[go: up one dir, main page]

JP2006128216A - Composite magnetic particles and composite magnetic parts - Google Patents

Composite magnetic particles and composite magnetic parts Download PDF

Info

Publication number
JP2006128216A
JP2006128216A JP2004311327A JP2004311327A JP2006128216A JP 2006128216 A JP2006128216 A JP 2006128216A JP 2004311327 A JP2004311327 A JP 2004311327A JP 2004311327 A JP2004311327 A JP 2004311327A JP 2006128216 A JP2006128216 A JP 2006128216A
Authority
JP
Japan
Prior art keywords
magnetic
composite magnetic
composite
particles
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004311327A
Other languages
Japanese (ja)
Inventor
Toyoshige Sakaguchi
豊重 坂口
Shinji Uchida
真治 内田
Kazuyoshi Shibata
一喜 柴田
Sanehiro Okuda
修弘 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2004311327A priority Critical patent/JP2006128216A/en
Publication of JP2006128216A publication Critical patent/JP2006128216A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

【課題】 高周波領域における高透磁率と低渦電流損失とを両立可能な複合磁性材料の提供。
【解決手段】 金属磁性粒子が酸化物磁性材料被膜により被覆されている複合磁性粒子において、前記金属磁性粒子の材料がNi−Fe−Mo合金であることを特徴とする複合磁性粒子、および該複合磁性粒子の粉末を成形後、熱処理したことを特徴とする複合磁性部品。
【選択図】 図1
PROBLEM TO BE SOLVED: To provide a composite magnetic material capable of achieving both high magnetic permeability and low eddy current loss in a high frequency region.
A composite magnetic particle in which metal magnetic particles are coated with an oxide magnetic material coating, wherein the metal magnetic particles are made of a Ni-Fe-Mo alloy, and the composite A composite magnetic component, wherein a magnetic particle powder is molded and then heat-treated.
[Selection] Figure 1

Description

本発明は、複合磁性粒子およびこれを用いて作製した複合磁性部品に関する。より詳細には、スイッチング電源などに搭載されるトランスやリアクトルといった磁気部品に用いられ、高周波領域における高透磁率と低渦電流損失とを両立可能な複合磁性材料に関する。   The present invention relates to composite magnetic particles and composite magnetic parts produced using the composite magnetic particles. More specifically, the present invention relates to a composite magnetic material that can be used for magnetic parts such as a transformer and a reactor mounted on a switching power supply and the like and can achieve both high magnetic permeability and low eddy current loss in a high frequency region.

近年、各種電子機器が小型・軽量化され、かつ低消費電力化が求められている。これに伴い、電子機器に搭載される電源として高効率かつ小型のスイッチング電源に対する要求が高まっている。特にノート型パソコンや携帯電話等の小型情報機器、薄型CRT、フラットパネルディスプレイに用いられるスイッチング電源では、小型・薄型化が強く求められている。そして、従来のスイッチング電源では、その主要な構成部品であるトランスやリアクトルなどの磁気部品が大きな体積を占めていることから、スイッチング電源を小型・薄型化するためには、これら磁気部品の体積を縮小することが必要不可欠となっていた。   In recent years, various electronic devices have been required to be smaller and lighter and to have lower power consumption. In connection with this, the request | requirement with respect to a highly efficient and small switching power supply as a power supply mounted in an electronic device is increasing. In particular, switching power supplies used in small information devices such as notebook computers and mobile phones, thin CRTs, and flat panel displays are strongly required to be small and thin. In conventional switching power supplies, the main components such as transformers and reactors occupy a large volume. To reduce the size and thickness of switching power supplies, the volume of these magnetic parts must be reduced. It was essential to scale down.

