[go: up one dir, main page]

JP2006133000A - Micro stack inspection system - Google Patents

Micro stack inspection system Download PDF

Info

Publication number
JP2006133000A
JP2006133000A JP2004320022A JP2004320022A JP2006133000A JP 2006133000 A JP2006133000 A JP 2006133000A JP 2004320022 A JP2004320022 A JP 2004320022A JP 2004320022 A JP2004320022 A JP 2004320022A JP 2006133000 A JP2006133000 A JP 2006133000A
Authority
JP
Japan
Prior art keywords
ray
energy
rays
scattered
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004320022A
Other languages
Japanese (ja)
Inventor
Kazuhiro Ueda
和浩 上田
Tatsumi Hirano
辰己 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2004320022A priority Critical patent/JP2006133000A/en
Publication of JP2006133000A publication Critical patent/JP2006133000A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

【課題】
ナノ薄膜積層体の膜厚と界面幅を、測定範囲1mm以下の領域で、計測可能な微小部積層構造検査装置を提供する。
【解決手段】
X線源と試料の間に、分光素子と集光素子があり、X線源で発生したX線を分光素子で単色化し、集光素子により試料位置で、水平方向と垂直方向のX線束の大きさが10μm以下と1mm以下に集光して試料に照射する、分光素子と試料の間にある薄膜散乱体で散乱された入射X線のエネルギーと強度を散乱X線検出器で測定し、試料で鏡面反射されたX線を反射X線検出器で測定する、そして散乱X線検出器と反射X線検出器の出力を入れることで、入射X線と計測する反射X線のエネルギーを一致させて、散乱X線と反射X線の強度を計数するエネルギー同期計測装置を有し、入射X線のエネルギーを変えながら、試料からの蛍光X線の影響のない反射率を測定する微小部積層構造検査装置。
【選択図】図1
【Task】
Provided is a micro-laminate structure inspection device capable of measuring the film thickness and interface width of a nano thin film laminate in an area of a measurement range of 1 mm or less.
[Solution]
There is a spectroscopic element and a condensing element between the X-ray source and the sample. X-rays generated by the X-ray source are monochromatized by the spectroscopic element, and the X-ray fluxes in the horizontal and vertical directions are collected at the sample position by the condensing element. Measure the energy and intensity of incident X-rays scattered by a thin-film scatterer between the spectroscopic element and the sample, which is focused to a size of 10 μm or less and 1 mm or less, and irradiated to the sample with a scattered X-ray detector. Measure the X-rays specularly reflected by the sample with the reflection X-ray detector, and put the output of the scattered X-ray detector and the reflection X-ray detector to match the energy of the incident X-ray and the reflected X-ray to measure And an energy-synchronized measurement device that counts the intensity of scattered X-rays and reflected X-rays, and measures the reflectance without the influence of fluorescent X-rays from the sample while changing the energy of the incident X-rays. Structural inspection equipment.
[Selection] Figure 1

Description

本発明は、薄膜積層体の微小領域の膜厚および界面幅の計測方法,検査装置に関する。   The present invention relates to a measurement method and an inspection apparatus for the film thickness and interface width of a micro area of a thin film laminate.

半導体デバイス,磁気デバイスの分野では、素子の高機能化,高性能化のため、形成される膜は極薄膜化されるとともに、積層数も増加している。また、現在の半導体や磁気デバイスのような電子デバイスでは、積層膜界面での電子散乱を制御するため、積層膜界面の制御も行われている。   In the field of semiconductor devices and magnetic devices, in order to increase the functionality and performance of elements, the formed films have become extremely thin and the number of stacked layers has increased. In addition, in current electronic devices such as semiconductors and magnetic devices, control of the laminated film interface is also performed in order to control electron scattering at the laminated film interface.

従来、積層膜の膜厚を評価する方法として、エリプソメトリー法,蛍光X線法が用いられている。エリプソメトリー法は平らな表面の薄膜試料に偏光を入射させ、反射光の偏光状態の変化を測定し、試料薄膜の厚さと屈折率を知る方法である。しかし、この方法は光を用いるため、光に対して透明な試料でなければ測定できないことが問題となる。蛍光X線法は試料で発生した蛍光X線を測定し、その強度から膜厚を推定する方法である。この方法の場合、蛍光X線を発生した元素の総量が分かるだけで、膜厚を直接測定する方法でないこと、同じ元素が含まれる薄膜が複数積層されている場合に、膜厚を分離解析することができないことが問題となる。また、エリプソメトリー法,蛍光X線法とも積層膜界面の情報を得ることはできない。   Conventionally, ellipsometry and fluorescent X-ray methods are used as methods for evaluating the film thickness of a laminated film. The ellipsometry method is a method in which polarized light is incident on a thin film sample having a flat surface, the change in the polarization state of reflected light is measured, and the thickness and refractive index of the sample thin film are known. However, since this method uses light, there is a problem in that measurement is only possible for a sample that is transparent to light. The fluorescent X-ray method is a method of measuring a fluorescent X-ray generated in a sample and estimating a film thickness from the intensity. In the case of this method, the total amount of elements that generate fluorescent X-rays is known, and it is not a method for directly measuring the film thickness, and when a plurality of thin films containing the same element are laminated, the film thickness is analyzed separately. The inability to do so is a problem. In addition, neither the ellipsometry method nor the fluorescent X-ray method can obtain information on the interface of the laminated film.

デバイスの断面TEM観察は、非常に高い空間分解能で、積層膜の膜厚を測定することが可能である。また界面幅も推定できる。しかし、TEM観察のためには試料を100
nm以下の薄片化する必要があり、破壊解析となる。このため、不良解析には用いることはできるが、検査装置として用いることは困難である。
The cross-sectional TEM observation of the device can measure the film thickness of the laminated film with very high spatial resolution. The interface width can also be estimated. However, for TEM observation, the sample is 100
It is necessary to make a slice of less than nm, which is a fracture analysis. For this reason, although it can be used for failure analysis, it is difficult to use it as an inspection apparatus.

非破壊で、積層薄膜の膜厚と界面幅を測定する方法として、X線反射率法がある。   As a method for measuring the film thickness and interface width of a laminated thin film in a nondestructive manner, there is an X-ray reflectivity method.

X線反射率法には2種類の方法があり、1つは単色のX線を試料表面すれすれに入射し、入射角を変えながら、反射率を測定する方法、他方は白色X線を試料に入射し、反射率の波長依存性を測定する方法である。どちらの方法も試料表面、界面で反射して来たX線の干渉から膜厚を解析する方法である。また表面や界面での反射には界面幅が影響するため、X線反射率プロファイルを詳細に解析することで積層膜の各界面の幅も得ることができる。   There are two types of X-ray reflectivity methods, one is a method in which monochromatic X-rays are incident on the sample surface and the reflectance is measured while changing the incident angle, and the other is white X-rays on the sample. This is a method for measuring the wavelength dependence of the reflectance upon incidence. Both methods analyze the film thickness from the interference of X-rays reflected from the sample surface and interface. In addition, since the interface width affects the reflection at the surface and the interface, the width of each interface of the laminated film can be obtained by analyzing the X-ray reflectance profile in detail.

特開平6−213833号公報JP-A-6-213833

しかし、従来のX線反射率計ではビーム幅が小さくても20μmであったため、試料に0.5° で入射させたとしても、試料表面では120倍に広がり、2.4mm になってしまい、測定領域が広いという問題がある。測定領域が広いと、積層膜の界面凹凸による界面幅の他に、基板のうねりも界面凹凸として重畳して解析される問題も併発する。デバイスの特性に影響するのは膜の界面の凹凸でのため、基板のうねりの影響を小さくして、界面幅を解析することは非常に重要である。   However, since the conventional X-ray reflectometer was 20 μm even if the beam width was small, even if it was incident on the sample at 0.5 °, it spreads 120 times on the sample surface and became 2.4 mm. There is a problem that the measurement area is wide. When the measurement region is wide, in addition to the interface width due to the interface unevenness of the laminated film, the problem that the waviness of the substrate is also superimposed and analyzed as the interface unevenness also occurs. It is very important to analyze the interface width while minimizing the influence of substrate undulations, because it is the unevenness of the film interface that affects the device characteristics.

また、フレネルゾーンプレート等でX線を10μm程度までしぼったとしても、使用できるX線は単色であり、試料への入射角を0.1° から2〜3°まで変える必要がある。このときの試料と入射角の回転中心とをビームサイズの10%以下に一致させ、また入射角を変えるために試料を回転させるゴニオメータの回転中心の位置再現精度もビームサイズの10%以下にする必要があるが、これは非常に困難である。   Even if the X-rays are reduced to about 10 μm with a Fresnel zone plate or the like, the usable X-rays are monochromatic, and it is necessary to change the incident angle to the sample from 0.1 ° to 2-3 °. At this time, the sample and the rotation center of the incident angle are made equal to 10% or less of the beam size, and the position reproduction accuracy of the rotation center of the goniometer that rotates the sample to change the incident angle is also made 10% or less of the beam size. There is a need, but this is very difficult.

