[go: up one dir, main page]

JP2006147339A - Membrane-electrode assembly for solid polymer electrolyte fuel cell - Google Patents

Membrane-electrode assembly for solid polymer electrolyte fuel cell Download PDF

Info

Publication number
JP2006147339A
JP2006147339A JP2004335613A JP2004335613A JP2006147339A JP 2006147339 A JP2006147339 A JP 2006147339A JP 2004335613 A JP2004335613 A JP 2004335613A JP 2004335613 A JP2004335613 A JP 2004335613A JP 2006147339 A JP2006147339 A JP 2006147339A
Authority
JP
Japan
Prior art keywords
ion exchange
exchange membrane
membrane
polymer ion
catalyst layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004335613A
Other languages
Japanese (ja)
Inventor
Yoshikazu Morita
芳和 守田
Shinichi Kamoshita
真一 鴨志田
Keiji Izumi
圭二 和泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2004335613A priority Critical patent/JP2006147339A/en
Publication of JP2006147339A publication Critical patent/JP2006147339A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid polymer electrolyte fuel cell that is less likely to cause voltage drop in a low-current region and is capable of suppressing dissolution of acid ions, by improving a bonding state of catalyst layers 2a and 2b to a polymer ion exchange membrane 3. <P>SOLUTION: In this membrane-electrode assembly, a hydrogen electrode-side catalyst layer 2a and an oxidation electrode-side catalyst 2b are pressed into a polymer ion exchange membrane 3 and brought into partial contact with each other in the polymer ion exchange membrane 3. By pressing-in and partial contact of the catalyst layers 2a and 2b, the catalyst layers 2a and 2b are firmly bonded to the polymer ion exchange membrane 3, and own effective resistance of the polymer ion exchange membrane 3 is also reduced. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、電解質からの酸性イオン溶出を抑制し、燃料電池セルの寿命を長くした固体高分子型燃料電池用の膜-電極接合体に関する。   The present invention relates to a membrane-electrode assembly for a polymer electrolyte fuel cell that suppresses acidic ion elution from an electrolyte and prolongs the life of a fuel cell.

固体高分子型燃料電池は、環境に及ぼす影響が少なく、室温程度の低温でも起動・発電できる長所から自動車の動力源を始めとし、各種分野で可動型又は定置型電気エネルギー供給源として期待されている。固体高分子型燃料電池は、高分子イオン交換膜11の両面に水素極12,酸化極13を配置し、セパレータ14,15で挟んだセル構造10(図1)を1単位としている。水素極側セパレータ14に、水素含有燃料を送り込む複数の溝14aが形成されている。酸化極側セパレータ15には、酸素又は空気を送り込む複数の溝15a及び電池反応で生成した水を送り出す溝15bが形成されている。水素極側,酸化極側のセパレータとしての平板状金属板にカーボンペーパ又は膨張性黒鉛を積層して流路を形成することも知られている(特許文献1)。
特開2000-123850号公報
Solid polymer fuel cells have little impact on the environment, and are expected to be a movable or stationary electric energy source in various fields including the power source of automobiles because of their advantages of starting and generating power even at low temperatures of about room temperature. Yes. In the polymer electrolyte fuel cell, a hydrogen electrode 12 and an oxidation electrode 13 are arranged on both surfaces of a polymer ion exchange membrane 11, and a cell structure 10 (FIG. 1) sandwiched between separators 14 and 15 is used as one unit. A plurality of grooves 14 a for feeding the hydrogen-containing fuel are formed in the hydrogen electrode side separator 14. The oxidation electrode-side separator 15 is formed with a plurality of grooves 15a for sending oxygen or air and a groove 15b for sending water generated by the battery reaction. It is also known to form a flow path by laminating carbon paper or expansive graphite on a flat metal plate as a separator on the hydrogen electrode side and the oxidation electrode side (Patent Document 1).
JP 2000-123850 A

