[go: up one dir, main page]

JP2006143480A - Bi2O3-B2O3-BASED GLASS COMPOSITION AND Bi2O3-B2O3-BASED SEALING MATERIAL - Google Patents

Bi2O3-B2O3-BASED GLASS COMPOSITION AND Bi2O3-B2O3-BASED SEALING MATERIAL Download PDF

Info

Publication number
JP2006143480A
JP2006143480A JP2004331394A JP2004331394A JP2006143480A JP 2006143480 A JP2006143480 A JP 2006143480A JP 2004331394 A JP2004331394 A JP 2004331394A JP 2004331394 A JP2004331394 A JP 2004331394A JP 2006143480 A JP2006143480 A JP 2006143480A
Authority
JP
Japan
Prior art keywords
glass
glass composition
sealing material
bi2o3
sealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004331394A
Other languages
Japanese (ja)
Inventor
Noriaki Masuda
紀彰 益田
Taketami Kikutani
武民 菊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2004331394A priority Critical patent/JP2006143480A/en
Publication of JP2006143480A publication Critical patent/JP2006143480A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/122Silica-free oxide glass compositions containing oxides of As, Sb, Bi, Mo, W, V, Te as glass formers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/14Silica-free oxide glass compositions containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/24Fusion seal compositions being frit compositions having non-frit additions, i.e. for use as seals between dissimilar materials, e.g. glass and metal; Glass solders

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a Bi<SB>2</SB>O<SB>3</SB>-B<SB>2</SB>O<SB>3</SB>-based glass composition which is substantially free from PbO and can be fired at a temperature of ≤480°C and a Bi<SB>2</SB>O<SB>3</SB>-B<SB>2</SB>O<SB>3</SB>-based sealing material. <P>SOLUTION: The Bi<SB>2</SB>O<SB>3</SB>-B<SB>2</SB>O<SB>3</SB>-based glass composition contains, by mol, 35-60% Bi<SB>2</SB>O<SB>3</SB>, 10-35% B<SB>2</SB>O<SB>3</SB>, and 0.1-5% WO<SB>3</SB>as glass composition. The Bi<SB>2</SB>O<SB>3</SB>-B<SB>2</SB>O<SB>3</SB>-based sealing material is obtained by mixing the Bi<SB>2</SB>O<SB>3</SB>-B<SB>2</SB>O<SB>3</SB>-based glass composition containing, by mol, 35-60% Bi<SB>2</SB>O<SB>3</SB>, 10-35% B<SB>2</SB>O<SB>3</SB>, and 0.1-5% WO<SB>3</SB>as glass composition and a fire-resistant filler powder. The mixing volume ratio of the Bi<SB>2</SB>O<SB>3</SB>-B<SB>2</SB>O<SB>3</SB>-based glass composition to the fire-resistant filler powder is 40/60 to 90/10. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、電子部品の接着、封着、被覆等に好適なBi23−B23系ガラス組成物およびBi23−B23系封着材料に関するものである。 The present invention relates to a Bi 2 O 3 —B 2 O 3 glass composition and a Bi 2 O 3 —B 2 O 3 sealing material suitable for adhesion, sealing, coating, etc. of electronic components.

従来から電子部品の接着材料や封着材料として、また、電子部品に形成された電極や抵抗体の保護や絶縁のための被覆材料としてガラスが用いられている。   Conventionally, glass has been used as an adhesive material and sealing material for electronic components, and as a coating material for protecting and insulating electrodes and resistors formed on electronic components.

これらのガラスは、その用途に応じて化学耐久性、機械的強度、流動性、電気絶縁性等様々な特性が要求されるが、何れの用途にも共通する特性として、低温で焼成可能であることが挙げられる。それゆえ何れの用途においても、ガラスの融点(軟化点)を下げる効果が極めて大きいPbOを多量に含有する低融点ガラス(例えば、特許文献1参照。)が広く用いられてきている。   These glasses are required to have various properties such as chemical durability, mechanical strength, fluidity, and electrical insulation depending on the application, but can be fired at low temperatures as a property common to all applications. Can be mentioned. Therefore, in any application, low-melting glass (for example, see Patent Document 1) containing a large amount of PbO that has an extremely large effect of lowering the melting point (softening point) of glass has been widely used.

ところが最近、PbOを含有する低融点ガラスに対して環境上の問題が指摘されており、PbOを含まない低融点ガラスに置き換えることが望まれている。   Recently, however, environmental problems have been pointed out with respect to low-melting glass containing PbO, and it is desired to replace it with a low-melting glass containing no PbO.

そのため、PbOを含有する低融点ガラスの代替品として、様々な低融点ガラスが開発されている。その中でも、Bi23−B23系低融点ガラス(例えば、特許文献2参照。)は、化学耐久性、機械的強度においてPbOを含有する低融点ガラスと比較して同等の特性を有するため、PbOを含有するガラスの代替候補として期待されている。
特開昭63−315536号公報 特開2000−128574号公報
Therefore, various low melting glass has been developed as an alternative to low melting glass containing PbO. Among them, Bi 2 O 3 —B 2 O 3 -based low-melting glass (see, for example, Patent Document 2) has equivalent characteristics as compared with low-melting glass containing PbO in chemical durability and mechanical strength. Therefore, it is expected as an alternative candidate for glass containing PbO.
Japanese Unexamined Patent Publication No. Sho 63-315536 JP 2000-128574 A

特許文献2には、電子部品の接着、封着、被覆等の用途に使用可能なビスマス系低融点ガラス組成物が例示されている。しかし、このBi23−B23系ガラス組成物は、PbOを含有するガラスと比較して軟化点が高く(PbOを含有するガラスの軟化点は480℃程度)、流動性に乏しいため、用途が限定されてしまう。 Patent Document 2 exemplifies a bismuth-based low-melting glass composition that can be used for applications such as adhesion, sealing, and coating of electronic components. However, this Bi 2 O 3 —B 2 O 3 -based glass composition has a higher softening point than the glass containing PbO (the softening point of the glass containing PbO is about 480 ° C.) and has poor fluidity. Therefore, the usage is limited.

