JP2006143898A - Coolant composition - Google Patents
Coolant composition Download PDFInfo
- Publication number
- JP2006143898A JP2006143898A JP2004336447A JP2004336447A JP2006143898A JP 2006143898 A JP2006143898 A JP 2006143898A JP 2004336447 A JP2004336447 A JP 2004336447A JP 2004336447 A JP2004336447 A JP 2004336447A JP 2006143898 A JP2006143898 A JP 2006143898A
- Authority
- JP
- Japan
- Prior art keywords
- refrigerant
- propane
- butane
- isobutane
- pressure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 24
- 239000002826 coolant Substances 0.000 title abstract description 5
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 claims abstract description 36
- NNPPMTNAJDCUHE-UHFFFAOYSA-N isobutane Chemical compound CC(C)C NNPPMTNAJDCUHE-UHFFFAOYSA-N 0.000 claims abstract description 34
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 claims abstract description 18
- 239000001294 propane Substances 0.000 claims abstract description 18
- 239000001282 iso-butane Substances 0.000 claims abstract description 17
- 238000002156 mixing Methods 0.000 claims abstract description 3
- 239000003507 refrigerant Substances 0.000 claims description 46
- 238000000034 method Methods 0.000 claims description 6
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 abstract description 7
- 238000010792 warming Methods 0.000 abstract description 5
- 231100000419 toxicity Toxicity 0.000 abstract description 2
- 230000001988 toxicity Effects 0.000 abstract description 2
- 230000006835 compression Effects 0.000 description 21
- 238000007906 compression Methods 0.000 description 21
- 238000001816 cooling Methods 0.000 description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- 229910001868 water Inorganic materials 0.000 description 10
- 238000010438 heat treatment Methods 0.000 description 8
- KYKAJFCTULSVSH-UHFFFAOYSA-N chloro(fluoro)methane Chemical compound F[C]Cl KYKAJFCTULSVSH-UHFFFAOYSA-N 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- OHMHBGPWCHTMQE-UHFFFAOYSA-N 2,2-dichloro-1,1,1-trifluoroethane Chemical compound FC(F)(F)C(Cl)Cl OHMHBGPWCHTMQE-UHFFFAOYSA-N 0.000 description 4
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- 238000001704 evaporation Methods 0.000 description 4
- 230000008020 evaporation Effects 0.000 description 4
- 238000004088 simulation Methods 0.000 description 4
- 238000001311 chemical methods and process Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 231100000053 low toxicity Toxicity 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 231100000956 nontoxicity Toxicity 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011089 mechanical engineering Methods 0.000 description 1
- 239000013028 medium composition Substances 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000005057 refrigeration Methods 0.000 description 1
- 230000002747 voluntary effect Effects 0.000 description 1
Images
Landscapes
- Lubricants (AREA)
Abstract
Description
本発明は、主にカーエアコンに使用される、プロパン、n−ブタン及びイソブタンを含有する冷媒組成物に関る。 The present invention relates to a refrigerant composition containing propane, n-butane and isobutane, which is mainly used for car air conditioners.
これまでフロン(CFCクロロフルオロカーボン、HCFCハイドロクロロフルオロカーボン)は優れた冷媒能力を有するので全世界でカーエアコン等用の冷媒として広く使用されてきた。しかしながら、現在、フロンは塩素を含んでいるのでオゾン層を破壊するということから、1996年、日本及び欧米先進国において特定フロンのうちCFCの生産が全廃された。その同じ特定フロンであるHCFC(ハイドロクロロフルオロカーボン)も2004年以降順次生産が規制され、ヨーロッパでは2010年までに、その他の先進国でも2020年までに全廃されることになっている。 Until now, chlorofluorocarbon (CFC chlorofluorocarbon, HCFC hydrochlorofluorocarbon) has an excellent refrigerant capacity and thus has been widely used worldwide as a refrigerant for car air conditioners and the like. However, since CFCs contain chlorine and destroy the ozone layer, the production of CFCs out of specific CFCs was abolished in 1996 in Japan and Europe and America. The production of HCFC (hydrochlorofluorocarbon), which is the same specific chlorofluorocarbon, will be regulated after 2004, and will be completely abolished by 2010 in Europe and by 2020 in other developed countries.