水素供給溝14aを経て水素含有燃料を水素極12(燃料極)側に送り込むと、燃料極12上でH2がプロトンH+となる。プロトンH+は、水の存在下で高分子イオン交換膜11を透過して触媒電極層13(酸化極)に移動し、酸素供給溝15aを経て酸化極13側に送り込まれてきた酸化剤中のO2及び外部回路16から流れてきた電子e-と反応し、水(反応生成物)として排水溝15bを経て系外に排出される。
外部回路16に沿った電子e-の流れが電気エネルギーとして取り出されるが、単体の膜-電極接合体10から取り出される電気量は極僅かである。そこで、多数のセル構造10をスタックすることにより、実用に供せられる電力を得ている。
When the hydrogen-containing fuel is sent to the hydrogen electrode 12 (fuel electrode) side through the hydrogen supply groove 14a, H 2 becomes proton H + on the fuel electrode 12. Proton H + permeates the polymer ion exchange membrane 11 in the presence of water, moves to the catalyst electrode layer 13 (oxidation electrode), and passes through the oxygen supply groove 15a to the oxidation electrode 13 side. It reacts with O 2 and the electron e flowing from the external circuit 16 and is discharged out of the system as water (reaction product) through the drainage groove 15b.
The flow of electrons e along the external circuit 16 is extracted as electric energy, but the amount of electricity extracted from the single membrane-electrode assembly 10 is very small. Therefore, power that can be put to practical use is obtained by stacking a large number of cell structures 10.

電池反応時に生成する水は理論的には純水であり、排出されても環境に悪影響を及ぼさないはずである。ところが、本発明者等による発電試験の結果は、高分子イオン交換膜11にフッ素系樹脂を使用した場合、無負荷運転(開回路)を始め、セル電圧が高い低電流密度の運転領域で燃料電池から排出される水に酸性イオンが含まれることを示している(図2)。
酸性イオンは流出源が定かでないが、酸性イオンが溶出する運転条件を長時間継続すると電池特性が大幅に低下する。酸性イオンが燃料電池セルに供給した加湿水wetH2や生成水(反応生成物)に溶け込むと、金属製セパレータ14,15や金属製排水管等が腐食しやすくなる。
The water produced during the battery reaction is theoretically pure water, and should not adversely affect the environment even if discharged. However, as a result of the power generation test by the present inventors, when a fluorine-based resin is used for the polymer ion exchange membrane 11, fuel is used in a low current density operation region where the cell voltage is high, including no-load operation (open circuit). It shows that acidic ions are contained in the water discharged from the battery (FIG. 2).
Although the outflow source of acidic ions is not clear, battery characteristics are significantly deteriorated if the operating conditions in which acidic ions are eluted are continued for a long time. When acidic ions are dissolved in the humidified water wetH 2 supplied to the fuel cell or the generated water (reaction product), the metal separators 14 and 15, the metal drain pipe, and the like are easily corroded.

なかでも、固体高分子型燃料電池は、低温で作動する長所を活用して頻繁に起動・停止させることが予想される。起動・停止時に酸性イオンが溶出しやすい無負荷状態となるので、起動・停止が頻繁に繰り返される用途では燃料電池の寿命が短くなる。排水中の酸性イオン濃度も高くなり、環境的にも好ましくない。酸性イオンの溶出に起因する影響を考慮すると、発電用の運転領域に入らない無負荷運転や低電流密度域での運転を可能な限り避けることが望まれ、運転条件に加わる制約が大きくなる。   In particular, the polymer electrolyte fuel cell is expected to be frequently started and stopped by taking advantage of the low temperature operation. Since it becomes a no-load state in which acidic ions are likely to elute at the time of starting and stopping, the life of the fuel cell is shortened in applications where the starting and stopping are frequently repeated. The concentration of acidic ions in the waste water is also high, which is not preferable from the environmental viewpoint. In view of the influence caused by the elution of acidic ions, it is desired to avoid as much as possible no-load operation that does not enter the operation region for power generation and operation in a low current density region, and the restrictions imposed on the operation conditions increase.