別の方法として集光鏡でX線を10μm程度までしぼることも考えられる。単色X線を集光鏡で集めた場合は、フレネルゾーンプレートと同じ問題が生じるため、試料表面で1mm角以下の領域からのX線反射率を測定することは困難である。   As another method, it is conceivable to reduce the X-rays to about 10 μm with a condenser mirror. When monochromatic X-rays are collected by a condensing mirror, the same problem as in the Fresnel zone plate occurs, and it is difficult to measure the X-ray reflectivity from an area of 1 mm square or less on the sample surface.

集光鏡でビーム幅をしぼる方法の場合、白色X線を試料に入射し、エネルギー分散型の反射率を測定することもできる。この方法は試料を回転させる必要がないため、前述の試料位置やゴニオメータの回転中心の位置精度の問題はなくなる。しかし、試料を構成する元素が入射X線により励起され、蛍光X線がでるため、元素の吸収端付近のエネルギー範囲では反射率の測定ができない。特に、磁気デバイスに用いられる遷移金属等は6keVから9keVのエネルギー範囲にKα線やKβ線が存在するため、このエネルギー範囲を避けて、反射率を測定する必要があり、広い範囲の反射率を測定することが困難である。   In the case of the method of narrowing the beam width with a condensing mirror, white X-rays can be incident on the sample and the energy dispersive reflectance can be measured. Since this method does not require the sample to be rotated, the above-described problem of the sample position and the position accuracy of the goniometer rotation center are eliminated. However, since the element constituting the sample is excited by incident X-rays and emits fluorescent X-rays, the reflectance cannot be measured in the energy range near the absorption edge of the element. In particular, transition metals used in magnetic devices have Kα rays and Kβ rays in the energy range of 6 keV to 9 keV. Therefore, it is necessary to measure the reflectance while avoiding this energy range. It is difficult to measure.

また、波長走査により反射率測定する場合、検出器前に分光結晶を入れなければ、前述の蛍光X線の影響を避けられない。分光結晶を入れて反射率測定をする場合、入射X線のエネルギーを変えたときに、分光結晶の回折角も同じ様に変える必要がある。この場合、分光結晶の回折角の不正確さが反射強度の増減につながるため、絶えず、分光結晶をロッキングして回折強度の最大値となる角度を求める必要がある。しかしこの方法では1点の測定に非常に長い時間が必要となるため、広い範囲の反射率を測定することが困難である。   Further, when measuring reflectance by wavelength scanning, the influence of the fluorescent X-rays described above cannot be avoided unless a spectral crystal is inserted in front of the detector. When the reflectance is measured with the spectral crystal inserted, it is necessary to change the diffraction angle of the spectral crystal in the same way when the energy of the incident X-ray is changed. In this case, since the inaccuracy of the diffraction angle of the spectral crystal leads to an increase or decrease in the reflection intensity, it is necessary to constantly obtain the angle at which the maximum value of the diffraction intensity is obtained by locking the spectral crystal. However, this method requires a very long time to measure one point, so it is difficult to measure a wide range of reflectance.

更に分光結晶を用いない方法としてエネルギー分解能の高い検出器を用いて蛍光X線を除去する方法が考えられる。この方法の場合、高エネルギーX線での反射率を測定すると、反射X線の強度より蛍光X線の強度が強くなり、反射X線の強度を測定することが困難になる。また、入射エネルギーを変えるため、測定点毎に反射X線のエネルギースペクトルを測定し、反射X線と蛍光X線をオフラインで分離する必要があり、測定と反射率プロファイルの導出に長い時間が必要となる。   Further, as a method not using a spectroscopic crystal, a method of removing fluorescent X-rays using a detector with high energy resolution is conceivable. In the case of this method, when the reflectance with high energy X-rays is measured, the intensity of fluorescent X-rays becomes stronger than the intensity of reflected X-rays, making it difficult to measure the intensity of reflected X-rays. In addition, in order to change the incident energy, it is necessary to measure the energy spectrum of reflected X-rays at each measurement point and separate the reflected X-rays and fluorescent X-rays off-line, and it takes a long time to measure and derive the reflectance profile. It becomes.

そこで本発明の目的は、試料表面で1mm角以下の領域からのX線反射率を蛍光X線の影響なく測定できる微小部積層構造検査装置を提供することにある。   Accordingly, an object of the present invention is to provide a micro-part stack structure inspection apparatus capable of measuring the X-ray reflectivity from a region of 1 mm square or less on the sample surface without the influence of fluorescent X-rays.

上記目的を達成する本発明の特徴は、X線源で発生したX線を分光素子で単色化し、分光素子の下流に配置した散乱体で散乱された入射X線をX線検出器で測定し、その出力をエネルギー同期計測装置に入力し、マルチチャンネル計数回路で散乱X線のエネルギーを分析し、ピーク電圧を求め、得られたピーク電圧に計測ウィンドウの幅を加算,減算し、計測ウィンドウの電圧範囲を決め、散乱強度を計測する、また計測ウィンドウの上下の電圧を反射X線の強度測定用のチャンネルアナライザーに入力し、反射X線強度を測定する計測ウィンドウの電圧として使用する微小部積層構造検査装置にある。   The feature of the present invention that achieves the above object is that the X-ray generated by the X-ray source is monochromatic by the spectroscopic element, and the incident X-ray scattered by the scatterer arranged downstream of the spectroscopic element is measured by the X-ray detector. The output is input to the energy synchronous measurement device, the energy of scattered X-rays is analyzed by a multi-channel counting circuit, the peak voltage is obtained, and the width of the measurement window is added to or subtracted from the obtained peak voltage. Determine the voltage range, measure the scattering intensity, and input the voltages above and below the measurement window into the channel analyzer for measuring the intensity of the reflected X-ray, and use it as a measurement window voltage to measure the reflected X-ray intensity. In the structural inspection equipment.

分光素子の散乱ベクトルのある方向をY方向、それと垂直な方向をZ方向とし、X線の進行方向をX方向とすると、分光素子下流のY方向の集光素子でY方向を1mm以下に集光し、Z方向の集光素子でZ方向を10μm以下に集光する。試料はX,Y,Z方向に移動可能な試料台上に置かれ、試料台は試料と検出器を同軸で回転させることができるゴニオメータ上にある。試料の散乱ベクトルがZ方向になるように、試料台とゴニオメータを配置する。このとき、試料の散乱ベクトルとZ方向のなす角を±45°以内とする。試料と入射X線とのなす角(入射角)を0.6° にすれば、入射X線は試料表面上で1mm×1mmに広がる。入射角は、測定に使用する最高エネルギーと集光X線の幅に依存するため、1mm×1mmの領域からの反射率測定するためには、0.1° から3°の範囲から適当な入射角を選択する必要がある。鏡面反射したX線の強度をX線検出器で測定する。その出力をエネルギー同期計測装置に入力し、入射X線のエネルギーと同期した計測ウィンドウで強度測定する。得られた散乱X線強度から入射X線の強度を計算し、反射X線の強度を入射X線の強度で割り、X線反射率を求める。分光素子で入射X線のエネルギーを変えながら、X線反射率を測定し、X線反射率のエネルギー依存性を得る。   Assuming that the direction of the scattering vector of the spectroscopic element is the Y direction, the direction perpendicular to it is the Z direction, and the X-ray traveling direction is the X direction, the Y direction condensing element downstream of the spectroscopic element collects the Y direction to 1 mm or less. The Z direction is condensed to 10 μm or less by a light condensing element in the Z direction. The sample is placed on a sample stage that can move in the X, Y, and Z directions, and the sample stage is on a goniometer that can rotate the sample and the detector coaxially. The sample stage and the goniometer are arranged so that the scattering vector of the sample is in the Z direction. At this time, the angle formed by the scattering vector of the sample and the Z direction is within ± 45 °. If the angle between the sample and the incident X-ray (incident angle) is 0.6 °, the incident X-ray spreads on the sample surface to 1 mm × 1 mm. The incident angle depends on the maximum energy used for the measurement and the width of the focused X-ray, so a suitable incident from the range of 0.1 ° to 3 ° is required to measure the reflectivity from a 1mm x 1mm area. It is necessary to select a corner. The intensity of the specularly reflected X-ray is measured with an X-ray detector. The output is input to an energy synchronous measurement device, and the intensity is measured in a measurement window synchronized with the energy of incident X-rays. The intensity of the incident X-ray is calculated from the obtained scattered X-ray intensity, and the intensity of the reflected X-ray is divided by the intensity of the incident X-ray to obtain the X-ray reflectivity. While changing the energy of incident X-rays with a spectroscopic element, the X-ray reflectivity is measured, and the energy dependency of the X-ray reflectivity is obtained.