また、上記特定フロンに替わる代替フロン(HFCハイドロフルオロカーボン、PFC,SP6)は、オゾン層破壊係数ゼロ、低毒性、不燃、満足できる特性、性能を有するものの、鉱油との非相溶性、潤滑性の劣化という課題を有している。特に、この代替フロンは、オゾン層を破壊しないものの地球温暖化係数が非常に高いことから、現在具体的な規制がなく、業界の自主行動に任されているものの、近い将来その使用が廃止または大きく規制されることになるであろう。 In addition, the alternative chlorofluorocarbon (HFC hydrofluorocarbon, PFC, SP6), which replaces the above-mentioned specific chlorofluorocarbon, has zero ozone depletion coefficient, low toxicity, non-combustibility, satisfactory characteristics and performance, but is incompatible with mineral oil and lubricity. It has a problem of deterioration. In particular, this alternative chlorofluorocarbon does not destroy the ozone layer but has a very high global warming potential.Therefore, although there is no specific regulation and it is left to the voluntary action of the industry, its use will be abolished in the near future. It will be greatly regulated.
最近、開発が進められている、二酸化炭素、アンモニア、水及び空気などの自然系冷媒もオゾン層破壊係数ゼロ、温暖化係数ほぼゼロの特徴を有するものの、安全性、性能、利便性などにそれぞれ難点がある。すなわち、二酸化炭素は不燃・低毒性であるものの低効率・超高圧(12MPa)である。アンモニアはHFCと同等効率を有するが、毒性、刺激臭、銅との不適合性がある。水・空気は不燃・無毒であるものの極めて低効率である。 Recently developed natural refrigerants such as carbon dioxide, ammonia, water, and air also have features of zero ozone depletion coefficient and almost zero global warming coefficient, but safety, performance, convenience, etc. There are difficulties. That is, carbon dioxide is incombustible and has low toxicity, but has low efficiency and ultrahigh pressure (12 MPa). Ammonia is as efficient as HFC, but has toxicity, irritating odor, and incompatibility with copper. Water and air are non-combustible and non-toxic, but very low efficiency.
本発明は、オゾン層破壊の危険性がなく、地球温暖化に及ぼす悪影響が小さく、毒性のない冷媒組成物を提供することを目的とする。 An object of the present invention is to provide a refrigerant composition that has no risk of ozone layer destruction, has a small adverse effect on global warming, and has no toxicity.
本発明は、プロパン、n−ブタンとイソブタンの全重量を基準として、50〜58重量%、好ましくは54〜58重量%のプロパン、29.5〜33.5重量%のn−ブタン、10〜14.5重量%のイソブタンの三元系混合媒体を含有するカーエアコン用冷媒組成物に関る。これにより、オゾン層を破壊することのない、地球温暖化係数が極めて小さく(GWPが約3)毒性がなく、優れた冷房能力を有する冷媒を提供することができる。 The present invention is based on the total weight of propane, n-butane and isobutane, 50-58 wt%, preferably 54-58 wt% propane, 29.5-33.5 wt% n-butane, 10- The present invention relates to a refrigerant composition for a car air conditioner containing 14.5% by weight of isobutane ternary mixed medium. Thereby, the ozone layer is not destroyed, the global warming potential is extremely small (GWP is about 3), there is no toxicity, and the refrigerant | coolant which has the outstanding cooling capability can be provided.