軟化点を下げるためには、主要成分であるBi23の含有量を多くする必要があるが、Bi23の含有量が多くすると、ガラス自体が結晶化しやすい傾向があり、Bi23の含有量を多くした効果が得られにくい。 In order to lower the softening point, it is necessary to increase the content of Bi 2 O 3 as a main component. However, if the content of Bi 2 O 3 is increased, the glass itself tends to be crystallized, and Bi 2. The effect of increasing the content of O 3 is difficult to obtain.

本発明の目的は、PbOを実質的に含有せず、480℃以下の温度で焼成が可能であるBi23−B23系ガラス組成物およびBi23−B23系封着材料を提供することである。 An object of the present invention is to provide a Bi 2 O 3 —B 2 O 3 glass composition and a Bi 2 O 3 —B 2 O 3 system that are substantially free of PbO and can be fired at a temperature of 480 ° C. or lower. It is to provide a sealing material.

本発明者は、Bi23−B23系ガラス組成物に0.1〜5モル%のWO3を添加することによって、軟化点を下げる成分であるBi23の含有量を多くしても、ガラス中での結晶の析出が抑制され、焼成温度を低くできることを見いだし、本発明として提案するものである。 The present inventor added the Bi 2 O 3 -B 2 O 3 -based glass composition with 0.1 to 5 mol% of WO 3 to reduce the content of Bi 2 O 3 , which is a component that lowers the softening point. Even if it is increased, it has been found that the precipitation of crystals in the glass is suppressed and the firing temperature can be lowered, and is proposed as the present invention.

本発明のBi23−B23系ガラス組成物は、ガラス組成として、モル%表示で、Bi23 35〜60%、B23 10〜35%、WO3 0.1〜5%を含有することを特徴とする。 Bi 2 O 3 -B 2 O 3 based glass composition of the present invention has a glass composition, in mol%, Bi 2 O 3 35~60%, B 2 O 3 10~35%, WO 3 0.1 It is characterized by containing ~ 5%.

また、本発明のBi23−B23系封着材料は、ガラス組成として、モル%表示で、Bi23 35〜60%、B23 10〜35%、WO3 0.1〜5%を含有するBi23−B23系ガラス組成物と耐火性フィラー粉末とを混合した封着材料であって、混合割合は体積%表示で、Bi23−B23系ガラス組成物が40〜90%、耐火性フィラー粉末が60〜10%であることを特徴とする。 Further, the Bi 2 O 3 —B 2 O 3 sealing material of the present invention has a glass composition in terms of mol%, Bi 2 O 3 35-60%, B 2 O 3 10-35%, WO 3 0 A sealing material in which a Bi 2 O 3 —B 2 O 3 glass composition containing 1 to 5% and a refractory filler powder are mixed, and the mixing ratio is expressed by volume%, Bi 2 O 3 − The B 2 O 3 glass composition is 40 to 90%, and the refractory filler powder is 60 to 10%.

本発明のBi23−B23系ガラス組成物は、WO3を0.1〜5モル%添加することによって、ガラスを低融点にする成分であるBi23の含有量を多くしても、ガラス中で結晶が析出することを抑制できる。そのため、流動性に優れ、PbOを実質的に含有しないにもかかわらず、480℃以下の温度で焼成することができる。 In the Bi 2 O 3 —B 2 O 3 glass composition of the present invention, the content of Bi 2 O 3 , which is a component that makes the glass have a low melting point, is added by adding 0.1 to 5 mol% of WO 3. Even if it increases, it can suppress that a crystal | crystallization precipitates in glass. Therefore, it is excellent in fluidity and can be baked at a temperature of 480 ° C. or lower despite substantially not containing PbO.

本発明のBi23−B23系ガラス組成物の組成を上記のように限定した理由は次のとおりである。 The reason why the composition of the Bi 2 O 3 —B 2 O 3 glass composition of the present invention is limited as described above is as follows.

Bi23は、ガラスの軟化点を下げるための主要成分であり、その含有量は35〜60%、好ましくは40〜55%、より好ましくは42〜52%である。Bi23の含有量が35%より少ないと、ガラスの転移点が高くなり過ぎて480℃以下の温度で焼成できにくい傾向があり、60%より多いと、ガラスが不安定になり失透しやすくなる傾向がある。 Bi 2 O 3 is a main component for lowering the softening point of the glass, and its content is 35 to 60%, preferably 40 to 55%, more preferably 42 to 52%. When the content of Bi 2 O 3 is less than 35%, the glass transition point tends to be too high and it tends to be difficult to fire at a temperature of 480 ° C. or less, and when it exceeds 60%, the glass becomes unstable and devitrification occurs. It tends to be easy to do.

23は、ガラス形成成分として必須であり、その含有量は10〜35%、好ましくは15〜30%、さらに好ましくは18〜28%である。B23の含有量が10%よりも少ないと、ガラスが不安定になって失透しやすくなる傾向があり、接着、封着、被覆等の作業に必要な流動性が得られない場合がある。一方、35%より多いと、ガラスの粘性が高くなる傾向があり、480℃以下の温度で焼成が困難となる場合がある。 B 2 O 3 is essential as a glass forming component, and its content is 10 to 35%, preferably 15 to 30%, and more preferably 18 to 28%. When the content of B 2 O 3 is less than 10%, the glass tends to become unstable and easily devitrified, and the fluidity necessary for operations such as adhesion, sealing, and coating cannot be obtained. There is. On the other hand, if it exceeds 35%, the viscosity of the glass tends to be high, and firing may be difficult at a temperature of 480 ° C. or lower.