従来、このような磁気部品には、センダストやパーマロイ等の金属磁性材料や、フェライト等の酸化物磁性材料が使用されていた。金属磁性材料は、一般に高い飽和磁束密度を有するが電気抵抗率が低いため、特に高周波数領域では渦電流損失が大きくなってしまう。スイッチング電源では、回路を高周波駆動することにより、高効率化および小型化する傾向にあるため、上記の渦電流損失の影響から、金属磁性材料をスイッチング電源用の磁気部品に使用することは困難である。他方、フェライトに代表される酸化物磁性材料は、金属磁性材料に比べて電気抵抗率が高いため、高周波数領域でも発生する渦電流損失が小さい。しかし、トランスやリアクトルをスイッチング電源等のパワー用途に使用する場合、コイルに直流電流を重畳された状態で交流電流を印加することが多く、また一般にフェライトの飽和磁束密度が金属磁性材料に比べて小さいため、直流磁場がかかると磁気的に飽和して、透磁率が著しく低下してしまう。このように、いずれの材料を用いても、スイッチング電源の磁気部品に対して要求される高周波駆動と小型化の双方を満足させることは困難となっていた。   Conventionally, metal magnetic materials such as Sendust and Permalloy, and oxide magnetic materials such as ferrite have been used for such magnetic parts. Metallic magnetic materials generally have a high saturation magnetic flux density but have a low electrical resistivity, so that eddy current loss increases particularly in a high frequency region. Since switching power supplies tend to be highly efficient and miniaturized by driving the circuit at high frequency, it is difficult to use metal magnetic materials for magnetic parts for switching power supplies due to the effects of the above eddy current loss. is there. On the other hand, an oxide magnetic material typified by ferrite has a higher electrical resistivity than a metal magnetic material, and therefore, eddy current loss that occurs even in a high frequency region is small. However, when a transformer or reactor is used for power applications such as a switching power supply, an alternating current is often applied in a state where a direct current is superimposed on a coil, and generally the saturation magnetic flux density of ferrite is higher than that of a metal magnetic material. Since it is small, when a DC magnetic field is applied, it is magnetically saturated and the magnetic permeability is significantly reduced. Thus, it has been difficult to satisfy both high frequency driving and miniaturization required for the magnetic components of the switching power supply, regardless of which material is used.

そこで最近、金属磁性材料および酸化物磁性材料の両者の長所を有する磁性材料として、飽和磁束密度および透磁率が高い金属磁性材料の表面に、電気抵抗率の高い酸化物磁性材料の被膜を形成した磁性材料が提案されている(特許文献1参照)。また、1〜10μmの粒子からなる金属磁性材料の表面をM−Fe(但し、M=Ni、Mn、Zn、x≦2)で表されるスピネル組成の金属酸化物磁性材料で被覆してなる高密度焼結磁性材料が提案されている(特許文献2参照)。さらに、表面に超音波励起フェライトめっきによって形成されたフェライト層の被覆を有する金属または金属間化合物の強磁性体微粒子粉末が圧縮成形され、前記フェライト層を介して、前記強磁性体粒子間に磁界を形成するものであることを特徴とする複合磁性材料も提案されている(特許文献3参照) Therefore, as a magnetic material having the advantages of both a metal magnetic material and an oxide magnetic material, a film of an oxide magnetic material having a high electrical resistivity is formed on the surface of a metal magnetic material having a high saturation magnetic flux density and a high magnetic permeability. Magnetic materials have been proposed (see Patent Document 1). Further, the surface of the metallic magnetic material consisting of 1~10μm particles M-Fe x O 4 (where, M = Ni, Mn, Zn , x ≦ 2) coated with a metal oxide magnetic material of the spinel composition represented by A high-density sintered magnetic material is proposed (see Patent Document 2). Furthermore, a ferromagnetic fine particle powder of a metal or intermetallic compound having a ferrite layer coating formed by ultrasonic excitation ferrite plating on the surface is compression-molded, and a magnetic field is generated between the ferromagnetic particles via the ferrite layer. There is also proposed a composite magnetic material characterized in that the material is formed (see Patent Document 3).