更に、本発明は、プロパン、n−ブタンとイソブタンの全重量を基準として、50〜58重量%のプロパン、29.5〜33.5重量%のn−ブタン、10〜14.5重量%のイソブタンの三元系混合媒体を冷凍機の凝縮器出口において完全に液化させることができる圧力を圧縮器にかけることにより、当該混合媒体を含有する冷媒組成物を好適にカーエアコンに使用する方法を提供することができる。 Further, the present invention provides 50-58 wt.% Propane, 29.5-33.5 wt.% N-butane, 10-14.5 wt.% Based on the total weight of propane, n-butane and isobutane. A method in which a refrigerant composition containing the mixed medium is suitably used in a car air conditioner by applying pressure to the compressor so that the isobutane ternary mixed medium can be completely liquefied at the condenser outlet of the refrigerator. Can be provided.
以下、本発明の好適な実施態様について詳細に説明する。 Hereinafter, preferred embodiments of the present invention will be described in detail.
冷房システムの原理は、物質(冷媒)が気化する時、周辺媒体から熱エネルギーを奪う潜熱と周辺媒体との連続的な熱交換に基づいている。また、冷媒の蒸発温度は圧力に依存するため、圧力を下げれば蒸発温度も低下するので、より低い温度が得られる。 The principle of the cooling system is based on the continuous heat exchange between the surrounding medium and the latent heat that takes heat energy from the surrounding medium when the substance (refrigerant) is vaporized. Further, since the evaporation temperature of the refrigerant depends on the pressure, if the pressure is lowered, the evaporation temperature also decreases, so that a lower temperature can be obtained.
一方、暖房/給湯システムの原理は、冷媒の蒸発により周辺から熱を奪い、更に圧縮された高温の気体となるため、水や空気等との連続的な熱交換により成し遂げられる。 On the other hand, the principle of the heating / hot water supply system is achieved by continuous heat exchange with water, air, or the like because it takes heat from the surroundings by evaporation of the refrigerant and becomes a compressed high-temperature gas.
このような冷房/暖房システムの原理に基づく冷房・暖房/給湯システムは、冷媒の蒸発から圧縮の連続的なプロセスを行えるシステムとして、圧縮器、凝縮器、膨張弁、蒸発器及びこれらの機器を冷媒が循環するパイプから構成されたサイクル(冷房−暖房基準サイクル)システムである。このサイクルシステムの非限定的な例を図1に示す。これら機器の役割を以下に示す。 The cooling / heating / hot water supply system based on the principle of the cooling / heating system includes a compressor, a condenser, an expansion valve, an evaporator, and these devices as a system that can perform a continuous process from evaporation of refrigerant to compression. This is a cycle (cooling-heating reference cycle) system composed of pipes through which refrigerant circulates. A non-limiting example of this cycle system is shown in FIG. The role of these devices is shown below.
・EQ1圧縮器:蒸発器で気体となった冷たい冷媒を吸引圧縮して高温高圧気体とする。
・EQ2凝縮器:圧縮器から吐出された高温高圧気体媒体を水や空気(外気)で冷やして凝縮させ、液体とする(暖房/給湯用)。
・EQ3膨張弁:高温高圧の液体冷媒を膨張させ低温低圧の冷媒とする。
・EQ4蒸発器:膨張弁の出口で低温低圧の冷媒を周辺気体と接触させてその熱を奪うことで蒸発・気化させ、気体とする(冷房用)。
-EQ1 compressor: The cold refrigerant turned into a gas in the evaporator is sucked and compressed into a high-temperature and high-pressure gas.
-EQ2 condenser: The high-temperature high-pressure gaseous medium discharged from the compressor is cooled and condensed with water or air (outside air) to form a liquid (for heating / hot water supply).
-EQ3 expansion valve: A high-temperature and high-pressure liquid refrigerant is expanded into a low-temperature and low-pressure refrigerant.
-EQ4 evaporator: A low-temperature and low-pressure refrigerant is brought into contact with the surrounding gas at the outlet of the expansion valve, and the heat is removed to evaporate and vaporize the gas (for cooling).