WO3は、ガラスを再加熱して焼成する際に結晶化して流動性が損なわれることを防止するための成分であり、必須成分である。その含有量は、0.1〜5%、好ましくは0.1〜1.5%である。軟化点を下げるためには、主要成分であるBi23の含有量を多くする必要があるが、Bi23の含有量を多くすると、焼成時にガラス自体が結晶化しやすくなり、逆に流動性を阻害する傾向がある。特にモル%表示で40%以上になるとその効果が顕著になる。この原因としては、焼成時にビスマス単独で形成する結晶物であるBi23(ビスマイト)と、Bi23とB23とからなる2Bi23・B23または12Bi23・B23の結晶物が析出するためであると考えられる。この結晶物が多く析出してしまうと流動性が阻害されてしまうが、WO3は、これらの結晶が析出する前にBi23と優先的に結合し、これらの結晶が析出することを抑制する働きがある。ただし、5%以上添加すると、逆にガラスの安定性を悪化させる傾向があるため好ましくない。 WO 3 is a component for preventing the fluidity from being lost due to crystallization when glass is reheated and fired, and is an essential component. Its content is 0.1 to 5%, preferably 0.1 to 1.5%. In order to lower the softening point, it is necessary to increase the content of Bi 2 O 3 which is a main component. However, if the content of Bi 2 O 3 is increased, the glass itself tends to be crystallized during firing. There is a tendency to inhibit fluidity. In particular, the effect becomes remarkable when it is 40% or more in terms of mol%. As the cause, and Bi 2 O 3 (Bisumaito) is a crystalline product which formed in the bismuth alone during firing, Bi 2 O 3 and composed of B 2 O 3 Metropolitan 2Bi 2 O 3 · B 2 O 3 or 12Bi 2 O This is thought to be due to the precipitation of 3 · B 2 O 3 crystal. If a large amount of this crystal is precipitated, the fluidity is hindered. However, WO 3 preferentially bonds with Bi 2 O 3 before these crystals are precipitated, and these crystals are precipitated. There is a function to suppress. However, addition of 5% or more is not preferable because it tends to deteriorate the stability of the glass.

本発明のBi23−B23系ガラス組成物は、上記した成分以外に以下の成分を含有しても良い。 Bi 2 O 3 -B 2 O 3 based glass composition of the present invention may contain the following components in addition to components described above.

BaO、SrO、MgOおよびCaOは、ガラスの溶融時に失透することを抑制する効果があり、これらの含有量は合量で1〜15%、好ましくは3〜10%である。これらの成分の合量が1%より少ないと上記の効果が得られにくく、15%より多くなると軟化点が高くなる傾向がある。なお、BaOの含有量は0〜10%、特に2〜8%であることが好ましい。また、SrO、MgO、CaOのそれぞれの含有量については、0〜5%、特に0.5〜3%であることが好ましい。   BaO, SrO, MgO and CaO have an effect of suppressing devitrification when the glass is melted, and the total content thereof is 1 to 15%, preferably 3 to 10%. If the total amount of these components is less than 1%, it is difficult to obtain the above effect, and if it exceeds 15%, the softening point tends to increase. The BaO content is preferably 0 to 10%, particularly preferably 2 to 8%. Moreover, about each content of SrO, MgO, and CaO, it is 0 to 5%, It is preferable that it is 0.5 to 3% especially.

ZnOは、ガラスの溶融時に失透することを抑制する効果があり、その含有量は5〜30%、好ましくは10〜20%である。その含有量が5%より小さく、また30%よりも大きくなるとガラスが結晶化しやすく流動性が悪くなる。   ZnO has an effect of suppressing devitrification when the glass is melted, and its content is 5 to 30%, preferably 10 to 20%. If the content is less than 5% or more than 30%, the glass tends to crystallize and the fluidity becomes poor.

CuOは、ガラスの溶融時に失透することを抑制する成分であり、その含有量は0〜15%、好ましくは2〜10%である。CuOが15%を越えると結晶の析出速度が極めて大きくなって流動性が悪くなる傾向がある。   CuO is a component that suppresses devitrification when the glass is melted, and its content is 0 to 15%, preferably 2 to 10%. When CuO exceeds 15%, the precipitation rate of crystals tends to be extremely high and the fluidity tends to deteriorate.

Fe23は、ガラスの溶融時に失透することを抑制する成分であり、その含有量は0〜5%、好ましくは0.1〜2%である。Fe23が5%を越えると逆にガラスが不安定になる傾向がある。 Fe 2 O 3 is a component that suppresses devitrification when the glass melts, and its content is 0 to 5%, preferably 0.1 to 2%. If Fe 2 O 3 exceeds 5%, the glass tends to become unstable.

また、ガラスの溶融時に失透することを抑制する成分であるAl23を添加すると、焼成の際にも結晶の析出を抑制することができるため好ましい。その含有量は、0〜5%、好ましくは0.1〜3%である。5%以上添加すると、ガラスの軟化点が高くなり、480℃以下の温度で焼成しにくい傾向がある。 Moreover, it is preferable to add Al 2 O 3 , which is a component that suppresses devitrification when the glass is melted, because precipitation of crystals can be suppressed during firing. Its content is 0 to 5%, preferably 0.1 to 3%. Addition of 5% or more tends to increase the softening point of the glass and make it difficult to fire at a temperature of 480 ° C or lower.

SiO2は、耐候性を高める目的で1%まで添加することができる。1%よりも多いと、ガラスの軟化点が高くなり、480℃以下の温度で焼成しにくい傾向がある。 SiO 2 can be added up to 1% for the purpose of enhancing the weather resistance. If it exceeds 1%, the softening point of the glass tends to be high, and it tends to be difficult to fire at a temperature of 480 ° C. or lower.

Li、Na、KおよびCsの酸化物は、ガラスの軟化点を低くする成分であるが、ガラスの失透を促進する作用を有するため合量で2%以下である事が好ましい。   The oxides of Li, Na, K, and Cs are components that lower the softening point of the glass, but since they have an action of promoting devitrification of the glass, the total amount is preferably 2% or less.

