to nip with a roll or the like.
このような製造方法により得られた本発明のフィルタ濾材は、前述のように通気に優れ、且つ、構成部材の接着性にも優れるものである。このため、例えば、使用時やプリーツ加工時に、構成部材の剥離が原因となるクラックの発生等の問題がなく、極めて有用である。その用途としては、特に制限されず、例えば、ダスト除去を目的として、掃除機や、プラントにおける集塵機等への適用、食品分野における小麦粉等の有価粉体、または化学合成物、セメントや金属粉体等の回収を目的とする装置への適用が可能である。本発明のフィルタ濾材は、これらの装置における一般的な塵埃捕集部、回収部等に取り付けて使用することができる。また、本発明のフィルタ濾材は、カートリッジ式フィルタ濾材と使用することや、フレームに取り付けてエアフィルタユニットとして使用することも好ましい。 The filter medium of the present invention obtained by such a manufacturing method is excellent in ventilation as described above, and also excellent in adhesiveness of constituent members. For this reason, for example, there is no problem such as generation of cracks caused by peeling of the constituent members at the time of use or pleating, which is extremely useful. The use is not particularly limited. For example, for the purpose of dust removal, application to vacuum cleaners, dust collectors in plants, valuable powders such as wheat flour in the food field, or chemical compounds, cement and metal powders. Etc. can be applied to an apparatus for the purpose of collecting the like. The filter medium of the present invention can be used by being attached to a general dust collecting part, a collecting part or the like in these apparatuses. Further, the filter medium of the present invention is preferably used with a cartridge type filter medium, or attached to a frame and used as an air filter unit.
本発明のフィルタ濾材の圧力損失は、例えば、100〜500Paであり、好ましくは150〜300Paである。また、その捕集効率は、例えば、97〜100%であり、好ましくは98〜100%である。なお、前記捕集効率は、JIS Z 8901に従い、試験用ダストの13種であるジオクチルフタレートエアロゾルを用いて測定し、0.3〜0.5μmの粒子の捕集効率を求めた。 The pressure loss of the filter medium of the present invention is, for example, 100 to 500 Pa, and preferably 150 to 300 Pa. Moreover, the collection efficiency is 97-100%, for example, Preferably it is 98-100%. In addition, the said collection efficiency was measured using the dioctyl phthalate aerosol which is 13 types of test dust according to JISZ8901, and the collection efficiency of the particle | grains of 0.3-0.5 micrometer was calculated | required.
つぎに、本発明の実施例について、比較例と併せて説明する。 Next, examples of the present invention will be described together with comparative examples.
PTFE多孔質膜、通気性熱融着部材(高軟化点層、低軟化点層)および通気性支持体をこの順序で配置した。なお、通気性熱融着部材は、高軟化点層がPTFE多孔質膜側に位置するように配置した。そして、この積層体を190℃に加熱した加熱ロールを用いて加圧ラミネート(加圧条件0.5MPa)することによって、目的のフィルタ濾材を作製した(厚み300μm)。なお、加熱処理はPTFE多孔質膜側から行った。前記PTFE多孔質膜は、日東電工社製の厚み10μm、平均孔径1.5μmのものを使用し、高軟化点層としては商品名モイスターM16(大紀商事社製、PET系不織布、厚み0.08mm、目付け量16g/m2、通気性400cm3/cm2/sec、DSCピーク温度185℃)、低軟化点層としては商品名シャンファインPM010JF(東洋紡績社製、メルトブロー法によるPP系不織布、厚み0.09mm、目付け量10g/m2、通気性45cm3/cm2/sec、DSCピーク温度162℃)、通気性支持体としては商品名アクスターG2260-1S(東レ社製、エンボス加工、厚み0.6mm、目付け量260g/m2、通気性12 cm3/cm2/sec)をそれぞれ使用した。なお、高軟化点層と低軟化点層の軟化点の差は、23℃である。 