別の方法として、分光結晶を使用する方法もある。この場合、鏡面反射したX線を、検出器をのせたアーム上に回折幅が100eV程度(例えば90〜110eV)になるよう湾曲した分光結晶を配置し、入射X線と同じエネルギーのX線だけが検出器に入るように分光し、反射X線検出器で反射X線強度を測定する。入射X線のエネルギーは分光素子の下流に配置した散乱体で散乱された入射X線をX線検出器で測定する。検出器の出力を波長同期装置に入力し、マルチチャンネル計数回路で散乱X線のエネルギーを分析し、ピーク電圧を求める。得られたピーク電圧に計測ウィンドウの幅を加算,減算し、計測ウィンドウの電圧範囲を決め、散乱強度を計測する、散乱X線のエネルギーから分光結晶の回折角度を計算し、得られた角度に分光結晶と反射X線検出器を移動することで、入射X線と同じエネルギーの反射X線だけを測定する。得られた反射X線の強度を、散乱X線強度から計算した入射X線の強度で割り、X線反射率を求める。分光素子で入射X線のエネルギーを変えながら、X線反射率を測定し、X線反射率のエネルギー依存性を得る。   Another method is to use a spectroscopic crystal. In this case, the spectroscopically reflected X-ray is placed on the arm on which the detector is placed, and a spectral crystal curved so as to have a diffraction width of about 100 eV (for example, 90 to 110 eV) is arranged. And the reflected X-ray intensity is measured with a reflected X-ray detector. For the energy of incident X-rays, the X-ray detector measures incident X-rays scattered by a scatterer arranged downstream of the spectroscopic element. The output of the detector is input to the wavelength synchronization device, and the energy of scattered X-rays is analyzed by a multi-channel counting circuit to obtain the peak voltage. Add or subtract the width of the measurement window to the obtained peak voltage, determine the voltage range of the measurement window, measure the scattering intensity, calculate the diffraction angle of the spectral crystal from the energy of scattered X-rays, and obtain the obtained angle By moving the spectral crystal and the reflected X-ray detector, only the reflected X-ray having the same energy as the incident X-ray is measured. The intensity of the obtained reflected X-ray is divided by the intensity of the incident X-ray calculated from the scattered X-ray intensity to obtain the X-ray reflectivity. While changing the energy of incident X-rays with a spectroscopic element, the X-ray reflectivity is measured, and the energy dependency of the X-ray reflectivity is obtained.

本発明によれば、1mm×1mm以下の領域からのX線反射率を正確に測定し、膜厚や界面幅を測定することのできる微小部積層構造検査装置が可能となる。   According to the present invention, it is possible to provide a micro stacked structure inspection apparatus capable of accurately measuring an X-ray reflectance from a region of 1 mm × 1 mm or less and measuring a film thickness and an interface width.

以下、実施例を説明する。   Examples will be described below.

本発明の実施例を説明する。図1に実施例を示す。X線源1で発生したX線2は第1対称反射結晶3および、第2対称反射結晶4により単色化される。単色X線はスリット(図示せず)でz方向100μm,y方向10mmに成形後、散乱体5を経て、垂直集光鏡8に入射する。入射X線は散乱体5で散乱され、散乱X線検出器7で散乱X線6の強度とエネルギーを測定する。垂直集光鏡8および水平集光鏡9によりX線は試料10上に集光される。試料10で鏡面反射された反射X線11の強度は、反射X線検出器12で測定される。散乱X線検出器7の測定信号と反射X線検出器12の測定信号はエネルギー同期計測装置13に入力し、入射X線と同じエネルギーの反射X線強度と入射X線強度を得て、反射率を計算する。反射率測定制御部16は入射エネルギー制御部14を用いて第1対称反射結晶3で入射X線のエネルギーを変え、第2対称反射結晶4でX線の位置と方向が一定となる定位置出射条件に調整し、各エネルギーでの反射率をエネルギー同期計測装置13から得て、表示部17にX線反射率のエネルギー依存性を表示する。また、反射率測定制御部16は測定前に、反射率計制御部15を用いて、試料と入射X線の平行性や反射X線検出器に鏡面反射X線が入射するよう入射X線−試料−反射X線検出器の位置を調整する。   Examples of the present invention will be described. FIG. 1 shows an embodiment. The X-ray 2 generated by the X-ray source 1 is monochromatized by the first symmetric reflective crystal 3 and the second symmetric reflective crystal 4. The monochromatic X-ray is formed into a z-direction of 100 μm and a y-direction of 10 mm by a slit (not shown), and then enters the vertical condenser mirror 8 through the scatterer 5. Incident X-rays are scattered by the scatterer 5, and the scattered X-ray detector 7 measures the intensity and energy of the scattered X-rays 6. The X-rays are collected on the sample 10 by the vertical condenser mirror 8 and the horizontal condenser mirror 9. The intensity of the reflected X-ray 11 that is specularly reflected by the sample 10 is measured by the reflected X-ray detector 12. The measurement signal of the scattered X-ray detector 7 and the measurement signal of the reflected X-ray detector 12 are input to the energy synchronous measuring device 13, and the reflected X-ray intensity and the incident X-ray intensity having the same energy as the incident X-ray are obtained and reflected. Calculate the rate. The reflectance measurement control unit 16 uses the incident energy control unit 14 to change the energy of incident X-rays in the first symmetric reflective crystal 3, and emits in a fixed position where the X-ray position and direction are constant in the second symmetric reflective crystal 4. It adjusts to conditions, the reflectance in each energy is obtained from the energy synchronous measuring device 13, and the energy dependence of X-ray reflectance is displayed on the display part 17. FIG. Further, the reflectance measurement control unit 16 uses the reflectometer control unit 15 before the measurement so that the parallelism between the sample and the incident X-ray and the specular reflection X-ray is incident on the reflection X-ray detector. Adjust the position of the sample-reflected X-ray detector.

次に、各構成品の機能について説明する。X線源1には放射光を用いた。反射結晶にはSi(111)単結晶を用いた。測定に使用したエネルギーは5keVから22keVとし、定位置出射になるように、第1反射結晶3の角度と第2反射結晶4の角度と2結晶間の距離を調整し、それぞれの角度と位置を入射エネルギー制御部に記録する。これにより反射率測定制御部16から入射X線エネルギーが与えると、指定のエネルギーで定位置出射となるように入射エネルギー制御部が、第1反射結晶3と第2反射結晶4を駆動することが可能である。   Next, the function of each component will be described. Synchrotron radiation was used for the X-ray source 1. Si (111) single crystal was used as the reflective crystal. The energy used for the measurement is 5 keV to 22 keV, and the angle of the first reflective crystal 3, the angle of the second reflective crystal 4, and the distance between the two crystals are adjusted so as to emit in a fixed position, and the respective angles and positions are adjusted. Record in the incident energy controller. As a result, when the incident X-ray energy is given from the reflectance measurement control unit 16, the incident energy control unit drives the first reflective crystal 3 and the second reflective crystal 4 so as to emit at a fixed position with the specified energy. Is possible.

単色化されたX線は、X線と45度の角度をなすように配置したカプトン膜からなる散乱体5で散乱された、散乱X線のエネルギーと強度を散乱X線検出器7で測定した。散乱X線検出器7は反射X線検出器12と同じ検出器を使用するため、隣の原子番号の元素のKα線とKβ線が分離できる必要があることから、エネルギー分解能を300eVとした。また、ダイナミックレンジが5桁程度必要となるため、Si Drift検出器を用いた。散乱体5を透過したX線の垂直方向は、X線源1を光源として垂直集光鏡により試料10上で約10μmに集光される。また水平方向は、第2反射結晶4を光源として水平集光鏡により試料10上で約1mmに集光される。X線反射率測定では、すれすれ入射となるため、z軸方向のX線の幅は100倍程度に広がる。このため、試料10上では1mm×1mmの測定領域が実現できる。集光鏡には溶融石英の上に白金を100nm蒸着した放物面鏡を用いた。試料10で鏡面反射した反射X線11は反射X線検出器12でエネルギーと強度を測定する。散乱X線検出器7と反射X線検出器12の信号はエネルギー同期計測装置13に入力され、反射率として出力される。   The monochromatic X-ray was measured by the scattered X-ray detector 7 by measuring the energy and intensity of the scattered X-ray scattered by the scatterer 5 made of a Kapton film arranged at an angle of 45 degrees with the X-ray. . Since the scattered X-ray detector 7 uses the same detector as the reflected X-ray detector 12, it is necessary to be able to separate the Kα ray and Kβ ray of the element having the adjacent atomic number, and therefore the energy resolution is set to 300 eV. In addition, since a dynamic range of about 5 digits is required, a Si Drift detector was used. In the vertical direction of the X-rays transmitted through the scatterer 5, the X-ray source 1 is used as a light source, and the light is condensed to about 10 μm on the sample 10 by the vertical condenser mirror. In the horizontal direction, the second reflective crystal 4 is used as a light source, and the light is condensed to about 1 mm on the sample 10 by a horizontal condenser mirror. In the X-ray reflectivity measurement, since the grazing incidence occurs, the width of the X-ray in the z-axis direction increases about 100 times. Therefore, a measurement area of 1 mm × 1 mm can be realized on the sample 10. As the condenser mirror, a parabolic mirror in which platinum was deposited to 100 nm on fused quartz was used. The reflected X-ray 11 that is specularly reflected by the sample 10 is measured for energy and intensity by a reflected X-ray detector 12. Signals from the scattered X-ray detector 7 and the reflected X-ray detector 12 are input to the energy synchronous measuring device 13 and output as reflectance.