25は、失透を抑制する成分であるが、添加量が1%よりも多いと分相しやすい傾向があるため好ましくない。 P 2 O 5 is a component that suppresses devitrification, but if the amount added is more than 1%, it tends to cause phase separation, which is not preferable.

MoO3、La23、Y25およびCeO2は、ガラスを安定化する成分であるが、これらの合量が3%よりも多いとガラスの軟化点が高くなり、480℃以下の温度で焼成しにくい傾向がある。 MoO 3 , La 2 O 3 , Y 2 O 5 and CeO 2 are components that stabilize the glass. However, if the total amount of these is more than 3%, the softening point of the glass increases, and the temperature is 480 ° C. or less. There is a tendency to be hard to fire at temperature.

PbOは、環境上の理由から実質的に含有しないことが好ましい。なお、低融点ガラスにPbOを含有すると、絶縁体として使用したときガラス中にPb2+が拡散して電気絶縁性が低下しやすい場合がある。 PbO is preferably substantially not contained for environmental reasons. In addition, when PbO is contained in the low melting point glass, when used as an insulator, Pb 2+ may diffuse into the glass and the electrical insulation may be easily lowered.

以上の組成を有するBi23−B23系ガラス組成物は、480℃以下の温度で良好な流動性を示す非結晶性のガラスであり、30〜300℃における熱膨張係数が約110〜120×10-7/℃である。そのため、Bi23−B23系ガラス組成物とほぼ同じ熱膨張係数を有する材料を接着、封着、被覆等する場合は、Bi23−B23系ガラス組成物で直接接着、封着または被覆することができる。 The Bi 2 O 3 —B 2 O 3 glass composition having the above composition is an amorphous glass exhibiting good fluidity at a temperature of 480 ° C. or less, and has a coefficient of thermal expansion at 30 to 300 ° C. 110-120 × 10 −7 / ° C. Therefore, adhesive material having substantially the same thermal expansion coefficient as Bi 2 O 3 -B 2 O 3 based glass compositions, sealing, when coating or the like, with Bi 2 O 3 -B 2 O 3 based glass composition Can be directly glued, sealed or coated.

一方、Bi23−B23系ガラス組成物と熱膨張係数の適合しない材料、例えばアルミナ(70×10-7/℃)、高歪点ガラス(85×10-7/℃)、ソーダ板ガラス(90×10-7/℃)等の接着、封着または被覆を行う場合、Bi23−B23系ガラス組成物と耐火性フィラー粉末とを混合して封着材料とすればよい。封着材料の熱膨張係数は、被封着物に対して10〜30×10-7/℃程度低く設計することが重要である。これは、封着後に封着材料にかかる歪をテンション(引っ張り)側にして封着材料の破壊を防ぐためである。なお、熱膨張係数の調整以外にも、例えば機械的強度の向上のために耐火性フィラー粉末を添加することができる。 On the other hand, Bi 2 O 3 —B 2 O 3 -based glass compositions and materials that do not match the thermal expansion coefficient, such as alumina (70 × 10 −7 / ° C.), high strain point glass (85 × 10 −7 / ° C.), When adhering, sealing or coating soda plate glass (90 × 10 −7 / ° C.) or the like, a sealing material is prepared by mixing a Bi 2 O 3 —B 2 O 3 glass composition and a refractory filler powder. do it. It is important that the thermal expansion coefficient of the sealing material is designed to be lower by about 10 to 30 × 10 −7 / ° C. than the object to be sealed. This is to prevent the sealing material from being broken by setting the strain applied to the sealing material after sealing to the tension (tensile) side. In addition to adjusting the thermal expansion coefficient, for example, a refractory filler powder can be added to improve mechanical strength.

耐火性フィラー粉末を混合する場合、その混合割合は、Bi23−B23系ガラス組成物が40〜90体積%、耐火性フィラー粉末60〜10体積%であることが好ましい。両者の割合をこのように規定した理由は、耐火性フィラー粉末が10体積%よりも少ないと上記した効果が得られにくい傾向があり、60体積%より多くなると流動性が悪くなる傾向がある。 When mixing the refractory filler powder, the mixing ratio is preferably 40 to 90% by volume of the Bi 2 O 3 —B 2 O 3 glass composition and 60 to 10% by volume of the refractory filler powder. The reason for defining the ratio of the two in this way is that when the refractory filler powder is less than 10% by volume, the above-described effect tends to be hardly obtained, and when it exceeds 60% by volume, the fluidity tends to be poor.

耐火性フィラー粉末としては、ウイレマイト、コーディエライト、β−ユークリプタイト、ジルコン、酸化スズ、ムライト、石英ガラス、アルミナ等の粉末を単独で、または、複数種組み合わせて使用することができる。   As the refractory filler powder, powders of willemite, cordierite, β-eucryptite, zircon, tin oxide, mullite, quartz glass, alumina and the like can be used alone or in combination.

特に、ウイレマイトやコーディエライトは、熱膨張係数が小さく、Bi23−B23系ガラスと反応しにくいため好ましい。 In particular, willemite and cordierite are preferable because they have a small coefficient of thermal expansion and hardly react with Bi 2 O 3 —B 2 O 3 glass.

また、耐火性フィラー粉末は、アルミナ、酸化亜鉛、ジルコン、チタニア、ジルコニア等によって被覆されているとガラスと耐火性フィラー粉末との間での反応を抑制できるため好ましい。特に、アルミナは融点が高く、ガラスと反応しにくいため好ましい。   Further, it is preferable that the refractory filler powder is coated with alumina, zinc oxide, zircon, titania, zirconia or the like because the reaction between the glass and the refractory filler powder can be suppressed. In particular, alumina is preferable because it has a high melting point and hardly reacts with glass.

