[go: up one dir, main page]

JP2006131714A - Rubber composition for tire tread - Google Patents

Rubber composition for tire tread Download PDF

Info

Publication number
JP2006131714A
JP2006131714A JP2004320816A JP2004320816A JP2006131714A JP 2006131714 A JP2006131714 A JP 2006131714A JP 2004320816 A JP2004320816 A JP 2004320816A JP 2004320816 A JP2004320816 A JP 2004320816A JP 2006131714 A JP2006131714 A JP 2006131714A
Authority
JP
Japan
Prior art keywords
silica
rubber composition
rubber
weight
thermally expandable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004320816A
Other languages
Japanese (ja)
Inventor
Yoshihiro Kameda
慶寛 亀田
Takashi Shirokawa
隆 城川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP2004320816A priority Critical patent/JP2006131714A/en
Publication of JP2006131714A publication Critical patent/JP2006131714A/en
Pending legal-status Critical Current

Links

Landscapes

  • Tires In General (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rubber composition for a tire tread excellent in the performance on ice, wherein effects achieved by compounding silica and a thermally expansible microcapsule are increased. <P>SOLUTION: The rubber composition for the tire tread comprises 100 pts.wt. diene rubber, 10-60 pts.wt. silica, 5-15 wt.% 3-octanoylthiopropyltriethoxysilane against the weight of the silica and 1-20 pts.wt. thermally expansible microcapsule. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明はタイヤトレッド用ゴム組成物に関し、更に詳しくはジエン系ゴムにシリカ及び熱膨張性マイクロカプセルを配合した、氷上性能に優れ、スタッドレスタイヤ用として好適なタイヤトレッド用ゴム組成物に関する。   The present invention relates to a rubber composition for tire treads, and more particularly to a rubber composition for tire treads that is excellent in performance on ice and is suitable for studless tires, in which silica and thermally expandable microcapsules are blended with a diene rubber.

タイヤトレッド用ゴム組成物の分野において、市場のニーズに応えるべく種々の改良が行なわれてきた。その一つとして、ゴム補強用充填剤として汎用されてきたカーボンブラックに代えて、又はカーボンブラックと共に、シリカを用いることによって、更にシリカと共にシランカップリング剤を用いることによって、ウェット性能及び低燃費性能が改良されてきた。一方、ゴム組成物に熱膨張性マイクロカプセルなどの粒状化物質を配合してタイヤ表面にミクロな凹凸を形成して、氷の表面に発生する水膜を除去して氷上摩擦を高くする技術も知られている。   Various improvements have been made in the field of tire tread rubber compositions to meet market needs. As one of them, wet performance and low fuel consumption performance can be obtained by using silica instead of carbon black, which has been widely used as a filler for rubber reinforcement, or by using silica and further using a silane coupling agent together with silica. Has been improved. On the other hand, there is also a technology to increase friction on ice by blending a granulated material such as thermally expandable microcapsules into the rubber composition to form micro unevenness on the tire surface and removing water film generated on the ice surface. Are known.

ところで、シリカ高配合量の、例えばスタッドレスタイヤ用トレッドゴム組成物として、シリカに熱膨張性マイクロカプセルを配合すると熱膨張性カプセルが所望通り充分に膨張せず、期待される氷上性能が発現しないことが確認されている。   By the way, when a thermally expandable microcapsule is blended with silica as a tread rubber composition for a studless tire, for example, with a high silica blending amount, the thermally expandable capsule does not expand sufficiently as desired, and the expected performance on ice does not appear. Has been confirmed.

最近の我々の知見によれば、前述のようなシリカ高配合量のゴム組成物において、熱膨張性マイクロカプセルが充分に膨張しないのは、シリカ由来の水分とシランカップリング剤とシリカが反応する際に発生するエタノールに原因があることが判明した。即ちシリカ高配合量のゴム組成物において熱膨張性マイクロカプセルを充分に膨張させるためには、ゴム組成物に依存する水分とエタノールの除去が重要となる。   According to our recent knowledge, the heat-expandable microcapsules do not expand sufficiently in the rubber composition with a high silica content as described above because the water derived from silica reacts with the silane coupling agent and silica. It was found that there was a cause in the ethanol generated at the time. That is, in order to sufficiently expand the thermally expandable microcapsules in a rubber composition having a high silica content, it is important to remove moisture and ethanol depending on the rubber composition.

