JP2006142331A - Roll production method - Google Patents
Roll production method Download PDFInfo
- Publication number
- JP2006142331A JP2006142331A JP2004334822A JP2004334822A JP2006142331A JP 2006142331 A JP2006142331 A JP 2006142331A JP 2004334822 A JP2004334822 A JP 2004334822A JP 2004334822 A JP2004334822 A JP 2004334822A JP 2006142331 A JP2006142331 A JP 2006142331A
- Authority
- JP
- Japan
- Prior art keywords
- core material
- roll
- temperature
- molten metal
- heating coil
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 34
- 239000011162 core material Substances 0.000 claims abstract description 168
- 229910052751 metal Inorganic materials 0.000 claims abstract description 65
- 239000002184 metal Substances 0.000 claims abstract description 65
- 238000010438 heat treatment Methods 0.000 claims abstract description 61
- 239000002344 surface layer Substances 0.000 claims abstract description 21
- 239000010410 layer Substances 0.000 claims abstract description 18
- 230000005674 electromagnetic induction Effects 0.000 claims abstract description 11
- 238000001816 cooling Methods 0.000 claims abstract description 7
- 239000003963 antioxidant agent Substances 0.000 claims description 12
- 230000003078 antioxidant effect Effects 0.000 claims description 12
- 238000002844 melting Methods 0.000 claims description 10
- 230000008018 melting Effects 0.000 claims description 10
- 230000006698 induction Effects 0.000 claims description 3
- 238000003466 welding Methods 0.000 abstract description 14
- 229910045601 alloy Inorganic materials 0.000 description 31
- 239000000956 alloy Substances 0.000 description 31
- 238000000034 method Methods 0.000 description 14
- 238000005253 cladding Methods 0.000 description 12
- 239000000463 material Substances 0.000 description 12
- 229910018487 Ni—Cr Inorganic materials 0.000 description 11
- 230000035515 penetration Effects 0.000 description 10
- 229910017060 Fe Cr Inorganic materials 0.000 description 9
- 229910002544 Fe-Cr Inorganic materials 0.000 description 9
- UPHIPHFJVNKLMR-UHFFFAOYSA-N chromium iron Chemical compound [Cr].[Fe] UPHIPHFJVNKLMR-UHFFFAOYSA-N 0.000 description 9
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 8
- 229910052799 carbon Inorganic materials 0.000 description 8
- 150000002739 metals Chemical class 0.000 description 7
- 238000005096 rolling process Methods 0.000 description 6
- 230000001965 increasing effect Effects 0.000 description 5
- 229910000997 High-speed steel Inorganic materials 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 239000010959 steel Substances 0.000 description 4
- 239000000155 melt Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 229910000975 Carbon steel Inorganic materials 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 239000010962 carbon steel Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000003028 elevating effect Effects 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 238000009628 steelmaking Methods 0.000 description 2
- 238000005496 tempering Methods 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 229910001037 White iron Inorganic materials 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000009658 destructive testing Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000013067 intermediate product Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Landscapes
- Reduction Rolling/Reduction Stand/Operation Of Reduction Machine (AREA)
Abstract
Description
例えば、製鉄圧延設備における圧延用ロール及び矯正用ロールに使用可能なロールの製造方法に関する。 For example, it is related with the manufacturing method of the roll which can be used for the roll for rolling in a steel-making rolling facility, and the roll for correction.
従来、製鉄圧延設備においては、圧延用及び矯正用の各ロールが使用され、鋼板の圧延及び矯正が行われている。
このロールの製造方法としては、電磁誘導加熱コイルを備えた耐火性加熱型の下部に冷却型を一体的に配置した組み合わせモールドを用い、この組み合わせモールドの内部に鋼製の芯材を挿入し、加熱コイルで芯材の周囲を加熱しながら、芯材の周囲の環状隙間部に別途準備した溶湯を注入した後、芯材を降下させて芯材表面に溶湯を溶着させながら鋳掛け肉盛層(以下、単に肉盛層ともいう)を形成する方法が開示されている。このロールの製造方法は、CPC(Continuous Pouring process for
Cladding:連続注入クラッド)法とも呼ばれている(例えば、特許文献1参照)。
これにより、芯材の外周に肉盛層を一層で形成できるので、芯材に対する熱の集中度を極めて小さくでき、従来の溶接肉盛法では不可能であった材質、例えば、過共晶材の肉盛層を形成することができる。
Conventionally, in a steelmaking rolling facility, rolling and straightening rolls are used, and rolling and straightening of steel sheets are performed.
As a manufacturing method of this roll, using a combination mold in which a cooling mold is integrally arranged at the bottom of a refractory heating mold provided with an electromagnetic induction heating coil, a steel core material is inserted inside the combination mold, While heating the periphery of the core material with a heating coil, injecting a separately prepared molten metal into the annular gap around the core material, the core material is lowered and the cast overlay layer ( In the following, a method for forming a simply built-up layer) is disclosed. The manufacturing method of this roll is CPC (Continuous Puring process for
It is also called the “Cladding: continuous injection cladding” method (see, for example, Patent Document 1).
As a result, a built-up layer can be formed in a single layer on the outer periphery of the core material, so that the concentration of heat on the core material can be made extremely small, such as a material that has not been possible with the conventional welding overlay method, such as a hypereutectic material. It is possible to form an overlay layer.