本発明は、このような問題を解消すべく案出されたものであり、無負荷運転や実用に供しない低電流密度領域での運転時にセル電圧を下げることにより、酸性イオンの溶出や金属製部品の腐食を抑制し、長期間にわたって高発電効率を維持でき環境に及ぼす悪影響がない固体高分子型燃料電池を提供することを目的とする。   The present invention has been devised to solve such problems, and by reducing the cell voltage during no-load operation or operation in a low current density region not practically used, elution of acidic ions and metal An object of the present invention is to provide a polymer electrolyte fuel cell that suppresses corrosion of components, maintains high power generation efficiency over a long period of time, and has no adverse effect on the environment.

本発明の固体高分子型燃料電池用膜-電極接合体は、その目的を達成するため、水素極側触媒層及び酸化極側触媒層を接合したガス拡散電極が高分子イオン交換膜のそれぞれ両面に積層され、水素極側触媒層,酸化極側触媒層が高分子イオン交換膜に押し込まれ、高分子イオン交換膜の内部で互いに部分接触していることを特徴とする。   In order to achieve the object of the membrane-electrode assembly for a polymer electrolyte fuel cell of the present invention, the gas diffusion electrodes joined to the hydrogen electrode side catalyst layer and the oxidation electrode side catalyst layer are provided on both surfaces of the polymer ion exchange membrane. The hydrogen electrode side catalyst layer and the oxidation electrode side catalyst layer are pushed into the polymer ion exchange membrane and are in partial contact with each other inside the polymer ion exchange membrane.

実施の形態Embodiment

本発明に従った固体高分子型燃料電池は、次の工程で作製される膜-電極接合体を備えている。
カーボンペーパ,カーボンクロス等のガス拡散電極1a,1bの片面に、白金系の触媒を担持したカーボン担体,電解質,ポリテトラフルオロエチレン等を含むインクを塗布することによって触媒層2a,2bを形成する。インクは適宜の方法で塗布されるが、スプレーコート法を採用すると触媒層2a,2bの表面に凹凸が付けられ、ホットプレス成形時に水素極側触媒層2a,酸化極側触媒層2bがガス拡散電極1a,1bに容易に結合する。
The polymer electrolyte fuel cell according to the present invention includes a membrane-electrode assembly produced in the following process.
The catalyst layers 2a and 2b are formed by applying an ink containing a carbon carrier carrying a platinum-based catalyst, an electrolyte, polytetrafluoroethylene, etc. on one side of the gas diffusion electrodes 1a and 1b such as carbon paper and carbon cloth. . The ink is applied by an appropriate method, but if the spray coating method is adopted, the surfaces of the catalyst layers 2a and 2b are uneven, and the hydrogen electrode side catalyst layer 2a and the oxidation electrode side catalyst layer 2b are gas diffused during hot press molding. It is easily coupled to the electrodes 1a and 1b.

触媒層2a,2bを結合させたガス拡散電極1a,1bの間に高分子イオン交換膜3を挟み、ホットプレス等でガス拡散電極1a,1bを加熱しながら高分子イオン交換膜3に加圧する。加圧加熱中に高分子イオン交換膜3が軟化し、触媒層2a,2bが部分的に高分子イオン交換膜3に押し込まれる。触媒層2a,2bの押込みは、スプレーコート等で凹凸を付けた触媒層2a,2bほど顕著になる。   The polymer ion exchange membrane 3 is sandwiched between the gas diffusion electrodes 1a and 1b combined with the catalyst layers 2a and 2b, and the polymer ion exchange membrane 3 is pressurized while heating the gas diffusion electrodes 1a and 1b by hot pressing or the like. . The polymer ion exchange membrane 3 softens during the pressure heating, and the catalyst layers 2a and 2b are partially pushed into the polymer ion exchange membrane 3. The indentation of the catalyst layers 2a and 2b becomes more prominent as the catalyst layers 2a and 2b are made uneven by spray coating or the like.