実際に冷媒の冷房/暖房/給湯能力を評価するためには、上述の基準サイクルを数値モデル化し、汎用の数値ケミカルプロセスシミュレーターを用いて、公知の方法(例えば、宮良等の「非共沸混合冷媒ヒートポンプサイクルの性能に及ぼす熱交換器の伝熱特性の影響」日本冷凍協会論文集第7巻、第1号、65−73頁、1990年等を参照)により、その能力を解析・評価することができる。汎用の数値ケミカルプロセスシミュレーターは多種多様な成分の熱力学物性のデータベースを内蔵し、さまざまなシステムの機械工学的機能に対応した化学成分相互の平衡熱力学計算を行う。 In order to actually evaluate the cooling / heating / hot-water supply capacity of the refrigerant, the above-mentioned reference cycle is numerically modeled, and a known method (for example, “non-azeotropic mixing” by Miyara et al. Is used by using a general-purpose numerical chemical process simulator. The effect of heat transfer characteristics of heat exchangers on the performance of the refrigerant heat pump cycle is analyzed and evaluated according to the Japan Refrigeration Association Proceedings Vol. 7, No. 1, pages 65-73, 1990, etc.) be able to. A general-purpose numerical chemical process simulator has a built-in database of thermodynamic properties of various components, and performs equilibrium thermodynamic calculations between chemical components corresponding to the mechanical engineering functions of various systems.
数値シミュレーションでは、冷媒が循環する圧縮器、循環器、膨張弁、蒸発器を構成するシステムを各々数値化し、圧縮器出口圧力(以下、「圧縮圧力」と略記する)(P1)、凝縮器出口温度(T2)、蒸発器温度(T3)及び冷媒組成物成分の濃度をパラメーターとし、冷房/暖房/給湯能力を成績係数(COP)として評価する。 In the numerical simulation, each of the systems constituting the compressor, the circulator, the expansion valve, and the evaporator in which the refrigerant circulates is digitized, and the compressor outlet pressure (hereinafter abbreviated as “compression pressure”) (P1), the condenser outlet The temperature (T2), the evaporator temperature (T3) and the concentration of the refrigerant composition components are used as parameters, and the cooling / heating / hot water supply capacity is evaluated as a coefficient of performance (COP).
冷房の成績係数=冷房の蒸発器での総吸収熱量÷圧縮器動力量
暖房/給湯の成績係数=冷媒の凝縮器での総排熱量÷圧縮器動力
Coefficient of performance of cooling = total absorbed heat in the evaporator of the cooling ÷ compressor power factor Coefficient of performance of heating / hot water = total amount of exhaust heat in the condenser of the refrigerant ÷ compressor power
本発明の冷媒組成物は、カーエアコンに好適に使用される。また、本発明の冷媒組成物は、R134a等の既存の冷媒が使用されているカーエアコンに原則的にそのまま使用することができる。しかしながら、本発明の冷媒組成物が三元系混合媒体を含むという特徴から、一元系の冷媒組成物では見られない特有の挙動を示す。即ち、圧縮圧力が所定の値より小さいと、混合媒体は凝縮器出口において完全に液化されない状態にあり、そのためにカーエアコンのレシーバータンクでガス体を取除くための負荷がかかり、更にCOPそのものが低下することとなる。また、圧縮圧力が更に低いと、凝縮器出口温度において全く液化されず、全量ガス状態にあり、冷房効果が全く働かなくなる。従って、凝縮器出口において三元系混合媒体を完全に液化する圧縮圧力条件下で本発明の冷媒組成物を好適に使用することができる。 The refrigerant composition of the present invention is suitably used for car air conditioners. Further, the refrigerant composition of the present invention can be used as it is in principle for car air conditioners in which existing refrigerants such as R134a are used. However, since the refrigerant composition of the present invention contains a ternary mixed medium, it exhibits a unique behavior that is not found in a one-way refrigerant composition. That is, when the compression pressure is smaller than a predetermined value, the mixed medium is not completely liquefied at the outlet of the condenser. Therefore, a load is applied to remove the gas body at the receiver tank of the car air conditioner. Will be reduced. On the other hand, if the compression pressure is even lower, it is not liquefied at all at the condenser outlet temperature, and is in a gas state, and the cooling effect does not work at all. Therefore, the refrigerant composition of the present invention can be suitably used under a compression pressure condition that completely liquefies the ternary mixed medium at the outlet of the condenser.