しかしながら、前記従来のロールの製造方法には、未だ解決すべき以下のような問題があった。
芯材は、溶湯を溶着させる寸前に加熱コイルを使用して加熱されているので、芯材の表層部のみが目的の温度まで加熱され、芯材の内部が十分に加熱されていない。このため、芯材の中心部と表層部との温度差が大きくなり、加熱コイルによる加熱が終了した表層部には、急激な温度低下が生じる。
ここで、溶湯にする金属の液相線温度が芯材の固相線温度よりも低い場合は、芯材の表層部の温度が低下しても、溶湯が芯材の外周に容易に溶着し、略安定した品質のロールを製造できる。
しかし、溶湯にする金属の液相線温度が芯材の固相線温度以上の場合は、上記した場合よりも芯材への溶湯からの熱の移動が顕著になる。このとき、溶湯の溶着が進行するに伴って芯材の温度が上昇するため、芯材の温度上昇に伴って芯材への熱の移動が減少するので、芯材表層部への溶湯の溶け込み量が、芯材の長手方向の各部分で不均一となり、ロール品質が安定しなかった。なお、この現象は、芯材の降下速度を現状よりも遅くし、芯材へ溶湯を溶着させる時間を長くするに伴って、更に顕著になる傾向があった。
However, the conventional roll manufacturing method still has the following problems to be solved.
Since the core material is heated using the heating coil just before the molten metal is welded, only the surface layer portion of the core material is heated to the target temperature, and the inside of the core material is not sufficiently heated. For this reason, the temperature difference between the center portion and the surface layer portion of the core material becomes large, and a rapid temperature drop occurs in the surface layer portion after the heating by the heating coil is completed.
Here, when the liquidus temperature of the metal to be melted is lower than the solidus temperature of the core material, the molten metal easily adheres to the outer periphery of the core material even if the temperature of the surface layer portion of the core material decreases. It is possible to produce rolls with substantially stable quality.
However, when the liquidus temperature of the metal to be melted is equal to or higher than the solidus temperature of the core material, the heat transfer from the molten metal to the core material becomes more significant than in the above case. At this time, since the temperature of the core material increases as the welding of the molten metal proceeds, the movement of heat to the core material decreases as the temperature of the core material increases, so the melt melts into the core material surface layer. The amount became non-uniform in each part in the longitudinal direction of the core material, and the roll quality was not stable. This phenomenon tended to become more prominent as the descending speed of the core material was made slower than the current state and the time for welding the molten metal to the core material was lengthened.
また、例えば一方向から注入される溶湯の温度が芯材の円周方向で不均一になった場合、芯材表層部への溶湯の溶け込み量が芯材の円周方向の各部分で不均一となり易くなるため、形成される肉盛層の成分にばらつきが生じ、ロール品質が安定しなかった。
特に、前記したような液相線温度が高い金属を使用した場合は、芯材への溶湯の溶着不良が起こり易いためロール品質が安定せず、また溶湯の注入時の温度低下に伴って溶湯が凝固し易く、ロールの製造作業を安定に実施できない問題もあった。
更に、このロールの製造方法は、芯材を組み合わせモールドに配置した後に芯材の加熱を行うので、ロール1本当りの製造時間の短縮を図ることが難しく、しかも芯材の加熱中は組み合わせモールドを使用できないため製造効率が悪かった。
Also, for example, when the temperature of the molten metal injected from one direction becomes non-uniform in the circumferential direction of the core material, the amount of melt melt into the core material surface layer is non-uniform in each part of the core material in the circumferential direction. Therefore, the components of the built-up layer to be formed vary, and the roll quality is not stable.
In particular, when a metal having a high liquidus temperature as described above is used, the roll quality is not stable because of poor welding of the molten metal to the core material, and the molten metal is accompanied by a decrease in temperature at the time of pouring the molten metal. There is also a problem that the rolls are easily solidified and the roll manufacturing operation cannot be stably performed.
Furthermore, in this roll manufacturing method, since the core material is heated after the core material is arranged in the combination mold, it is difficult to shorten the manufacturing time per roll, and the combination mold is used during the heating of the core material. The production efficiency was poor because it could not be used.
本発明はかかる事情に鑑みてなされたもので、芯材を予熱して芯材全体を略均一な温度に加熱しておくことで、従来よりも優れた品質のロールを製造でき、しかもロールの製造時間を従来よりも短縮させることが可能なロールの製造方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and by preheating the core material and heating the entire core material to a substantially uniform temperature, it is possible to manufacture a roll of superior quality than before, and It aims at providing the manufacturing method of the roll which can shorten manufacturing time conventionally.
前記目的に沿う本発明に係るロールの製造方法は、電磁誘導加熱コイルAを備えた耐火性加熱型の下部に冷却型が一体的に配置された組み合わせモールドの内部に、芯材を同心垂直に挿入し、加熱コイルBで前記芯材の周囲を固相線温度Ts近傍まで加熱しながら、該芯材の周囲の環状空隙部に溶湯を注入して前記芯材を降下させ、該芯材の外周に前記溶湯を溶着させながら凝固させて鋳掛け肉盛層を形成するロールの製造方法において、
前記芯材を前記加熱コイルBで加熱する前に、前記芯材の中心部と表層部の温度差が100℃以内で、しかも前記芯材の表層部の温度が300℃以上かつ前記固相線温度Ts以下となるように該芯材を予熱する。
In the roll manufacturing method according to the present invention that meets the above-mentioned object, the core material is concentrically perpendicular to the inside of the combination mold in which the cooling mold is integrally disposed in the lower part of the refractory heating mold provided with the electromagnetic induction heating coil A. Inserting and heating the periphery of the core to the vicinity of the solidus temperature Ts with the heating coil B, the molten metal is injected into the annular gap around the core to lower the core, and the core In the manufacturing method of the roll which solidifies while welding the molten metal on the outer periphery to form a cast overlay layer,
Before heating the core material with the heating coil B, the temperature difference between the center portion and the surface layer portion of the core material is within 100 ° C., and the temperature of the surface layer portion of the core material is not less than 300 ° C. The core material is preheated so as to be equal to or lower than the temperature Ts.