A PTFE porous membrane, a breathable heat-sealing member (high softening point layer, low softening point layer) and a breathable support were arranged in this order. The breathable heat-sealing member was disposed so that the high softening point layer was located on the PTFE porous membrane side. And the target filter material was produced (300 micrometers in thickness) by carrying out pressure lamination (pressurization conditions 0.5MPa) of this laminated body using the heating roll heated at 190 degreeC. The heat treatment was performed from the PTFE porous membrane side. The PTFE porous membrane is made of Nitto Denko Corporation with a thickness of 10 μm and an average pore size of 1.5 μm, and the high softening point layer is a trade name Moyster M16 (Daki non-woven fabric, PET non-woven fabric, thickness 0.08 mm, basis weight 16g / m 2 in volume, breathability 400cm 3 / cm 2 / sec, DSC peak temperature 185 ° C), low softening point layer is trade name Shanfine PM010JF (manufactured by Toyobo Co., Ltd., PP non-woven fabric by melt blow method, thickness 0.09mm , Weight per unit area 10g / m 2 , Breathability 45cm 3 / cm 2 / sec, DSC peak temperature 162 ° C), As a breathable support, trade name AXTER G2260-1S (manufactured by Toray Industries, embossed, thickness 0.6mm, basis weight Amount 260 g / m 2 and breathability 12 cm 3 / cm 2 / sec) were used respectively. The difference between the softening points of the high softening point layer and the low softening point layer is 23 ° C.
通気性熱融着部材として、DSCピーク温度220℃のPET系不織布(高軟化点層)とDSCピーク温度195℃のPET系不織布(低軟化点層)とを貼り合せた一体化物(商品名ミライフTLY0505E、日石プラスト社製、厚み0.05mm、目付け量10g/m2、通気性400 cm3/cm2/sec)を使用し、PTFE多孔質膜、前記通気性熱融着部材、および通気性支持体をこの順序で積層し、これらを230℃で加圧ラミネートした以外は、前記実施例1と同様にして目的の濾材フィルタを作製した(厚み250μm)。なお、前記通気性熱融着部材は、DSCピーク温度220℃のPET系不織布(高軟化点層)がPTFE多孔質膜側に位置するように配置した。なお、高軟化点層と低軟化点層の軟化点の差は、25℃である。 As a breathable heat-sealing member, an integrated product (trade name: Milife) that combines a PET nonwoven fabric (high softening point layer) with a DSC peak temperature of 220 ° C and a PET nonwoven fabric (low softening point layer) with a DSC peak temperature of 195 ° C. TLY0505E, manufactured by Nisseki Plast Co., Ltd., with a thickness of 0.05 mm, weight per unit area of 10 g / m 2 , breathability of 400 cm 3 / cm 2 / sec), PTFE porous membrane, breathable heat fusion member, and breathability A target filter medium filter was prepared (thickness: 250 μm) in the same manner as in Example 1 except that the supports were laminated in this order and these were pressure-laminated at 230 ° C. The breathable heat-sealing member was disposed so that the PET nonwoven fabric (high softening point layer) having a DSC peak temperature of 220 ° C. was positioned on the PTFE porous membrane side. The difference between the softening points of the high softening point layer and the low softening point layer is 25 ° C.
通気性支持体としてエンボス加工されていない商品名ボランス4141P(東洋紡社製、厚み1.0mm、目付け量140g/m2、通気性220 cm3/cm2/sec)を使用した以外は、前記実施例2と同様にして目的のフィルタ濾材を作製した(厚み220μm)。なお、高軟化点層と低軟化点層の軟化点の差は、25℃である。 Except for using the product name Borans 4141P (made by Toyobo Co., Ltd., thickness 1.0 mm, weight per unit area 140 g / m 2 , breathability 220 cm 3 / cm 2 / sec) as an air-permeable support, the above examples The target filter medium was prepared in the same manner as in No. 2 (thickness 220 μm). The difference between the softening points of the high softening point layer and the low softening point layer is 25 ° C.