ここで、凝縮器出口において三元系混合媒体を完全に液化する圧縮圧力は、使用するカーエコンの圧縮器の容量、冷媒の供給量等により異なるが、最適冷房効果を得るための作動圧力は極めて狭い範囲に限定されることから、当業者は使用するカーエアコンに応じてこの圧縮圧力を容易に決定することができる。 Here, the compression pressure for completely liquefying the ternary mixed medium at the outlet of the condenser varies depending on the capacity of the compressor of the car air conditioner used, the supply amount of the refrigerant, etc., but the operating pressure for obtaining the optimum cooling effect is extremely high. Since it is limited to a narrow range, those skilled in the art can easily determine this compression pressure according to the car air conditioner used.
後述する実施例において詳述するが、本発明の冷媒組成物をカーエアコン等の冷凍機に使用する際に、凝縮器出口において混合媒体が完全に液化される圧縮圧力においてCOPは最大となるが、圧縮圧力をこれより大きくすると、COPは逆に低下する傾向にある。従って、冷凍機の凝縮器出口において前記混合媒体を完全に液化させることができる最も低い圧力を圧縮器にかけることが好ましい。 As will be described in detail in the examples described later, when the refrigerant composition of the present invention is used in a refrigerator such as a car air conditioner, the COP becomes maximum at the compression pressure at which the mixed medium is completely liquefied at the outlet of the condenser. If the compression pressure is increased, the COP tends to decrease. Therefore, it is preferable to apply the lowest pressure to the compressor that can completely liquefy the mixed medium at the condenser outlet of the refrigerator.
本発明の冷媒組成物は、プロパン、n−ブタンとイソブタンの全重量を基準として、50〜58重量%のプロパン、29.5〜33.5重量%のn−ブタン、10〜14.5重量%のイソブタンの三元系混合媒体のみから構成されていてもよいし、当該混合媒体に加えて他の成分を含有していてもよい。本発明の冷媒組成物に加えることができる他の成分としては、エタノール等のアルコール類がある。 The refrigerant composition of the present invention comprises 50 to 58 wt% propane, 29.5 to 33.5 wt% n-butane, 10 to 14.5 wt%, based on the total weight of propane, n-butane and isobutane. % Ternary mixed medium of isobutane, or may contain other components in addition to the mixed medium. Other components that can be added to the refrigerant composition of the present invention include alcohols such as ethanol.
(実施例)
以下、実施例により本発明の内容を更に具体的に説明するが、本発明はこれらの実施例に何等限定されるものではない。
(Example)
Hereinafter, the content of the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples.
プロパン/n−ブタン/イソブタン3元系冷媒組成物の冷媒特性を評価するため、図1の冷媒循環システムをベースにその冷媒能力をシミュレートした。システムは圧縮器、凝縮器、膨張弁及び蒸発器から構成された冷房サイクルである。数値ケミカルプロセスシミュレーターを用いてシミュレーションを以下の手順で行った。 In order to evaluate the refrigerant characteristics of the propane / n-butane / isobutane ternary refrigerant composition, the refrigerant capacity was simulated based on the refrigerant circulation system of FIG. The system is a cooling cycle consisting of a compressor, a condenser, an expansion valve and an evaporator. The simulation was performed by the following procedure using a numerical chemical process simulator.