本発明のロールの製造方法は、芯材を加熱コイルで加熱する前に、芯材の中心部と表層部の温度差が100℃以内で、芯材の表層部の温度が300℃以上かつ固相線温度Ts以下となるように予熱するので、芯材の表層部のみならず中心部も含めて加熱できる。従って、芯材の表層部の温度低下を従来よりも大幅に低減できるので、溶湯の注湯時における芯材への熱の移動量を小さくでき、また溶湯の溶着時における芯材の表層付近の昇温速度を従来よりも速くでき、芯材への溶湯の溶着をばらつきなく安定して行い、従来よりも優れた品質のロールを製造できる。
また、芯材への溶湯の溶着をばらつきなく安定して行うことができるので、芯材の降下速度を従来よりも速くでき、ロールの生産性を向上できる。更に、溶湯の注湯時における溶湯の温度低下を低減できるので、注湯の際の溶湯の凝固を抑制でき、ロールの製造作業を作業性よく実施できる。
In the method for producing a roll of the present invention, before the core material is heated by the heating coil, the temperature difference between the center portion and the surface layer portion of the core material is within 100 ° C., the temperature of the surface layer portion of the core material is 300 ° C. Since it preheats so that it may become below phase line temperature Ts, it can heat not only the surface layer part of a core material but a center part. Therefore, the temperature drop of the surface layer portion of the core material can be greatly reduced as compared with the conventional case, so that the amount of heat transferred to the core material during pouring of the molten metal can be reduced, and the temperature near the surface layer of the core material during the welding of the molten metal can be reduced. The rate of temperature increase can be made faster than before, and the molten metal can be stably welded to the core material without variation, and a roll having a quality superior to that of the prior art can be produced.
Moreover, since the molten metal can be stably welded to the core material without variation, the lowering speed of the core material can be made faster than before and the productivity of the roll can be improved. Furthermore, since the temperature drop of the molten metal at the time of pouring the molten metal can be reduced, solidification of the molten metal at the time of pouring can be suppressed, and the roll manufacturing operation can be performed with good workability.
ここで、芯材の予熱を、組み合わせモールドとは別に設けられた予熱炉で、又は加熱コイルBとは別に設けられた誘導加熱コイルCを用いて行う場合には、組み合わせモールドを芯材への溶湯の溶着のみに使用できる。従って、組み合わせモールドの稼働率を現状よりも高めることができ、ロールの製造を効率的に実施できる。 Here, when the preheating of the core material is performed in a preheating furnace provided separately from the combination mold or using the induction heating coil C provided separately from the heating coil B, the combination mold is applied to the core material. Can be used only for welding molten metal. Therefore, the operation rate of the combination mold can be increased from the current level, and the roll can be manufactured efficiently.
また、溶湯にする金属として、その液相線温度が芯材の固相線温度Ts以上のものを選んだ場合には、従来、CPC法を使用して芯材へ溶着させることが困難であった金属を、芯材の外周に安定に溶着させることができる。従って、CPC法によって製造可能なロールの種類を、従来よりも大幅に広げることができる。 Further, when a metal having a liquidus temperature equal to or higher than the solidus temperature Ts of the core material is selected as the metal to be melted, it has conventionally been difficult to weld it to the core material using the CPC method. The metal can be stably welded to the outer periphery of the core material. Therefore, the types of rolls that can be produced by the CPC method can be greatly expanded as compared with the conventional one.
更に、芯材の外周に、芯材の予熱温度より高く芯材の固相線温度Tsより低い融点を有する酸化防止膜を形成した後に、芯材の予熱を行う場合には、芯材の予熱時における酸化防止膜の剥離を防止でき、芯材の表層部の酸化を抑制しながら、鋳掛け肉盛層を形成できる。 Furthermore, when pre-heating the core material after forming an antioxidant film having a melting point higher than the pre-heating temperature of the core material and lower than the solidus temperature Ts of the core material on the outer periphery of the core material, It is possible to prevent peeling of the antioxidant film at the time, and to form a cast overlay layer while suppressing oxidation of the surface layer portion of the core material.
続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
ここで、図1は本発明の一実施の形態に係るロールの製造方法の説明図である。
Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.
Here, FIG. 1 is explanatory drawing of the manufacturing method of the roll based on one embodiment of this invention.