かかる前述の問題を解決しようとして、例えば特許文献1にはシリカ及び熱膨張性マイクロカプセルを配合したコンパウンドにシランカップリング剤及びポリシロキサン化合物を配合することが提案されている。しかしながら、この方法では、シリカとシランカップリング剤及びシリカとポリシロキサン化合物が反応する際にアルコールの発生を抑えることは難しく、熱膨張性マイクロカプセルの十分な膨張を得ることができない。   In order to solve the above-mentioned problem, for example, Patent Document 1 proposes blending a silane coupling agent and a polysiloxane compound with a compound in which silica and thermally expandable microcapsules are blended. However, in this method, it is difficult to suppress the generation of alcohol when silica and a silane coupling agent and silica and a polysiloxane compound react with each other, and sufficient expansion of the thermally expandable microcapsules cannot be obtained.

一方、特許文献2にはシリカと熱膨張性マイクロカプセルを併用する際に、1段階目の混合ステップで、シリカとシランカップリング剤の反応を完全に終了させ、次に発生する水分とアルコールを完全に揮発させるために再混練(リミル)することが提案されている。しかし、この方法はシリカコンパウンドの焼けが懸念され、また、混合生産性が悪化する。   On the other hand, in Patent Document 2, when silica and a thermally expandable microcapsule are used in combination, the reaction of silica and the silane coupling agent is completely terminated in the first mixing step, and the water and alcohol generated next are removed. It has been proposed to re-knead (remill) in order to completely volatilize. However, this method is concerned about burning of the silica compound, and the mixed productivity is deteriorated.

特開2002−356584号公報JP 2002-356484 A 特開2003−105138号公報JP 2003-105138 A

従って、本発明の目的は、シリカと熱膨張性マイクロカプセルを配合した、例えばスタッドレスタイヤ用ゴム組成物において、熱膨張性カプセルを所望通り充分に熱膨張させて充分な氷上性能を達成させることができるゴム組成物を提供することを目的とする。   Accordingly, an object of the present invention is to achieve sufficient performance on ice by sufficiently expanding a thermally expandable capsule as desired in a rubber composition for a studless tire, for example, in which silica and a thermally expandable microcapsule are blended. An object of the present invention is to provide a rubber composition that can be used.

本発明に従えば、ジエン系ゴム100重量部、シリカ10〜60重量部及びシリカ重量の5〜15重量%の3−オクタノイルチオプロピルトリエトキシシラン並びに熱膨張性マイクロカプセル1〜20重量部を含んで成るタイヤトレッド用ゴム組成物が提供される。   According to the present invention, 100 parts by weight of a diene rubber, 10 to 60 parts by weight of silica and 5 to 15% by weight of silica weight of 3-octanoylthiopropyltriethoxysilane and 1 to 20 parts by weight of thermally expandable microcapsules are added. A tire tread rubber composition comprising the same is provided.

本発明に従えば、また、前記ゴム組成物に、膨張黒鉛を更に配合したゴム組成物が提供される。   According to the present invention, there is also provided a rubber composition obtained by further adding expanded graphite to the rubber composition.

本発明によれば、新規なカップリング剤を用いて、シリカと熱膨張性マイクロカプセルとを含む特定の混合処方のゴム組成物を加熱して、熱膨張性マイクロカプセルを熱膨張させることにより、充分な氷上性能を有するタイヤトレッド用ゴム組成物を得ることができる。   According to the present invention, by using a novel coupling agent, heating a rubber composition of a specific mixed formulation containing silica and thermally expandable microcapsules to thermally expand the thermally expandable microcapsules, A rubber composition for a tire tread having sufficient performance on ice can be obtained.

本発明に係るゴム組成物に配合されるジエン系ゴムとしては天然ゴム(NR)、ポリイソプレンゴム(IR)、各種ポリブタジエンゴム(BR)、各種スチレン−ブタジエン共重合体ゴム(SBR)、アクリロニトリル−ブタジエン共重合体(NBR)ゴム、ブチルゴム(IIR)などをあげることができ、これらは単独又は任意の混合物として使用できる。   Examples of the diene rubber blended in the rubber composition according to the present invention include natural rubber (NR), polyisoprene rubber (IR), various polybutadiene rubbers (BR), various styrene-butadiene copolymer rubbers (SBR), and acrylonitrile. Examples thereof include butadiene copolymer (NBR) rubber and butyl rubber (IIR), and these can be used alone or as an arbitrary mixture.