エネルギー同期計測装置13について、図2に従って説明する。散乱X線検出器7のプリアンプ出力の信号をアンプ18で増幅し、多チャンネル解析回路19に入力する。チャンネルとエネルギーの関係を事前に更正しておくことにより、多チャンネル解析回路19の出力は散乱X線検出器7で測定した散乱X線6のエネルギースペクトルとなる。スペクトル信号は表示部20で表示するとともに、ピーク検出回路21に入力する。スペクトルのピーク位置を検出する方法は色々あるが、本実施例では微分を用いた検出法を用いた。スペクトル信号はスムージング回路22により5チャンネルのスムージング処理がなされ、得られたスペクトルは微分回路23で微分信号に変換する。微分信号の最大値と最小値のエネルギーを最大値/最小値検出回路24で求め、0レベル検出回路で、最大値と最小値の間で微分信号が0となるエネルギーが、入射X線のエネルギーに対応する。ピーク検出回路21は最終的に入射エネルギーに対応した電圧をVE として出力する。計測するエネルギー幅を電圧ΔWとして検出ウィンドウ幅入力部26から検出ウィンドウ電圧発生回路27に入力する。この時のエネルギー幅は検出器の性能によって定めることが可能であり、例えば半値幅の2倍とすることができる。またこの回路にはピーク検出回路21の出力電圧VEも入力する。検出ウィンドウ電圧発生回路27は低電圧レベルVL =VE
ΔW、と高電圧レベルVH =VE +ΔWを出力する。この2つの出力電圧とアンプ18の出力信号を単チャンネル解析回路28に入れ、波高解析後、2チャンネル計数回路29の第1チャンネルに入れ、散乱X線の強度として計数する。散乱X線6の強度と入射X線の強度は比例関係があることから、得られた散乱X線の強度を反射率計算装置で入射X線強度に変換する。次に、反射X線検出器12のプリアンプ出力の信号をアンプ18で増幅する。アンプの増幅率を調整し、同じエネルギーのX線が同じ電圧で出力されるように調整しておく。アンプ出力と検出ウィンドウ電圧発生回路27の2つの出力電圧を単チャンネル解析回路28に入力することで、同じエネルギーウィンドウ位置と幅での波高解析が自動的にすることができる。この出力を2チャンネル計数回路29の第2チャンネルに入れ、反射X線の強度として計数する。得られた反射X線の強度を反射率計算装置30に入力し、同時に得られた入射X線強度で割ることでX線反射率が得られる。反射率測定制御部16は入射エネルギー制御部14に測定エネルギーを与え、エネルギー同期計測装置13からの反射率出力を受け取る測定を5keVから25keVまで繰り返すことで、X線反射率のエネルギー依存性を測定し、結果を表示部17で示す。
The energy synchronous measuring device 13 is demonstrated according to FIG. The preamplifier output signal of the scattered X-ray detector 7 is amplified by an amplifier 18 and input to a multichannel analysis circuit 19. By correcting the relationship between the channel and energy in advance, the output of the multi-channel analysis circuit 19 becomes the energy spectrum of the scattered X-ray 6 measured by the scattered X-ray detector 7. The spectrum signal is displayed on the display unit 20 and input to the peak detection circuit 21. There are various methods for detecting the peak position of the spectrum. In this embodiment, a detection method using differentiation is used. The spectrum signal is subjected to 5-channel smoothing processing by the smoothing circuit 22, and the obtained spectrum is converted to a differentiation signal by the differentiation circuit 23. The maximum value / minimum value detection circuit 24 obtains the energy of the maximum and minimum values of the differential signal, and the energy at which the differential signal becomes 0 between the maximum value and the minimum value by the zero level detection circuit is the energy of the incident X-ray. Corresponding to The peak detection circuit 21 finally outputs a voltage corresponding to the incident energy as V E. The energy width to be measured is input as voltage ΔW from the detection window width input unit 26 to the detection window voltage generation circuit 27. The energy width at this time can be determined by the performance of the detector, and can be, for example, twice the half-value width. The output voltage VE of the peak detection circuit 21 is also input to this circuit. The detection window voltage generation circuit 27 has a low voltage level V L = V E −.
ΔW and a high voltage level V H = V E + ΔW are output. The two output voltages and the output signal of the amplifier 18 are input to the single channel analysis circuit 28, and after wave height analysis, are input to the first channel of the 2-channel counting circuit 29 and counted as scattered X-ray intensity. Since the intensity of the scattered X-ray 6 and the intensity of the incident X-ray have a proportional relationship, the intensity of the obtained scattered X-ray is converted into the incident X-ray intensity by the reflectance calculator. Next, the preamplifier output signal of the reflection X-ray detector 12 is amplified by the amplifier 18. The amplification factor of the amplifier is adjusted so that X-rays having the same energy are output at the same voltage. By inputting the two output voltages of the amplifier output and the detection window voltage generation circuit 27 to the single channel analysis circuit 28, the wave height analysis at the same energy window position and width can be automatically performed. This output is input to the second channel of the two-channel counting circuit 29 and counted as the intensity of the reflected X-ray. X-ray reflectivity is obtained by inputting the intensity of the obtained reflected X-rays to the reflectance calculation device 30 and dividing by the incident X-ray intensity obtained at the same time. The reflectance measurement control unit 16 gives measurement energy to the incident energy control unit 14 and repeats the measurement of receiving the reflectance output from the energy synchronous measurement device 13 from 5 keV to 25 keV, thereby measuring the energy dependency of the X-ray reflectance. The result is shown on the display unit 17.

次に試料10表面とX線を平行にする作業(以後、軸立て作業と呼ぶ)は、1)入射X線の強度が当初の50%になるように試料を、X線を遮るように移動(Z軸)、2)入射X線、試料表面の法線で構成される散乱面に垂直な軸で試料を回転し、入射X線強度が最大になる角度に調整する。この1),2)の作業を繰り返し、最大強度が当初の50%、試料を回転すると強度が減少する様に試料を調整する。また、試料を180°回転させ
1),2)を繰り返す。このときのZ軸の値の違いから、試料台の回転中心とX線の位置とのずれが計測でき、試料台の回転中心とX線の位置を1μmの精度で合わせることができる。この方法は半割り法と呼ばれているがX線と試料表面の平行性の精度は、0.1° 程度と低い。半割りの後で、入射角/散乱角を全反射角度に移動し、反射X線強度が最大になるように、試料のZ軸移動と入射角を調整することにより、入射角を0.01° 程度の精度で軸立てすることができる。本実施例で、この方法を用いると、試料表面と回転軸の中心の位置合わせ精度は1μm程度になる。また淡路ら(特願平7−260712)は試料を回転させながら、全反射角を測定し、その角度が試料の回転によって変化しないように軸立てする方法を提案している。淡路らはこの方法を用いることにより0.005°の精度で軸立てができるとしている。淡路らの方法を本実施例に適用しても、試料台の回転中心とX線の位置、試料表面と回転軸の中心の位置の精度はそれぞれ1μm程度になる。入射角を変えながら反射率を測定する場合、この精度では、X線の照射領域が試料位置からずれる原因となり、問題となる。しかし、本実施例では入射角が固定のため、この精度は問題にならない。試料とX線の角度を0.5° に設定し、蛍光X線検出器(図示せず)で試料からの蛍光X線を測定しながら、試料をX−Y軸に走査する。試料位置固有の蛍光X線でマッピングすることにより、X線を試料位置に正確に当てることができる。また、試料とX線の角度を1.0° に設定し、蛍光X線検出器(図示せず)で試料からの蛍光X線を測定しながら、試料をX−Y軸に走査する。試料位置固有の蛍光X線でマッピングすることにより、入射角1.0° でもX線を試料位置に正確に当てることができる。
Next, work to make the surface of the sample 10 parallel to the X-ray (hereinafter referred to as pivoting work) is: 1) Move the sample so as to block the X-ray so that the intensity of the incident X-ray is 50% of the original. (Z-axis) 2) The sample is rotated on an axis perpendicular to the scattering plane composed of the incident X-ray and the normal of the sample surface, and adjusted to an angle at which the incident X-ray intensity becomes maximum. The steps 1) and 2) are repeated, and the sample is adjusted so that the maximum strength is 50% of the initial value, and the strength decreases when the sample is rotated. In addition, the sample is rotated 180 ° and steps 1) and 2) are repeated. The difference between the rotation axis of the sample stage and the X-ray position can be measured from the difference in the Z-axis value at this time, and the rotation center of the sample stage and the X-ray position can be matched with an accuracy of 1 μm. This method is called a halving method, but the accuracy of parallelism between the X-ray and the sample surface is as low as about 0.1 °. After the halving, the incident angle / scattering angle is moved to the total reflection angle, and the incident angle is set to 0.01 by adjusting the Z-axis movement and the incident angle of the sample so that the reflected X-ray intensity becomes maximum. ° It can be erected with a degree of accuracy. In this embodiment, when this method is used, the alignment accuracy between the sample surface and the center of the rotating shaft is about 1 μm. Awaji et al. (Japanese Patent Application No. 7-260712) proposes a method of measuring the total reflection angle while rotating the sample and setting the angle so that the angle does not change due to the rotation of the sample. Awaji et al. Use this method to set the shaft with an accuracy of 0.005 °. Even when the method of Awaji et al. Is applied to the present embodiment, the accuracy of the rotation center of the sample stage and the X-ray position, and the accuracy of the position of the sample surface and the center of the rotation axis are about 1 μm. When measuring the reflectance while changing the incident angle, this accuracy causes a problem in that the X-ray irradiation region is displaced from the sample position. However, since the incident angle is fixed in this embodiment, this accuracy is not a problem. The angle between the sample and the X-ray is set to 0.5 °, and the sample is scanned along the XY axis while measuring the fluorescent X-ray from the sample with a fluorescent X-ray detector (not shown). By mapping with the fluorescent X-ray unique to the sample position, the X-ray can be accurately applied to the sample position. Further, the angle between the sample and the X-ray is set to 1.0 °, and the sample is scanned along the XY axis while measuring the fluorescent X-ray from the sample with a fluorescent X-ray detector (not shown). By mapping with the fluorescent X-ray unique to the sample position, the X-ray can be accurately applied to the sample position even at an incident angle of 1.0 °.