なお、本発明のBi23−B23系ガラス封着材料の具体的な用途としては、(1)プラズマディスプレイパネル(PDP)の気密封着材料、絶縁層や誘電体層の形成材料、バリアリブの形成材料、(2)蛍光表示管(VFD)用パッケージの封着材料、絶縁層の形成材料、(3)磁気ヘッド−コア同士またはコアとスライダーの封着材料等が挙げられる。 In addition, specific applications of the Bi 2 O 3 —B 2 O 3 glass sealing material of the present invention include (1) formation of a hermetic sealing material for plasma display panels (PDP), insulating layers and dielectric layers. Examples include materials, barrier rib forming materials, (2) sealing materials for fluorescent display tube (VFD) packages, insulating layer forming materials, and (3) sealing materials for magnetic head-cores or cores and sliders.

Bi23−B23系ガラス組成物と耐火性フィラー粉末とを混合した封着材料は、粉末のまま封着材料として使用しても良いが、封着材料とビークルとを均一に混練してペーストとして使用すると取り扱いやすい。 A sealing material in which a Bi 2 O 3 —B 2 O 3 glass composition and a refractory filler powder are mixed may be used as a sealing material as a powder, but the sealing material and the vehicle should be uniform. When kneaded and used as a paste, it is easy to handle.

ビークルは、主に溶媒と樹脂とからなり、樹脂はペーストの粘性を調整する目的で添加される。   The vehicle mainly includes a solvent and a resin, and the resin is added for the purpose of adjusting the viscosity of the paste.

溶媒としては、N、N’−ジメチルホルムアミド(DMF)、α−ターピネオール、高級アルコール、γ−ブチロラクトン(γ−BL)、テトラリン、ブチルカルビトールアセテート、酢酸エチル、酢酸イソアミル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノエチルエーテルアセテート、ベンジルアルコール、トルエン、3−メトキシ−3−メチルブタノール、水、トリエチレングリコールモノメチルエーテル、トリエチレングリコールジメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノブチルエーテル、トリプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノブチルエーテル、プロピレンカーボネート、ジメチルスルホキシド(DMSO)、N−メチル−2−ピロリドン等が使用可能である。   Solvents include N, N′-dimethylformamide (DMF), α-terpineol, higher alcohol, γ-butyrolactone (γ-BL), tetralin, butyl carbitol acetate, ethyl acetate, isoamyl acetate, diethylene glycol monoethyl ether, diethylene glycol Monoethyl ether acetate, benzyl alcohol, toluene, 3-methoxy-3-methylbutanol, water, triethylene glycol monomethyl ether, triethylene glycol dimethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monobutyl ether, tripropylene glycol monomethyl ether, Tripropylene glycol monobutyl ether, propylene carbonate, dimethyl sulfoxide (DMSO), N Methyl-2-pyrrolidone and the like can be used.

樹脂としては、エチルセルロ−ス、ポリエチレングリコール誘導体、ニトロセルロース、ポリメチルスチレン、ポリエチレンカーボネート、メタクリル酸エステル等が使用可能である。   As the resin, ethyl cellulose, polyethylene glycol derivatives, nitrocellulose, polymethylstyrene, polyethylene carbonate, methacrylic acid ester, and the like can be used.

以下、実施例に基づいて本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail based on examples.

表1、2は、実施例(試料a〜h)および比較例(試料i、j)のガラス組成物を示すものである。   Tables 1 and 2 show the glass compositions of the examples (samples a to h) and the comparative examples (samples i and j).

Figure 2006143480
Figure 2006143480

Figure 2006143480
Figure 2006143480

表1、2に記載の各試料は次のようにして調製した。   Each sample described in Tables 1 and 2 was prepared as follows.

まず、表に示したガラス組成となるように各種酸化物、炭酸塩等の原料を調合したガラスバッチを準備し、これを白金坩堝に入れて900〜1000℃で2時間溶融した。   First, a glass batch in which raw materials such as various oxides and carbonates were prepared so as to have the glass composition shown in the table was prepared, and this was put in a platinum crucible and melted at 900 to 1000 ° C. for 2 hours.

次に、溶融ガラスの一部を熱膨張係数測定用サンプルとしてステンレス製の金型に流し出し、その他の溶融ガラスは、水冷ローラーにより、薄片状に成形した。   Next, a part of the molten glass was poured out into a stainless steel mold as a sample for measuring the coefficient of thermal expansion, and the other molten glass was formed into a thin piece with a water-cooled roller.

最後に、薄片状のガラスをボールミルにて粉砕後、目開き105μmの篩いを通過させて、平均粒径約10μmの各試料を得た。   Finally, the glass flakes were pulverized with a ball mill and passed through a sieve having an opening of 105 μm to obtain samples having an average particle diameter of about 10 μm.

以上の試料を用いてガラス転移点、軟化点、熱膨張係数、焼成温度および光沢を評価した。   Using the above samples, the glass transition point, softening point, thermal expansion coefficient, firing temperature and gloss were evaluated.

ガラス転移点、軟化点は、示差熱分析装置(DTA)により求めた。   The glass transition point and softening point were determined by a differential thermal analyzer (DTA).

熱膨張係数は、押棒式熱膨張測定装置により求めた。   The thermal expansion coefficient was determined by a push rod type thermal expansion measuring device.

焼成温度は、以下のようにして評価した。   The firing temperature was evaluated as follows.

まず、各試料の真比重に相当する質量の試料を金型に投入して外径20mm、高さ約5mmのボタン状に加圧成形した。   First, a sample having a mass corresponding to the true specific gravity of each sample was put into a mold and pressed into a button shape having an outer diameter of 20 mm and a height of about 5 mm.