(比較例1)
2層の通気性熱融着部材に代えて、一層の商品名エクーレ3151A(東洋紡績社製、PET系不織布、厚み0.13mm、目付け量15g/m2、通気性400cm3/cm2/sec、DSCピーク温度252℃)のみを使用し、210℃で加圧ラミネートを行った以外は、前記実施例1と同様にしてフィルタ濾材を作製した(厚み240μm)。
(Comparative Example 1)
In place of the two-layer breathable heat-sealing member, one-layer product name Ecule 3151A (Toyobo Co., Ltd., PET-based nonwoven fabric, thickness 0.13 mm, basis weight 15 g / m 2 , breathability 400 cm 3 / cm 2 / sec, A filter medium was prepared (thickness: 240 μm) in the same manner as in Example 1 except that only DSC peak temperature (252 ° C.) was used and pressure lamination was performed at 210 ° C.
(比較例2)
実施例1における通気性熱融着部材を、その高軟化点層が通気性支持体側に位置するように配置した以外は、前記実施例1と同様にして、フィルタ濾材を作製した。
(Comparative Example 2)
A filter medium was prepared in the same manner as in Example 1 except that the breathable heat-sealing member in Example 1 was disposed so that the high softening point layer was located on the breathable support side.
実施例1〜3、比較例1および比較例2のフィルタ濾材について、以下の方法により通気性、接着性を確認した。 The filter media of Examples 1 to 3, Comparative Example 1 and Comparative Example 2 were confirmed for air permeability and adhesiveness by the following methods.
(接着性の目視試験)
図2に示すように、各フィルタ濾材について接着性試験(目視)を行った。図2は、接着性試験の概略を示す断面図であり、図1と同一箇所には同一符号を付している。試験用具として、図2に示すような、ステンレス製の管部とテーパー部と筒状部とからなる漏斗形状の下基材211と、上部に円形の開口部を有する上基材212とからなる用具を使用した。この下基材211の内部側面に設けられた凸部上に、シリコンもしくはクロロプレン製の市販O‐リングを介して、円形(直径4.7cm)に切断したフィルタ濾材を配置した。この際、通気性支持体13が下側となるようにフィルタ濾材1を配置した。そして、前記濾材のPTFE多孔質膜側にさらにシリコンもしくはクロロプレン製のO‐リングを介して、上基材212を配置した。
(Visual test for adhesion)
As shown in FIG. 2, an adhesion test (visual observation) was performed on each filter medium. FIG. 2 is a cross-sectional view showing an outline of the adhesion test, and the same portions as those in FIG. As a test tool, as shown in FIG. 2, a funnel-shaped
そして、試験用具の下基材211の管部から矢印方向に向かって、空気により10秒間加圧(圧力0.7MPa)を行い、5秒放置した後に、さらに同様に加圧を行い、合計5回この操作を繰り返した。そして、加圧処理後のフィルタ濾材について、クラックの有無、通気性支持体13と低軟化点層122との剥離、または、高軟化点層121と低軟化点層122の剥離の有無を確認した。
Then, from the tube portion of the
なお、フィルタ濾材の通気性は、JIS K 1096に記載のフラジール法に従って行った。 The air permeability of the filter medium was measured according to the fragile method described in JIS K1096.