特開昭53−091397号公報JP-A-53-091397 特開昭56−038402号公報JP 56-038402 A 国際公開第03/015109号パンフレットWO03 / 015109 pamphlet

酸化物磁性材料(フェライト等)被膜で被覆された金属磁性粒子は、圧縮成形後に熱処理することによって高透磁率が得られる。これは酸化物磁性材料被膜と金属磁性粒子間での元素拡散により磁気的に結合された界面層が形成されるためである。しかし、金属磁性粒子中のFeの比率が高いと、圧縮成形後に熱処理を行った場合に得られる透磁率に負の影響を与えることがわかってきた。これは、フェライト等の酸化物磁性材料被膜と金属磁性粒子間での元素拡散が進行しすぎるために、フェライト被膜の分解が起こることが要因であることがわかった。   Metallic magnetic particles coated with an oxide magnetic material (ferrite or the like) film can obtain a high magnetic permeability by heat treatment after compression molding. This is because an interface layer magnetically coupled is formed by element diffusion between the oxide magnetic material coating and the metal magnetic particles. However, it has been found that a high proportion of Fe in the metal magnetic particles has a negative effect on the magnetic permeability obtained when heat treatment is performed after compression molding. It has been found that this is caused by the decomposition of the ferrite coating because the element diffusion between the oxide magnetic material coating such as ferrite and the metal magnetic particles proceeds excessively.

そこで、本発明は、熱処理における酸化物磁性材料被膜と金属磁性粒子間での元素拡散により磁気的に結合された界面層の形成で、元素拡散が進行しすぎることによるフェライト等の酸化物磁性材料被膜の分解を防ぐことにより、高周波領域における高透磁率と低渦電流損失とを両立可能とする複合磁性粒子ないし複合磁性材料を提供することを課題とする。   Therefore, the present invention provides an oxide magnetic material such as ferrite due to excessive element diffusion by forming an interface layer magnetically coupled by element diffusion between the oxide magnetic material film and the metal magnetic particles in the heat treatment. It is an object of the present invention to provide composite magnetic particles or composite magnetic materials that can achieve both high magnetic permeability and low eddy current loss in a high frequency region by preventing the decomposition of the coating.

上記課題を解決するため、本発明の第一の実施態様である複合磁性粒子は、金属磁性粒子が酸化物磁性材料被膜により被覆されている複合磁性粒子において、前記金属磁性粒子の材料がNi−Fe−Mo合金であることを特徴とする。   In order to solve the above problems, the composite magnetic particle according to the first embodiment of the present invention is a composite magnetic particle in which the metal magnetic particle is coated with an oxide magnetic material coating, wherein the material of the metal magnetic particle is Ni- It is an Fe—Mo alloy.

また、本発明の第二の実施態様である複合磁性部品は、上記複合磁性粒子の粉末を成形後、熱処理したことを特徴とする。   The composite magnetic component according to the second embodiment of the present invention is characterized in that the composite magnetic particle powder is molded and then heat-treated.

本発明の複合磁性粒子により得られる複合磁性材料は、フェライト等の酸化物磁性材料被膜の分解を防ぐことができるとともに、Mo添加そのもので金属磁性粒子の電気抵抗率も高めることにより、高周波領域における高透磁率と低渦電流損失とを両立可能とすることができる。   The composite magnetic material obtained by the composite magnetic particles of the present invention can prevent the oxide magnetic material coating such as ferrite from being decomposed, and also increases the electrical resistivity of the metal magnetic particles by adding Mo itself, so that it can be used in a high frequency region. It is possible to achieve both high magnetic permeability and low eddy current loss.

1 本発明の第一の実施態様では、金属磁性粒子が酸化物磁性材料被膜により被覆されている複合磁性粒子において、前記金属磁性粒子の材料がNi−Fe−Mo合金であることを特徴とする複合磁性粒子を提供する。   1 In the first embodiment of the present invention, in the composite magnetic particle in which the metal magnetic particle is coated with an oxide magnetic material film, the material of the metal magnetic particle is a Ni—Fe—Mo alloy. A composite magnetic particle is provided.

(1)本発明の金属磁性粒子とは、軟磁気特性を有する合金からなる粒子であって、Ni−Fe−Mo合金であるものをいう。 (1) The metal magnetic particles of the present invention are particles made of an alloy having soft magnetic properties and are Ni-Fe-Mo alloys.