加圧加熱条件は、水素極側触媒層2a及び酸化極側触媒層2bが部分的に接触するように設定される。具体的には、水素極側触媒層2a/酸化極側触媒層2b間の電気抵抗をホットプレス時にモニタリングし、規定の抵抗値が得られる加圧条件に選定することにより、水素極側触媒層2a,酸化極側触媒層2bの部分的な接触が可能になる。(図3a)   The pressure heating condition is set so that the hydrogen electrode side catalyst layer 2a and the oxidation electrode side catalyst layer 2b are in partial contact. Specifically, the electrical resistance between the hydrogen electrode side catalyst layer 2a / oxidation electrode side catalyst layer 2b is monitored during hot pressing, and the hydrogen electrode side catalyst layer is selected by selecting a pressurizing condition that provides a specified resistance value. 2a and partial contact of the oxidation electrode side catalyst layer 2b become possible. (Fig. 3a)

水素極側触媒層2a,酸化極側触媒層2bを部分的に接触させることにより、短絡が生じて高分子イオン交換膜3自体の実効抵抗が低下する。触媒層2a,2bと高分子イオン交換膜3の接合面積増加に伴いイオン伝導性も大きくなる。また、高分子イオン交換膜3に触媒層2a,2bが押し込まれているため、触媒層2a,2bが高分子イオン交換膜3に強固に接合され、イオン伝導性,ひいては電池性能が向上する。   When the hydrogen electrode side catalyst layer 2a and the oxidation electrode side catalyst layer 2b are partially brought into contact with each other, a short circuit occurs and the effective resistance of the polymer ion exchange membrane 3 itself decreases. As the junction area between the catalyst layers 2a and 2b and the polymer ion exchange membrane 3 increases, the ion conductivity also increases. Further, since the catalyst layers 2a and 2b are pushed into the polymer ion exchange membrane 3, the catalyst layers 2a and 2b are firmly joined to the polymer ion exchange membrane 3, thereby improving the ion conductivity and consequently the battery performance.

この点、従来の膜-電極接合体は、触媒層2a,2bを結合されたガス拡散電極1a,1bを高分子イオン交換膜3に積層しただけの構造(図3b)であるため、高分子イオン交換膜3の膜厚に応じて電気抵抗が増加する。また、高分子イオン交換膜3に対する触媒層2a,2bの接合強度が不足しがちでイオン伝導性が低く、得られる燃料電池セルの電池性能も十分でない。   In this respect, the conventional membrane-electrode assembly has a structure (FIG. 3b) in which the gas diffusion electrodes 1a, 1b combined with the catalyst layers 2a, 2b are simply laminated on the polymer ion exchange membrane 3 (FIG. 3b). The electric resistance increases according to the film thickness of the ion exchange membrane 3. Further, the bonding strength of the catalyst layers 2a and 2b to the polymer ion exchange membrane 3 tends to be insufficient, and the ion conductivity is low, and the battery performance of the obtained fuel cell is not sufficient.

白金担持カーボンブラック1gに対し5%ナフィオン(デュポン社製)溶液10ml,水10mlの割合で混合することにより触媒インクを調整した。カーボンペーパ(TGP-H-120:東レ株式会社製)に触媒インクをスプレーコートした後、80℃に加熱することにより触媒層を固定化処理した。
触媒層が形成されたカーボンペーパに5%ナフィオン溶液を塗布した後、高分子イオン交換膜を間に挟み、ホットプレスで高分子イオン交換膜の両面にカーボンペーパを接合した。ホットプレス時の加熱温度を120℃,150℃,175℃の三条件に設定し、加熱温度が高分子イオン交換膜/カーボンペーパの接合に及ぼす影響を調査した。
A catalyst ink was prepared by mixing 10 g of 5% Nafion (manufactured by DuPont) and 10 ml of water with 1 g of platinum-supported carbon black. After spray coating the catalyst ink on carbon paper (TGP-H-120: manufactured by Toray Industries, Inc.), the catalyst layer was fixed by heating to 80 ° C.
After 5% Nafion solution was applied to the carbon paper on which the catalyst layer was formed, the polymer ion exchange membrane was sandwiched therebetween, and the carbon paper was bonded to both sides of the polymer ion exchange membrane by hot pressing. The heating temperature during hot pressing was set to three conditions of 120 ° C., 150 ° C., and 175 ° C., and the influence of the heating temperature on the polymer ion exchange membrane / carbon paper bonding was investigated.