(接着性試験)
図3に示すように、各フィルタ濾材について180℃折り返しピーリング試験を行った。図3は、ピーリング試験の概略を示す断面図であり、図1と同一箇所には同一符号を付している。まず、フィルタ濾材1(長さ100mm、幅20mm)を、PTFE多孔質膜11が上になるように水平な台の上に置き固定した。そして、図3の断面図に示すように、長さ20cm、幅2cm、厚み170μmの接着テープ3(商品名No.500:日東電工社製)を、前記フィルタ濾材1の長手方向における中央側から一方の端部に向かって貼り付けた後(貼り付けた部分の長さ6cm)、前記フィルタ濾材1の前記端部で、前記接着テープ3を180°折り返し、前記フィルタ濾材1に接着していない前記接着テープ3の端部を、図2の矢印方向に引張速度300mm/minで引っ張った。そして、テープを20mm引っ張るのに必要な平均の力を測定した。なお、接着テープを引っ張ることによって、実施例1〜4は、高軟化点層121と低軟化点層122との間、比較例1と比較例2は、不織布122と通気性支持体13との間において、それぞれ剥離が生じた。
(Adhesion test)
As shown in FIG. 3, each filter medium was subjected to a 180 ° C. folding peel test. FIG. 3 is a cross-sectional view showing an outline of the peeling test, in which the same parts as those in FIG. First, the filter medium 1 (length 100 mm, width 20 mm) was placed and fixed on a horizontal table so that the PTFE
(表1)
接着性 通気性
目視 (N/20mm) (cm 3 /cm 2 /sec)
実施例1 剥離無し 9.1 2.4
実施例2 剥離無し 6.3 3.3
実施例3 剥離無し 10.3 4.5
実施例4 剥離無し 3.2 3.1
比較例1 剥離 0.6 3.1
比較例2 剥離 1.2 0.3
(Table 1)
Adhesive breathability
Visual (N / 20mm) (cm 3 / cm 2 / sec)
Example 1 No peeling 9.1 2.4
Example 2 No peeling 6.3 3.3
Example 3 No peeling 10.3 4.5
Example 4 No peeling 3.2 3.1
Comparative Example 1 Peeling 0.6 3.1
Comparative Example 2 Peeling 1.2 0.3
表1に示すように、実施例1〜4のフィルタ濾材によれば、低軟化点層を使用していない比較例1および2に比べて、図2の測定用具を用いた試験によっても高軟化点層と低軟化点層との間で剥離やクラックの発生は見られず、また、前記両者の接着力も極めて高かった。また、実施例1〜4は、通気性にも優れていた。これに対して、比較例1および2は、剥離が生じ、接着力も劣っていた。 As shown in Table 1, according to the filter media of Examples 1 to 4, compared with Comparative Examples 1 and 2 that do not use a low softening point layer, high softening is also obtained by a test using the measuring tool of FIG. No peeling or cracking was observed between the point layer and the low softening point layer, and the adhesive strength between the two was extremely high. Moreover, Examples 1-4 were excellent also in air permeability. On the other hand, in Comparative Examples 1 and 2, peeling occurred and the adhesive strength was inferior.
本発明の製造方法によれば、通気性に優れ、かつ、PTFE多孔質膜と通気性支持材との接着性にも優れるフィルタ濾材を製造できる。このため、フィルタ濾材の使用時や、プリーツ形状に加工した場合であっても、PTFE多孔質膜のクラックが生じたり、剥離等の問題がなく、優れた捕集効率を保つことができる。 According to the production method of the present invention, it is possible to produce a filter medium that is excellent in air permeability and also excellent in adhesion between the porous PTFE membrane and the air permeable support material. For this reason, even when the filter medium is used or when it is processed into a pleated shape, there is no problem such as cracking of the PTFE porous membrane or peeling, and excellent collection efficiency can be maintained.
1 積層体
11 PTFE多孔質膜
121 高軟化点層
122 低軟化点層
13 通気性支持材
DESCRIPTION OF
Claims (9)
前記通気性熱融着部材が、軟化点が異なる2層の通気性熱融着部材であり、
前記積層体の加熱処理側に、軟化点の高い層が位置するように熱融着部材を配置することを特徴とするフィルタ濾材の製造方法。 A polytetrafluoroethylene (PTFE) porous membrane, a breathable heat-sealing member, and a breathable support material are laminated in this order, and heat treatment is performed from the surface of either the PTFE porous membrane or the breathable support material. A method for producing a filter medium that integrates the PTFE porous membrane and the breathable support material by thermally melting the breathable heat fusion member,
The breathable heat fusion member is a two-layer breathable heat fusion member having different softening points,
A method for producing a filter medium, wherein a heat-sealing member is arranged so that a layer having a high softening point is positioned on the heat treatment side of the laminate.