次に、本実施例の集光X線の特性について説明する。試料台上に設けたナイフエッジの走査から求めた集光ビームの半値幅は垂直10μm,水平100μmで、X線強度は、蓄積リングの電流値が300mAでX線のエネルギーが80keVにおいて2E7cps であった。集光鏡9と試料10の間に垂直方向を制限するスリットを配置することにより、集光ビームの裾の広がりを低減するとともに、ビームの幅を8μmにすることができた。このときのX線強度は1E7cpsであった。   Next, the characteristic of the condensed X-ray of this embodiment will be described. The full width at half maximum of the focused beam obtained from the scanning of the knife edge provided on the sample stage is 10 μm vertically and 100 μm horizontally, and the X-ray intensity is 2E7 cps at a storage ring current value of 300 mA and an X-ray energy of 80 keV. It was. By disposing a slit that restricts the vertical direction between the condenser mirror 9 and the sample 10, the spread of the bottom of the condensed beam was reduced and the width of the beam could be 8 μm. The X-ray intensity at this time was 1E7 cps.

次に、本実施例を用いて、試料10として磁気ヘッド素子を測定した結果を説明する。試料は幅50μm,縦500μmであった。試料は前述の調整方法で軸立てし、Coからの蛍光X線(CoKα)によるマッピングで試料の位置を合わせた。測定位置は、入射角
0.5°と1.0°のときで、それぞれ試料の中央付近になるように調整した。図3に本実施例で測定した反射率プロファイルを示す。横軸は散乱ベクトル(=4πsmθ/λ,θ:入射角,λ:波長)とし、入射角0.5° で測定した反射率プロファイル31のエネルギーを下軸、入射角1.0° で測定した反射率プロファイル32のエネルギーを上軸に示した。従来の方法では、試料に含まれるCu,Co,Niの蛍光X線のピークが重なり、試料元素の蛍光X線エネルギー33の位置の反射プロファイルが測定できなかった。しかし、本実施例では、試料元素の蛍光X線エネルギー33の位置にピークはみられず、試料元素の吸収端エネルギー34位置で吸収変化による反射プロファイルの変化が測定できた。また、入射角0.5°で測定した反射率プロファイル31と入射角1.0°で測定した反射率プロファイル32で重なる部分があるが、ここでも、反射率測定が正確にできていることが確認できた。
Next, the result of measuring a magnetic head element as the sample 10 will be described using this example. The sample was 50 μm wide and 500 μm long. The sample was axially aligned by the adjustment method described above, and the position of the sample was aligned by mapping with fluorescent X-rays (CoKα) from Co. The measurement positions were adjusted to be near the center of the sample at incident angles of 0.5 ° and 1.0 °, respectively. FIG. 3 shows the reflectance profile measured in this example. The horizontal axis is the scattering vector (= 4πsmθ / λ, θ: incident angle, λ: wavelength), and the energy of the reflectance profile 31 measured at an incident angle of 0.5 ° is measured at the lower axis and the incident angle of 1.0 °. The energy of the reflectance profile 32 is shown on the upper axis. In the conventional method, the fluorescence X-ray peaks of Cu, Co, and Ni contained in the sample overlap, and the reflection profile at the position of the fluorescence X-ray energy 33 of the sample element cannot be measured. However, in this example, no peak was observed at the position of the fluorescent X-ray energy 33 of the sample element, and the change in the reflection profile due to the absorption change at the position of the absorption edge energy 34 of the sample element could be measured. In addition, there is a portion where the reflectance profile 31 measured at an incident angle of 0.5 ° and the reflectance profile 32 measured at an incident angle of 1.0 ° overlap, but here also the reflectance measurement can be accurately performed. It could be confirmed.

本発明の別の実施例を説明する。図4に本実施例の概略を示す。X線源1で発生したX線2は第1対称反射結晶3および、第2対称反射結晶4により単色化される。単色X線はスリット(図示せず)でz方向100μm,y方向10mmに成形後、散乱体5を経て、垂直集光鏡8に入射する。入射X線は散乱体5で散乱され、散乱X線検出器7で散乱X線6の強度とエネルギーを測定する。垂直集光鏡8および水平集光鏡9によりX線は試料10上に集光される。試料10で鏡面反射された反射X線11の強度は、湾曲分光結晶35でエネルギー分光してX線検出器36で測定される。散乱X線検出器7の測定信号と反射X線検出器12の測定信号は波長同期装置37に入力し、入射X線と同じエネルギーの反射X線が計測されるように湾曲分光結晶35とX線検出器36の角度と位置を調整する。波長同期装置37は入射X線と同じエネルギーの反射X線強度と入射X線強度を得て、反射率を計算する。反射率測定制御部16は入射エネルギー制御部14を用いて第1対称反射結晶3で入射X線のエネルギーを変え、第2対称反射結晶4でX線の位置と方向が一定となる定位置出射条件に調整し、各エネルギーでの反射率を波長同期装置37から得て、表示部17にX線反射率のエネルギー依存性を表示する。また、反射率測定制御部16は測定前に、反射率計制御部15を用いて、試料と入射X線の平行性や反射X線検出器に鏡面反射X線が入射するよう入射X線−試料−反射X線検出器の位置を調整する。   Another embodiment of the present invention will be described. FIG. 4 shows an outline of the present embodiment. The X-ray 2 generated by the X-ray source 1 is monochromatized by the first symmetric reflective crystal 3 and the second symmetric reflective crystal 4. The monochromatic X-ray is formed into a z-direction of 100 μm and a y-direction of 10 mm by a slit (not shown), and then enters the vertical condenser mirror 8 through the scatterer 5. Incident X-rays are scattered by the scatterer 5, and the scattered X-ray detector 7 measures the intensity and energy of the scattered X-rays 6. The X-rays are collected on the sample 10 by the vertical condenser mirror 8 and the horizontal condenser mirror 9. The intensity of the reflected X-rays 11 specularly reflected by the sample 10 is measured by the X-ray detector 36 after being subjected to energy spectroscopy with the curved spectral crystal 35. The measurement signal of the scattered X-ray detector 7 and the measurement signal of the reflected X-ray detector 12 are input to the wavelength synchronization device 37, and the curved spectral crystal 35 and X are measured so that the reflected X-ray having the same energy as the incident X-ray is measured. The angle and position of the line detector 36 are adjusted. The wavelength synchronization device 37 obtains the reflected X-ray intensity and the incident X-ray intensity having the same energy as the incident X-ray, and calculates the reflectance. The reflectance measurement control unit 16 uses the incident energy control unit 14 to change the energy of incident X-rays in the first symmetric reflective crystal 3, and emits in a fixed position where the X-ray position and direction are constant in the second symmetric reflective crystal 4. The reflectance at each energy is obtained from the wavelength synchronization device 37 by adjusting the conditions, and the energy dependency of the X-ray reflectance is displayed on the display unit 17. Further, the reflectance measurement control unit 16 uses the reflectometer control unit 15 before the measurement so that the parallelism between the sample and the incident X-ray and the specular reflection X-ray is incident on the reflection X-ray detector. Adjust the position of the sample-reflected X-ray detector.