本発明の一実施の形態に係るロールの製造方法は、図1に示すように、電磁誘導加熱コイル(電磁誘導加熱コイルA)25を有する組み合わせモールド10の内部に芯材(母材ともいう)11を挿入し、加熱コイル(加熱コイルB)26で芯材11の周囲を固相線温度Ts近傍まで加熱しながら、芯材11の外周に溶湯12を溶着し凝固させて鋳掛け肉盛層(以下、単に肉盛層ともいう)13を形成する(即ちCPC法による)ロールの製造方法において、芯材11を加熱コイル26で加熱する前に芯材11を予熱する方法である。以下、詳しく説明する。
As shown in FIG. 1, the roll manufacturing method according to an embodiment of the present invention includes a core material (also referred to as a base material) inside a
ロールの製造に使用する芯材11は、例えば、直径が50mm以上650mm以下で、長さが最長8000mm程度のものであり、芯材11の両側に軸部14、15が設けられた中実のものである。なお、芯材としては、芯材の片側のみに軸部が設けられた中実のもの、また円筒状となった中空のものを使用することもできる。この芯材11の材質は、例えば、クロム−モリブデン鋼(SCM材)、一般構造用圧延鋼(SS材)、0.35%炭素鋼(S35C)、及び0.45%炭素鋼(S45C)がある。
The
芯材11の予熱を行う前に、まず、芯材11の外周に、芯材11の予熱温度より高く芯材11の固相線温度Tsより低い融点を有する酸化防止膜16を形成する。
芯材11の外周に形成する酸化防止膜16としては、例えば、ニッケル基自溶合金(例えば、液相線温度が1100℃以下、固相線温度が950℃以下)又はコバルト基自溶合金(例えば、液相線温度が1150℃以下、固相線温度が1050℃以下)を使用できる。
なお、不活性雰囲気(例えば、アルゴンガス及び窒素ガス)中で芯材11の予熱を行う場合は、芯材11の外周に酸化防止膜を形成することなく、芯材11の予熱を実施してもよい。
Before the
As the
When the
このように、酸化防止膜16が形成された芯材11を、組み合わせモールド10とは別に設けられた予熱炉(図示しない)内に装入し、芯材11の大きさ、形状、及び材質に応じて、例えば5時間以上10時間放置して、芯材11の温度が300℃以上固相線温度Ts(例えば、1400℃以下)以下になるまで予熱を行う。
ここで、芯材11の予熱は、芯材11表層部の急激な温度低下を抑制できる温度、即ち、芯材11の中心部と表層部との温度差が、100℃以内、好ましくは70℃以内、更に好ましくは50℃以内になるまで加熱すればよいが、芯材11全体が略均一な温度になるまで行うことが好ましい。
なお、芯材11は、予熱炉を使用することなく、例えば、組み合わせモールド10の上方に設置され、組み合わせモールド10とは別に設けられた誘導加熱コイルC(図示しない)を用いて、前記した条件になるように芯材11を予熱することもできる。
Thus, the
Here, the preheating of the
In addition, the
芯材の予熱が300℃未満の場合、例え芯材全体を略均一に予熱できたとしても、芯材自体の予熱温度が低くなり過ぎ、芯材への溶湯の溶着を良好に行うことができない。一方、固相線温度Tsを超える場合、固液共存相が生成するため、例えば、芯材自体が部分的に溶融し始め、芯材の結晶組織が変化したり、また芯材の形状が崩れ、安定した品質のロールを製造できない恐れがある。
従って、安定した品質のロールを製造するには、予熱の下限値を300℃、好ましくは400℃、更に好ましくは500℃(最も良い条件としては800℃)にする。
このように予熱された芯材11の外周に、以下に示すように、例えば、前記した特許文献1に開示された方法を使用し、鋳掛け肉盛層13を形成して、ロールを製造する。
When the preheating of the core material is less than 300 ° C., even if the entire core material can be preheated substantially uniformly, the preheating temperature of the core material itself becomes too low and the molten metal cannot be satisfactorily welded to the core material. . On the other hand, when the solidus temperature Ts is exceeded, a solid-liquid coexisting phase is generated. For example, the core material itself begins to partially melt, the crystal structure of the core material changes, or the shape of the core material collapses. There is a risk that a roll of stable quality cannot be produced.
Therefore, in order to produce a roll of stable quality, the lower limit of preheating is set to 300 ° C., preferably 400 ° C., more preferably 500 ° C. (800 ° C. as the best condition).
A roll is manufactured by forming the
ロール製造装置として、図1に示すように、電磁誘導加熱コイル25が内部に配置された中空環状の耐火枠17を備えた耐火性加熱型18と、耐火性加熱型18の下部に配置され、これと同軸の内孔を有する冷却型19とを、一体的に配置した組み合わせモールド10を使用する。なお、組み合わせモールド10の下部には、油圧シリンダーなどの昇降手段(図示しない)によって上下させることができ、上部に配置された芯材11を徐々に降下させる昇降装置20を備えている。
As a roll manufacturing apparatus, as shown in FIG. 1, a
これを用いてロールを製造する場合、芯出し装置21を用いて、組み合わせモールド10の内部中央に、芯材11を同心垂直に挿入する。そして、別途溶解炉にて準備した鋳掛け肉盛層13になる溶湯12を、芯材11と組み合わせモールド10との環状空隙部22に、電磁誘導加熱コイル25に電流を流しながら注入し、芯材11を断続的に降下させる。
なお、芯材11の外周には、合金で構成される酸化防止膜16が形成されているので、この酸化防止膜が溶融した後、芯材11の表層部に溶湯12が溶着する。ここで、図1中の23は溶融部、24は溶融フラックスを示す。
When manufacturing a roll using this, the
In addition, since the antioxidant film |
溶湯にする金属(以下、溶湯金属ともいう)としては、溶湯金属の液相線温度が芯材の固相線温度Ts以上のものを選んで使用することが好ましいが、溶湯金属の液相線温度が芯材の固相線温度Tsよりも低い従来使用されている金属を使用することも勿論可能である。
ここで、芯材の固相線温度Ts以上の液相線温度を備える溶湯金属としては、例えば、液相線温度が1400℃以上1500℃以下のFe−Cr系合金又はNi−Cr系合金がある。なお、これらの溶湯金属の液相線温度と固相線温度との差は、例えば、150℃以上300℃以下である。
また、芯材の固相線温度Tsよりも低い液相線温度を備える溶湯金属としては、例えば、液相線温度が1250℃以上1350℃以下のFe−Cr系合金、高速度鋼(例えば、高速度鋼系多合金白鋳鉄)、及びNi−Cr系合金がある。これらの金属の液相線温度と固相線温度との差は、前記した金属よりも小さい50℃以上140℃以下程度である。
As the metal to be melted (hereinafter also referred to as molten metal), it is preferable to select and use a metal whose liquidus temperature is higher than the solidus temperature Ts of the core material. Of course, it is possible to use a conventionally used metal whose temperature is lower than the solidus temperature Ts of the core material.