高分子イオン交換膜が実質的に軟化しない120℃でホットプレスした膜-電極接合体では、高分子イオン交換膜に対する触媒層の押込みがみられず、高分子イオン交換膜/触媒層の界面はフラット(図3b)であった。加熱温度が150℃になると、ホットプレス中に高分子イオン交換膜が一部軟化するものの、触媒層の押込みが十分でなく、水素極側触媒層/酸化極側触媒層の接触までに至らなかった。これに対し、加熱温度を175℃に設定したホットプレスした場合、高分子イオン交換膜の軟化進行に伴って触媒層が押し込まれ、水素極側触媒層が酸化極側触媒層に部分接触した。   In the membrane-electrode assembly hot-pressed at 120 ° C where the polymer ion exchange membrane does not substantially soften, the catalyst layer is not pushed into the polymer ion exchange membrane, and the interface between the polymer ion exchange membrane and the catalyst layer is It was flat (Fig. 3b). When the heating temperature is 150 ° C., the polymer ion exchange membrane partially softens during hot pressing, but the catalyst layer is not sufficiently pressed, and the contact between the hydrogen electrode side catalyst layer / oxidation electrode side catalyst layer does not reach. It was. In contrast, when hot pressing was performed at a heating temperature of 175 ° C., the catalyst layer was pushed in as the polymer ion exchange membrane softened, and the hydrogen electrode side catalyst layer partially contacted the oxidation electrode side catalyst layer.

作製された各膜-電極接合体を燃料電池セルに組み込み、セル温度を80℃に維持し、90℃で加湿した水素,無加湿酸素を反応ガスとしてそれぞれ0.5リットル/分の流量で送り込む運転条件下で、電流−電圧特性及び排水のpH値を調査した。
ホットプレス温度120℃,150℃で作製した膜-電極接合体を用いた燃料電池セルは、開回路電圧が1.0〜1.05Vであり、排水のpHは4以下であった。開回路電圧1Vで電流を取り出すとセル電圧が低下し、特に低電流密度領域で大きく電圧降下した。
Each produced membrane-electrode assembly is incorporated into a fuel cell, the cell temperature is maintained at 80 ° C., and hydrogen and non-humidified oxygen at 90 ° C. are supplied as reaction gases at a flow rate of 0.5 liter / min. Under operating conditions, the current-voltage characteristics and the pH value of the waste water were investigated.
The fuel cell using the membrane-electrode assembly produced at a hot press temperature of 120 ° C. and 150 ° C. had an open circuit voltage of 1.0 to 1.05 V, and the pH of the waste water was 4 or less. When the current was taken out at an open circuit voltage of 1 V, the cell voltage decreased, and a large voltage drop occurred particularly in the low current density region.

他方、ホットプレス温度175℃で作製した膜-電極接合体を用いた燃料電池セルは、開回路電圧が0.7Vであり、排水のpHは5以上であり、酸性イオンはほとんど溶出していなかった(図4)。また、本発明例では、開回路電圧が低いものの、微小電流を取り出したときセル電圧が僅かに降下しただけであった(図5)。セル電圧降下が抑制されることは、ホットプレス温度が高いため触媒層が高分子イオン交換膜に強固に接合され、水素極側触媒層/酸化極側触媒層の部分接触によって短絡が生じ高分子イオン交換膜の実効抵抗が減少したことに起因するものと推察される。   On the other hand, the fuel cell using the membrane-electrode assembly produced at a hot press temperature of 175 ° C. has an open circuit voltage of 0.7 V, the pH of the waste water is 5 or more, and acidic ions are hardly eluted. (FIG. 4). Further, in the example of the present invention, although the open circuit voltage was low, the cell voltage only dropped slightly when a minute current was taken out (FIG. 5). The cell voltage drop is suppressed because the hot press temperature is high, the catalyst layer is firmly bonded to the polymer ion exchange membrane, and a short circuit occurs due to partial contact of the hydrogen electrode side catalyst layer / oxidation electrode side catalyst layer. This is presumably due to a decrease in the effective resistance of the ion exchange membrane.