シミュレーション手順
図1のサイクルにおける各ライン上(1〜4)の状態量を算定しシステムの冷房に係る成績係数(COP)を決定する。
Simulation Procedure The state quantities on each line (1 to 4) in the cycle of FIG. 1 are calculated to determine the coefficient of performance (COP) related to cooling of the system.
COPはEQ4での吸熱エネルギーに対する圧縮器の駆動エネルギーの比とする。
計算条件:次の量を一定として与える。
T2(凝縮器出口温度)=38℃
T3/T4=約3〜4℃(T3とT4の中間値が約3〜4℃になるように設定)混合媒体組成比と圧縮圧力(P1)を変動パラメーターとした。
COP is the ratio of the drive energy of the compressor to the endothermic energy at EQ4.
Calculation conditions: The following amount is given as a constant.
T2 (condenser outlet temperature) = 38 ° C.
T3 / T4 = about 3 to 4 ° C. (set so that the intermediate value of T3 and T4 is about 3 to 4 ° C.) The mixed medium composition ratio and the compression pressure (P1) were used as the fluctuation parameters.
図1のシステムにおいて、膨張弁出口圧力(P3)=0.265〜0.271MPaとして、プロパン55重量%、n−ブタン31.5重量%及びイソブタン13.5重量%の冷媒組成物につき、圧縮圧力(P1)を0.7〜4MPaに変動させてシミュレーションを行った。得られたCOPと圧縮圧力の関係を図2に示す。 In the system of FIG. 1, compression is performed for a refrigerant composition of 55% by weight of propane, 31.5% by weight of n-butane and 13.5% by weight of isobutane, with an expansion valve outlet pressure (P3) = 0.265 to 0.271 MPa. The simulation was performed with the pressure (P1) varied from 0.7 to 4 MPa. The relationship between the obtained COP and the compression pressure is shown in FIG.
図2から明らかな通り、圧縮圧力が0.92MPaでCOPが最大となる。しかしながら、圧縮圧力が0.91MPa以下では、混合媒体は凝縮器出口において完全に液化されない状態(例えば、0.90MPaでは6.49%、0.89MPaでは11.9%)にあるため、カーエアコンのレシーバータンクでガス体を取除くための負荷がかかり、更にCOPそのものが低下することとなる。更に、圧縮圧力が0.7以下では凝縮器出口において全く液化されず、全量ガス状態にあり、冷房効果が全く働かない。また、圧縮圧力が0.92MPaより大きくても、COPは逆に減少する傾向にある。従って、本願発明における三元系混合媒体は、凝縮器出口において当該混合媒体が完全に全量液化され、かつ最も高いCOPを示す圧縮圧力で運転することが好ましい。 As is apparent from FIG. 2, the COP becomes maximum when the compression pressure is 0.92 MPa. However, when the compression pressure is 0.91 MPa or less, the mixed medium is not completely liquefied at the outlet of the condenser (for example, 6.49% at 0.90 MPa and 11.9% at 0.89 MPa). The receiver tank is loaded with a load for removing the gas body, and the COP itself is further lowered. Further, when the compression pressure is 0.7 or less, it is not liquefied at the outlet of the condenser at all and is in a gas state, and the cooling effect does not work at all. Even if the compression pressure is greater than 0.92 MPa, COP tends to decrease. Therefore, the ternary mixed medium in the present invention is preferably operated at a compression pressure at which the mixed medium is completely liquefied at the outlet of the condenser and exhibits the highest COP.
次に、前記シミュレーターを用いて、表1に記載の種々のプロパン/n−ブタン/イソブタン3元系混合冷媒組成物についてシミュレーションを行い、凝縮器出口において最も低い圧縮圧力で完全に全量液化され、かつ最も高いCOPを示す条件を選定した。 Next, using the simulator, the various propane / n-butane / isobutane ternary mixed refrigerant compositions shown in Table 1 were simulated, and completely liquefied at the lowest compression pressure at the outlet of the condenser. And the conditions showing the highest COP were selected.