次に、各構成品の機能について説明する。X線源1には、高エネルギー加速器研究機構放射光実験施設の放射光を用いた。反射結晶にはSi(111)単結晶を用いた。測定に使用したエネルギーは5keVから22keVとし、定位置出射になるように、第1反射結晶3の角度と第2反射結晶4の角度と2結晶間の距離を調整し、それぞれの角度と位置を入射エネルギー制御部に記録する。これにより反射率測定制御部16から入射X線エネルギーが与えられれば、指定のエネルギーで定位置出射となるように入射エネルギー制御部が、第1反射結晶3と第2反射結晶4を駆動することが可能となる。単色化されたX線は、X線と45度の角度をなすように配置したカプトン膜からなる散乱体5で散乱された、散乱X線のエネルギーと強度を散乱X線検出器7で測定した。散乱X線検出器7は入射X線のエネルギーを測定するため、エネルギー分解能としては、300eV程度、またダイナミックレンジが5桁程度必要となることから、Si Drift検出器を用いた。散乱体5を透過したX線の垂直方向は、X線源1を光源として垂直集光鏡により試料10上で約10μmに集光される。また水平方向は、第2反射結晶4を光源として水平集光鏡により試料10上で約1mmに集光される。X線反射率測定では、すれすれ入射となるため、z軸方向のX線の幅は100倍程度に広がる。このため、試料10上では1mm×1mmの測定領域が実現できる。集光鏡には溶融石英の上に白金を100nm蒸着した放物面鏡を用いた。試料10で鏡面反射した反射X線11は湾曲分光結晶35でエネルギー分光してX線検出器
36で強度を測定する。湾曲分光結晶35はGe(1H)の0.3mm 厚の結晶の一方を固定し、他方を押すことで湾曲させてある。湾曲の程度はCuKαとNiKβが分離できる程度に調整した。X線検出器36は湾曲分光結晶35の回転軸と同軸の検出器台(図示せず)上に配置してある。X線検出器36は、湾曲分光結晶35と組み合わせて使用することから、検出器自体に高いエネルギー分解能は必要でない。そこで、ダイナミックレンジが5桁以上ある、NaIシンチレーション検出器を用いた。散乱X線検出器7とX線検出器36の信号は波長同期装置37に入力され、反射率として出力される。
Next, the function of each component will be described. The X-ray source 1 was synchrotron radiation from the high energy accelerator research facility synchrotron radiation experiment facility. Si (111) single crystal was used as the reflective crystal. The energy used for the measurement is 5 keV to 22 keV, and the angle of the first reflective crystal 3, the angle of the second reflective crystal 4, and the distance between the two crystals are adjusted so as to emit in a fixed position, and the respective angles and positions are adjusted. Record in the incident energy controller. Thus, when the incident X-ray energy is given from the reflectance measurement control unit 16, the incident energy control unit drives the first reflective crystal 3 and the second reflective crystal 4 so as to emit at a fixed position with the specified energy. Is possible. The monochromatic X-ray was measured by the scattered X-ray detector 7 by measuring the energy and intensity of the scattered X-ray scattered by the scatterer 5 made of a Kapton film arranged at an angle of 45 degrees with the X-ray. . Since the scattered X-ray detector 7 measures the energy of incident X-rays, an energy resolution of about 300 eV and a dynamic range of about five digits are required, and therefore a Si Drift detector was used. In the vertical direction of the X-rays transmitted through the scatterer 5, the X-ray source 1 is used as a light source, and the light is condensed to about 10 μm on the sample 10 by the vertical condenser mirror. In the horizontal direction, the second reflective crystal 4 is used as a light source, and the light is condensed to about 1 mm on the sample 10 by a horizontal condenser mirror. In the X-ray reflectivity measurement, since the grazing incidence occurs, the width of the X-ray in the z-axis direction increases about 100 times. Therefore, a measurement area of 1 mm × 1 mm can be realized on the sample 10. As the condenser mirror, a parabolic mirror in which platinum was deposited to 100 nm on fused quartz was used. The reflected X-ray 11 specularly reflected by the sample 10 is subjected to energy spectroscopy by the curved spectral crystal 35 and the intensity is measured by the X-ray detector 36. The curved spectral crystal 35 is curved by fixing one of Ge (1H) crystals having a thickness of 0.3 mm and pushing the other. The degree of curvature was adjusted so that CuKα and NiKβ could be separated. The X-ray detector 36 is disposed on a detector base (not shown) coaxial with the rotational axis of the curved spectral crystal 35. Since the X-ray detector 36 is used in combination with the curved spectral crystal 35, the detector itself does not require high energy resolution. Therefore, a NaI scintillation detector having a dynamic range of 5 digits or more was used. Signals from the scattered X-ray detector 7 and the X-ray detector 36 are input to the wavelength synchronization device 37 and output as reflectance.

波長同期装置37について図5に従って説明する。散乱X線検出器7のプリアンプ出力の信号をアンプ18で増幅し、多チャンネル解析回路19に入力する。チャンネルとエネルギーの関係を事前に更正しておくことにより、多チャンネル解析回路19の出力は散乱X線検出器7で測定した散乱X線6のエネルギースペクトルとなる。スペクトル信号は表示部20で表示するとともに、ピーク検出回路21に入力する。スペクトルのピーク位置を検出する方法は色々あるが、本実施例では微分を用いた検出法を用いた。スペクトル信号はスムージング回路22により5チャンネルのスムージング処理がなされ、得られたスペクトルは微分回路23で微分信号に変換する。微分信号の最大値と最小値のエネルギーを最大値/最小値検出回路24で求め、0レベル検出回路で、最大値と最小値の間で微分信号が0となるエネルギーが、入射X線のエネルギーに対応する。ピーク検出回路21は最終的に入射エネルギーに対応した電圧をVE として出力する。計測するエネルギー幅を電圧ΔWとして検出ウィンドウ幅入力部から検出ウィンドウ電圧発生回路27に入力する。またこの回路にはピーク検出回路21の出力電圧VE も入力する。検出ウィンドウ電圧発生回路27は低電圧レベルVL =VE −ΔW,高電圧レベルVH =VE +ΔWとして出力する。この2つの出力電圧とアンプ18の出力信号を単チャンネル解析回路28に入れ、波高解析後、2チャンネル計数回路29の第1チャンネルに入れ、散乱X線の強度として計数する。散乱X線6の強度と入射X線の強度は比例関係があることから、得られた散乱X線の強度を反射率計算装置で入射X線強度に変換する。次に、ピーク検出回路21が出力した入射エネルギーに対応した電圧(VE )をX線エネルギー/波長変換部に入力し、入射X線の波長を求める。湾曲分光結晶面間隔入力部から入力したGe(111)の面間隔(d値)と入射X線の波長(λ)を回折角計算部40に入力し、入射X線と同じ波長が湾曲分光結晶35で分光されるブラック角(θB )を求める。湾曲分光結晶35とX線検出器36の位置がブラック条件を満足するように、2軸のモーターコントローラ41,モータードライバイ42を制御し、入射X線と同じ波長のX線が湾曲分光結晶35で分光されX線検出器36で計測されるように、湾曲分光結晶35とカウンターアームの角度をそれぞれ調整する。次に、X線検出器36のプリアンプ出力の信号をアンプ18で増幅する。アンプ出力を単チャンネル解析回路28に入力することで、入射X線と同じ波長の反射X線の波高解析が自動的にすることができる。単チャンネル解析回路28のウィンドウ幅は反射X線ウィンドウ幅入力部34から入力する。この出力を2チャンネル計数回路
29の第2チャンネルに入れ、反射X線の強度として計数する。得られた反射X線の強度を反射率計算装置30に入力し、同時に得られた入射X線強度で割ることでX線反射率が得られる。反射率測定制御部16は入射エネルギー制御部14に測定エネルギーを与え、波長同期装置37からの反射率出力を受け取とる測定を5keVから25keVまで繰り返すことで、X線反射率のエネルギー依存性を測定し、結果を表示部17で示す。
The wavelength synchronization device 37 will be described with reference to FIG. The preamplifier output signal of the scattered X-ray detector 7 is amplified by an amplifier 18 and input to a multichannel analysis circuit 19. By correcting the relationship between the channel and energy in advance, the output of the multi-channel analysis circuit 19 becomes the energy spectrum of the scattered X-ray 6 measured by the scattered X-ray detector 7. The spectrum signal is displayed on the display unit 20 and input to the peak detection circuit 21. There are various methods for detecting the peak position of the spectrum. In this embodiment, a detection method using differentiation is used. The spectrum signal is subjected to 5-channel smoothing processing by the smoothing circuit 22, and the obtained spectrum is converted to a differentiation signal by the differentiation circuit 23. The maximum value / minimum value detection circuit 24 obtains the energy of the maximum and minimum values of the differential signal, and the energy at which the differential signal becomes 0 between the maximum value and the minimum value by the zero level detection circuit is the energy of the incident X-ray. Corresponding to The peak detection circuit 21 finally outputs a voltage corresponding to the incident energy as V E. The energy width to be measured is input to the detection window voltage generation circuit 27 from the detection window width input unit as the voltage ΔW. The output voltage V E of the peak detection circuit 21 is also input to this circuit. The detection window voltage generation circuit 27 outputs a low voltage level V L = V E −ΔW and a high voltage level V H = V E + ΔW. The two output voltages and the output signal of the amplifier 18 are input to the single channel analysis circuit 28, and after wave height analysis, are input to the first channel of the 2-channel counting circuit 29 and counted as scattered X-ray intensity. Since the intensity of the scattered X-ray 6 and the intensity of the incident X-ray have a proportional relationship, the intensity of the obtained scattered X-ray is converted into the incident X-ray intensity by the reflectance calculator. Next, a voltage (V E ) corresponding to the incident energy output from the peak detection circuit 21 is input to the X-ray energy / wavelength converter, and the wavelength of the incident X-ray is obtained. The surface distance (d value) of Ge (111) and the wavelength (λ) of incident X-rays input from the curved spectral crystal surface distance input unit are input to the diffraction angle calculation unit 40, and the same wavelength as the incident X-rays is the curved spectral crystal. The black angle (θ B ) split at 35 is obtained. The biaxial motor controller 41 and the motor driver 42 are controlled so that the positions of the curved spectral crystal 35 and the X-ray detector 36 satisfy the black condition, and X-rays having the same wavelength as the incident X-ray are curved spectral crystals 35. The angle between the curved spectral crystal 35 and the counter arm is adjusted so that the spectrum is measured by the X-ray detector 36. Next, the preamplifier output signal of the X-ray detector 36 is amplified by the amplifier 18. By inputting the amplifier output to the single channel analysis circuit 28, the wave height analysis of the reflected X-ray having the same wavelength as the incident X-ray can be automatically performed. The window width of the single channel analysis circuit 28 is input from the reflection X-ray window width input unit 34. This output is input to the second channel of the two-channel counting circuit 29 and counted as the intensity of the reflected X-ray. X-ray reflectivity is obtained by inputting the intensity of the obtained reflected X-rays to the reflectance calculation device 30 and dividing by the incident X-ray intensity obtained at the same time. The reflectance measurement control unit 16 gives the measurement energy to the incident energy control unit 14 and repeats the measurement of receiving the reflectance output from the wavelength synchronization device 37 from 5 keV to 25 keV, thereby measuring the energy dependence of the X-ray reflectance. The result is shown on the display unit 17.