The manufacturing method according to any one of claims 1 to 8, further comprising pleating after the PTFE porous membrane and the breathable support material are integrated.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004346534A JP4420343B2 (en) | 2004-11-30 | 2004-11-30 | Method for producing filter media |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004346534A JP4420343B2 (en) | 2004-11-30 | 2004-11-30 | Method for producing filter media |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006150275A true JP2006150275A (en) | 2006-06-15 |
JP4420343B2 JP4420343B2 (en) | 2010-02-24 |
Family
ID=36629184
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004346534A Expired - Fee Related JP4420343B2 (en) | 2004-11-30 | 2004-11-30 | Method for producing filter media |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4420343B2 (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008221202A (en) * | 2007-02-14 | 2008-09-25 | Nicotec Co Ltd | Filter and its manufacturing method |
WO2009051066A1 (en) * | 2007-10-19 | 2009-04-23 | Japan Gore-Tex Inc. | Air filter and air filter assebly for cleaner made by using the filter |
JP2010531517A (en) * | 2007-06-29 | 2010-09-24 | インテル コーポレイション | Breathable hydrophobic membrane for use in computer equipment |
JP2011025238A (en) * | 2009-07-22 | 2011-02-10 | Bha Group Inc | High performance gas turbine inlet filter (hepa) using membrane media |
WO2013031229A1 (en) * | 2011-08-31 | 2013-03-07 | ダイキン工業株式会社 | Filter medium for air filter, air filter unit, and method for producing filter medium for air filter |
WO2013031228A1 (en) * | 2011-08-31 | 2013-03-07 | ダイキン工業株式会社 | Filter medium for air filter and air filter unit |
JP2013094717A (en) * | 2011-10-31 | 2013-05-20 | Nitto Denko Corp | Air filter media |
JP2014061463A (en) * | 2012-09-20 | 2014-04-10 | Panasonic Corp | AIR FILTER FILTER AND ITS MANUFACTURING METHOD, AIR FILTER AND AIR CLEANING DEVICE USING SAME |
CN104385697A (en) * | 2014-11-14 | 2015-03-04 | 宁波摩尔森膜环保科技有限公司 | Compound gas filtering film |
KR20200044563A (en) * | 2018-10-19 | 2020-04-29 | 주식회사 엘지화학 | Ventilation filter |
CN115282694A (en) * | 2022-07-08 | 2022-11-04 | 南京玻璃纤维研究设计院有限公司 | Preparation method of PTFE (polytetrafluoroethylene) membrane-coated filter material |
-
2004
- 2004-11-30 JP JP2004346534A patent/JP4420343B2/en not_active Expired - Fee Related
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008221202A (en) * | 2007-02-14 | 2008-09-25 | Nicotec Co Ltd | Filter and its manufacturing method |
JP2010531517A (en) * | 2007-06-29 | 2010-09-24 | インテル コーポレイション | Breathable hydrophobic membrane for use in computer equipment |
WO2009051066A1 (en) * | 2007-10-19 | 2009-04-23 | Japan Gore-Tex Inc. | Air filter and air filter assebly for cleaner made by using the filter |
JP2009101254A (en) * | 2007-10-19 | 2009-05-14 | Japan Gore Tex Inc | Air filter and air filter for vacuum cleaner using this air filter |
AU2008312987B2 (en) * | 2007-10-19 | 2012-02-02 | Japan Gore-Tex Inc. | Air filter and air filter assembly for cleaner made by using the filter |
EP2213356A4 (en) * | 2007-10-19 | 2012-07-18 | Japan Gore Tex Inc | AIR FILTER AND AIR FILTER ASSEMBLY FOR A CLEANING APPARATUS FORMED USING THE FILTER |
JP2011025238A (en) * | 2009-07-22 | 2011-02-10 | Bha Group Inc | High performance gas turbine inlet filter (hepa) using membrane media |
WO2013031228A1 (en) * | 2011-08-31 | 2013-03-07 | ダイキン工業株式会社 | Filter medium for air filter and air filter unit |
WO2013031229A1 (en) * | 2011-08-31 | 2013-03-07 | ダイキン工業株式会社 | Filter medium for air filter, air filter unit, and method for producing filter medium for air filter |