Ni−Fe−Mo合金中のMo比率は、熱処理時の界面層中でのFeO等の非磁性鉄酸化物の生成ないしは酸化物磁性材料被膜の分解を防止し、かつ該金属磁性粒子の電気抵抗率を高める観点から、好ましくは3重量%以上、より好ましくは5重量%超、特に好ましくは6重量%以上であり、該金属磁性粒子の透磁率の低下を抑制する観点から、好ましくは15重量%以下、特に10重量%以下が好ましい。ここで、Mo比率とは該金属磁性粒子中のMo含有率(重量%)のことをいう。   The Mo ratio in the Ni-Fe-Mo alloy prevents the formation of nonmagnetic iron oxides such as FeO in the interface layer during heat treatment or the decomposition of the oxide magnetic material coating, and the electric resistance of the metal magnetic particles. From the viewpoint of increasing the rate, it is preferably 3% by weight or more, more preferably more than 5% by weight, particularly preferably 6% by weight or more, and preferably 15% by weight from the viewpoint of suppressing a decrease in magnetic permeability of the metal magnetic particles. % Or less, and particularly preferably 10% by weight or less. Here, the Mo ratio means the Mo content (% by weight) in the metal magnetic particles.

また、該金属磁性粒子の平均粒子径(50%粒子径:レーザー回折・散乱式粒度分布測定器で測定)は、取り扱いの容易性ならびに良好な成形時の充填密度および良好な透磁率特性を得るとの観点から、好ましくは1μm以上、より好ましくは5μm以上であり、渦電流による高周波数時における損失の発生を抑える観点から、好ましくは100μm以下、より好ましくは25μm以下、さらに好ましくは15μm以下である。   In addition, the average particle size of the metal magnetic particles (50% particle size: measured with a laser diffraction / scattering type particle size distribution analyzer) is easy to handle, has good packing density during molding, and good permeability characteristics. In view of the above, it is preferably 1 μm or more, more preferably 5 μm or more, and from the viewpoint of suppressing the occurrence of loss due to eddy currents at high frequencies, preferably 100 μm or less, more preferably 25 μm or less, and even more preferably 15 μm or less. is there.

また、該金属磁性粒子には、本発明の効果を損なわない範囲で他の任意成分を含めてもよい。   Further, the metal magnetic particles may contain other optional components as long as the effects of the present invention are not impaired.

さらに、該金属磁性粒子は、たとえばNi−Fe合金にMoを添加することにより得ることができるが、具体的には、金属磁性体の粉砕法、水アトマイズ法、ガスアトマイズ法等の当業者に知られている任意の方法により製造できる。もっとも、粒子形状の安定性と量産性の観点から、高圧水を用いて溶融金属の粉砕と急冷凝固を瞬時に行い金属粉を作製する方法である水アトマイズ法によるのが好ましい。   Further, the metal magnetic particles can be obtained, for example, by adding Mo to a Ni—Fe alloy. Specifically, the metal magnetic particles are known to those skilled in the art such as a metal magnetic material pulverization method, a water atomization method, and a gas atomization method. It can be produced by any known method. However, from the viewpoint of particle shape stability and mass productivity, it is preferable to use a water atomization method, which is a method of instantly pulverizing and rapidly solidifying molten metal using high-pressure water to produce metal powder.

(2)本発明の酸化物磁性材料とは、軟磁性特性を有する酸化物のことをいい、高い透磁率を有するとの観点から、好ましくはフェライト、特に高周波対応のためにはNi−Znフェライトがより好ましく用いられる。 (2) The oxide magnetic material of the present invention refers to an oxide having soft magnetic properties, and is preferably a ferrite from the viewpoint of having a high magnetic permeability, particularly Ni-Zn ferrite for high frequency applications. Is more preferably used.

該酸化物磁性材料の被覆の膜厚としては、高周波に対応でき、かつ高い透磁率を得るという観点から、好ましくは10〜200nmの範囲、より好ましくは25〜100nmの範囲にある。   The film thickness of the oxide magnetic material coating is preferably in the range of 10 to 200 nm, more preferably in the range of 25 to 100 nm, from the viewpoint of being able to cope with high frequencies and obtaining high magnetic permeability.