本発明に係るゴム組成物に配合されるシリカ系充填剤としては従来よりタイヤ用などに使用されている任意のシリカ、例えば天然シリカ、合成シリカ、より具体的には乾式シリカ、湿式シリカとすることができる。これらのシリカは、ジエン系ゴム100重量部に対し、10〜60重量部、好ましくは15〜50重量部配合する。この配合量が少な過ぎると氷上性能、ウェット性能の向上効果が十分でなくなるので好ましくなく、逆に多過ぎると混合困難になるおそれがあるので好ましくない。   As a silica-type filler mix | blended with the rubber composition which concerns on this invention, it is set as arbitrary silica conventionally used for the tires etc., for example, natural silica, synthetic silica, more specifically, dry silica, wet silica. be able to. These silicas are blended in an amount of 10 to 60 parts by weight, preferably 15 to 50 parts by weight, based on 100 parts by weight of the diene rubber. If the blending amount is too small, the effect of improving the performance on ice and the wet performance is not sufficient, which is not preferable. On the other hand, if the blending amount is too large, mixing may be difficult.

本発明に係るゴム組成物に配合される熱膨張性マイクロカプセルはジエン系ゴム100重量部に対し1〜20重量部、好ましくは、3〜10重量部配合される。この配合量が少な過ぎると所望の氷上性能改善効果が十分でなくなるので好ましくなく、逆に多過ぎるとゴム組成物の耐摩耗性が低下するので好ましくない。本発明で使用する熱膨張性マイクロカプセルは、例えば熱により気化して気体を発生する液体を熱可塑性樹脂に内包した熱膨張性熱可塑性樹脂粒子であり、この粒子をその膨張開始温度以上の温度、例えば140〜190℃、好ましくは150〜180℃の温度で加熱して膨張させることによってその熱可塑性樹脂からなる外殻中に気体を封入した気体封入熱可塑性樹脂粒子となる。この熱膨張性マイクロカプセルの粒子値は、特に限定するものではないが膨張前で5〜300μmであるのが好ましく、更に好ましくは粒径10〜200μmのものである。このような熱膨張性マイクロカプセルは、例えば、スウェーデンのEXPANCEL社より商品名「エクスパンセル091DU−80」又は「エクスパンセル092DU−120」等として、あるいは松本油脂製薬(株)より商品名「マツモトマイクロスフェアーF−85」又は「マツモトマイクロスフェアーF−100」等として入手可能である。   The thermally expandable microcapsule blended in the rubber composition according to the present invention is blended in an amount of 1 to 20 parts by weight, preferably 3 to 10 parts by weight, based on 100 parts by weight of the diene rubber. If the blending amount is too small, the desired effect on ice performance is not sufficient, which is not preferable. Conversely, if the blending amount is too large, the wear resistance of the rubber composition is lowered, which is not preferable. The thermally expandable microcapsule used in the present invention is a thermally expandable thermoplastic resin particle in which, for example, a liquid that is vaporized by heat to generate a gas is included in a thermoplastic resin, and the temperature of the particle is equal to or higher than its expansion start temperature. For example, by heating and expanding at a temperature of 140 to 190 ° C., preferably 150 to 180 ° C., gas-encapsulated thermoplastic resin particles in which a gas is enclosed in an outer shell made of the thermoplastic resin are obtained. The particle value of the thermally expandable microcapsule is not particularly limited, but is preferably 5 to 300 μm before expansion, more preferably 10 to 200 μm. Such a heat-expandable microcapsule is, for example, trade name “Expancel 091DU-80” or “Expancel 092DU-120” from EXPANCEL, Sweden, or trade name “Matsumoto Yushi Seiyaku Co., Ltd.” It can be obtained as “Matsumoto Microsphere F-85” or “Matsumoto Microsphere F-100”.

前記の気体封入熱可塑性樹脂粒子の外殻成分を構成する熱可塑性樹脂としては、例えば(メタ)アクリロニトリルの重合体、(メタ)アクリロニトリル含有量の高いその共重合体が好適に用いられる。前記共重合体の他のモノマー(コモノマー)としては、ハロゲン化ビニル、ハロゲン化ビニリデン、スチレン系モノマー、(メタ)アクリレート系モノマー、酢酸ビニル、ブタジエン、ビニルピリジン、クロロプレン等のモンマーが用いられる。なお、前記熱可塑性樹脂は、ジビニルベンゼン、エチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、1,3−ブチレングリコールジ(メタ)アクリレート、アリル(メタ)アクリレート、トリアクリルホルマール、トリアリルイソシアヌレート等の架橋剤で架橋可能にされていてもよい。架橋形態については、未架橋が好ましいが、熱可塑性樹脂としての性質を損わない程度に部分的に架橋していてもかまわない。   As the thermoplastic resin constituting the outer shell component of the gas-filled thermoplastic resin particles, for example, a polymer of (meth) acrylonitrile and a copolymer having a high (meth) acrylonitrile content are preferably used. As the other monomer (comonomer) of the copolymer, a monomer such as vinyl halide, vinylidene halide, styrene monomer, (meth) acrylate monomer, vinyl acetate, butadiene, vinylpyridine, chloroprene, or the like is used. The thermoplastic resin is divinylbenzene, ethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, 1,3-butylene glycol di (meth) acrylate, allyl. It may be made crosslinkable with a crosslinking agent such as (meth) acrylate, triacryl formal, triallyl isocyanurate or the like. The crosslinked form is preferably uncrosslinked, but may be partially crosslinked so as not to impair the properties as a thermoplastic resin.