次いで、このボタンを板ガラスの上に載せて電気炉に入れ、10℃/分の速度で昇温し、種々の温度で30分間保持した。ボタンの外径が21〜22mmの範囲にあるボタンのうち、最も低温で焼成されたボタンの焼成温度を試料の焼成温度とした。   Next, this button was placed on a plate glass, placed in an electric furnace, heated at a rate of 10 ° C./min, and held at various temperatures for 30 minutes. Of the buttons having an outer diameter of 21 to 22 mm, the firing temperature of the button fired at the lowest temperature was defined as the firing temperature of the sample.

光沢は、上記ボタンを焼成温度において30分間保持した後、試料表面の光沢の有無を目視により評価した。   The gloss was evaluated by visual observation of the presence or absence of gloss on the sample surface after holding the button at the firing temperature for 30 minutes.

表1、2から明らかなように、本発明の実施例である試料a〜hは、ガラス転移点が330〜342℃、軟化点が396〜415℃、30〜300℃における熱膨張係数が111〜117×10-7/℃であり、焼成温度が455℃以下であった。また、焼成状態は、試料a〜hにおいてすべて表面に光沢を有していた。 As apparent from Tables 1 and 2, samples a to h which are examples of the present invention have a glass transition point of 330 to 342 ° C., a softening point of 396 to 415 ° C., and a thermal expansion coefficient of 111 to 30 ° C. of 111. It was -117 * 10 < -7 > / degreeC, and the calcination temperature was 455 degrees C or less. Moreover, as for the firing state, the samples a to h all had gloss on the surface.

一方、比較例である試料i、jは、焼成温度は445℃以下であったが、表面に光沢を有していなかった。   On the other hand, samples i and j, which are comparative examples, had a baking temperature of 445 ° C. or lower, but had no gloss on the surface.

表3、4は、封着材料を示すものである。   Tables 3 and 4 show the sealing materials.

Figure 2006143480
Figure 2006143480

Figure 2006143480
Figure 2006143480

次に、表3、4に示す割合で試料a〜jと耐火性フィラー粉末とを混合し、封着材料粉末(試料1〜10)を作製した。試料No.1〜8は本発明の実施例を、試料No.9、10は比較例をそれぞれ示している。   Next, samples a to j and refractory filler powder were mixed at the ratios shown in Tables 3 and 4 to prepare sealing material powders (samples 1 to 10). Sample No. 1 to 8 are examples of the present invention, sample No. Reference numerals 9 and 10 respectively show comparative examples.

試料1〜4はVFD用の封着材料であり、2枚のソーダガラス板(熱膨張係数90×10-7/℃)を封着する材料である。また、試料5〜10はPDP用の封着材料であり、2枚の高歪点ガラス板(熱膨張係数85×10-7/℃)同士を封着する材料である。 Samples 1 to 4 are sealing materials for VFD, and are materials for sealing two soda glass plates (coefficient of thermal expansion 90 × 10 −7 / ° C.). Samples 5 to 10 are sealing materials for PDP, and are materials for sealing two high strain point glass plates (coefficient of thermal expansion 85 × 10 −7 / ° C.).

また、耐火性フィラー粉末には、ウイレマイトまたはコーディエライトを用いた。   Moreover, willemite or cordierite was used for the refractory filler powder.

以上の試料を用いて熱膨張係数、流動径、光沢および再封着性を評価した。   Using the above samples, the thermal expansion coefficient, flow diameter, gloss and resealability were evaluated.

流動径は、封着材料粉末の真比重に相当する重量の粉末を金型により外径20mmのボタン状にプレスし、空気中で10℃/分の速度で昇温して表中記載の温度で10分間保持した時のボタンの直径を測定し、評価した。なお、流動径が、21mm以上であると流動性が優れることを意味する。   The flow diameter is a temperature described in the table by pressing a powder having a weight corresponding to the true specific gravity of the sealing material powder into a button shape having an outer diameter of 20 mm using a mold and raising the temperature in air at a rate of 10 ° C./min. The diameter of the button when held for 10 minutes was measured and evaluated. In addition, it means that fluidity | liquidity is excellent in a flow diameter being 21 mm or more.

再封着性は、次のようにして評価した。   Resealability was evaluated as follows.

まず、各試料とアクリル樹脂含有α−ターピネオールとを均一に混練してそれぞれペースト化した後、各試料の被封着物と同材質の基板(100×100×3mm)の端部に線状(80×3×3mm)に塗布し、120℃で15分乾燥させた。   First, each sample and acrylic resin-containing α-terpineol were uniformly kneaded to form a paste, and then linear (80 × 100 × 3 mm) at the end of a substrate (100 × 100 × 3 mm) made of the same material as the sealed object of each sample. × 3 × 3 mm) and dried at 120 ° C. for 15 minutes.

次に、基板を、表中に記載の焼成温度より10℃高い温度で、表中に記載の時間保持した後、室内に放置して基板を冷却した。   Next, the substrate was held at a temperature 10 ° C. higher than the firing temperature described in the table for the time described in the table, and then left in the room to cool the substrate.

続いて、150μm厚のガラス板を基板の真ん中に設置し、同じ寸法の基板を上から被せた後、両基板をクリップにより固定し、再び表中に記載の条件で焼成した。   Subsequently, a glass plate having a thickness of 150 μm was placed in the middle of the substrate, and the substrates with the same dimensions were covered from above. Then, both substrates were fixed with clips, and fired again under the conditions described in the table.

焼成により再流動して基板間の間隔が150μmになっているものを「○」、十分に再度軟化流動せず、基板間の間隔が150μmより大きくなったものを「×」として評価した。なお、この評価で「○」であったものは、脱バインダー時の熱処理において失透が生じなかったものと考えられる。   Evaluation was made as “◯” when the distance between the substrates was 150 μm after reflowing by firing, and “X” when the distance between the substrates was larger than 150 μm without sufficiently softening and flowing again. In addition, what was "(circle)" by this evaluation is considered that the devitrification did not arise in the heat processing at the time of binder removal.