また、該酸化物磁性材料の被覆を形成する方法としては、たとえば特許文献3にも記載されている超音波励起フェライトメッキ法により行うことができる。   Moreover, as a method of forming the coating of the oxide magnetic material, for example, an ultrasonic excitation ferrite plating method described in Patent Document 3 can be used.

2 本発明の第二の実施態様では、上記複合磁性粒子の粉末を成形後、熱処理したことを特徴とする複合磁性部品を提供する   2 In a second embodiment of the present invention, there is provided a composite magnetic part, wherein the composite magnetic particle powder is molded and then heat-treated.

(1)複合磁性粒子の粉末の成形では、上記のようにして作製した複合磁性粒子をプレスにより所望の磁気コア形状に成形し圧粉体とする。たとえば、上記複合磁性粒子を超硬合金製の金型に充填し、一軸プレスにより環状に成形することができる。 (1) In forming the composite magnetic particle powder, the composite magnetic particle produced as described above is formed into a desired magnetic core shape by pressing to form a green compact. For example, the composite magnetic particles can be filled in a cemented carbide mold and formed into a ring shape by uniaxial pressing.

(2)次いで、上記圧粉体を熱処理する。 (2) Next, the green compact is heat-treated.

熱処理温度は、界面層を形成させ、透磁率が低下しないようにする観点から、好ましくは500℃以上、より好ましくは650℃以上であり、フェライト等の酸化物磁性材料被膜からのFeの過度の拡散により、界面層中にFeO等の非磁性鉄酸化物が生成して透磁率が低下することを防止する観点から、好ましくは900℃以下、より好ましくは750℃以下である。また、熱処理時間は、圧粉体の内部に充分に熱を入れ、透磁率の低下を抑制するという観点から、サンプルが500℃以上になっている時間が1秒以上あることが好ましく、フェライト等の酸化物磁性材料被膜からのFeの過度の拡散により、界面層中にFeO等の非磁性鉄酸化物が生成して透磁率が低下することを防止する観点から、サンプルが500℃以上になっている時間が好ましくは10分以内、より好ましくは3分以内である。   The heat treatment temperature is preferably 500 ° C. or higher, more preferably 650 ° C. or higher, from the viewpoint of preventing the magnetic permeability from being reduced by forming the interface layer, and the excessive amount of Fe from the oxide magnetic material coating such as ferrite. From the viewpoint of preventing nonmagnetic iron oxides such as FeO from being generated in the interface layer due to diffusion and preventing the magnetic permeability from decreasing, the temperature is preferably 900 ° C. or lower, more preferably 750 ° C. or lower. In addition, the heat treatment time is preferably 1 second or more for the sample to be 500 ° C. or more from the viewpoint of sufficiently heating the inside of the green compact and suppressing the decrease in magnetic permeability, such as ferrite From the viewpoint of preventing non-magnetic iron oxide such as FeO from forming in the interface layer due to excessive diffusion of Fe from the oxide magnetic material film, the sample becomes 500 ° C. or higher. The time is preferably within 10 minutes, more preferably within 3 minutes.

以下、実施例を用いて、本発明をより具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to examples.

(実施例1〜5、比較例1)
金属磁性粒子としては、水アトマイズ法で作製した平均粒子径8μmのNi−Fe−Mo合金粒子を種々、準備した。ここで、Mo比率は0重量%から20重量%、Fe比率は40重量%のものを作製した。
(Examples 1-5, Comparative Example 1)
As the metal magnetic particles, various Ni—Fe—Mo alloy particles having an average particle diameter of 8 μm prepared by a water atomization method were prepared. Here, the Mo ratio was 0 to 20% by weight, and the Fe ratio was 40% by weight.