前記熱膨張性マイクロカプセル中に含まれる熱により気化して気体を発生する液体としては、例えばn−ペンタン、イソペンタン、ネオペンタン、ブタン、イソブタン、ヘキサン、石油エーテルのような炭化水素類、塩化メチル、塩化メチレン、ジクロロエチレン、トリクロロエタン、トリクロルエチレンのような塩素化炭化水素などをあげることができる。   Examples of the liquid that is vaporized by the heat contained in the thermally expandable microcapsule to generate a gas include hydrocarbons such as n-pentane, isopentane, neopentane, butane, isobutane, hexane, petroleum ether, methyl chloride, Examples thereof include chlorinated hydrocarbons such as methylene chloride, dichloroethylene, trichloroethane, and trichloroethylene.

本発明に従ったゴム組成物には、前記必須成分に加えて、任意成分として、膨張黒鉛を用いることができ、好ましくはジエン系ゴム100重量部に対し、1〜10重量部、更に好ましくは2〜8重量部配合され、上記の熱膨張性マイクロカプセルと併用することができる。この配合量が少な過ぎると所望の効果が得られないので好ましくなく、逆に多過ぎるとゴム表面と氷結路面間のミクロレベルにおける接触面積が低下するために、氷上摩擦力が低下するので好ましくない。また配合量が多すぎる場合にはゴム組成物の耐摩耗性及び機械的強度も低下するので好ましくない。この膨張(Expandable)黒鉛は黒鉛粒子の層間に熱より気化する物質を内包する粒子サイズ30〜600μm、好ましくは100〜350μmの粉体物質であり、加硫時の熱によって膨張して黒鉛膨張体(Expanded Graphite)となることが好ましい。   In the rubber composition according to the present invention, expanded graphite can be used as an optional component in addition to the essential components, preferably 1 to 10 parts by weight, more preferably 100 parts by weight of diene rubber. 2 to 8 parts by weight is blended and can be used in combination with the above-described thermally expandable microcapsules. If the amount is too small, the desired effect cannot be obtained, which is not preferable. On the other hand, if the amount is too large, the contact area at the micro level between the rubber surface and the icing road surface is decreased. . Moreover, when there are too many compounding quantities, since the abrasion resistance and mechanical strength of a rubber composition also fall, it is unpreferable. This expandable graphite is a powder substance having a particle size of 30 to 600 μm, preferably 100 to 350 μm, which encloses a substance that is vaporized by heat between graphite particles, and expands due to heat during vulcanization to expand the graphite. (Expanded Graphite) is preferred.

前記膨張黒鉛は既に公知の材料であり、その製造方法も知られているが、例えば巴工業より米国のUCAR Graphtech社製の「グラフガード160−50」又は「グラフガード160−80」等の市販品が入手可能である。   The expanded graphite is a known material, and its manufacturing method is also known. For example, “Graph Guard 160-50” or “Graph Guard 160-80” manufactured by UCAR Graphtech of the United States is available from Sakai Industries. Goods are available.

本発明においては、熱膨張性マイクロカプセル及び膨張黒鉛は、ゴム組成物の混練工程、押出し成形工程で膨張せず、加硫工程にて膨張させることが望ましく、膨張開始温度が好ましくは120〜200℃、更に好ましくは140〜190℃のものが用いられる。膨張開始温度が120℃未満では、混練り時又は押出し加工時に膨張し、ゴム比重が工程途中で変化することにより加工性が損なわれるおそれがあるので好ましくはない。また、膨張開始温度が200℃を超えると加硫工程での加工温度を200℃以上に設定しなければならず、ゴム組成物の主成分であるジエン系ゴム分子の熱劣化が著しくなる傾向にあるので好ましくない。   In the present invention, the thermally expandable microcapsule and the expanded graphite are desirably not expanded in the kneading step and the extrusion forming step of the rubber composition, but are expanded in the vulcanization step, and the expansion start temperature is preferably 120 to 200. One having a temperature of 140 ° C., more preferably 140 to 190 ° C. is used. If the expansion start temperature is less than 120 ° C., it is not preferable because it expands at the time of kneading or extrusion, and the processability may be impaired due to the change in the specific gravity of rubber during the process. Further, when the expansion start temperature exceeds 200 ° C., the processing temperature in the vulcanization process must be set to 200 ° C. or more, and the thermal deterioration of the diene rubber molecules as the main component of the rubber composition tends to become remarkable. This is not preferable.