電池試験後のセルから取り出した膜-電極接合体の断面を観察した結果、120℃,150℃でホットプレスした膜-電極接合体では高分子イオン交換膜によって水素極側触媒層,酸化極側触媒層が完全に分離されていた(図3a)。175℃のホットプレスで作製した膜-電極接合体では、水素極側触媒層/酸化極側触媒層の部分接触(図3b)が依然として維持されており、高分子イオン交換膜に対する触媒層の接合状態が良好であった。   As a result of observing the cross section of the membrane-electrode assembly taken out from the cell after the battery test, in the membrane-electrode assembly hot-pressed at 120 ° C. and 150 ° C., the hydrogen electrode side catalyst layer and the oxidation electrode side are separated by the polymer ion exchange membrane. The catalyst layer was completely separated (Fig. 3a). In the membrane-electrode assembly produced by hot pressing at 175 ° C., the partial contact (FIG. 3b) of the hydrogen electrode side catalyst layer / oxidation electrode side catalyst layer is still maintained, and the catalyst layer is bonded to the polymer ion exchange membrane. The condition was good.

ホットプレス温度120℃で作製した膜-電極接合体を組み込んだ燃料電池セル単体を無負荷で連続運転し、セル電圧,排水pHの経時変化を調査した。電池運転時間が長くなるに応じて排水のpH値が低下し、連続運転40時間後に酸化極側でpH3.3に達した。更に運転を継続すると排水pHの上昇がみられたが、pH5以上にはならなかった。
175℃,30分のホットプレスで作製した膜-電極接合体を組み込んだ燃料電池セル単体について同じ条件下でセル電圧,排水pHの経時変化を調査したところ、試験開始から1000時間経過した時点でもセル電圧が僅かに低下しただけで、水素極側,酸化極側共に排水のpHが僅かに低下したものの高pH値のまま推移した。
A fuel cell unit incorporating a membrane-electrode assembly produced at a hot press temperature of 120 ° C. was continuously operated with no load, and changes with time in cell voltage and drainage pH were investigated. As the battery operation time became longer, the pH value of the wastewater decreased, and reached pH 3.3 on the oxidation electrode side after 40 hours of continuous operation. Further, when the operation was continued, the pH of the drainage was increased, but it did not reach pH 5 or higher.
A fuel cell unit incorporating a membrane-electrode assembly produced by hot pressing at 175 ° C. for 30 minutes was examined for changes over time in cell voltage and drainage pH under the same conditions. Although the cell voltage was slightly decreased, the pH of the drainage was slightly decreased on both the hydrogen electrode side and the oxidation electrode side, but remained at a high pH value.

以上に説明したように、高分子イオン交換膜を間に挟む水素極側触媒層,酸化極側触媒層を高分子イオン交換膜内で部分接触させることにより、開回路電圧が低減し、酸性イオンの溶出も抑制される。そのため、開回路の状態でもセルにかかる負担が軽減され、酸性イオンも溶出しない。この膜-電極接合体を組み込んだ燃料電池は、実使用下での耐久性が高く、酸性イオンの溶出がないため環境的にも優れている。   As explained above, by bringing the hydrogen electrode side catalyst layer and the oxidation electrode side catalyst layer sandwiching the polymer ion exchange membrane into partial contact with each other in the polymer ion exchange membrane, the open circuit voltage is reduced, and the acidic ions are reduced. Elution is also suppressed. Therefore, the burden on the cell is reduced even in an open circuit state, and acidic ions are not eluted. A fuel cell incorporating this membrane-electrode assembly has high durability under actual use and is environmentally superior because it does not elute acidic ions.

固体高分子型燃料電池の積層構造を示す概略図Schematic showing the laminated structure of a polymer electrolyte fuel cell 電流密度に応じた排水pHを示すグラフGraph showing drainage pH according to current density 本発明の膜-電極接合体(a)を従来の膜-電極接合体(b)と比較した図The figure which compared the membrane-electrode assembly (a) of this invention with the conventional membrane-electrode assembly (b) 膜-電極接合体のホットプレス温度とカソード側排水pH,開回路電圧の関係を示すグラフGraph showing the relationship between hot press temperature of membrane-electrode assembly, cathode drainage pH, and open circuit voltage 本発明に従った膜-電極接合体を装着したセルの電流-電圧特性を示すグラフGraph showing current-voltage characteristics of a cell equipped with a membrane-electrode assembly according to the present invention