Here, as the molten metal having a liquidus temperature equal to or higher than the solidus temperature Ts of the core material, for example, an Fe—Cr alloy or Ni—Cr alloy having a liquidus temperature of 1400 ° C. to 1500 ° C. is there. Note that the difference between the liquidus temperature and the solidus temperature of these molten metals is, for example, 150 ° C. or more and 300 ° C. or less.
In addition, as the molten metal having a liquidus temperature lower than the solidus temperature Ts of the core material, for example, an Fe—Cr alloy having a liquidus temperature of 1250 ° C. or higher and 1350 ° C. or lower, high-speed steel (for example, High-speed steel-based multi-alloy white cast iron) and Ni-Cr-based alloys. The difference between the liquidus temperature and the solidus temperature of these metals is about 50 ° C. or more and 140 ° C. or less, which is smaller than the above-described metals.
組み合わせモールド10の上に配置された加熱コイル26によって、芯材11の周囲を固相線温度Ts近傍(例えば、1400℃±50℃程度)まで加熱した後、更に溶湯12に接触させることで、酸化防止膜16の一部又は全部が軟化状態、更には溶融状態になる。これにより、溶湯12をそのまま又は酸化防止膜16を介して芯材11の表面に溶着させながら、冷却型19によって順次冷却して凝固され、鋳掛け肉盛層13が形成される。
鋳掛け肉盛層13が形成された芯材11を、仕上げ状態に近い状態まで加工装置を用いて粗加工し、更に調質処理、即ち所定の焼入れ及び焼戻しの熱処理を行う。このように調質処理された中間製品ロールを、圧延用ロール又は矯正用ロールに使用可能な製品形状に機械加工して、製品となるロールを製造する。
By heating the periphery of the
The
次に、本発明の作用効果を確認するために行った実施例について説明する。ここで、図2は芯材に対する溶湯の平均溶け込み量とクラッド速度との関係を示すグラフ、図3は芯材の加熱に要する出力とクラッド速度との関係を示すグラフである。なお、図2及び図3において、実施例では、500℃の温度に設定された予熱炉内で8時間予熱した芯材に鋳掛け肉盛層を形成(図2の□、図3の×及び■)し、比較例では室温の芯材(冷材)を予熱することなく鋳掛け肉盛層を形成(図2の×、図3の▲及び●)している。 Next, examples carried out for confirming the effects of the present invention will be described. Here, FIG. 2 is a graph showing the relationship between the average penetration amount of the molten metal into the core material and the cladding speed, and FIG. 3 is a graph showing the relationship between the output required for heating the core material and the cladding speed. 2 and 3, in the embodiment, a cast overlay layer is formed on the core material preheated for 8 hours in a preheating furnace set at a temperature of 500 ° C. (□ in FIG. 2, × and ■ in FIG. 3). In the comparative example, a cast overlay layer is formed without preheating the core material (cold material) at room temperature (X in FIG. 2, ▲ and ● in FIG. 3).
図2に示すように、実施例及び比較例は共に、クラッド速度の上昇に伴って芯材への平均溶け込み量が小さくなっている。
ここで、平均溶け込み量(mm)とは、前記したCPC法を使用して製造したロールを、ロールの軸心に対して垂直平面で切断し、各切断部の円周方向の各位置における溶け込み量(溶け込み深さ)を求め、これを平均化した値である。なお、この作業は、ロールを長手方向に4つから5つに切断し、それぞれの断面視野で測定して行っているため、図2の最大値と最小値との差がばらつきの大きさを示している。
また、クラッド速度は、従来クラッドを行っている速度範囲4×104 (mm3 /sec)から1×105 (mm3 /sec)の範囲内で検討した。
As shown in FIG. 2, in both the example and the comparative example, the average amount of penetration into the core material decreases as the cladding speed increases.
Here, the average penetration amount (mm) means that the roll manufactured using the CPC method described above is cut in a plane perpendicular to the axis of the roll, and the penetration at each position in the circumferential direction of each cut portion. The amount (depth of penetration) is obtained and averaged. Note that this work is performed by cutting the roll from 4 to 5 in the longitudinal direction and measuring the cross-sectional field of view, so the difference between the maximum value and the minimum value in FIG. Show.
Further, the clad speed was examined within a speed range of 4 × 10 4 (mm 3 / sec) to 1 × 10 5 (mm 3 / sec) where the conventional clad is performed.
図2から明らかなように、各クラッド速度における平均溶け込み量の最大値と最小値との差は、クラッド速度9.1×104 (mm3 /sec)を除いては、実施例が比較例よりも小さくなっている。なお、クラッド速度9.1×104 (mm3 /sec)において、平均溶け込み量の最大値と最小値との差が、実施例が比較例よりも大きくなっているのは、クラッド速度の上昇に伴って溶け込み量が小さくなることに起因するものである。
このことから、予熱した芯材の外周に鋳掛け肉盛層を形成することで、冷材に対する溶湯の溶け込み量のばらつきを改善できたことを確認できた。
As is apparent from FIG. 2, the difference between the maximum value and the minimum value of the average penetration amount at each cladding speed is the same as that of the comparative example except that the cladding speed is 9.1 × 10 4 (mm 3 / sec). Is smaller than The difference between the maximum value and the minimum value of the average penetration amount at the cladding speed of 9.1 × 10 4 (mm 3 / sec) is that the example is larger than the comparative example because the increase in the cladding speed As a result, the amount of penetration becomes smaller.
From this, it was confirmed that by forming a cast overlay layer on the outer periphery of the preheated core material, it was possible to improve the variation in the amount of melt melted into the cold material.
また、各クラッド速度における平均溶け込み量の平均値を比較すると、予熱を行った芯材を使用して製造したロールの方が、予熱無しの芯材を使用して製造したロールよりも大きな数値を示しており、芯材の予熱を行うことによって芯材への溶湯の溶着効率が高められたことも確認できた。
以上のことから、芯材を予熱炉で赤熱状態まで加熱した後、加熱コイル及び耐火性加熱型の電磁誘導加熱コイルの出力をフルパワーに近い状態にし、芯材の降下スピードを従来より早くしてロールを製造しても、良好な品質のロールを製造できることを確認できた。
In addition, when comparing the average value of the average penetration amount at each cladding speed, the roll manufactured using the preheated core material has a larger numerical value than the roll manufactured using the core material without preheating. It was also confirmed that the efficiency of welding the molten metal to the core material was increased by preheating the core material.
From the above, after heating the core material to a red-hot state in the preheating furnace, the output of the heating coil and the refractory heating type electromagnetic induction heating coil is brought to a state close to full power, and the lowering speed of the core material is made faster than before. Even if the roll was manufactured, it was confirmed that a roll of good quality could be manufactured.
次に、芯材への溶湯の溶着性を検討した結果について説明する。なお、溶着が良好に行われているか否かの判定は、浸透探傷試験(試験体表面に開口している傷に浸透液を浸透させた後、拡大した像の指示模様として傷を観察する非破壊試験方法)により行った。また、図3において、加熱出力とは、加熱コイル及び耐火性加熱型の電磁誘導加熱コイルの総出力である。
図3に示すように、CPC法での加熱出力は、予熱した芯材を使用することで、予熱を行っていない芯材を使用するよりも、大幅に低減でき経済的である。また、予熱した芯材を使用することで、予熱を行っていない芯材よりも、クラッド速度を上昇させることができる。
以上のことから、芯材を予熱することで、従来よりも経済的にロールの生産性を向上させることができる。
Next, the result of examining the weldability of the molten metal to the core material will be described. It should be noted that whether or not the welding is performed satisfactorily is determined by a penetrant flaw detection test (in which a penetrant is infiltrated into a wound opened on the surface of the specimen, and then the wound is observed as an instruction pattern of an enlarged image) (Destructive testing method). In FIG. 3, the heating output is the total output of the heating coil and the refractory heating type electromagnetic induction heating coil.
As shown in FIG. 3, the heating output in the CPC method can be significantly reduced by using a preheated core material, which is economical compared to using a core material that has not been preheated. Further, by using the preheated core material, the cladding speed can be increased as compared with the core material not preheated.
From the above, roll productivity can be improved more economically than before by preheating the core material.
ここで、溶湯にする金属の組成について検討した結果について説明する。
溶湯金属として、液相線温度が芯材の固相線温度Tsよりも低い従来使用されている溶湯金属、即ち、液相線温度が1333℃及び1350℃のFe−Cr系合金、1310℃の高速度鋼、及び1273℃のNi−Cr系合金を使用した。なお、これらの溶湯金属の液相線温度と固相線温度との差は、液相線温度が1333℃のFe−Cr系合金で98℃、液相線温度が1350℃のFe−Cr系合金で140℃、高速度鋼で60℃、及びNi−Cr系合金で73℃である。
これらの溶湯金属を使用した場合においては、芯材を予熱することで、予熱を行わなかった芯材を使用した場合よりも、より安定した品質のロールを製造できた。
Here, the result of examining the composition of the metal to be melted will be described.
As a molten metal, a conventionally used molten metal whose liquidus temperature is lower than the solidus temperature Ts of the core material, that is, an Fe—Cr alloy having liquidus temperatures of 1333 ° C. and 1350 ° C., 1310 ° C. High speed steel and 1273 ° C Ni-Cr alloy were used. The difference between the liquidus temperature and the solidus temperature of these molten metals is as follows: the Fe-Cr alloy with a liquidus temperature of 1333 ° C is 98 ° C, and the Fe-Cr system with a liquidus temperature of 1350 ° C. It is 140 ° C for the alloy, 60 ° C for the high-speed steel, and 73 ° C for the Ni-Cr alloy.