表3、4から明らかなように、試料1〜8は、30〜300℃における熱膨張係数が71.1〜76.5×10-7/℃であった。また、表中に示した焼成条件で21.1〜22.5mmの流動径を示し、良好な流動性を有していた。また、光沢も有り、再封着性に優れていた。 As is apparent from Tables 3 and 4, Samples 1 to 8 had a thermal expansion coefficient of 71.1 to 76.5 × 10 −7 / ° C. at 30 to 300 ° C. Moreover, the flow diameter of 21.1-22.5mm was shown on the baking conditions shown in the table | surface, and it had favorable fluidity | liquidity. Moreover, there was gloss and it was excellent in resealability.

一方、試料9、10は、光沢が無く、再封着性が悪かった。   On the other hand, Samples 9 and 10 had no gloss and poor resealability.

試料9、10において、再封着性が良好でなかった理由として、最初の焼成時にすでに結晶が析出していたためであると考えられる。このため、2回目の焼成時に、その結晶が成長し、ガラスの軟化流動を妨げたものと考えられる。実際、光学顕微鏡により、最初の焼成後の表面状態を観察すると、結晶の析出が確認できた。   The reason why the resealability was not good in Samples 9 and 10 is considered to be that crystals were already deposited at the first firing. For this reason, it is considered that the crystal grew during the second firing and hindered the softening flow of the glass. In fact, when the surface state after the first firing was observed with an optical microscope, the precipitation of crystals could be confirmed.

本発明のBi23−B23系ガラス組成物は、電子部品の接着、封着、被覆等、具体的にはPDP、フィールドエミッションディスプレイ(FED)、表面電界ディスプレイ(SED)、VFD、陰極線管(CRT)等の表示管の封着用途、PDPの絶縁誘電体層用途、PDPのバリアリブ用途、磁気ヘッド−コア同士またはコアとスライダーの封着材料用途等に好適である。 The Bi 2 O 3 —B 2 O 3 glass composition of the present invention can be used for bonding, sealing, coating, etc. of electronic parts, specifically, PDP, field emission display (FED), surface electric field display (SED), VFD. It is suitable for sealing display tubes such as cathode ray tubes (CRT), PDP insulating dielectric layers, PDP barrier ribs, and magnetic head-core or core and slider sealing materials.

Claims (5)

ガラス組成として、モル%表示で、Bi23 35〜60%、B23 10〜35%、WO3 0.1〜5%を含有することを特徴とするBi23−B23系ガラス組成物。 Bi 2 O 3 -B 2 characterized by containing Bi 2 O 3 35-60%, B 2 O 3 10-35%, WO 3 0.1-5% in terms of mol% as a glass composition. O 3 glass composition. モル%表示で、BaO+SrO+MgO+CaO 1〜15%、ZnO 5〜30%、CuO 0〜15%、Fe23 0〜5%含有することを特徴とする請求項1に記載のBi23−B23系ガラス組成物。 The Bi 2 O 3 -B according to claim 1, characterized by containing BaO + SrO + MgO + CaO 1 to 15%, ZnO 5 to 30%, CuO 0 to 15%, Fe 2 O 3 0 to 5% in terms of mol%. 2 O 3 -based glass composition. 実質的にPbOを含有しないことを特徴とする請求項1または2に記載のBi23−B23系ガラス組成物。 3. The Bi 2 O 3 —B 2 O 3 -based glass composition according to claim 1, wherein the glass composition does not substantially contain PbO. 請求項1〜3のいずれかに記載のBi23−B23系ガラス組成物からなる粉末と耐火性フィラー粉末とを混合した封着材料であって、混合割合は体積%表示で、Bi23−B23系ガラス組成物からなる粉末が40〜90%、耐火性フィラー粉末が60〜10%であることを特徴とするBi23−B23系封着材料。 A sealing material obtained by mixing the powder and the refractory filler powder consisting of Bi 2 O 3 -B 2 O 3 based glass composition according to any one of claims 1 to 3, the mixing ratio by volume percentage Bi 2 O 3 —B 2 O 3 -based sealing, characterized in that the powder composed of Bi 2 O 3 —B 2 O 3 -based glass composition is 40 to 90% and the refractory filler powder is 60 to 10%. Landing material. 耐火性フィラー粉末が、ウイレマイト、コーディエライト、β−ユークリプタイト、ジルコン、酸化スズ、ムライト、石英ガラスおよびアルミナからなる群より選ばれた一種または二種以上のフィラー粉末であることを特徴とする請求項4に記載のBi23−B23系封着材料。 The refractory filler powder is one or more filler powders selected from the group consisting of willemite, cordierite, β-eucryptite, zircon, tin oxide, mullite, quartz glass and alumina. The Bi 2 O 3 —B 2 O 3 sealing material according to claim 4.
JP2004331394A 2004-11-16 2004-11-16 Bi2O3-B2O3-BASED GLASS COMPOSITION AND Bi2O3-B2O3-BASED SEALING MATERIAL Pending JP2006143480A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004331394A JP2006143480A (en) 2004-11-16 2004-11-16 Bi2O3-B2O3-BASED GLASS COMPOSITION AND Bi2O3-B2O3-BASED SEALING MATERIAL

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004331394A JP2006143480A (en) 2004-11-16 2004-11-16 Bi2O3-B2O3-BASED GLASS COMPOSITION AND Bi2O3-B2O3-BASED SEALING MATERIAL

Publications (1)

Publication Number Publication Date
JP2006143480A true JP2006143480A (en) 2006-06-08

Family

ID=36623597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004331394A Pending JP2006143480A (en) 2004-11-16 2004-11-16 Bi2O3-B2O3-BASED GLASS COMPOSITION AND Bi2O3-B2O3-BASED SEALING MATERIAL

Country Status (1)