本発明ではカップリング剤として3−オクタノイルチオプロピルトリエトキシシランを必須成分として用いて、先ずジエン系ゴム及びシリカと共に、好ましくは100〜180℃、更に好ましくは140〜180℃の高温で混合することにより、シリカが保有する水分、シリカとカップリング剤が反応する際に発生するエタノールを除去することができ、その後に熱膨張性マイクロカプセルを配合して、120〜200℃の温度で膨張させることにより、熱膨張性マイクロカプセルが充分に膨張し、期待される氷上性能を得ることができる。本発明において下記式(1)で示される3−オクタノイルチオプロピルトリエトキシシランをシラン重量に対し5〜15重量%、好ましくは6〜12重量%配合する。この配合量が少な過ぎると分散が悪くなるので好ましくなく、逆に多過ぎると縮合反応を起こしやすく所望性能が悪くなるので好ましくない。   In the present invention, 3-octanoylthiopropyltriethoxysilane is used as an essential component as a coupling agent, and is first mixed with a diene rubber and silica at a high temperature of preferably 100 to 180 ° C, more preferably 140 to 180 ° C. Thus, it is possible to remove moisture contained in silica and ethanol generated when silica and a coupling agent react, and then add thermally expandable microcapsules to expand at a temperature of 120 to 200 ° C. As a result, the thermally expandable microcapsules are sufficiently expanded, and the expected performance on ice can be obtained. In the present invention, 3-octanoylthiopropyltriethoxysilane represented by the following formula (1) is blended in an amount of 5 to 15% by weight, preferably 6 to 12% by weight based on the silane weight. If the blending amount is too small, the dispersion becomes poor, which is not preferable. Conversely, if the blending amount is too large, a condensation reaction is likely to occur, and the desired performance is deteriorated.

Figure 2006131714
Figure 2006131714

前記式(1)の3−オクタノイルチオプロピルトリエトキシシランは、トリエトキシシリル基を片側に有し、もう一方の側にオクチル酸基を有するシランカップリング剤である。このカップリング剤は遊離硫黄を全く放出しないため、従来とは違ってゴムの焼けが発生するおそれが全くない。このため、従来から汎用されているビス(3’トリエトキシシリルプロピル)テトラスルフィド(例えば、Si69)と比較し大幅な高温混合が可能となり水分、アルコールを混合中容易に揮発させることが可能となる。更に、シラノール基と反応した際、発生するアルコール量も少ないことが予想され、そのために熱膨張性マイクロカプセルの膨張を阻害することなくまた、コンパウンドの焼けを心配すること無く、配合することができる。   The 3-octanoylthiopropyltriethoxysilane of the formula (1) is a silane coupling agent having a triethoxysilyl group on one side and an octylic acid group on the other side. Since this coupling agent does not release any free sulfur, there is no possibility of rubber burning unlike the conventional case. For this reason, compared with the conventionally used bis (3 ′ triethoxysilylpropyl) tetrasulfide (for example, Si69), it can be mixed at a significantly high temperature, and moisture and alcohol can be easily volatilized during mixing. . Furthermore, it is expected that the amount of alcohol generated when reacting with a silanol group is small, so that it can be blended without inhibiting the expansion of the thermally expandable microcapsules and without worrying about the burning of the compound. .

本発明に係るゴム組成物には、前記した必須成分に加えて、カーボンブラックなどのその他の補強剤(フィラー)、加硫又は架橋剤、加硫又は架橋促進剤、各種オイル、老化防止剤、可塑剤などのタイヤ用、その他一般ゴム用に一般的に配合されている各種添加剤を配合することができ、かかる添加剤は一般的な方法で混練して組成物とし、加硫又は架橋するのに使用することができる。これらの添加剤の配合量は本発明の目的に反しない限り、従来の一般的な配合量とすることができる。   In addition to the above-described essential components, the rubber composition according to the present invention includes other reinforcing agents (fillers) such as carbon black, vulcanization or crosslinking agents, vulcanization or crosslinking accelerators, various oils, anti-aging agents, Various additives generally blended for tires such as plasticizers and other general rubbers can be blended, and these additives are kneaded by a general method into a composition, which is vulcanized or crosslinked. Can be used for The blending amounts of these additives may be conventional conventional blending amounts as long as the object of the present invention is not adversely affected.

以下、実施例によって本発明を更に説明するが、本発明の範囲をこれらの実施例に限定するものでないことはいうまでもない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further, it cannot be overemphasized that the scope of the present invention is not limited to these Examples.