試料表面とX線を平行にする軸立て作業と、本実施例の集光X線の特性は、前述の実施例1と同じである。   The shafting work for making the sample surface and X-ray parallel to each other and the characteristics of the focused X-ray in this embodiment are the same as those in the first embodiment.

次に、本実施例を用いて、試料10として磁気ヘッド素子を測定した結果を説明する。試料は幅50μm,縦500μmであった。試料は前述の調整方法で軸立てし、Coからの蛍光X線(CoKα)によるマッピングで試料の位置を合わせた。測定位置は、入射角
0.5°と1.0°のときで、それぞれ試料の中央付近になるように調整した。湾曲分光結晶35の調整によるが、本実施例で測定した反射率プロファイルも図3と同じになる。図3は既に説明したが、横軸は散乱ベクトル(=4πsinθ/λ ,θ:入射角,λ:波長)とし、入射角0.5° で測定した反射率プロファイル31のエネルギーを下軸、入射角
1.0° で測定した反射率プロファイル32のエネルギーを上軸に示した。従来の方法では、試料に含まれるCu,Co,Niの蛍光X線のピークが重なり、試料元素の蛍光X線エネルギー33の位置の反射プロファイルが測定できなかった。しかし、本実施例では、試料元素の蛍光X線エネルギー33の位置にピークはみられず、試料元素の吸収端エネルギー34位置で吸収変化による反射プロファイルの変化が測定できた。また、入射角
0.5°で測定した反射率プロファイル31と入射角1.0°で測定した反射率プロファイル32で重なる部分があるが、ここでも、反射率測定が正確にできていることが確認できた。
Next, the result of measuring a magnetic head element as the sample 10 will be described using this example. The sample was 50 μm wide and 500 μm long. The sample was axially aligned by the adjustment method described above, and the position of the sample was aligned by mapping with fluorescent X-rays (CoKα) from Co. The measurement positions were adjusted to be near the center of the sample at incident angles of 0.5 ° and 1.0 °, respectively. Depending on the adjustment of the curved spectral crystal 35, the reflectance profile measured in this example is also the same as in FIG. Although FIG. 3 has already been described, the horizontal axis represents the scattering vector (= 4πsin θ / λ, θ: incident angle, λ: wavelength), and the energy of the reflectance profile 31 measured at an incident angle of 0.5 ° is the lower axis. The energy of the reflectance profile 32 measured at an angle of 1.0 ° is shown on the upper axis. In the conventional method, the fluorescence X-ray peaks of Cu, Co, and Ni contained in the sample overlap, and the reflection profile at the position of the fluorescence X-ray energy 33 of the sample element cannot be measured. However, in this example, no peak was observed at the position of the fluorescent X-ray energy 33 of the sample element, and the change in the reflection profile due to the absorption change at the position of the absorption edge energy 34 of the sample element could be measured. In addition, there is a portion where the reflectance profile 31 measured at an incident angle of 0.5 ° and the reflectance profile 32 measured at an incident angle of 1.0 ° overlap, but here also the reflectance measurement can be accurately performed. It could be confirmed.

本発明の実施例。Examples of the present invention. 本発明のエネルギー同期計測装置の動作フロー。The operation | movement flow of the energy synchronous measuring device of this invention. 本発明で測定したエネルギー分散型の反射率プロファイル。The energy dispersion type reflectance profile measured by the present invention. 本発明の別の実施例。4 shows another embodiment of the present invention. 本発明の波長同期装置の動作フロー。The operation | movement flow of the wavelength synchronizing apparatus of this invention.

符号の説明Explanation of symbols

1…X線源、2…X線、3…第1対称反射結晶、4…第2対称反射結晶、5…散乱体、6…散乱X線、7…散乱X線検出器、8…垂直集光鏡、9…水平集光鏡、10…試料、
11…反射X線、12…反射X線検出器、13…エネルギー同期計測装置、14…入射エネルギー制御部、15…反射率計制御部、16…反射率測定制御部、17,20…表示部、18…アンプ、19…多チャンネル解析回路、21…ピーク検出回路、22…スムージング回路、23…微分回路、24…最大値/最小値検出回路、25…0レベル検出回路、
26…検出ウィンドウ幅入力部、27…検出ウィンドウ電圧発生回路、28…単チャンネル解析回路、29…2チャンネル計数回路、30…反射率計算装置、31…入射角0.5° で測定した反射率プロファイル、32…入射角1.0° で測定した反射率プロファイル、33…試料元素の蛍光X線エネルギー、34…試料元素の吸収端エネルギー、35…湾曲分光結晶、36…X線検出器、37…波長同期装置、38…湾曲分光結晶面間隔入力部、39…X線エネルギー/波長変換部、40…回折角度計算部、41…モーターコントローラ、42…モータードライバ、43…反射X線ウィンドウ幅入力部。
DESCRIPTION OF SYMBOLS 1 ... X-ray source, 2 ... X-ray, 3 ... 1st symmetrical reflective crystal, 4 ... 2nd symmetrical reflective crystal, 5 ... Scatterer, 6 ... Scattered X-ray, 7 ... Scattered X-ray detector, 8 ... Vertical collection Light mirror, 9 ... Horizontal focusing mirror, 10 ... Sample,
DESCRIPTION OF SYMBOLS 11 ... Reflected X-ray, 12 ... Reflected X-ray detector, 13 ... Energy synchronous measuring device, 14 ... Incident energy control part, 15 ... Reflectance meter control part, 16 ... Reflectance measurement control part, 17, 20 ... Display part , 18 ... amplifier, 19 ... multi-channel analysis circuit, 21 ... peak detection circuit, 22 ... smoothing circuit, 23 ... differentiation circuit, 24 ... maximum / minimum value detection circuit, 25 ... 0 level detection circuit,
26: Detection window width input unit, 27: Detection window voltage generation circuit, 28 ... Single channel analysis circuit, 29 ... 2 channel counting circuit, 30 ... Reflectance calculator, 31 ... Reflectance profile measured at an incident angle of 0.5 °, 32 ... Reflectance profile measured at an incident angle of 1.0 °, 33 ... Fluorescent X-ray energy of the sample element, 34 ... Absorption edge energy of the sample element, 35 ... Curved crystal, 36 ... X-ray detector, 37 ... Wavelength Synchronizer, 38 ... curved spectral crystal plane interval input unit, 39 ... X-ray energy / wavelength conversion unit, 40 ... diffraction angle calculation unit, 41 ... motor controller, 42 ... motor driver, 43 ... reflection X-ray window width input unit.