Country Link
JP (1) JP2006143480A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006335584A (en) * 2005-05-31 2006-12-14 Nippon Electric Glass Co Ltd Bismuth-based lead-free sealing material
JP2008105880A (en) * 2006-10-24 2008-05-08 Nippon Electric Glass Co Ltd Bismuth-based sealing material
JP2009007198A (en) * 2007-06-28 2009-01-15 Nippon Electric Glass Co Ltd Glass melting apparatus, method of melting glass, and glass
WO2009107428A1 (en) * 2008-02-28 2009-09-03 日本電気硝子株式会社 Sealing material for organic el display
JP2009227566A (en) * 2008-02-28 2009-10-08 Nippon Electric Glass Co Ltd Sealing material for organic el display
JP2010047441A (en) * 2008-08-21 2010-03-04 Nippon Electric Glass Co Ltd Sealing material for organic el display
JP2011037682A (en) * 2009-08-14 2011-02-24 Nippon Electric Glass Co Ltd Tablet and tablet-integrated exhaust pipe
KR101236369B1 (en) 2008-02-28 2013-02-22 니폰 덴키 가라스 가부시키가이샤 Sealing material for organic el display
EP2562141A4 (en) * 2010-06-29 2016-09-14 Central Glass Co Ltd GLASS COMPOSITION WITHOUT LEAD WITH LOW MELT POINT
WO2019202295A1 (en) * 2018-04-19 2019-10-24 Johnson Matthey Public Limited Company Kit, particle mixture, paste and methods
US20190376359A1 (en) * 2018-06-10 2019-12-12 Pa&E, Hermetic Solutions Group, Llc Hydrophobic dielectric sealing materials
CN111847882A (en) * 2020-08-10 2020-10-30 河北曜阳新材料技术有限公司 Low-temperature sealing glass and preparation method thereof
CN116462411A (en) * 2023-04-26 2023-07-21 华东理工大学 A composite powder potting material of lead-free multi-component bismuth-based low melting point glass and ceramic powder, its preparation method and application

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006335584A (en) * 2005-05-31 2006-12-14 Nippon Electric Glass Co Ltd Bismuth-based lead-free sealing material
JP2008105880A (en) * 2006-10-24 2008-05-08 Nippon Electric Glass Co Ltd Bismuth-based sealing material
JP2009007198A (en) * 2007-06-28 2009-01-15 Nippon Electric Glass Co Ltd Glass melting apparatus, method of melting glass, and glass
KR101236369B1 (en) 2008-02-28 2013-02-22 니폰 덴키 가라스 가부시키가이샤 Sealing material for organic el display
WO2009107428A1 (en) * 2008-02-28 2009-09-03 日本電気硝子株式会社 Sealing material for organic el display
JP2009227566A (en) * 2008-02-28 2009-10-08 Nippon Electric Glass Co Ltd Sealing material for organic el display
JP2010047441A (en) * 2008-08-21 2010-03-04 Nippon Electric Glass Co Ltd Sealing material for organic el display
JP2011037682A (en) * 2009-08-14 2011-02-24 Nippon Electric Glass Co Ltd Tablet and tablet-integrated exhaust pipe
EP2562141A4 (en) * 2010-06-29 2016-09-14 Central Glass Co Ltd GLASS COMPOSITION WITHOUT LEAD WITH LOW MELT POINT
WO2019202295A1 (en) * 2018-04-19 2019-10-24 Johnson Matthey Public Limited Company Kit, particle mixture, paste and methods
US11434165B2 (en) 2018-04-19 2022-09-06 Johnson Matthey Advances Glass Technologies B.V. Kit, particle mixture, paste and methods
US20190376359A1 (en) * 2018-06-10 2019-12-12 Pa&E, Hermetic Solutions Group, Llc Hydrophobic dielectric sealing materials
CN111847882A (en) * 2020-08-10 2020-10-30 河北曜阳新材料技术有限公司 Low-temperature sealing glass and preparation method thereof
CN111847882B (en) * 2020-08-10 2022-08-19 福州瑞克布朗医药科技有限公司 Low-temperature sealing glass and preparation method thereof
CN116462411A (en) * 2023-04-26 2023-07-21 华东理工大学 A composite powder potting material of lead-free multi-component bismuth-based low melting point glass and ceramic powder, its preparation method and application

Similar Documents

Publication Publication Date Title
JP4930897B2 (en) Bi2O3-B2O3 sealing material
JP5713993B2 (en) Lead-free glass material for sealing organic EL, organic EL display using the same, and method for manufacturing the display
JP4774721B2 (en) Low melting glass, sealing composition and sealing paste
JP4972954B2 (en) Bismuth-based glass composition and bismuth-based sealing material
JP5190672B2 (en) Vanadium-based glass composition and vanadium-based material
JP5083706B2 (en) Bismuth-based glass composition and bismuth-based sealing material
JP5354444B2 (en) Sealing material
JP5574518B2 (en) Sealing material
JP5212884B2 (en) Bismuth-based sealing material and bismuth-based paste material
JP5190671B2 (en) Vanadium-based glass composition and vanadium-based material
JP4826137B2 (en) Bismuth-based lead-free glass composition
JP2008094705A (en) Sealing material
JP2006143480A (en) Bi2O3-B2O3-BASED GLASS COMPOSITION AND Bi2O3-B2O3-BASED SEALING MATERIAL
JP2006137635A (en) Filler powder, and powder and paste for sealing
JP4815975B2 (en) Low melting glass, sealing composition and sealing paste
JP5083704B2 (en) Bismuth sealing material
JP4941880B2 (en) Bismuth-based glass composition and bismuth-based sealing material
JP4766444B2 (en) Bismuth-based lead-free sealing material
JP5476691B2 (en) Sealing material
JP5419249B2 (en) Bismuth-based glass composition and bismuth-based sealing material
WO2020153061A1 (en) Glass powder and sealing material using same
JP5257829B2 (en) Sealing material
JP5709033B2 (en) Bismuth glass
JP2007161524A (en) Bismuth-based glass composition
WO2024057824A1 (en) Bismuth-based glass powder and composite powder including same