標準例1、実施例1〜5及び比較例1〜2
サンプルの調製
表Iに示す配合において、加硫促進剤、硫黄及び熱膨張性マイクロカプセルを除く成分を1.8リットルの密閉型ミキサーで3〜5分間混練し、温度が165±5℃に達したときに放出してマスターバッチを得た。このマスターバッチに加硫促進剤、硫黄及び熱膨張性マイクロカプセルを8インチのオープンロールで混練し、ゴム組成物を得た。次に得られた未加硫ゴム組成物を15×15×0.2cmの金型中で160℃で20分間プレス加硫して加硫ゴムシート(試験サンプル)を調製し、以下に示す試験法で加硫ゴムの物性を測定した。結果は表Iに示す。
Standard Example 1, Examples 1-5 and Comparative Examples 1-2
Sample preparation In the formulation shown in Table I, ingredients other than the vulcanization accelerator, sulfur and thermally expandable microcapsules were kneaded for 3 to 5 minutes in a 1.8 liter closed mixer, and the temperature reached 165 ± 5 ° C. When it was released, a master batch was obtained. A vulcanization accelerator, sulfur and thermally expandable microcapsules were kneaded with this master batch with an 8-inch open roll to obtain a rubber composition. Next, the obtained unvulcanized rubber composition was press vulcanized at 160 ° C. for 20 minutes in a 15 × 15 × 0.2 cm mold to prepare a vulcanized rubber sheet (test sample). The physical properties of vulcanized rubber were measured by the method. The results are shown in Table I.

ゴム物性評価試験法
膨張率
JIS K2249に準拠して測定した加硫ゴムの比重を各配合剤の比重と配合量から求めた計算比重(理論値)で除算し、1.0からの差を膨張率とした。結果は標準例1を100として指数表示した。
氷上制動
各コンパウンドを加硫したシートを偏平円柱状の台ゴムにはりつけ、インサイドドラム型氷上摩擦試験機を用いて、測定温度−1.5℃、荷重0.54MPa、ドラム回転速度25Km/hで測定した。標準例1の値を100として指数表示した。この値が大きいほど氷上性能にすぐれることを示す。
ウェット制動
撒水したアスファルト路面を初速40Km/hで走行し、制動したときの制動距離を測定し、標準例1の値を100として指数表示した。数値が大きい程、制動性が良好であることを示す。
Rubber physical property evaluation test method
Expansion coefficient The specific gravity of vulcanized rubber measured according to JIS K2249 was divided by the calculated specific gravity (theoretical value) obtained from the specific gravity of each compounding agent and the blending amount, and the difference from 1.0 was defined as the expansion coefficient. The results are shown as an index with the standard example 1 being 100.
A sheet obtained by vulcanizing each braking compound on ice was attached to a flat cylindrical base rubber, and measured using an inside drum type on-ice friction tester at a measurement temperature of -1.5 ° C, a load of 0.54 MPa, and a drum rotation speed of 25 km / h. It was measured. The value of standard example 1 was set to 100 and displayed as an index. Larger values indicate better performance on ice.
The asphalt road surface wetted and flooded was run at an initial speed of 40 km / h, the braking distance when braking was measured, and the value of standard example 1 was set to 100 and displayed as an index. The larger the value, the better the braking performance.

Figure 2006131714
Figure 2006131714

表I脚注
BR:日本ゼオン製 BR1220(MW:57万)
NR:天然ゴム(TSR20)
カーボンブラック:昭和キャボット製 ショウブラックN234(N2SA=125m2/g、CTAB=119m2/g)
シリカ:ローディア製Z1165MP
アロマオイル:昭和シェル製アロマチックオイル
老化防止剤:フレキシス製サントフレックス6PPD
亜鉛華:正同化学工業製酸化亜鉛3種
ステアリン酸:日本油脂製
Si69:デグサ製シランカップリング剤
NXT:クロンプトン製カップリング剤(前記式(1)参照)
熱膨張性マイクロカプセル:松本油脂製薬製マツモトマイクロスフェアーF100
硫黄:鶴見化学製
加硫促進剤:フレキシス製促進剤CBS
Table I footnote BR: BR1220 manufactured by ZEON (MW: 570,000)
NR: Natural rubber (TSR20)
Carbon Black: Show Black Cabot Show Black N234 (N 2 SA = 125 m 2 / g, CTAB = 119 m 2 / g)
Silica: Rhodia Z1165MP
Aroma oil: Showa Shell Aromatic Oil Anti-aging agent: Flexis Santoflex 6PPD
Zinc flower: Zinc oxide 3 types manufactured by Shodo Chemical Industry Stearic acid: Nippon Oil & Fats Si69: Degussa silane coupling agent NXT: Crompton coupling agent (see formula (1) above)
Thermally expandable microcapsule: Matsumoto Microsphere F100 manufactured by Matsumoto Yushi Seiyaku
Sulfur: Tsurumi Chemical Vulcanization accelerator: Flexis accelerator CBS

以上の通り、本発明に従えば、シリカ及び熱膨張性マイクロカプセルを含むゴム組成物に、前記式(1)で示される3−オクタノイルチオプロピルトリエトキシシランを配合することによって、熱膨張性マイクロカプセルの膨張度を高めることができ、それによって高い氷上性能が得られるので、例えばスタッドレスタイヤのタイヤトレッド用として使用するのに好適である。   As described above, according to the present invention, by adding 3-octanoylthiopropyltriethoxysilane represented by the above formula (1) to a rubber composition containing silica and thermally expandable microcapsules, For example, the microcapsule is suitable for use as a tire tread of a studless tire because the degree of expansion of the microcapsule can be increased and thereby high performance on ice can be obtained.

Claims (2)

ジエン系ゴム100重量部、シリカ10〜60重量部及びシリカ重量の5〜15重量%の3−オクタノイルチオプロピルトリエトキシシラン並びに熱膨張性マイクロカプセル1〜20重量部を含んで成るタイヤトレッド用ゴム組成物。   For tire treads comprising 100 parts by weight of diene rubber, 10 to 60 parts by weight of silica and 5 to 15% by weight of silica, 3-octanoylthiopropyltriethoxysilane and 1 to 20 parts by weight of thermally expandable microcapsules Rubber composition. ジエン系ゴム100重量部に対し、膨張黒鉛1〜20重量部を更に含む請求項1に記載のゴム組成物。   The rubber composition according to claim 1, further comprising 1 to 20 parts by weight of expanded graphite with respect to 100 parts by weight of the diene rubber.
JP2004320816A 2004-11-04 2004-11-04 Rubber composition for tire tread Pending JP2006131714A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004320816A JP2006131714A (en) 2004-11-04 2004-11-04 Rubber composition for tire tread

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004320816A JP2006131714A (en) 2004-11-04 2004-11-04 Rubber composition for tire tread

Publications (1)

Publication Number Publication Date
JP2006131714A true JP2006131714A (en) 2006-05-25

Family

ID=36725551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004320816A Pending JP2006131714A (en) 2004-11-04 2004-11-04 Rubber composition for tire tread

Country Status (1)

Country Link
JP (1) JP2006131714A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008127468A (en) * 2006-11-21 2008-06-05 Bridgestone Corp Rubber composition and pneumatic tire by using the same
WO2008084821A1 (en) * 2007-01-10 2008-07-17 Bridgestone Corporation Rubber composition and pneumatic tire using the same
WO2008087987A1 (en) 2007-01-17 2008-07-24 Bridgestone Corporation Rubber composition and pneumatic tire using the same
JP2010059268A (en) * 2008-09-02 2010-03-18 Yokohama Rubber Co Ltd:The Rubber composition for tire
JP2010065138A (en) * 2008-09-10 2010-03-25 Yokohama Rubber Co Ltd:The Rubber composition for tire tread
JP2011038057A (en) * 2009-08-18 2011-02-24 Sumitomo Rubber Ind Ltd Rubber composition for studless tire and studless tire
JP2011213937A (en) * 2010-04-01 2011-10-27 Yokohama Rubber Co Ltd:The Rubber composition for tire tread, and pneumatic tire using the same
JP2012503055A (en) * 2008-09-18 2012-02-02 ソシエテ ド テクノロジー ミシュラン Tire sidewall
WO2014021002A1 (en) * 2012-08-03 2014-02-06 住友ゴム工業株式会社 Rubber composition for tread, and pneumatic tire
US8791197B2 (en) 2011-07-27 2014-07-29 Sumitomo Rubber Industries, Ltd. Rubber composition for winter tire, and winter tire
JP2014185339A (en) * 2013-02-25 2014-10-02 Yokohama Rubber Co Ltd:The Rubber composition for studless tire and studless tire
CN106496659A (en) * 2016-10-11 2017-03-15 常州市鼎升环保科技有限公司 A kind of preparation method of Anti-impact shock-absorbing elastomeric material
JP2018048294A (en) * 2016-09-22 2018-03-29 クムホ タイヤ カンパニー インコーポレーテッド Rubber composition for tire tread
JP2020015776A (en) * 2018-07-23 2020-01-30 横浜ゴム株式会社 Rubber composition for tires, and tire

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008127468A (en) * 2006-11-21 2008-06-05 Bridgestone Corp Rubber composition and pneumatic tire by using the same
WO2008084821A1 (en) * 2007-01-10 2008-07-17 Bridgestone Corporation Rubber composition and pneumatic tire using the same
JP2008169264A (en) * 2007-01-10 2008-07-24 Bridgestone Corp Rubber composition and pneumatic tire using the same
RU2471826C2 (en) * 2007-01-17 2013-01-10 Бриджстоун Корпорейшн Rubber composition and pneumatic tyre
WO2008087987A1 (en) 2007-01-17 2008-07-24 Bridgestone Corporation Rubber composition and pneumatic tire using the same
JP2008174618A (en) * 2007-01-17 2008-07-31 Bridgestone Corp Rubber composition and pneumatic tire using the same
EP2105461A4 (en) * 2007-01-17 2010-01-20 Bridgestone Corp Rubber composition and pneumatic tire using the same
JP2010059268A (en) * 2008-09-02 2010-03-18 Yokohama Rubber Co Ltd:The Rubber composition for tire
JP2010065138A (en) * 2008-09-10 2010-03-25 Yokohama Rubber Co Ltd:The Rubber composition for tire tread
JP2012503055A (en) * 2008-09-18 2012-02-02 ソシエテ ド テクノロジー ミシュラン Tire sidewall
JP2011038057A (en) * 2009-08-18 2011-02-24 Sumitomo Rubber Ind Ltd Rubber composition for studless tire and studless tire
US8022132B2 (en) 2009-08-18 2011-09-20 Sumitomo Rubber Industries, Ltd. Rubber composition for studless tire and studless tire
JP2011213937A (en) * 2010-04-01 2011-10-27 Yokohama Rubber Co Ltd:The Rubber composition for tire tread, and pneumatic tire using the same
US8791197B2 (en) 2011-07-27 2014-07-29 Sumitomo Rubber Industries, Ltd. Rubber composition for winter tire, and winter tire
WO2014021002A1 (en) * 2012-08-03 2014-02-06 住友ゴム工業株式会社 Rubber composition for tread, and pneumatic tire
CN104487506A (en) * 2012-08-03 2015-04-01 住友橡胶工业株式会社 Rubber composition for tread, and pneumatic tire
JP2014185339A (en) * 2013-02-25 2014-10-02 Yokohama Rubber Co Ltd:The Rubber composition for studless tire and studless tire
JP2018048294A (en) * 2016-09-22 2018-03-29 クムホ タイヤ カンパニー インコーポレーテッド Rubber composition for tire tread
CN106496659A (en) * 2016-10-11 2017-03-15 常州市鼎升环保科技有限公司 A kind of preparation method of Anti-impact shock-absorbing elastomeric material
JP2020015776A (en) * 2018-07-23 2020-01-30 横浜ゴム株式会社 Rubber composition for tires, and tire
JP7222193B2 (en) 2018-07-23 2023-02-15 横浜ゴム株式会社 Tire rubber composition and tire

Similar Documents

Publication Publication Date Title
JP4267062B2 (en) Rubber composition for tread of studless tire
JP5434118B2 (en) Manufacturing method of rubber composition for tire
JP2006131714A (en) Rubber composition for tire tread
JP2007039499A (en) Rubber composition for tire
JP2010185025A5 (en)
JP2013213129A (en) Rubber composition for tire and pneumatic tire by using the same
JP5380962B2 (en) Pneumatic studless tire
JP5515867B2 (en) Rubber composition for tire tread and pneumatic tire using the same
JP3553890B2 (en) Rubber composition for tire and method for producing tire using the same
JP2017031356A (en) Rubber composition for studless tire
JP2008163234A (en) Rubber composition for tire tread
JP2005320374A (en) Rubber composition for tire tread
JP2011089081A (en) Rubber composition for tire tread
JP5617316B2 (en) Rubber composition for tire tread and pneumatic tire using the same
JP2005082620A (en) Rubber composition for tire tread
JP2006249324A (en) Rubber composition for tire
JP5648342B2 (en) Rubber composition for pneumatic studless tire
JP4090349B2 (en) Rubber composition having improved frictional force on ice and pneumatic tire using the same
JP2003105138A (en) Process for producing rubber composition for tire tread improved in performance on ice
JP2004107482A (en) Rubber composition for tread of tire for ice/snow-covered road
JP4962125B2 (en) Pneumatic tire
JP2004359758A (en) Rubber composition
JP2002060548A (en) Rubber composition for tire
JP2004051754A (en) Tire tread rubber composition for iced or snowy road
JP7222193B2 (en) Tire rubber composition and tire