符号の説明Explanation of symbols

1a,1b:ガス拡散電極 2a,2b:触媒層 3:高分子イオン交換膜
11:高分子イオン交換膜 12,13:触媒電極層 14,15:セパレータ
1a, 1b: Gas diffusion electrode 2a, 2b: Catalyst layer 3: Polymer ion exchange membrane 11: Polymer ion exchange membrane 12, 13: Catalyst electrode layer 14, 15: Separator

Claims (1)

水素極側触媒層及び酸化極側触媒層を接合したガス拡散電極が高分子イオン交換膜のそれぞれ両面に積層され、水素極側触媒層,酸化極側触媒層が高分子イオン交換膜に押し込まれ、高分子イオン交換膜の内部で互いに部分接触していることを特徴とする固体高分子型燃料電池用膜-電極接合体。   A gas diffusion electrode joined with a hydrogen electrode side catalyst layer and an oxidation electrode side catalyst layer is laminated on each side of the polymer ion exchange membrane, and the hydrogen electrode side catalyst layer and the oxidation electrode side catalyst layer are pushed into the polymer ion exchange membrane. A membrane-electrode assembly for a polymer electrolyte fuel cell, wherein the membrane-electrode assembly is in partial contact with each other inside the polymer ion exchange membrane.
JP2004335613A 2004-11-19 2004-11-19 Membrane-electrode assembly for solid polymer electrolyte fuel cell Withdrawn JP2006147339A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004335613A JP2006147339A (en) 2004-11-19 2004-11-19 Membrane-electrode assembly for solid polymer electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004335613A JP2006147339A (en) 2004-11-19 2004-11-19 Membrane-electrode assembly for solid polymer electrolyte fuel cell

Publications (1)

Publication Number Publication Date
JP2006147339A true JP2006147339A (en) 2006-06-08

Family

ID=36626779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004335613A Withdrawn JP2006147339A (en) 2004-11-19 2004-11-19 Membrane-electrode assembly for solid polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP2006147339A (en)

Similar Documents

Publication Publication Date Title
CN101116205A (en) Design, method and process for monolithic membrane electrode assemblies
CA2637391A1 (en) Reinforced electrolyte membrane comprising catalyst for preventing reactant crossover and method for manufacturing the same
JP2002270196A (en) Polymer electrolyte fuel cell and method of operating the same
JP4788152B2 (en) Fuel cell aging method and aging apparatus
US8057954B2 (en) Membrane-electrode assembly including guard gasket
JP2007273141A (en) Fuel cell and fuel cell manufacturing method
JP3696230B1 (en) Fuel cell
JP2006012694A (en) Manufacturing method of membrane/electrode assembly for solid polymer fuel cell
JP4788151B2 (en) Method and apparatus for returning characteristics of fuel cell
JP2006147339A (en) Membrane-electrode assembly for solid polymer electrolyte fuel cell
JP2009170175A (en) Membrane electrode structure and fuel cell
JP2008047333A (en) Manufacturing method of electrolyte membrane and manufacturing method of membrane electrode structure
JP4240285B2 (en) Method for producing gas diffusion layer of polymer electrolyte fuel cell
JP2002198059A (en) Polymer electrolyte fuel cell and method of operating the same
KR102655524B1 (en) The method for manufacturing the fuel cell
JP3991283B2 (en) Storage method of polymer electrolyte membrane electrode assembly
JP2008288068A (en) Fuel cell, fuel cell anode, and membrane electrode assembly
JP4440088B2 (en) Fuel cell
JP2009026468A (en) Method for manufacturing membrane-gas diffusion electrode assembly
KR101009621B1 (en) Stack for fuel cell and fuel cell system having same
JP2012064540A (en) Fuel cell stack
CN100334766C (en) Method and apparatus for resuming characteristics of fuel cells
WO2012105487A1 (en) Membrane electrode assembly and alkaline fuel cell using same
KR20220156174A (en) The method for manufacturing the fuel cell
JP2003115300A (en) Solid polymer electrolyte fuel cell

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070313

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080205