JP2013052321A (en) * | 2011-08-31 | 2013-03-21 | Daikin Industries Ltd | Filter medium for air filter and air filter unit |
JP2013063424A (en) * | 2011-08-31 | 2013-04-11 | Daikin Industries Ltd | Filter medium for air filter, air filter unit and method for manufacturing filter medium for air filter |
CN103857455A (en) * | 2011-08-31 | 2014-06-11 | 大金工业株式会社 | Filter medium for air filter and air filter unit |
US9242201B2 (en) | 2011-08-31 | 2016-01-26 | Daikin Industries, Ltd. | Filter medium for air filter and filter unit |
JP2013094717A (en) * | 2011-10-31 | 2013-05-20 | Nitto Denko Corp | Air filter media |
JP2014061463A (en) * | 2012-09-20 | 2014-04-10 | Panasonic Corp | AIR FILTER FILTER AND ITS MANUFACTURING METHOD, AIR FILTER AND AIR CLEANING DEVICE USING SAME |
CN104385697A (en) * | 2014-11-14 | 2015-03-04 | 宁波摩尔森膜环保科技有限公司 | Compound gas filtering film |
KR20200044563A (en) * | 2018-10-19 | 2020-04-29 | 주식회사 엘지화학 | Ventilation filter |
KR102371576B1 (en) * | 2018-10-19 | 2022-03-04 | 주식회사 엘지화학 | Ventilation filter |
CN115282694A (en) * | 2022-07-08 | 2022-11-04 | 南京玻璃纤维研究设计院有限公司 | Preparation method of PTFE (polytetrafluoroethylene) membrane-coated filter material |
Also Published As
Publication number | Publication date |
---|---|
JP4420343B2 (en) | 2010-02-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5784458B2 (en) | Air filter media | |
AU2008262432B2 (en) | Multiple layer filter media | |
EP2000499B1 (en) | Process for production of polytetrafluoroethylene porous membrane, filter medium and filter unit | |
JP4420343B2 (en) | Method for producing filter media | |
JP6725311B2 (en) | Filter media and filter unit | |
WO2017056508A1 (en) | Air filter material, air filter pack, and air filter unit | |
CA2682984A1 (en) | Filter with eptfe and method of forming | |
TWI657852B (en) | Filter media and filter unit | |
KR102214735B1 (en) | Filter medium | |
JPS62155912A (en) | Filter element for precision filtration | |
JP2008272692A (en) | Filter and its manufacturing method | |
JP2003190749A (en) | Production method for porous polytetrafluoroethylene film composite | |
WO2013014828A1 (en) | Filter unit and cleaner provided with same | |
JP2008279386A (en) | Method of manufacturing cylindrical filter and cylindrical filter | |
TW201420167A (en) | Filter filter and filter filter manufacturing device | |
JP3793130B2 (en) | Dust collector filter and manufacturing method thereof | |
JP5204266B2 (en) | Polytetrafluoroethylene porous membrane manufacturing method and bag filter filter medium manufacturing method | |
JP4007919B2 (en) | Filter for dust collector | |
JP2006061808A (en) | Ventilation filter medium for masks | |
JP2010142746A (en) | Filter support and filter using the same | |
JP2007111697A (en) | Air filter medium | |
US20230356152A1 (en) | Air filter medium, filter pleat pack, and air filter unit | |
TW201429537A (en) | Filter material and method for manufacturing filter material | |
JP2011183339A (en) | Filter unit | |
KR20150079105A (en) | PTFE filter media and production method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061106 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080617 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20091126 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20091126 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121211 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4420343 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121211 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20151211 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |