[go: up one dir, main page]

JP2006137873A - Functional group-containing olefin polymer - Google Patents

Functional group-containing olefin polymer Download PDF

Info

Publication number
JP2006137873A
JP2006137873A JP2004329312A JP2004329312A JP2006137873A JP 2006137873 A JP2006137873 A JP 2006137873A JP 2004329312 A JP2004329312 A JP 2004329312A JP 2004329312 A JP2004329312 A JP 2004329312A JP 2006137873 A JP2006137873 A JP 2006137873A
Authority
JP
Japan
Prior art keywords
group
polymer
mol
agent
ethylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004329312A
Other languages
Japanese (ja)
Inventor
Soro Isogawa
素朗 礒川
Sunao Nagai
永井  直
Junji Saito
純治 斎藤
Terunori Fujita
照典 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2004329312A priority Critical patent/JP2006137873A/en
Publication of JP2006137873A publication Critical patent/JP2006137873A/en
Pending legal-status Critical Current

Links

Landscapes

  • Adhesives Or Adhesive Processes (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new terminal functional group-containing ethylenic polymer suitable for adhesion of a polyolefin-based resin to a resin having a functional group. <P>SOLUTION: In the olefin polymer having an oxygen-containing group, a sulfur-containing group, a metal-containing group or a halogen-containing group on one terminal, [1] the olefin polymer is produced by treating a vinyl group, a vinylidene group or a vinylidene group of an ethylenic copolymer (P) represented by general formula (1) (R<SP>1</SP>and R<SP>2</SP>are each independently a hydrogen atom or a 1-18C alkyl group; A is a polymer composed of a 2-20C olefin) and having a double bond at one terminal with at least one kind of compound selected from an oxidizing agent, a sulfonating agent, maleic anhydride, a hydroboration agent, a hydroaluminum-forming agent and a halogenating agent and [2] the ethylenic copolymer (P) is a crystalline polymer obtained by polymerizing 2-20C olefins and exhibiting a melting point. An adhesive material composition containing the olefin polymer described above is also provided. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、末端にオレフィン性二重結合を有する重合体を変性して官能基を導入することにより得られる官能基含有重合体とその製造方法、および該重合体を含む接着性材料組成物に関するものである。
The present invention relates to a functional group-containing polymer obtained by modifying a polymer having an olefinic double bond at the terminal and introducing a functional group, a method for producing the same, and an adhesive material composition containing the polymer. Is.

エチレン系重合体は、分子構造が非極性であり他物質との親和性に乏しいため、従来から該重合体に各種の官能基を導入することが試みられている。官能基の中でもエポキシ基、マレイン酸基、スルホン酸基、ホウ素およびアルミニウムなどの有機金属含有基、ハロゲン基等の官能基は、それらを基点として派生する種々の誘導体に変換でき、非常に有用である。これらの官能基との反応性を利用してポリオレフィンと他物質との接着性や、印刷性、ポリマーブレンドでの相溶性等に優れた効果を示すことができる。そのため、その原料となる末端に二重結合を有するエチレン・α―オレフィン共重合体の製造法、ならびにその二重結合の変性方法は種々報告されてきた。   Since the ethylene polymer has a non-polar molecular structure and poor affinity with other substances, it has been attempted to introduce various functional groups into the polymer. Among functional groups, epoxy groups, maleic acid groups, sulfonic acid groups, organometallic-containing groups such as boron and aluminum, and functional groups such as halogen groups can be converted into various derivatives derived from them, which are very useful. is there. By utilizing the reactivity with these functional groups, it is possible to show excellent effects in adhesion between polyolefin and other substances, printability, compatibility in polymer blends, and the like. Therefore, various methods have been reported for producing ethylene / α-olefin copolymers having a double bond at the terminal as a raw material and for modifying the double bond.

これまでにこれらの官能基をエチレン系重合体に導入した報告例としては特許文献1の液状エポキシ化変性エチレン系ランダム共重合体がある。しかし、成形品としての実用的な機械的強度を有しておらず、使用領域が限られている。   As a report example in which these functional groups have been introduced into an ethylene polymer so far, there is a liquid epoxidized modified ethylene random copolymer of Patent Document 1. However, it does not have a practical mechanical strength as a molded product, and its use area is limited.

一方、機械的強度を有するエチレン系重合体の酸素変性体が特許文献2において例示されているもが、その変性方法については限定されている。   On the other hand, an oxygen-modified product of ethylene polymer having mechanical strength is exemplified in Patent Document 2, but the modification method is limited.

また、特許文献3においては、(1)エチレンに由来する構造単位が81〜100モル%、α−オレフィンに由来する構造単位が0〜19モル%の範囲にあり、(2)GPCで測定した重量平均分子量(Mw)が7000以下であり、(3)分子量分布(Mw/Mn)が1.1≦Mw/Mn≦2.5であり、(4)ビニルまたはビニリデン基を重合体主鎖末端に持ち、1H-NMRで測定したこれらの基の含有量が全片末端の90%以上であることを特徴とするエチレン系重合体のエポキシ化剤による酸素変性体について提案がなされているが、重量平均分子量(Mw)7000以上の官能基含有エチレン系重合体については開示されていない。
特公平7−91338号公報 特開2001−2731号公報 特開2003−73412号公報
Moreover, in patent document 3, the structural unit derived from (1) ethylene is in the range of 81 to 100 mol%, the structural unit derived from α-olefin is in the range of 0 to 19 mol%, and (2) measured by GPC. The weight average molecular weight (Mw) is 7000 or less, (3) the molecular weight distribution (Mw / Mn) is 1.1 ≦ Mw / Mn ≦ 2.5, and (4) the vinyl or vinylidene group is attached to the end of the polymer main chain. In addition, an oxygen-modified product of an epoxidizing agent of an ethylene polymer, characterized in that the content of these groups measured by 1 H-NMR is 90% or more of all terminal ends, has been proposed. , A functional group-containing ethylene polymer having a weight average molecular weight (Mw) of 7000 or more is not disclosed.
Japanese Patent Publication No. 7-91338 Japanese Patent Laid-Open No. 2001-2731 JP 2003-73412 A

本発明の課題は、接着性材料、非相溶性樹脂間のバインダー、特にポリオレフィン系樹脂と官能基を持つ樹脂との接着に適した、新規な末端官能基含有エチレン系重合体を提供することである。
An object of the present invention is to provide a novel terminal functional group-containing ethylene polymer suitable for adhesion between an adhesive material and a binder between incompatible resins, particularly a polyolefin resin and a resin having a functional group. is there.

本発明者らは、上記目的を達成するために鋭意研究を重ねた結果、本発明に到達したものである。   The inventors of the present invention have arrived at the present invention as a result of intensive studies to achieve the above object.

すなわち本発明は
[1] 片末端に酸素含有基、イオウ含有基、金属含有基またはハロゲン含有基を有する、オレフィン重合体であって、
(i) 下記一般式(1)
That is, the present invention provides [1] an olefin polymer having an oxygen-containing group, a sulfur-containing group, a metal-containing group or a halogen-containing group at one end,
(i) The following general formula (1)

Figure 2006137873
(1)
(一般式(1)中、R1、R2はそれぞれ独立に水素原子、または炭素数1〜18のアルキル基を表し、Aは炭素数2〜20のオレフィンからなる重合体を表す。)で表される片末端に二重結合を有するエチレン系共重合体(P)の、ビニル基、ビニレン基またはビニリデン基を、酸化剤、スルホン化剤、無水マレイン酸、ヒドロホウ素化剤、ヒドロアルミニウム化剤及びハロゲン化剤から選ばれる少なくとも1種の化合物で処理することによって製造され、
(ii)前記エチレン系重合体(P)が、融点を示す結晶性重合体であることを特徴とする、結晶性オレフィン重合体、並びに
[2] [1]記載の重合体を含む接着性材料組成物
である。
Figure 2006137873
(1)
(In general formula (1), R 1 and R 2 each independently represents a hydrogen atom or an alkyl group having 1 to 18 carbon atoms, and A represents a polymer composed of an olefin having 2 to 20 carbon atoms). The vinyl group, vinylene group or vinylidene group of the ethylene-based copolymer (P) having a double bond at one end is represented by oxidizing agent, sulfonating agent, maleic anhydride, hydroborating agent, hydroalumination. Produced by treatment with at least one compound selected from an agent and a halogenating agent,
(ii) A crystalline olefin polymer, wherein the ethylene polymer (P) is a crystalline polymer having a melting point, and an adhesive material comprising the polymer according to [2] [1] It is a composition.

本発明により、ポリオレフィンセグメントを保有する様々な新規重合体及び接着性材料等の用途を提供することが可能となる。
According to the present invention, it is possible to provide uses such as various novel polymers and adhesive materials having polyolefin segments.

以下、本発明の実施形態について説明する。   Hereinafter, embodiments of the present invention will be described.

本発明は、片末端に酸素含有基、イオウ含有基、金属含有基またはハロゲン含有基を有するオレフィン重合体であって、
(i)片末端に二重結合を有するエチレン系共重合体(P)の、ビニル基、ビニレン基またはビニリデン基を、酸化剤、スルホン化剤、無水マレイン酸、ヒドロホウ素化剤及びハロゲン化剤から選ばれる少なくとも1種の化合物で処理することによって製造され、
(ii)前記エチレン系共重合体(P)が、融点を示す結晶性重合体であることを特徴とする結晶性のオレフィン重合体である。
The present invention is an olefin polymer having an oxygen-containing group, a sulfur-containing group, a metal-containing group or a halogen-containing group at one end,
(i) A vinyl group, vinylene group or vinylidene group of an ethylene-based copolymer (P) having a double bond at one end is converted into an oxidizing agent, sulfonating agent, maleic anhydride, hydroborating agent and halogenating agent. Produced by treating with at least one compound selected from
(ii) A crystalline olefin polymer, wherein the ethylene copolymer (P) is a crystalline polymer having a melting point.

本発明のオレフィン重合体において、重合体鎖の片末端が酸素含有基のものとは、下記一般式(2)   In the olefin polymer of the present invention, one having one end of the polymer chain having an oxygen-containing group means that the following general formula (2)

Figure 2006137873
(2)
(一般式(2)中、A、R1、R2は一般式(1)で定義した通り。)で示されるエポキシ含有重合体、または、下記一般式(3)
Figure 2006137873
(2)
(In the general formula (2), A, R 1 and R 2 are as defined in the general formula (1)), or the following general formula (3)

Figure 2006137873
(3)
(一般式(3)中、A´はAで表される重合体よりも骨格を形成する炭素数が2少ない炭素数2〜20のオレフィン系重合体であり、R1およびR2は一般式(1)で定義した通りであり、RおよびRはどちらか一方がRであり、もう一方がRである。)で表される無水マレイン酸基含有重合体等が挙げられる。
Figure 2006137873
(3)
(In the general formula (3), A ′ is an olefin polymer having 2 to 20 carbon atoms having a skeleton that is smaller than the polymer represented by A, and R 1 and R 2 are the general formulas. As defined in (1), one of R 3 and R 4 is R 1 and the other is R 2 ).

次に、本発明のオレフィン重合体において、重合体鎖の片末端に硫黄が含有基を有するオレフィン重合体は、下記一般式(4)   Next, in the olefin polymer of the present invention, the olefin polymer having a sulfur-containing group at one end of the polymer chain is represented by the following general formula (4).

Figure 2006137873
(4)
(一般式(4)中、A、R1およびR2は一般式(1)で定義した通りで、XとYはどちらか一方が水素原子またはヒドロキシル基でもう一方がスルホキシル基を示す。)で表されるスルホキシル基含有オレフィン重合体などが挙げられる。
Figure 2006137873
(4)
(In the general formula (4), A, R 1 and R 2 are as defined in the general formula (1), and one of X 1 and Y 1 represents a hydrogen atom or a hydroxyl group and the other represents a sulfoxyl group. And the sulfoxyl group-containing olefin polymer represented by.

また、本発明のオレフィン重合体において、重合体鎖の片末端にハロゲン基を有するオレフィン重合体は、下記一般式(5)   In the olefin polymer of the present invention, the olefin polymer having a halogen group at one end of the polymer chain is represented by the following general formula (5).

Figure 2006137873
(5)
(一般式(5)中、A、R1およびR2は一般式(1)で定義した通り、XおよびYはどちらか一方が水素原子、もう一方がハロゲン原子、またはどちらもハロゲン原子を表す。)で表されるハロゲン含有オレフィン重合体等が挙げられる。
Figure 2006137873
(5)
(In the general formula (5), A, R 1 and R 2 are as defined in the general formula (1), one of X 2 and Y 2 is a hydrogen atom, the other is a halogen atom, or both are halogen atoms. The halogen-containing olefin polymer etc. which are represented by these are mentioned.

一般式(1)中、Aを構成する2〜20のオレフィンとしては、エチレン、プロピレン、1-ブテンなどのα−オレフィンが挙げられ、重合体としては、これらオレフィンの単独あるいは相互の重合体あるいは、特性を損なわない範囲で、他の重合性の不飽和化合物と共重合したものであっても良い。この中でも特にエチレン、プロピレン、1−ブテンが好ましい。   In the general formula (1), examples of the olefin of 2 to 20 constituting A include α-olefins such as ethylene, propylene, and 1-butene. Further, it may be copolymerized with other polymerizable unsaturated compounds as long as the characteristics are not impaired. Of these, ethylene, propylene, and 1-butene are particularly preferable.

一般式(1)〜(5)中、R1、R2としては、Aを構成するオレフィンの二重結合に結合した置換基である水素または炭素数1〜18のアルキル基であり、水素、メチル基、エチル基、プロピル基などである。 In the general formulas (1) to (5), R 1 and R 2 are hydrogen or a C 1-18 alkyl group bonded to the double bond of the olefin constituting A, hydrogen, A methyl group, an ethyl group, a propyl group and the like.

一般式(1)で表されるエチレン系共重合体(P)のゲルパーミエーションクロマトグラフィー(以下GPCと略す)により測定した重量平均分子量(Mw)は、400〜500000であり、好ましくは800〜200000であり、さらに好ましくは1000〜100000である。ここで、Mwとは、ポリスチレン換算値である。   The weight average molecular weight (Mw) measured by gel permeation chromatography (hereinafter abbreviated as GPC) of the ethylene copolymer (P) represented by the general formula (1) is 400 to 500,000, preferably 800 to It is 200000, More preferably, it is 1000-100000. Here, Mw is a polystyrene equivalent value.

一般式(1)で表されるエチレン系共重合体(P)のGPCにより測定した重量平均分子量(Mw)と数平均分子量(Mn)の比、すなわち分子量分布(Mw/Mn)は、1.1〜3.0であり、好ましくは1.1〜2.5である。
一般式(1)で表されるエチレン系共重合体(P)の重量平均分子量(Mw)および分子量分布(Mw/Mn)は、例えば、ミリポア社製GPC−150を用い以下の条件の下で測定できる。
The ratio of the weight average molecular weight (Mw) to the number average molecular weight (Mn) measured by GPC of the ethylene copolymer (P) represented by the general formula (1), that is, the molecular weight distribution (Mw / Mn) is 1. It is 1-3.0, Preferably it is 1.1-2.5.
The weight average molecular weight (Mw) and molecular weight distribution (Mw / Mn) of the ethylene copolymer (P) represented by the general formula (1) are, for example, using GPC-150 manufactured by Millipore Corporation under the following conditions: It can be measured.

分離カラム:TSK GNH HT(カラムサイズ:直径7.5mm,長さ:300mm)
カラム温度:140℃
移動相:オルトジクロルベンゼン(和光純薬社製)
酸化防止剤:ブチルヒドロキシトルエン(武田薬品工業社製)0.025質量%
移動速度:1.0ml/分
試料濃度:0.1質量%
試料注入量:500マイクロリットル
検出器:示差屈折計として、後述の一方の末端に不飽和基を有するポリオレフィンの分子量を測定し末端の分子量相当を除することで測定できる。
Separation column: TSK GNH HT (column size: diameter 7.5 mm, length: 300 mm)
Column temperature: 140 ° C
Mobile phase: Orthodichlorobenzene (Wako Pure Chemical Industries, Ltd.)
Antioxidant: Butylhydroxytoluene (manufactured by Takeda Pharmaceutical Company Limited) 0.025% by mass
Movement speed: 1.0 ml / min Sample concentration: 0.1% by mass
Sample injection amount: 500 microliters Detector: As a differential refractometer, it can be measured by measuring the molecular weight of a polyolefin having an unsaturated group at one end, which will be described later, and removing the molecular weight equivalent at the end.

本発明の一般式(1)で表される片末端に二重結合を有するエチレン系重合体(P)を製造する方法としては、例えば以下の方法が挙げられる。
(1)特許文献2〜3および特開2000−239312号公報に示されているようなサリチルアルドイミン配位子を有する遷移金属化合物を重合触媒として用いる重合方法。
(2)チタン化合物と有機アルミニウム化合物とからなるチタン系触媒を用いる重合方法。
(3)バナジウム化合物と有機アルミニウム化合物とからなるバナジウム系触媒を用いる重合方法。
(4)ジルコノセンなどのメタロセン化合物と有機アルミニウムオキシ化合物(アルミノキサン)とからなるチーグラー型触媒を用いる重合方法。
Examples of the method for producing an ethylene polymer (P) having a double bond at one end represented by the general formula (1) of the present invention include the following methods.
(1) A polymerization method using a transition metal compound having a salicylaldoimine ligand as disclosed in Patent Documents 2 to 3 and JP-A 2000-239312 as a polymerization catalyst.
(2) A polymerization method using a titanium catalyst comprising a titanium compound and an organoaluminum compound.
(3) A polymerization method using a vanadium catalyst comprising a vanadium compound and an organoaluminum compound.
(4) A polymerization method using a Ziegler-type catalyst comprising a metallocene compound such as zirconocene and an organoaluminum oxy compound (aluminoxane).

これらの方法のうち、後述する末端ビニル基含有率および末端不飽和率を満足するには(1)の方法がより好ましい。   Among these methods, the method (1) is more preferable in order to satisfy the terminal vinyl group content and terminal unsaturation described later.

<NMR測定方法>
本発明で用いられる一般式(1)で表される片末端に二重結合を有するエチレン系共重合体(P)の、1H-NMRで測定されたビニル、ビニレンおよびビニリデン型の二重結合のピークは、ビニル基に基づく3プロトン分のピークのうち2プロトン分のピーク(H1)が4.9〜5.0ppm付近、残りの1プロトン分が5.7〜5.9ppm付近に観測される。またビニレン基に由来する2プロトン分のピーク(H2)が5.0ppm付近に観測される。さらにビニリデン基に由来する2プロトン分のピーク(H3)が4.7ppm付近に観測される。これらの積分値と、全プロトンの積分値(Ha)から計算される、末端ビニル基含有率は(L)は下式(I)で定義される。
<NMR measurement method>
Vinyl, vinylene and vinylidene type double bonds measured by 1 H-NMR of the ethylene copolymer (P) having a double bond at one end represented by the general formula (1) used in the present invention Among the peaks for 3 protons based on the vinyl group, the peak for 2 protons (H1) is observed near 4.9 to 5.0 ppm, and the remaining 1 proton is observed near 5.7 to 5.9 ppm. The In addition, a peak (H2) for two protons derived from the vinylene group is observed in the vicinity of 5.0 ppm. Furthermore, a peak (H3) for two protons derived from the vinylidene group is observed in the vicinity of 4.7 ppm. The terminal vinyl group content calculated from these integral values and the integral value (Ha) of all protons (L) is defined by the following formula (I).

L(mol%)= (H1/Ho)×100 (Ho=H1+H2+H3) (I)
この末端ビニル基含有率(L)は、50mol%以上が好ましく、より好ましくは60mol%以上、さらに好ましくは70mol%以上である。
L (mol%) = (H1 / Ho) × 100 (Ho = H1 + H2 + H3) (I)
The terminal vinyl group content (L) is preferably 50 mol% or more, more preferably 60 mol% or more, and still more preferably 70 mol% or more.

さらにこれらと、片末端に二重結合を有するエチレン系共重合体(P)のH−NMRで測定された全プロトン分のピークの積分値(Ha)およびGPCにより得られたMnから計算される片末端不飽和率(M)は、下式(II)で定義される。 Further calculated from these, the integral value (Ha) of the peak of all protons measured by 1 H-NMR of the ethylene-based copolymer (P) having a double bond at one end, and Mn obtained by GPC. One-terminal unsaturation rate (M) is defined by the following formula (II).

M(mol%)=[{Ho/Ha}/{2/(Mn/7)}]×100
={(Ho×Mn)/(Ha×14)}×100 (II)
(ここで、Mn/7は、片末端に二重結合を有する重合体(P)の分子式をC2nとし、分子量12×n+1×2n=14n=Mnとした時の全水素数2nである。)
M (mol%) = [{Ho / Ha} / {2 / (Mn / 7)}] × 100
= {(Ho × Mn) / (Ha × 14)} × 100 (II)
(Here, Mn / 7 is the total hydrogen number 2n when the molecular formula of the polymer (P) having a double bond at one end is C n H 2n and the molecular weight is 12 × n + 1 × 2n = 14n = Mn. is there.)

この片末端不飽和率(M)は全片末端の70mol%以上であり、より好ましくは75mol%以上、さらに好ましくは80mol%以上である。
1H-NMRについては、測定サンプル管中で重合体を、ロック溶媒と溶媒を兼ねた重水素化-1,1,2,2-テトラクロロエタンに完全に溶解させた後、120℃において測定した。ケミカルシフトは、重水素化-1,1,2,2-テトラクロロエタンのピークを5.92ppmとして、他のピークのケミカルシフト値を決定した。
This one-terminal unsaturation rate (M) is 70 mol% or more, more preferably 75 mol% or more, and still more preferably 80 mol% or more of all one-terminal.
1 H-NMR was measured at 120 ° C. after completely dissolving the polymer in deuterated 1,1,2,2-tetrachloroethane serving as a lock solvent and a solvent in a measurement sample tube. . The chemical shift was determined by setting the peak of deuterated-1,1,2,2-tetrachloroethane to 5.92 ppm and determining the chemical shift value of other peaks.

<エポキシ化方法>
一般式(1)で表される片末端に二重結合を有するエチレン系共重合体(P)の二重結合のエポキシ化方法は特に限定されないが、例として
(1)過ギ酸、過酢酸、過安息香酸などの過酸による酸化、
(2)チタノシリケートおよび過酸化水素による酸化、
(3)メチルトリオキソレニウム等のレニウム酸化物触媒と過酸化水素による酸化、
(4)マンガンポルフィリンまたは鉄ポルフィリン等のポルフィリン錯体触媒と過酸化水素または次亜塩素酸塩による酸化、
(5)マンガンSalen等のSalen錯体と過酸化水素または次亜塩素酸塩による酸化、
(6)マンガン-トリアザシクロノナン(TACN)錯体等のTACN錯体と過酸化水素による酸化、
(7)タングステン化合物などのVI属遷移金属触媒と相間移動触媒存在下、過酸化水素による酸化
を挙げることができる。
<Epoxidation method>
Although the epoxidation method of the double bond of the ethylene-based copolymer (P) having a double bond at one end represented by the general formula (1) is not particularly limited, examples include (1) performic acid, peracetic acid, Oxidation with peracids such as perbenzoic acid,
(2) oxidation with titanosilicate and hydrogen peroxide,
(3) oxidation with a rhenium oxide catalyst such as methyltrioxorhenium and hydrogen peroxide,
(4) oxidation with a porphyrin complex catalyst such as manganese porphyrin or iron porphyrin and hydrogen peroxide or hypochlorite,
(5) oxidation with a salen complex such as manganese salen and hydrogen peroxide or hypochlorite,
(6) oxidation with hydrogen peroxide and a TACN complex such as a manganese-triazacyclononane (TACN) complex,
(7) Oxidation with hydrogen peroxide in the presence of a Group VI transition metal catalyst such as a tungsten compound and a phase transfer catalyst.

これらエポキシ化方法の中では、活性面で(1)および(7)の方法によるエポキシ化が好ましい。特に、高融点の重合体のエポキシ化において、反応温度が過酸の分解温度以上になるときは、熱による過酸の分解反応が促進される場合があるため(7)の方法が好ましい。ここで高融点の重合体とは、融点が100℃以上の重合体、好ましくは融点が110℃以上の重合体のことである。   Among these epoxidation methods, epoxidation by the methods (1) and (7) is preferable in terms of the active surface. In particular, in the epoxidation of a polymer having a high melting point, when the reaction temperature is equal to or higher than the decomposition temperature of the peracid, the decomposition reaction of the peracid by heat may be promoted, so that the method (7) is preferable. Here, the polymer having a high melting point is a polymer having a melting point of 100 ° C. or higher, preferably a polymer having a melting point of 110 ° C. or higher.

以下、(1)および(7)の方法によるエポキシ化について説明する。
(1)の方法において、有機過酸化物の添加量は、片末端に二重結合を有するエチレン系共重合体(P)の二重結合1モルに対し1〜10モル、好ましくは1〜5モルの範囲である。また、反応の温度は0〜150℃、好ましくは10〜100℃であるが、使用する過酸の分解温度以下に設定する必要がある。また、過酸の種類によっては爆発性を示すため温度設定には注意を要する。反応に要する時間は0.1〜10時間、好ましくは0.5〜5時間の範囲である。さらに、ポリマー濃度としては、5〜400g/L、好ましくは10〜300g/Lの範囲である。反応溶媒としては、酸化反応に影響を受けない溶媒ならばどのようなものでも良いが、例えば、ベンゼン、トルエン、キシレンなどの芳香族炭化水素溶媒を挙げることができる。
Hereinafter, the epoxidation by the methods (1) and (7) will be described.
In the method (1), the organic peroxide is added in an amount of 1 to 10 mol, preferably 1 to 5 mol per mol of the double bond of the ethylene copolymer (P) having a double bond at one end. The range of moles. Moreover, although the temperature of reaction is 0-150 degreeC, Preferably it is 10-100 degreeC, It is necessary to set to below the decomposition temperature of the peracid to be used. Also, depending on the type of peracid, since it exhibits explosive properties, care must be taken when setting the temperature. The time required for the reaction is 0.1 to 10 hours, preferably 0.5 to 5 hours. Furthermore, the polymer concentration is in the range of 5 to 400 g / L, preferably 10 to 300 g / L. The reaction solvent may be any solvent as long as it is not affected by the oxidation reaction, and examples thereof include aromatic hydrocarbon solvents such as benzene, toluene, and xylene.

また、硫酸などの酸性触媒および硫酸ナトリウムなどの塩類存在下、酢酸などのカルボン酸および過酸化水素を用いて、反応系内で過酸を発生させながらエポキシ化を行っても良い。   Further, epoxidation may be performed while generating a peracid in the reaction system using a carboxylic acid such as acetic acid and hydrogen peroxide in the presence of an acidic catalyst such as sulfuric acid and a salt such as sodium sulfate.

次に、(7)の方法について詳細に説明する。   Next, the method (7) will be described in detail.

VI族の遷移金属触媒としては、タングステン酸、タングステン酸塩またはタングステン錯体であり、例えば、タングステン酸、タングステン酸アルカリ、タングステン酸アンモニウム、リンタングステン酸、ケイタングステン酸、等を挙げることができる。特に好適なタングステン酸塩は酸化状態がII、IVおよびVIのタングステン酸塩であり、NaWOまたはタングステン酸アンモニウムの使用が最も好適である。タングステン酸類は単独で使用しても、2種以上を混合使用してもよい。 Examples of the group VI transition metal catalyst include tungstic acid, tungstate, or tungsten complex, and examples thereof include tungstic acid, alkali tungstate, ammonium tungstate, phosphotungstic acid, and silicotungstic acid. Particularly preferred tungstates are tungstates with oxidation states II, IV and VI, with the use of Na 2 WO 4 or ammonium tungstate being most preferred. Tungstic acids may be used alone or in combination of two or more.

相間移動触媒としては、第4級アンモニウム塩類、窒素環含有第4級アンモニウム塩類、第4級ホスホニウム塩、大環状ポリエーテル類等が挙げられるが、第4級アンモニウム塩類または窒素環含有第4級アンモニウム塩類が好ましい。第4級アンモニウム塩類の具体例として、トリオクチルメチルアンモニウムクロライド、トリオクチルエチルアンモニウムクロライドなどが挙げられる。また、これらのブロマイド、ヨーダイド、亜硫酸塩または硫酸塩でもよい。   Examples of the phase transfer catalyst include quaternary ammonium salts, nitrogen ring-containing quaternary ammonium salts, quaternary phosphonium salts, macrocyclic polyethers, etc., but quaternary ammonium salts or nitrogen ring-containing quaternary compounds. Ammonium salts are preferred. Specific examples of the quaternary ammonium salts include trioctylmethylammonium chloride and trioctylethylammonium chloride. These bromides, iodides, sulfites or sulfates may also be used.

また、窒素環含有第4級アンモニウム塩類としては、窒素環がピリジン環、ピコリン環、キノリン環、イミダゾリン環またはモルホリン環などからなる第4級アンモニウム塩類が挙げられるが、ピリジン環からなる第4級アンモニウム化合物が好ましく、具体例として下記のものが挙げられる。アルキル(炭素数8〜20の直鎖または分岐のアルキル、以下同様)ピリジニウム塩(例えば、N−ラウリルピリジニウムクロライド、N−セチルピリジニウムクロライドなど)、アルキルピコリウム塩(例えばN−ラウリルピコリニウムクロライドなど)、アルキルキノリウムクロライド、アルキルイソキノリウムクロライド、アルキルヒドロキシエチルイミダゾリンクロライド、アルキルヒドロキシモルホリンクロライドなどであり、これらのブロマイド、ヨーダイドまたは硫酸塩でもよい。相間移動触媒は単独で使用しても、2種以上を混合使用してもよい。   Examples of the nitrogen ring-containing quaternary ammonium salts include quaternary ammonium salts in which the nitrogen ring is a pyridine ring, picoline ring, quinoline ring, imidazoline ring, morpholine ring, or the like. Ammonium compounds are preferred, and specific examples include the following. Alkyl (C8-20 linear or branched alkyl, the same shall apply hereinafter) pyridinium salts (for example, N-laurylpyridinium chloride, N-cetylpyridinium chloride, etc.), alkylpicorium salts (for example, N-laurylpicolinium chloride, etc.) ), Alkyl quinolium chloride, alkyl isoquinolium chloride, alkyl hydroxyethyl imidazoline chloride, alkyl hydroxy morpholine chloride and the like, and may be bromide, iodide or sulfate. The phase transfer catalyst may be used alone or in combination of two or more.

本発明の方法で使用する過酸化水素の濃度は3質量%〜90質量%、好ましくは5質量%〜70質量%、更に好ましくは10質量%〜50質量%である。過酸化水素の使用量は原料の片末端に二重結合を有するエチレン系共重合体(P)1モルに対し0.5モル〜10モル、好ましくは0.8モル〜8モル、更に好ましくは1.0モル〜5モルである。
本反応において、反応を促進する目的で、リン酸化合物を添加しても良い。リン酸化合物としては、リン酸、α-アミノメチルホスホン酸類を挙げることができる。α−アミノメチルホスホン酸類のアミノ基はアルキル基、アリール基等で置換されていてもよいが、α−アミノメチルホスホン酸類の中でも特に窒素上に少なくとも1つの水素原子を残しているα−アミノメチルホスホン酸類が有用である。α−アミノメチルホスホン酸類の具体例としては、アミノメチルホスホン酸、α−アミノエチルホスホン酸、α−アミノプロピルホスホン酸などが挙げられる。これらのα−アミノメチルホスホン酸およびリン酸は単独で使用しても、2種以上を混合使用してもよい。
The concentration of hydrogen peroxide used in the method of the present invention is 3% by mass to 90% by mass, preferably 5% by mass to 70% by mass, and more preferably 10% by mass to 50% by mass. The amount of hydrogen peroxide used is 0.5 mol to 10 mol, preferably 0.8 mol to 8 mol, more preferably 1 mol per mol of ethylene copolymer (P) having a double bond at one end of the raw material. 1.0 mol to 5 mol.
In this reaction, a phosphoric acid compound may be added for the purpose of promoting the reaction. Examples of phosphoric acid compounds include phosphoric acid and α-aminomethylphosphonic acids. The amino group of the α-aminomethylphosphonic acid may be substituted with an alkyl group, an aryl group, or the like. Among the α-aminomethylphosphonic acids, α-aminomethylphosphonic acids that leave at least one hydrogen atom on nitrogen are particularly preferred. Useful. Specific examples of the α-aminomethylphosphonic acids include aminomethylphosphonic acid, α-aminoethylphosphonic acid, α-aminopropylphosphonic acid, and the like. These α-aminomethylphosphonic acid and phosphoric acid may be used alone or in combination of two or more.

本発明の製造方法においては、一般的には、タングステン酸類、相間移動触媒およびリン酸類のそれぞれの使用量は片末端に二重結合を有するエチレン系共重合体(P)に対して、0.01〜10モル%、より好ましくは0.1〜5モル%、最も好ましくは0.5〜2モル%使用される。   In the production method of the present invention, in general, the amounts of tungstic acid, phase transfer catalyst and phosphoric acid used are each set to 0. 0 with respect to the ethylene copolymer (P) having a double bond at one end. 01 to 10 mol%, more preferably 0.1 to 5 mol%, most preferably 0.5 to 2 mol% is used.

反応溶媒としては、片末端に二重結合を有するエチレン系共重合体(P)、過酸化水素および生成した末端エポキシ基含有重合体に対して不活性なものが使用でき、n−ヘキサン等の脂肪族炭化水素類、シクロヘキサン等の脂環式炭化水素類、トルエン、キシレン等の芳香族炭化水素類、酢酸エチル等のエステル類、アセトン、メチルエチルケトン、メチルイソブチルケトン、ジエチルケトン、メチルプロピルケトン等のケトン類、クロロホルム、ジクロルエタン、トリクロルエタン、パークロルエタン等のハロゲン化炭化水素などが挙げられる。工業的には、原料の片末端二重結合を含有エチレン系共重合体(P)がその溶媒に対して不溶でない限り、トルエン、キシレン等の芳香族炭化水素が好ましい。   As the reaction solvent, an ethylene-based copolymer (P) having a double bond at one end, a hydrogen peroxide and an inert polymer with respect to the generated terminal epoxy group-containing polymer can be used, such as n-hexane. Aliphatic hydrocarbons, cycloaliphatic alicyclic hydrocarbons, aromatic hydrocarbons such as toluene and xylene, ethyl acetate esters, acetone, methyl ethyl ketone, methyl isobutyl ketone, diethyl ketone, methyl propyl ketone, etc. Examples include ketones, halogenated hydrocarbons such as chloroform, dichloroethane, trichloroethane, and perchloroethane. Industrially, aromatic hydrocarbons such as toluene and xylene are preferred as long as the ethylene-based copolymer (P) containing a single-end double bond as a raw material is not insoluble in the solvent.

本発明の一般的な実施態様は、反応器に、タングステン酸類、相間移動触媒、リン酸類、片末端に二重結合を有するエチレン系共重合体(P)を入れて混合し、均一に溶解するまで昇温する。反応温度にした後、過酸化水素水をゆっくり滴下する。反応温度は用いる片末端に二重結合を有するエチレン系共重合体(P)が溶融する温度が好ましいが、25℃から150℃、好ましくは50℃〜110℃、更に好ましくは80〜100℃である。100℃以上で反応する場合、過酸化水素の滴下により突沸する恐れがあるため、オートクレーブ等適切な反応装置を選択する。過酸化水素の滴下速度は、反応速度と反応熱の除去速度にあわせて、徐々に滴下する。本発明の方法では、反応混合物のpHを調製して反応を行ってもよい。pHは、1.0〜4.0の間、好ましくはpH1.5〜2.5の間、特に好ましくはpH2.0程度が好ましい。反応混合物のpHは硫酸、燐酸等の酸の水溶液を添加することにより調整できる。   In a general embodiment of the present invention, a tungstic acid, a phase transfer catalyst, phosphoric acid, and an ethylene-based copolymer (P) having a double bond at one end are mixed in a reactor and dissolved uniformly. The temperature rises to After the reaction temperature is reached, hydrogen peroxide is slowly added dropwise. The reaction temperature is preferably a temperature at which the ethylene copolymer (P) having a double bond at one end to be used is melted, but it is 25 ° C to 150 ° C, preferably 50 ° C to 110 ° C, more preferably 80 ° C to 100 ° C. is there. When reacting at 100 ° C. or higher, there is a risk of bumping due to the dropwise addition of hydrogen peroxide, so an appropriate reactor such as an autoclave is selected. The dropping rate of hydrogen peroxide is gradually dropped according to the reaction rate and the removal rate of reaction heat. In the method of the present invention, the reaction may be performed by adjusting the pH of the reaction mixture. The pH is preferably between 1.0 and 4.0, preferably between pH 1.5 and 2.5, particularly preferably about pH 2.0. The pH of the reaction mixture can be adjusted by adding an aqueous solution of an acid such as sulfuric acid or phosphoric acid.

反応時間は使用する触媒の量、反応温度、オレフィン類の反応性等の反応条件により変わるが、通常数分から50時間である。本発明の製造方法では、副生物の生成が少なく、反応後は晶析操作、洗浄等の簡単な操作により、過剰の過酸化水素、触媒、水、反応溶媒を除いて目的とするオレフィン類のエポキシ化合物を得ることができる。   The reaction time varies depending on the reaction conditions such as the amount of catalyst used, reaction temperature, and reactivity of olefins, but is usually from several minutes to 50 hours. In the production method of the present invention, the production of by-products is small, and after the reaction, the target olefins are removed by simple operations such as crystallization and washing, excluding excess hydrogen peroxide, catalyst, water, and reaction solvent. An epoxy compound can be obtained.

また、エポキシ化の反応の確認は、H−NMRおよびIRなどで確認することができる。たとえば、H−NMRの場合、ビニル基を変性したエポキシ基のピークが2.83ppm付近、2.65ppm付近、2.38ppm付近にそれぞれ1プロトンずつ計3プロトン分確認される。また、ビニレン基を変性したエポキシ基のピークが、2.95ppm付近に2プロトン分、ビニリデンを変性したエポキシ基のピークが2.5ppm付近に観測される。反応が充分進行していない場合には、前述した二重結合由来のピークが見られる。
The confirmation of the epoxidation reaction can be confirmed by 1 H-NMR and IR. For example, in the case of 1 H-NMR, a peak of an epoxy group modified with a vinyl group is confirmed for a total of 3 protons, one proton each near 2.83 ppm, 2.65 ppm, and 2.38 ppm. In addition, the peak of the epoxy group modified with the vinylene group is observed in the vicinity of 2.95 ppm for two protons, and the peak of the epoxy group modified with vinylidene is observed near 2.5 ppm. When the reaction does not proceed sufficiently, the above-mentioned peak derived from the double bond is observed.

<マレイン化>
一般式(3)で表される無水マレイン酸基含有重合体は、一般式(1)で表される二重結合含有オレフィン重合体を、酸性条件下、無水マレイン酸と反応させることにより、目的とする無水マレイン酸基含有オレフィン重合体を得ることができる。
<Maleinization>
The maleic anhydride group-containing polymer represented by the general formula (3) is obtained by reacting the double bond-containing olefin polymer represented by the general formula (1) with maleic anhydride under acidic conditions. A maleic anhydride group-containing olefin polymer can be obtained.

<スルホン化>
一般式(4)で表されるスルホン酸基含有オレフィン重合体は、硫酸-無水酢酸、発煙硫酸などを反応剤として一般式(1)で表される二重結合含有オレフィン重合体に反応させることにより得られる。
<Sulfonation>
The sulfonic acid group-containing olefin polymer represented by the general formula (4) is reacted with the double bond-containing olefin polymer represented by the general formula (1) using sulfuric acid-acetic anhydride, fuming sulfuric acid or the like as a reactant. Is obtained.

<ホウ素化、アルミ化>
金属含有基含有重合体のうち、ホウ素含有オレフィン重合体は、一般式(1)で表される二重結合含有オレフィン重合体に、ボラン、ジボラン、トリメチルボラン、9−ボランビシクロ[3.3.1]ノナン等と反応させることにより、得ることができる。また、アルミニウム含有オレフィン重合体は、一般式(1)で表される二重結合含有オレフィン重合体に、リチウムアルミニウムハイドライド、ジイソブチルアルミニウムハイドライドなどを反応させることによって得ることができる。
<Boronization and aluminum>
Among the metal-containing group-containing polymers, the boron-containing olefin polymer includes borane, diborane, trimethylborane, and 9-boranebicyclo [3.3.1], in addition to the double bond-containing olefin polymer represented by the general formula (1). It can be obtained by reacting with nonane or the like. The aluminum-containing olefin polymer can be obtained by reacting lithium aluminum hydride, diisobutylaluminum hydride, or the like with the double bond-containing olefin polymer represented by the general formula (1).

<ハロゲン化>
一般式(5)で表されるハロゲン含有オレフィン重合体は、一般式(1)で表される二重結合含有オレフィン重合体に、塩化水素、臭化水素、ヨウ化水素などを反応させることにより得ることができる。
<Halogenation>
The halogen-containing olefin polymer represented by the general formula (5) is obtained by reacting the double bond-containing olefin polymer represented by the general formula (1) with hydrogen chloride, hydrogen bromide, hydrogen iodide or the like. Obtainable.

以上に挙げた反応剤による具体的変性条件(温度、時間、触媒種、触媒量等の詳細条件)については、例えばDie Makromolecular Chemie Makromolecular Symposia 48/49, 317-332, 1991に記載された条件に準拠することが可能である。
Specific modification conditions (temperature, time, catalyst type, catalyst amount, etc., detailed conditions) with the above-mentioned reactants are the same as those described in, for example, Die Makromolecular Chemie Makromolecular Symposia 48/49, 317-332, 1991. It is possible to comply.

<接着性樹脂組成物>
本発明の末端官能基含有エチレン系重合体は、末端官能基の性質を利用して種々の用途への応用が可能であり、例えば、各種印刷インク、塗料、銅その他の金属との接着性材料、他樹脂との接着性材料、非相溶性樹脂間の接着性材料、特にポリオレフィン系樹脂と末端官能基との反応性を有する官能基を持つ樹脂との界面強度を向上させる接着性材料として使用できる。
<Adhesive resin composition>
The terminal functional group-containing ethylene polymer of the present invention can be applied to various uses by utilizing the properties of the terminal functional group, for example, various printing inks, paints, adhesive materials with copper and other metals. , Adhesive material with other resins, Adhesive material between incompatible resins, especially used as an adhesive material to improve the interfacial strength between polyolefin resin and resin with functional group having reactivity with terminal functional group it can.

また、特に本発明の末端官能基含有重合体のうち、末端エポキシ基含有エチレン系重合体は、エポキシ基の反応性を利用して、例えば酸化防止性、紫外線吸収性、防曇性、感光性、発色性、キレート性等を有する各種化合物を導入することによって樹脂添加剤として用いることも可能である。さらに、本発明のエポキシ基含有エチレン系重合体により機械強度が改善された材料を提供できる。
In particular, among the terminal functional group-containing polymers of the present invention, the terminal epoxy group-containing ethylene-based polymer utilizes, for example, the reactivity of the epoxy group, for example, antioxidant properties, ultraviolet absorption properties, antifogging properties, and photosensitivity. It is also possible to use as a resin additive by introducing various compounds having color developability, chelating properties and the like. Furthermore, a material with improved mechanical strength can be provided by the epoxy group-containing ethylene polymer of the present invention.

以下、実施例に基づいて本発明を更に具体的に説明するが、本発明はこれら実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example, this invention is not limited to these Examples.

なお、重量平均分子量Mw、およびMw/MnはGPCを用い、本文中に記載した方法で測定した。   In addition, the weight average molecular weight Mw and Mw / Mn were measured by the method described in the text using GPC.

融点(Tm)は、SIMAZU社製、DSC−60を用いて測定した。測定条件は25〜300℃、10℃/分で測定して得られたピークトップ温度を採用した。ピークが複数見られる場合は、ピーク面積が一番大きいもののピークトップ値を採用した。   The melting point (Tm) was measured using DSC-60 manufactured by SIMAZU. As the measurement conditions, the peak top temperature obtained by measurement at 25 to 300 ° C. and 10 ° C./min was employed. When multiple peaks were observed, the peak top value with the largest peak area was adopted.

5%減量温度はSIMAZU社製TGA−50で測定を行った。測定条件は25〜500℃、10℃/分で昇温させた時のサンプル重量変化を測定した。
The 5% weight loss temperature was measured with TGA-50 manufactured by SIMAZU. The measurement conditions were 25 to 500 ° C., and the change in sample weight when the temperature was raised at 10 ° C./min was measured.

[合成例1]
[固体成分(A)の調製]
窒素流通下、150℃で5時間乾燥したシリカ(SiO)30gを466mLのトルエンに懸濁した後、メチルアルモキサンのトルエン溶液(Al原子換算で3.08mmol/mL)134.3mLを25℃で30分かけて滴下した。滴下終了後、30分かけて114℃まで昇温し、その温度で4時間反応させた。その後60℃まで降温し、上澄み液をデカンテーションにより除去した。このようにして得られた固体成分をトルエンで3回洗浄した後、トルエンを加え、固体成分(A)のトルエンスラリーを調製した。得られた固体成分(A)の一部を採取し、濃度を調べたところ、スラリー濃度:0.150g/mL、Al濃度:1.179mmol/mLであった。
[Synthesis Example 1]
[Preparation of solid component (A)]
After suspending 30 g of silica (SiO 2 ) dried at 150 ° C. for 5 hours under nitrogen flow in 466 mL of toluene, 134.3 mL of methylalumoxane in toluene (3.08 mmol / mL in terms of Al atom) was added at 25 ° C. For 30 minutes. After completion of dropping, the temperature was raised to 114 ° C. over 30 minutes, and the reaction was carried out at that temperature for 4 hours. Thereafter, the temperature was lowered to 60 ° C., and the supernatant was removed by decantation. The solid component thus obtained was washed three times with toluene, and then toluene was added to prepare a toluene slurry of the solid component (A). A part of the obtained solid component (A) was collected and examined for concentration. As a result, the slurry concentration was 0.150 g / mL and the Al concentration was 1.179 mmol / mL.

[固体触媒成分(B)の調製]
窒素置換した300mLのガラス製フラスコにトルエン150mLを入れ、攪拌下、上記で調製した固体成分(A)のトルエンスラリー(固体部換算で1.91g)を装入した。次に、下記化合物(1)のトルエン溶液(Zr原子換算で0.0012mmol/mL)50.0mLを15分かけて滴下し、室温で1時間反応させた。その後、上澄み液をデカンテーションにより除去し、ヘプタンで3回洗浄し、ヘプタン100mLを加えて固体触媒成分(B)のヘプタンスラリーを調製した。得られた固体触媒成分(B)のヘプタンスラリーの一部を採取して濃度を調べたところ、Zr濃度0.058mmol/mL、Al濃度14.8mmol/mLであった。
[Preparation of solid catalyst component (B)]
150 mL of toluene was put into a 300 mL glass flask purged with nitrogen, and the toluene slurry (1.91 g in terms of solid part) of the solid component (A) prepared above was charged with stirring. Next, 50.0 mL of a toluene solution (0.0012 mmol / mL in terms of Zr atom) of the following compound (1) was added dropwise over 15 minutes and reacted at room temperature for 1 hour. Thereafter, the supernatant was removed by decantation, washed 3 times with heptane, and 100 mL of heptane was added to prepare a heptane slurry of the solid catalyst component (B). A portion of the resulting heptane slurry of the solid catalyst component (B) was collected to examine the concentration. As a result, the Zr concentration was 0.058 mmol / mL and the Al concentration was 14.8 mmol / mL.

Figure 2006137873
化合物(1)
Figure 2006137873
Compound (1)

充分に窒素置換した内容積1000mlのステンレス製オートクレーブに、ヘプタン450mlを装入し、室温でエチレン100リットル/hrを15分間流通させ、液相及び気相を飽和させた。続いてプロピレンを20NL導入し、80℃に昇温した後、エチレンで8kg/cm2Gまで昇圧し、温度を維持した。トリイソブチルアルミニウムのデカン溶液(アルミニウム原子換算1.00mmol/ml)0.5ml(0.5mmol)を圧入し、ついで上記固体触媒成分(B)をZr原子に換算して0.0002mmolを圧入し、重合を開始した。エチレンガスを連続的に供給しながら圧力を保ち、80℃で60分間重合を行った後、5mlのメタノールを圧入することにより重合を停止し、降温後モノマーを脱圧した。得られたポリマースラリーをメタノール2Lと混合攪拌後濾過した。得られた生成物を80℃にて10時間減圧乾燥することにより共重合体65.2gを得た。生成物はMw=1890、Mw/Mn=1.68、融点が112℃、1H-NMRで測定した末端ビニル化率(L)は83.9mol%(ビニル基/ビニレン基/ビニリデン基=83.9/13.4/2.8)であり。片末端不飽和率(M)=78.7mol%であった。
450 ml of heptane was charged into a stainless steel autoclave with an internal volume of 1000 ml sufficiently purged with nitrogen, and 100 liter / hr of ethylene was circulated at room temperature for 15 minutes to saturate the liquid phase and the gas phase. Subsequently, 20 NL of propylene was introduced, the temperature was raised to 80 ° C., and then the pressure was increased to 8 kg / cm 2 G with ethylene to maintain the temperature. 0.5 ml (0.5 mmol) of a decane solution of triisobutylaluminum (converted to 1.00 mmol / ml of aluminum atoms) was injected, and then the solid catalyst component (B) was injected with 0.0002 mmol converted to Zr atoms. Polymerization was started. The pressure was maintained while continuously supplying ethylene gas, and the polymerization was carried out at 80 ° C. for 60 minutes. Then, the polymerization was stopped by press-fitting 5 ml of methanol, and the monomer was depressurized after the temperature was lowered. The obtained polymer slurry was mixed with 2 L of methanol and stirred and then filtered. The obtained product was dried under reduced pressure at 80 ° C. for 10 hours to obtain 65.2 g of a copolymer. The product had Mw = 1890, Mw / Mn = 1.68, melting point 112 ° C., terminal vinylation rate (L) measured by 1 H-NMR was 83.9 mol% (vinyl group / vinylene group / vinylidene group = 83 9 / 13.4 / 2.8). Unsaturation rate at one end (M) = 78.7 mol%.

[合成例2]
プロピレン導入量を23NL、固体触媒成分(B)をZr原子に換算して0.0001mmol加えた以外は合成例1と同様に重合を行ない、共重合体53.2gを得た。生成物はMw=1730、Mw/Mn=1.68、融点が108℃、1H-NMRで測定した末端ビニル化率(L)は78.4mol%(ビニル基/ビニレン基/ビニリデン基= 78.4/17.6/3.9)であり。片末端不飽和率(M)=83.2mol%であった。
[Synthesis Example 2]
Polymerization was carried out in the same manner as in Synthesis Example 1 except that the amount of propylene introduced was 23 NL, and the solid catalyst component (B) was added in an amount of 0.0001 mmol in terms of Zr atoms to obtain 53.2 g of a copolymer. The product had Mw = 1730, Mw / Mn = 1.68, a melting point of 108 ° C., and a terminal vinylation rate (L) measured by 1 H-NMR of 78.4 mol% (vinyl group / vinylene group / vinylidene group = 78 4 / 17.6 / 3.9). Unsaturation rate at one end (M) = 83.2 mol%.

[合成例3]
プロピレン導入量を28NLに変えた以外は合成例1と同様に重合を行ない、共重合体41.4gを得た。生成物はMw=1310、Mw/Mn=1.66、融点が97.5℃、1H-NMRで測定した末端ビニル化率(L)は70.6mol%(ビニル基/ビニレン基/ビニリデン基=70.6/24.6/4.8)であり。片末端不飽和率(M)=77.2mol%であった。
[Synthesis Example 3]
Polymerization was carried out in the same manner as in Synthesis Example 1 except that the amount of propylene introduced was changed to 28 NL, to obtain 41.4 g of a copolymer. The product had Mw = 1310, Mw / Mn = 1.66, melting point 97.5 ° C., terminal vinylation rate (L) measured by 1 H-NMR was 70.6 mol% (vinyl group / vinylene group / vinylidene group) = 70.6 / 24.6 / 4.8). Unsaturation rate at one end (M) = 77.2 mol%.

[合成例4]
充分に窒素置換した内容積1000mlのステンレス製オートクレーブに、ヘプタン450mlを装入し、室温でプロピレン100リットル/hrを15分間流通させ、液相及び気相を飽和させた。続いて80℃に昇温した後、プロピレンを4.0kg/cm2Gに昇圧し、温度を維持した。更にエチレンを8kg/cm2Gになるまで導入し、温度を維持した。MMAO(東ソーファインケム社製)のヘキサン溶液(アルミニウム原子換算1.00mmol/ml)0.25ml(0.25mmol)を圧入し、ついで化合物2のトルエン溶液(0.0005mmol/ml)2.0ml(0.001mmol)を圧入し、重合を開始した。エチレンガスを連続的に供給しながら圧力を保ち、80℃で20分間重合を行った後、5mlのメタノールを圧入することにより重合を停止した。得られたポリマースラリーより溶媒を留去することにより生成物を得た。80℃にて10時間減圧乾燥することにより共重合体39.49gを得た。生成物はMw=2940、Mw/Mn=2.17、1H-NMRで測定した末端ビニル化率(L)は84mol%(ビニル基/ビニレン基/ビニリデン基=84.0/14.5/1.5)であり。片末端不飽和率(M)=71.3mol%であった。
[Synthesis Example 4]
450 ml of heptane was charged into a stainless steel autoclave having an internal volume of 1000 ml sufficiently purged with nitrogen, and 100 liter / hr of propylene was allowed to flow at room temperature for 15 minutes to saturate the liquid phase and the gas phase. Subsequently, the temperature was raised to 80 ° C., and then the pressure of propylene was increased to 4.0 kg / cm 2 G to maintain the temperature. Further, ethylene was introduced to 8 kg / cm 2 G to maintain the temperature. 0.25 ml (0.25 mmol) of MMAO (manufactured by Tosoh Finechem) in hexane (1.00 mmol / ml of aluminum atom equivalent) was injected, and then 2.0 ml (0.005 mmol / ml) of a toluene solution of compound 2 (0.0005 mmol / ml). 001 mmol) was injected to initiate the polymerization. The pressure was maintained while continuously supplying ethylene gas, and the polymerization was carried out at 80 ° C. for 20 minutes, and then the polymerization was stopped by injecting 5 ml of methanol. The product was obtained by distilling off the solvent from the resulting polymer slurry. The copolymer was dried under reduced pressure at 80 ° C. for 10 hours to obtain 39.49 g of a copolymer. The product had Mw = 2940, Mw / Mn = 2.17, and the terminal vinylation rate (L) measured by 1 H-NMR was 84 mol% (vinyl group / vinylene group / vinylidene group = 84.0 / 14.5 / 1.5). Unsaturation rate at one end (M) = 71.3 mol%.

Figure 2006137873
化合物(2)
Figure 2006137873
Compound (2)

[実施例1]
温度計、窒素導入管、コンデンサーを備えた200mlセパラブルフラスコに、合成例1で得られた片末端不飽和エチレン/プロピレン共重合体(Mw1900、Mn1130、末端不飽和率(L)=78.7mol%)20.0g(二重結合換算で13.99mmol)、トルエン80g、NaWO・2HO 0.293g(0.89mmol)、85%リン酸44mg(0.44mmol)、CH(n−C17N・HSO 0.207g(0.44mmol)を加えて、攪拌しながら90℃まで昇温させて、ポリマーを溶解させた。ポリマー溶解後、90℃に保ったまま、30%過酸化水素水6.06g(53.3mmol)を1時間かけてゆっくり滴下し、さらに5時間攪拌した。IRにてオレフィンの消失を確認後、85℃まで冷却し、攪拌を止めて分液後、水層を除去、温水30gで2回攪拌洗浄、分液、操作を繰り返した後、85℃にて、20%NaSO 2.0gを添加して残存している過酸化水素を失活させた。反応液を80℃以下に冷却後、アセトニトリル80gをゆっくり加えて晶析させながら、室温まで冷却させた。得られたスラリー液より濾取した固体を減圧乾燥(60℃、10kPa以下)で8時間乾燥させて、エポキシ変性重合体の白色固体19.0g(オレフィン転化率100%、収率94%)を得た。
1H-NMR δ(C2D2Cl4) 0.80-0.88(m),0.9-1.7 (m), 2.37-2.40 (1H, dd, J = 2.64, 5.28 Hz) , 2.50(m), 2.66 (1H, dd, J = 3.96, 4.95 Hz) 2.80 - 2.86 (1H, m), 2.95(m)
Mw:2040 Mw/Mn:1.56(GPC)
融点(Tm)112.9℃(DSC)
溶融粘度(140℃)34(mPa・s)
軟化点 118.0℃
5%減量温度 346℃(TGA)
[Example 1]
In a 200 ml separable flask equipped with a thermometer, a nitrogen introduction tube and a condenser, the one-terminal unsaturated ethylene / propylene copolymer obtained in Synthesis Example 1 (Mw 1900, Mn 1130, terminal unsaturation rate (L) = 78.7 mol) %) 20.0 g (13.99 mmol in terms of double bond), toluene 80 g, Na 2 WO 4 .2H 2 O 0.293 g (0.89 mmol), 85% phosphoric acid 44 mg (0.44 mmol), CH 3 (n-C 8 H 17 ) 3 N · HSO 4 0.207 g (0.44 mmol) was added, and the mixture was heated to 90 ° C. with stirring to dissolve the polymer. After dissolving the polymer, 6.06 g (53.3 mmol) of 30% hydrogen peroxide water was slowly added dropwise over 1 hour while maintaining the temperature at 90 ° C., and further stirred for 5 hours. After confirming disappearance of the olefin by IR, cooling to 85 ° C., stopping stirring and separating the liquid, removing the aqueous layer, washing with stirring with 30 g of warm water twice, separating and operating, then at 85 ° C. Then, 2.0 g of 20% Na 2 SO 3 was added to deactivate the remaining hydrogen peroxide. The reaction solution was cooled to 80 ° C. or lower, and then cooled to room temperature while slowly adding 80 g of acetonitrile for crystallization. The solid collected by filtration from the resulting slurry was dried under reduced pressure (60 ° C., 10 kPa or less) for 8 hours to obtain 19.0 g of an epoxy-modified polymer white solid (olefin conversion rate 100%, yield 94%). Obtained.
1 H-NMR δ (C 2 D 2 Cl 4 ) 0.80-0.88 (m), 0.9-1.7 (m), 2.37-2.40 (1H, dd, J = 2.64, 5.28 Hz), 2.50 (m), 2.66 ( 1H, dd, J = 3.96, 4.95 Hz) 2.80-2.86 (1H, m), 2.95 (m)
Mw: 2040 Mw / Mn: 1.56 (GPC)
Melting point (Tm) 112.9 ℃ (DSC)
Melt viscosity (140 ° C) 34 (mPa · s)
Softening point 118.0 ℃
5% weight loss temperature 346 ℃ (TGA)

[実施例2]
片末端不飽和エチレン/プロピレン共重合体を、合成例2で得られた片末端不飽和エチレン/プロピレン共重合体(Mw=1730、Mn=994、片末端不飽和率(L)=83.2mol%)に変えた以外は実施例1と同様の操作を行い、エポキシ変性重合体の白色固体23.9g(オレフィン転化率100%、収率94%)を得た。
1H-NMR δ(C2D2Cl4) 0.80-0.88(m),0.9-1.6 (m), 2.37-2.40 (1H, dd, J = 2.64, 5.28 Hz), 2.50(m), 2.66 (1H, dd, J = 3.96, 5.28 Hz) 2.80 - 2.86 (1H, m), 2.94(m)
Mw:1720 Mw/Mn:1.58(GPC)
融点(Tm)99.7℃(DSC)
硬度 2(10-1mm)
溶融粘度(140℃)32(mPa・s)
軟化点 114.5℃
5%減量温度 334℃(TGA)
[Example 2]
One-terminal unsaturated ethylene / propylene copolymer was converted into one-terminal unsaturated ethylene / propylene copolymer obtained in Synthesis Example 2 (Mw = 1730, Mn = 994, one-terminal unsaturated ratio (L) = 83.2 mol). %) Was carried out in the same manner as in Example 1 to obtain 23.9 g of an epoxy-modified polymer white solid (olefin conversion rate 100%, yield 94%).
1 H-NMR δ (C 2 D 2 Cl 4 ) 0.80-0.88 (m), 0.9-1.6 (m), 2.37-2.40 (1H, dd, J = 2.64, 5.28 Hz), 2.50 (m), 2.66 ( 1H, dd, J = 3.96, 5.28 Hz) 2.80-2.86 (1H, m), 2.94 (m)
Mw: 1720 Mw / Mn: 1.58 (GPC)
Melting point (Tm) 99.7 ℃ (DSC)
Hardness 2 (10 -1 mm)
Melt viscosity (140 ° C) 32 (mPa · s)
Softening point 114.5 ℃
5% weight loss temperature 334 ℃ (TGA)

[実施例3]
片末端不飽和エチレン/プロピレン共重合体を、合成例3で得られた片末端不飽和エチレン/プロピレン共重合体(Mw=1310、Mn=790、片末端不飽和率(L)=77.2mol%)に変えた以外は実施例1と同様の操作を行い、エポキシ変性重合体の白色固体9.53g(オレフィン転化率100%、収率94%)を得た。
1H-NMR δ(C2D2Cl4) 0.80-0.88(m), 0.9-1.6 (m), 2.37-2.40 (1H, dd, J = 2.97, 5.28 Hz), 2.50(m), 2.66 (1H, dd, J = 3.96, 5.28 Hz) 2.80 - 2.86 (1H, m), 2.95(m)
Mw:1470 Mw/Mn:1.54(GPC)
融点(Tm)73.6℃(DSC)
溶融粘度(140℃)19(mPa・s)
軟化点 101.5℃
5%減量温度 322℃(TGA)
[Example 3]
One-terminal unsaturated ethylene / propylene copolymer was converted into one-terminal unsaturated ethylene / propylene copolymer obtained in Synthesis Example 3 (Mw = 1310, Mn = 790, one-terminal unsaturated ratio (L) = 77.2 mol). %) Was performed in the same manner as in Example 1 to obtain 9.53 g of an epoxy-modified polymer white solid (olefin conversion rate 100%, yield 94%).
1 H-NMR δ (C 2 D 2 Cl 4 ) 0.80-0.88 (m), 0.9-1.6 (m), 2.37-2.40 (1H, dd, J = 2.97, 5.28 Hz), 2.50 (m), 2.66 ( 1H, dd, J = 3.96, 5.28 Hz) 2.80-2.86 (1H, m), 2.95 (m)
Mw: 1470 Mw / Mn: 1.54 (GPC)
Melting point (Tm) 73.6 ℃ (DSC)
Melt viscosity (140 ° C) 19 (mPa · s)
Softening point 101.5 ℃
5% weight loss temperature 322 ℃ (TGA)

[実施例4]
片末端不飽和エチレン/プロピレン共重合体を、合成例4で得られた片末端不飽和エチレン/プロピレン共重合体(Mw2940、Mn1350、片末端不飽和率(L)=71.3mol%)に変えた以外は実施例1と同様の操作を行い、エポキシ変性重合体の白色固体2.0g(オレフィン転化率100%、収率100%)を得た。
1H-NMR δ(C2D2Cl4) 0.80-0.88(m),0.9-1.6 (m), 2.37-2.40 (1H, dd, J = 2.64, 4.95 Hz), 2.50(m), 2.66 (1H, dd, J = 3.96, 5.28 Hz) 2.80 - 2.86 (1H, m), 2.95(m)
融点(Tm)120℃(DSC)
[Example 4]
The one-terminal unsaturated ethylene / propylene copolymer was changed to the one-terminal unsaturated ethylene / propylene copolymer obtained in Synthesis Example 4 (Mw 2940, Mn 1350, one-terminal unsaturated ratio (L) = 71.3 mol%). Except for the above, the same operation as in Example 1 was carried out to obtain 2.0 g of an epoxy-modified polymer white solid (olefin conversion rate 100%, yield 100%).
1 H-NMR δ (C 2 D 2 Cl 4 ) 0.80-0.88 (m), 0.9-1.6 (m), 2.37-2.40 (1H, dd, J = 2.64, 4.95 Hz), 2.50 (m), 2.66 ( 1H, dd, J = 3.96, 5.28 Hz) 2.80-2.86 (1H, m), 2.95 (m)
Melting point (Tm) 120 ℃ (DSC)

本発明の官能基含有重合体は、例えば、各種のインク、塗料、アルミニウムその他の金属に対する接着性材料、他樹脂とのポリマーブレンドにおける相溶化剤として利用することができる。   The functional group-containing polymer of the present invention can be used, for example, as a compatibilizer in various inks, paints, adhesive materials for aluminum and other metals, and polymer blends with other resins.

Claims (3)

片末端に酸素含有基、イオウ含有基、金属含有基またはハロゲン含有基を有する、オレフィン重合体であって、
(i) 下記一般式(1)
Figure 2006137873
(1)
(一般式(1)中、R1、R2はそれぞれ独立に水素原子、または炭素数1〜18のアルキル基を表し、Aは炭素数2〜20のオレフィンからなる重合体を表す。)で表される片末端に二重結合を有するエチレン系共重合体(P)の、ビニル基、ビニレン基またはビニリデン基を、酸化剤、スルホン化剤、無水マレイン酸、ヒドロホウ素化剤、ヒドロアルミニウム化剤及びハロゲン化剤から選ばれる少なくとも1種の化合物で処理することによって製造され、
(ii)前記エチレン系重合体(P)が、融点を示す結晶性重合体であることを特徴とする、結晶性オレフィン重合体。
An olefin polymer having an oxygen-containing group, a sulfur-containing group, a metal-containing group or a halogen-containing group at one end,
(i) The following general formula (1)
Figure 2006137873
(1)
(In general formula (1), R 1 and R 2 each independently represents a hydrogen atom or an alkyl group having 1 to 18 carbon atoms, and A represents a polymer composed of an olefin having 2 to 20 carbon atoms). The vinyl group, vinylene group or vinylidene group of the ethylene-based copolymer (P) having a double bond at one end is represented by oxidizing agent, sulfonating agent, maleic anhydride, hydroborating agent, hydroalumination. Produced by treatment with at least one compound selected from an agent and a halogenating agent,
(ii) A crystalline olefin polymer, wherein the ethylene polymer (P) is a crystalline polymer having a melting point.
(i) エチレン単位が80〜100mol%、炭素数3〜20のα−オレフィン単位が0〜20mol%の範囲にあり、
(ii)DSC測定によって融点(Tm)を示し、
(iii) ゲルパーミエーション(GPC)で測定した分子量分布が、1.1≦(Mw/Mn)≦3.0、分子量(Mw)が 400≦Mw≦500000であり、
(iv) H−NMRにより計算される末端ビニル基含有率(L)およびH−NMRとGPCにより計算される末端不飽和率(M)が
L> 50 mol%
M> 70 mol%
であることを特徴とする請求項1記載のオレフィン重合体。
(i) The ethylene unit is in the range of 80 to 100 mol%, the α-olefin unit having 3 to 20 carbon atoms is in the range of 0 to 20 mol%,
(ii) shows melting point (Tm) by DSC measurement,
(iii) The molecular weight distribution measured by gel permeation (GPC) is 1.1 ≦ (Mw / Mn) ≦ 3.0, and the molecular weight (Mw) is 400 ≦ Mw ≦ 500000,
(iv) terminal vinyl group content is calculated by 1 H-NMR (L) and 1 H-NMR and terminal unsaturation index calculated by GPC (M) is L> 50 mol%
M> 70 mol%
The olefin polymer according to claim 1, wherein
請求項1記載の重合体を含む接着性材料組成物。 An adhesive material composition comprising the polymer according to claim 1.
JP2004329312A 2004-11-12 2004-11-12 Functional group-containing olefin polymer Pending JP2006137873A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004329312A JP2006137873A (en) 2004-11-12 2004-11-12 Functional group-containing olefin polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004329312A JP2006137873A (en) 2004-11-12 2004-11-12 Functional group-containing olefin polymer

Publications (1)

Publication Number Publication Date
JP2006137873A true JP2006137873A (en) 2006-06-01

Family

ID=36618887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004329312A Pending JP2006137873A (en) 2004-11-12 2004-11-12 Functional group-containing olefin polymer

Country Status (1)

Country Link
JP (1) JP2006137873A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009522401A (en) * 2005-12-29 2009-06-11 ダウ グローバル テクノロジーズ インコーポレイティド Low molecular weight ethylene interpolymers, their production and use
JP2010013566A (en) * 2008-07-04 2010-01-21 Mitsui Chemicals Inc Polymer containing terminal functional group, preparation method thereof and composition comprising the polymer
US20140088217A1 (en) * 2012-09-24 2014-03-27 Exxonmobil Chemical Patents Inc. Hydrothiolation of Vinyl-Terminated Macromonomers With Thiol-Containing Compounds

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06503381A (en) * 1991-10-01 1994-04-14 ビーエーエスエフ アクチェンゲゼルシャフト modified olefin polymer
JPH072942A (en) * 1993-03-15 1995-01-06 Idemitsu Kosan Co Ltd Ethylene / α-olefin copolymer and thermoplastic resin composition containing the same
JPH0733820A (en) * 1993-07-19 1995-02-03 Kuraray Co Ltd Reactive olefin polymer
JPH0791338B2 (en) * 1987-06-08 1995-10-04 三井石油化学工業株式会社 Liquid epoxidized modified ethylene random copolymer and its use
JPH0881517A (en) * 1994-09-14 1996-03-26 Kuraray Co Ltd Method for producing boron-containing thermoplastic resin
JP2001002731A (en) * 1999-04-23 2001-01-09 Mitsui Chemicals Inc Low molecular weight ethylene-based polymer
JP2003073412A (en) * 2001-06-20 2003-03-12 Mitsui Chemicals Inc Olefin polymerization catalyst, method for polymerizing olefin, ethylenic polymer obtained by the same and its application

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0791338B2 (en) * 1987-06-08 1995-10-04 三井石油化学工業株式会社 Liquid epoxidized modified ethylene random copolymer and its use
JPH06503381A (en) * 1991-10-01 1994-04-14 ビーエーエスエフ アクチェンゲゼルシャフト modified olefin polymer
JPH072942A (en) * 1993-03-15 1995-01-06 Idemitsu Kosan Co Ltd Ethylene / α-olefin copolymer and thermoplastic resin composition containing the same
JPH0733820A (en) * 1993-07-19 1995-02-03 Kuraray Co Ltd Reactive olefin polymer
JPH0881517A (en) * 1994-09-14 1996-03-26 Kuraray Co Ltd Method for producing boron-containing thermoplastic resin
JP2001002731A (en) * 1999-04-23 2001-01-09 Mitsui Chemicals Inc Low molecular weight ethylene-based polymer
JP2003073412A (en) * 2001-06-20 2003-03-12 Mitsui Chemicals Inc Olefin polymerization catalyst, method for polymerizing olefin, ethylenic polymer obtained by the same and its application

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009522401A (en) * 2005-12-29 2009-06-11 ダウ グローバル テクノロジーズ インコーポレイティド Low molecular weight ethylene interpolymers, their production and use
JP2010013566A (en) * 2008-07-04 2010-01-21 Mitsui Chemicals Inc Polymer containing terminal functional group, preparation method thereof and composition comprising the polymer
US20140088217A1 (en) * 2012-09-24 2014-03-27 Exxonmobil Chemical Patents Inc. Hydrothiolation of Vinyl-Terminated Macromonomers With Thiol-Containing Compounds

Similar Documents

Publication Publication Date Title
Zhang et al. Facile synthesis of chain end functionalized polyethylenes via epoxide ring-opening and thiol–ene addition click chemistry
JP2012051859A (en) Method for producing diol compound
CN111770944A (en) Block copolymer composition
JPS58103528A (en) Previously catalyst-added polyhydric phenol composition
JPH01313523A (en) Functionalized polyhenylene ether and its production
JP5778684B2 (en) Method for producing divinylarene dioxide
JP2009280728A (en) Method for producing epoxy group-containing polymer and its derivative
EP0559869B1 (en) Modified olefin polymers
JP2006137873A (en) Functional group-containing olefin polymer
US6414168B1 (en) Epoxidation of ricinic compounds using a phase-transfer catalyst
CN109928879A (en) A kind of acrylate carbonic ester and its homopolymer and copolymer material
JPH03240780A (en) Method for producing epoxide of dicyclopentadiene derivative
JP2006307191A (en) Polymer containing functional group of vicinal substitution type and use thereof
JP2005154620A (en) Terminal epoxy group containing polymer, its manufacturing method and its application
JPH02263832A (en) Copolymers from nucleophilic olefin polymers and polyphenylene ethers capped with epoxytriazine
JPH07119255B2 (en) Epoxy group-containing copolymer
JPH04149236A (en) Method for producing graft copolymer
KR102734118B1 (en) Process for preparing indene derivative, process for preparing metallocene catalyst, process for olefin polymer using the same
JP4485998B2 (en) Novel polyolefin-containing polysiloxane and uses thereof
JPH06179752A (en) Production of block copolymer
JP4267542B2 (en) Resin containing polyolefin chain and use thereof
JPH05214014A (en) Production of epoxidized copolymer
JPH0482880A (en) Production of glycidyl compound
JP2003286276A (en) New alicyclic epoxy compounds
JPH04185610A (en) Epoxy group-containing polymer

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20070709

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080414

A977 Report on retrieval

Effective date: 20100730

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20100810

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101207