When these molten metals were used, rolls with more stable quality could be produced by preheating the core material than when using a core material that was not preheated.
また、溶湯金属として、液相線温度が芯材の固相線温度Ts以上の金属、即ち、液相線温度が1440℃のFe−Cr系合金、及び前記した液相線温度が1273℃のNi−Cr系合金を改良した液相線温度が1420℃のNi−Cr系合金を使用した。
なお、これらの溶湯金属の液相線温度と固相線温度との差は、Fe−Cr系合金で240℃、及びNi−Cr系合金で220℃である。
Further, as a molten metal, a metal whose liquidus temperature is equal to or higher than the solidus temperature Ts of the core, that is, an Fe—Cr alloy having a liquidus temperature of 1440 ° C., and the liquidus temperature of 1273 ° C. described above. A Ni—Cr alloy having a liquidus temperature of 1420 ° C. improved from the Ni—Cr alloy was used.
Note that the difference between the liquidus temperature and the solidus temperature of these molten metals is 240 ° C. for the Fe—Cr alloy and 220 ° C. for the Ni—Cr alloy.
この液相線温度が1440℃のFe−Cr系合金は、芯材の予熱を行わない場合、満足な溶着(クラッド)を得ることができない合金である。ここで、満足な溶着を得るために、合金中のカーボン量を増加させ、融点調整を行う方法が考えられるが、この合金の場合、カーボン成分がシグマ脆性に影響するため、この影響を無くすためカーボン量を極力低くすることが望ましい。即ち、カーボン量を増加させた合金は、本来の性能を発揮できず、要をなさないものであるため、カーボン量を低減した液相線温度が1440℃のFe−Cr系合金は、芯材の予熱を行わない従来のCPC法では、芯材に溶着させることができない合金成分であった。 This Fe—Cr alloy having a liquidus temperature of 1440 ° C. is an alloy that cannot achieve satisfactory welding (cladding) unless the core is preheated. Here, in order to obtain satisfactory welding, a method of increasing the amount of carbon in the alloy and adjusting the melting point can be considered, but in this alloy, since the carbon component affects sigma brittleness, this effect is eliminated. It is desirable to reduce the amount of carbon as much as possible. That is, an alloy with an increased amount of carbon cannot exhibit its original performance and is not necessary. Therefore, an Fe—Cr alloy having a liquidus temperature of 1440 ° C. with a reduced amount of carbon is a core material. In the conventional CPC method in which no preheating is performed, the alloy component cannot be welded to the core material.
また、液相線温度が1420℃のNi−Cr系合金は、液相線温度が1273℃のNi−Cr系合金を改良した合金である。液相線温度が1273℃のNi−Cr系合金は、芯材への健全な溶着を得るために、カーボン成分を0.9質量%含有させているが、C−B−Crの粗大な化合物を形成し、耐摩耗性が得られるものの、耐衝撃性に乏しく、亀裂発生から剥離に至る場合がある。そこで、耐衝撃性を改善するため、液相線温度が1273℃のNi−Cr系合金のカーボン成分を低く(0.1質量%)した。
これらの金属を芯材への溶着に使用した際、予熱を行わない芯材では溶湯を溶着させることができなかったが、芯材を予熱することで、安定した品質のロールを製造できた。
以上のことから、芯材を予熱することで高融点合金を芯材へ溶着させることが可能になるので、実施例のように溶湯金属のカーボン成分を低く設計でき、例えば剥離の問題を解消でき、安定した品質のロールを製造できることを確認できた。
The Ni—Cr alloy having a liquidus temperature of 1420 ° C. is an alloy obtained by improving the Ni—Cr alloy having a liquidus temperature of 1273 ° C. The Ni—Cr alloy having a liquidus temperature of 1273 ° C. contains 0.9% by mass of a carbon component in order to obtain sound welding to the core material, but is a coarse compound of CB—Cr. In this case, the wear resistance is obtained, but the impact resistance is poor, and cracking may occur to peeling. Therefore, in order to improve impact resistance, the carbon component of the Ni—Cr alloy having a liquidus temperature of 1273 ° C. was lowered (0.1% by mass).
When these metals were used for welding to the core material, the molten metal could not be deposited with a core material that was not preheated, but by preheating the core material, stable quality rolls could be produced.
From the above, it becomes possible to weld the high melting point alloy to the core material by preheating the core material, so that the carbon component of the molten metal can be designed low as in the embodiment, for example, the problem of peeling can be solved. It was confirmed that stable quality rolls could be manufactured.
以上、本発明を、実施の形態を参照して説明してきたが、本発明は何ら上記した実施の形態に記載の構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。例えば、前記したそれぞれの実施の形態や変形例の一部又は全部を組合せて本発明のロールの製造方法を構成する場合も本発明の権利範囲に含まれる。
また、前記実施の形態においては、芯材及び溶湯金属について、特定の材質について説明したが、本発明はこれらの材質に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の材質も含むものである。
As described above, the present invention has been described with reference to the embodiment. However, the present invention is not limited to the configuration described in the above embodiment, and the matters described in the scope of claims. Other embodiments and modifications conceivable within the scope are also included. For example, a case where the roll manufacturing method of the present invention is configured by combining a part or all of the above-described embodiments and modifications is also included in the scope of the right of the present invention.
Moreover, in the said embodiment, although the specific material was demonstrated about the core material and the molten metal, this invention is not limited to these materials, The range of the matter described in the claim It also includes other materials that can be considered within.
10:組み合わせモールド、11:芯材、12:溶湯、13:鋳掛け肉盛層、14、15:軸部、16:酸化防止膜、17:耐火枠、18:耐火性加熱型、19:冷却型、20:昇降装置、21:芯出し装置、22:環状空隙部、23:溶融部、24:溶融フラックス、25:電磁誘導加熱コイル、26:加熱コイル 10: combination mold, 11: core material, 12: molten metal, 13: cast overlay, 14, 15: shank, 16: antioxidant film, 17: fireproof frame, 18: fireproof heating mold, 19: cooling mold 20: lifting device, 21: centering device, 22: annular gap, 23: melting part, 24: melting flux, 25: electromagnetic induction heating coil, 26: heating coil
Claims (4)
前記芯材を前記加熱コイルBで加熱する前に、前記芯材の中心部と表層部の温度差が100℃以内で、しかも前記芯材の表層部の温度が300℃以上かつ前記固相線温度Ts以下となるように該芯材を予熱することを特徴とするロールの製造方法。 A core material is inserted concentrically and vertically into a combination mold in which a cooling mold is integrally disposed at the bottom of a refractory heating mold provided with an electromagnetic induction heating coil A, and the periphery of the core material is fixed by a heating coil B. While heating to the vicinity of the phase wire temperature Ts, molten metal is poured into an annular gap around the core material to lower the core material, and the molten metal is solidified while being welded to the outer periphery of the core material. In the manufacturing method of the roll forming the layer,
Before heating the core material with the heating coil B, the temperature difference between the center portion and the surface layer portion of the core material is within 100 ° C., and the temperature of the surface layer portion of the core material is not less than 300 ° C. A method for producing a roll, characterized in that the core material is preheated so as to have a temperature Ts or lower.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004334822A JP2006142331A (en) | 2004-11-18 | 2004-11-18 | Roll production method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004334822A JP2006142331A (en) | 2004-11-18 | 2004-11-18 | Roll production method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006142331A true JP2006142331A (en) | 2006-06-08 |
Family
ID=36622600
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004334822A Pending JP2006142331A (en) | 2004-11-18 | 2004-11-18 | Roll production method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006142331A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102941325A (en) * | 2012-11-06 | 2013-02-27 | 西安建筑科技大学 | Manufacturing equipment of layered metal composite board and method adopting same |
KR20170002960A (en) * | 2015-06-30 | 2017-01-09 | 주식회사 동성테크 | Guide roller for transporting of bar steel, and method of manufacturing the same |
-
2004
- 2004-11-18 JP JP2004334822A patent/JP2006142331A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102941325A (en) * | 2012-11-06 | 2013-02-27 | 西安建筑科技大学 | Manufacturing equipment of layered metal composite board and method adopting same |
KR20170002960A (en) * | 2015-06-30 | 2017-01-09 | 주식회사 동성테크 | Guide roller for transporting of bar steel, and method of manufacturing the same |
KR101725840B1 (en) * | 2015-06-30 | 2017-04-12 | 주식회사 동성테크 | Guide roller for transporting of bar steel, and method of manufacturing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0309587B1 (en) | Abrasion-resistant composite roll and process for its production | |
RU2591907C2 (en) | Method of making steel component by butt fusion welding and component made using said method | |
KR950006649B1 (en) | Composite roll for use in rolling and manufacture thereof | |
CN110423904B (en) | A method for preparing Ni-Cr-Co-Fe-Mn high-entropy alloy by homogenization and high purification by electron beam melting | |
CN113118419B (en) | Process for manufacturing gradient composite layer metal roller by electroslag remelting compounding (re) | |
JP4922971B2 (en) | Composite roll for hot rolling and manufacturing method thereof | |
CN109482843B (en) | Bimetal cast-weld composite roller and preparation method thereof | |
JP2006142331A (en) | Roll production method | |
JP6788611B2 (en) | Mold flux, continuous casting method using it, and slabs produced by this | |
CN106695173B (en) | A kind of welding material for welding titanium-steel composite plate near titanium layer and preparation method thereof | |
JP2007331022A (en) | Method for manufacturing stainless steel welding wire | |
JPH03238107A (en) | Production of roll for coiler of hot rolling equipment | |
RU2722844C1 (en) | Method for production of cast multilayer workpiece | |
JP2987244B2 (en) | Manufacturing method of composite roll | |
JPS5973150A (en) | Production of composite steel ingot | |
CN116690128B (en) | Low-alloy high-strength steel-high-temperature alloy bimetal composite pipe and preparation method thereof | |
JP3679221B2 (en) | Composite roll for iron making rolling mill with excellent wear resistance and method for producing the same | |
JP2006142323A (en) | Roll production method | |
JPH05345934A (en) | Electrode for remelting electroslag and production of alloy using the electrode | |
JPS62127108A (en) | Composite roll for rolling | |
JP2599977B2 (en) | Method of manufacturing clad steel plate structure | |
JPS6358215B2 (en) | ||
JPH11226722A (en) | Composite roll for rolling | |
JP4414950B2 (en) | Metal billet for semi-molten casting and method for producing metal billet for semi-molten casting | |
TW202214876A (en) | Method for producing stainless steel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060619 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080604 |
|
A131 | Notification of reasons for refusal |
Effective date: 20090428 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A521 | Written amendment |
Effective date: 20090629 Free format text: JAPANESE INTERMEDIATE CODE: A523 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20090728 |