上記の結果から、本発明の冷媒組成物は、凝縮器出口において完全に全量液化する圧縮圧力(本冷媒サイクルシステムにおいては、約0.9〜約0.94)において、良好なCOPを示し、かつ、T3/T4が約3〜4℃であることが分かる。更に、本発明の冷媒組成物は、比較例であるプロパン単独の場合に較べて低い圧縮圧力において良好なCOPを示す。 From the above results, the refrigerant composition of the present invention exhibits good COP at a compression pressure (about 0.9 to about 0.94 in the present refrigerant cycle system) that completely liquefies at the condenser outlet, And it turns out that T3 / T4 is about 3-4 degreeC. Furthermore, the refrigerant composition of the present invention exhibits good COP at a lower compression pressure than that of propane alone as a comparative example.
以上より、本発明の冷媒組成物をカーエアコンに好適に使用することができる。そして、カーエアコンに使用する際には、冷凍機の凝縮器出口において前記混合媒体を完全に液化させることができる圧力を圧縮器にかけて運転することが望ましい。 From the above, the refrigerant composition of the present invention can be suitably used for car air conditioners. And when using for a car air-conditioner, it is desirable to operate | move by applying the pressure which can fully liquefy the said mixed medium at the condenser exit of a refrigerator to a compressor.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004336447A JP2006143898A (en) | 2004-11-19 | 2004-11-19 | Coolant composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004336447A JP2006143898A (en) | 2004-11-19 | 2004-11-19 | Coolant composition |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006143898A true JP2006143898A (en) | 2006-06-08 |
Family
ID=36623965
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004336447A Withdrawn JP2006143898A (en) | 2004-11-19 | 2004-11-19 | Coolant composition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006143898A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116554952A (en) * | 2022-10-13 | 2023-08-08 | Gs加德士 | Base oil containing polyol ester and refrigerating machine oil composition containing the base oil |
-
2004
- 2004-11-19 JP JP2004336447A patent/JP2006143898A/en not_active Withdrawn
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116554952A (en) * | 2022-10-13 | 2023-08-08 | Gs加德士 | Base oil containing polyol ester and refrigerating machine oil composition containing the base oil |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5674157B2 (en) | Trans-chloro-3,3,3-trifluoropropene for use in cooler applications | |
JP4420807B2 (en) | Refrigeration equipment | |
JP7060017B2 (en) | Working medium for thermal cycles, compositions for thermal cycle systems and thermal cycle systems | |
JP7081600B2 (en) | Azeotrope or azeotropic composition, working medium for thermal cycle and thermal cycle system | |
US20110017941A1 (en) | Refrigerant Composition | |
JP2011116822A (en) | Mixed refrigerant and mixed refrigerant circulation system | |
JPS63205386A (en) | Cooling medium and machine having circuit cooled by cooling medium | |
US20090267018A1 (en) | Refrigerant Composition | |
JP2006143898A (en) | Coolant composition | |
JP2006241221A (en) | Coolant composition for car air conditioner | |
Bolaji et al. | Thermodynamic analysis of performance of vapour compression refrigeration system working with R290 and R600a mixtures | |
JP2006124462A (en) | Refrigerant composition | |
JPH08127767A (en) | Working fluid | |
JPH08176537A (en) | Hydraulic fluid | |
WO2023026630A1 (en) | Heat medium | |
JPH08151569A (en) | Working fluid | |
WO2024247438A1 (en) | Heat cycle system and heat cycle method | |
JPH08199158A (en) | Working fluid | |
WO2024247437A1 (en) | Heat cycle system and heat cycle method | |
JPH08151571A (en) | Working fluid | |
JPH08151570A (en) | Working fluid | |
JPH08170073A (en) | Working fluid | |
JPH08231946A (en) | Working fluid | |
JPH08120260A (en) | Working fluid | |
JPH08231945A (en) | Working fluid |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20080205 |