Claims (7)

X線源と、X線源で発生したX線を単色化する分光素子と、試料に照射されるX線束の大きさを水平方向で10μm以下及び垂直方向で1mm以下とする集光素子と、試料で反射されたX線を検出する反射X線検出器とを有する積層薄膜検査装置であって、
前記分光素子と試料位置との間に設けられ、入射X線を散乱させる薄膜散乱体と、前記薄膜散乱体で散乱されたX線のエネルギー及び強度を測定するエネルギー分解能300
eV以下の散乱X線検出器と、前記散乱X線検出器から得られる散乱X線のエネルギー情報を用い、前記反射X線検出器で測定する反射X線のエネルギー範囲を制限して、前記散乱X線及び前記反射X線の強度を計測するエネルギー同期計測装置と、前記散乱X線強度から得られる入射X線の強度と前記反射X線の強度よりX線反射率を求める計算装置とを有し、
前記エネルギー同期計測装置と前記計算装置を用いて分光素子で入射X線のエネルギーを変えながら各エネルギ―のX線反射率を取得する制御装置と、前記制御装置で取得したX線反射率のエネルギー依存性を表示する出力装置とを有することを特徴とする積層薄膜検査装置。
An X-ray source, a spectroscopic element for monochromating X-rays generated by the X-ray source, a light-collecting element that makes the size of the X-ray bundle irradiated to the sample 10 μm or less in the horizontal direction and 1 mm or less in the vertical direction, A multilayer thin film inspection apparatus having a reflection X-ray detector for detecting X-rays reflected by a sample,
A thin film scatterer that is provided between the spectroscopic element and the sample position and scatters incident X-rays, and an energy resolution 300 that measures energy and intensity of the X-rays scattered by the thin film scatterer.
The scattering X-ray detector of eV or less and the energy information of the scattered X-ray obtained from the scattered X-ray detector are used to limit the energy range of the reflected X-ray measured by the reflected X-ray detector, and the scattering An energy-synchronized measurement device that measures the intensities of X-rays and reflected X-rays, and a calculation device that obtains the X-ray reflectivity from the intensity of incident X-rays obtained from the scattered X-ray intensity and the intensity of the reflected X-ray And
A control device that acquires the X-ray reflectivity of each energy while changing the energy of incident X-rays with a spectroscopic element using the energy synchronous measurement device and the calculation device, and the energy of the X-ray reflectivity acquired by the control device A laminated thin film inspection apparatus, comprising: an output device that displays dependency.
請求項1記載の積層薄膜検査装置であって、
試料位置と前記反射X線検出器との間に設けられた分光結晶を有することを特徴とする積層薄膜検査装置。
The multilayer thin film inspection apparatus according to claim 1,
A laminated thin film inspection apparatus comprising a spectral crystal provided between a sample position and the reflection X-ray detector.
請求項1記載の積層薄膜検査装置であって、
前記反射X線検出器のエネルギー分解能が300eV以下であることを特徴とする積層薄膜検査装置。
The multilayer thin film inspection apparatus according to claim 1,
The laminated thin film inspection apparatus, wherein the reflection X-ray detector has an energy resolution of 300 eV or less.
請求項3記載の積層薄膜検査装置であって、
前記エネルギー同期計測装置は、前記散乱X線のピーク幅を入力し、前記散乱X線のピーク電圧を求め、前記ピーク電圧と前記ピーク幅を測定範囲として散乱X線強度を測定し、前記ピーク幅と前記ピーク電圧を用いて、前記反射X線強度の測定範囲とすることを特徴とする積層薄膜検査装置。
The multilayer thin film inspection apparatus according to claim 3,
The energy-synchronized measuring apparatus inputs a peak width of the scattered X-ray, obtains a peak voltage of the scattered X-ray, measures a scattered X-ray intensity using the peak voltage and the peak width as a measurement range, and the peak width And the peak voltage is used as the measurement range of the reflected X-ray intensity.
請求項2記載の積層薄膜検査装置であって、
前記波長同期装置は、前記散乱X線のピーク幅を入力し、散乱X線検出器の測定値よりピーク電圧を求め、前記ピーク電圧と前記ピーク幅を測定範囲として散乱X線強度を測定し、前記ピーク電圧から、前記散乱X線のエネルギーを求め、分光結晶の回折角度を算出し、前記回折角度に前記分光結晶及び前記反射X線検出器を移動させ、入射X線に対応するエネルギーの反射X線のみを測定することを特徴とする積層薄膜検査装置。
The laminated thin film inspection apparatus according to claim 2,
The wavelength synchronization device inputs the peak width of the scattered X-ray, obtains the peak voltage from the measured value of the scattered X-ray detector, measures the scattered X-ray intensity using the peak voltage and the peak width as a measurement range, The energy of the scattered X-ray is obtained from the peak voltage, the diffraction angle of the spectral crystal is calculated, the spectral crystal and the reflection X-ray detector are moved to the diffraction angle, and the energy corresponding to the incident X-ray is reflected. A laminated thin film inspection apparatus characterized by measuring only X-rays.
請求項5に記載の積層薄膜検査装置であって、
前記分光結晶は湾曲構造を有し、前記分光結晶の回折幅は300eV以下であることを特徴とする積層薄膜検査装置。
The laminated thin film inspection apparatus according to claim 5,
2. The multilayer thin film inspection apparatus according to claim 1, wherein the spectral crystal has a curved structure, and a diffraction width of the spectral crystal is 300 eV or less.
請求項1または4に記載の積層薄膜検査装置であって、
前記分光素子の散乱ベクトルと、前記集光素子の平面とのなす角度が±45°の範囲であることを特徴とする積層薄膜検査装置。
The laminated thin film inspection apparatus according to claim 1 or 4,
An apparatus for inspecting a laminated thin film, wherein an angle formed by a scattering vector of the spectroscopic element and a plane of the condensing element is in a range of ± 45 °.
JP2004320022A 2004-11-04 2004-11-04 Micro stack inspection system Pending JP2006133000A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004320022A JP2006133000A (en) 2004-11-04 2004-11-04 Micro stack inspection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004320022A JP2006133000A (en) 2004-11-04 2004-11-04 Micro stack inspection system

Publications (1)

Publication Number Publication Date
JP2006133000A true JP2006133000A (en) 2006-05-25

Family

ID=36726676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004320022A Pending JP2006133000A (en) 2004-11-04 2004-11-04 Micro stack inspection system

Country Status (1)

Country Link
JP (1) JP2006133000A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008170236A (en) * 2007-01-10 2008-07-24 High Energy Accelerator Research Organization X-ray and neutron beam reflectivity curve measuring method and measuring apparatus
JP2014109579A (en) * 2012-11-30 2014-06-12 Anton Paar Gmbh Method and apparatus for inspecting a sample with a beam emitted from a neutron or x-ray beam source
KR102235852B1 (en) * 2019-11-11 2021-04-02 가천대학교 산학협력단 Apparatus for measuring device using light and manufacturing method of the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008170236A (en) * 2007-01-10 2008-07-24 High Energy Accelerator Research Organization X-ray and neutron beam reflectivity curve measuring method and measuring apparatus
JP2014109579A (en) * 2012-11-30 2014-06-12 Anton Paar Gmbh Method and apparatus for inspecting a sample with a beam emitted from a neutron or x-ray beam source
KR102235852B1 (en) * 2019-11-11 2021-04-02 가천대학교 산학협력단 Apparatus for measuring device using light and manufacturing method of the same
WO2021095993A1 (en) * 2019-11-11 2021-05-20 가천대학교 산학협력단 Measurement device and measurement method using light

Similar Documents

Publication Publication Date Title
US9551677B2 (en) Angle calibration for grazing-incidence X-ray fluorescence (GIXRF)
TWI536014B (en) Method and apparatus for analyzing x-ray diffraction from tilted layers
US7120228B2 (en) Combined X-ray reflectometer and diffractometer
US20040151278A1 (en) Dual-wavelength x-ray monochromator
JPH11304728A (en) X-ray measurement device
JP6142135B2 (en) Obliquely incident X-ray fluorescence analyzer and method
CN106164618A (en) Multi-angle x-ray specular scattering is used to measure (XRS) for measuring the method and system of periodic structure
US7113566B1 (en) Enhancing resolution of X-ray measurements by sample motion
CN112654861A (en) Small angle X-ray scattering measurements
JP7510463B2 (en) Apparatus and method for short wavelength feature x-ray diffraction with array detection
US20040131151A1 (en) X-ray reflectometry of thin film layers with enhanced accuracy
Matsushita et al. Quick measurement of crystal truncation rod profiles in simultaneous multi-wavelength dispersive mode
JP2001124711A (en) X-ray fluorescence analysis method and sample structure evaluation method
Spanier et al. A flexible setup for angle-resolved X-ray fluorescence spectrometry with laboratory sources
TWI329736B (en) X-ray scattering with a polychromatic source
EP2080982B1 (en) Measurement method of layer thickness for thin film stacks
JP3968350B2 (en) X-ray diffraction apparatus and method
JP4521573B2 (en) Neutron beam reflectivity curve measuring method and measuring apparatus
JP2006133000A (en) Micro stack inspection system
US7724872B2 (en) Inspection method for thin film stack
JP3329197B2 (en) Thin film laminate inspection method
JP3619391B2 (en) Thin film evaluation equipment
Dhez et al. Tests Of Short Period X-Ray Multilayer Mirrors Using A Position Sensitive Proportional Counter
JPH0792112A (en) X-ray evaluation device
JPS61132847A (en) Fluorescent X-ray analysis method and device for two-layer plating film

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060425