次に金属磁性粒子の表面に酸化物磁性材料であるフェライト被膜を形成する。このフェライト被膜による被覆は、特許文献3に記載されている超音波励起フェライトメッキ法により行った。具体的には、純水を入れたガラス製のめっき反応容器中に前記金属磁性粒子を移し替え、19.5kHzの超音波を印加した。この反応容器に金属イオン溶液(HO:500ml、FeCl・4HO:7.95g、NiCl・6HO:2.38g、ZnCl:1.36g、MnCl・4HO:0.026g)および酸化剤溶液(HO:500ml、NaNO:1.00g)をそれぞれ一定の速度で供給しながら、適宜アンモニア水を滴下することによりpHを10.0に保った。このめっき処理を30分間行った後、粒子を分級・乾燥させ、平均粒子径8μmのNi−Fe−Mo合金粒子を、約50nmのフェライト被膜で被覆した複合磁性粒子を形成した。 Next, a ferrite film that is an oxide magnetic material is formed on the surface of the metal magnetic particles. The coating with this ferrite film was performed by the ultrasonic excitation ferrite plating method described in Patent Document 3. Specifically, the metal magnetic particles were transferred into a glass plating reaction vessel containing pure water, and 19.5 kHz ultrasonic waves were applied. In this reaction vessel, a metal ion solution (H 2 O: 500 ml, FeCl 2 · 4H 2 O: 7.95 g, NiCl 2 · 6H 2 O: 2.38 g, ZnCl 2 : 1.36 g, MnCl 2 · 4H 2 O: 0.026 g) and an oxidizing agent solution (H 2 O: 500 ml, NaNO 2 : 1.00 g) were respectively supplied at a constant rate, and the pH was kept at 10.0 by appropriately dropping ammonia water. After this plating treatment was performed for 30 minutes, the particles were classified and dried to form composite magnetic particles in which Ni—Fe—Mo alloy particles having an average particle diameter of 8 μm were coated with a ferrite film of about 50 nm.

上記の複合磁性粒子を超硬合金製の金型に充填し、980MPa(10ton重/cm)の一軸プレスにより内径3mmφ、外形8mmφ、高さ約3mmのリングコア形状に成形し、圧粉体を作製した。 The above composite magnetic particles are filled into a cemented carbide mold and formed into a ring core shape having an inner diameter of 3 mmφ, an outer diameter of 8 mmφ, and a height of about 3 mm by uniaxial pressing of 980 MPa (10 ton weight / cm 2 ). Produced.

熱処理は、次のように比較的急昇温、急降温で行った。特に500℃以上の温度では、100℃/分以上の速度で昇温させ、600℃から900℃の温度範囲で、1秒〜10秒保持した。さらに500℃以下の温度になるまでは100℃/分以上の速度で降温させた。   The heat treatment was performed at a relatively rapid temperature rise and fall as follows. In particular, at a temperature of 500 ° C. or higher, the temperature was increased at a rate of 100 ° C./min or higher, and held at a temperature range of 600 ° C. to 900 ° C. for 1 second to 10 seconds. Further, the temperature was lowered at a rate of 100 ° C./min or higher until the temperature reached 500 ° C. or lower.

熱処理後のリング型圧粉成形体に絶縁被覆された導体線を巻きつけてインダクタを作製し、交流のB−Hアナライザーを用いて周波数1MHzでの比透磁率μを測定した。また、参考として周波数100kHzにおける比透磁率も測定した。結果を表1に示す。 An inductor was produced by winding a conductor wire coated with insulation on the ring-type green compact after the heat treatment, and the relative permeability μ s at a frequency of 1 MHz was measured using an AC BH analyzer. For reference, the relative permeability at a frequency of 100 kHz was also measured. The results are shown in Table 1.

Figure 2006128216
Figure 2006128216

表1により、本発明実施例1〜4は、周波数100kHzはもちろんのこと、周波数1MHzという高周波数における比透磁率も100以上と高いことが分かる。また、Mo比率を20重量%にしたものでも、比較例1と比較すると、1MHzにおける比透磁率が向上していることがわかる。これに対して、Moを含まない比較例1では、周波数100kHzでは高い比透磁率を示すものの、周波数1MHzという高周波数における比透磁率は不十分である。   From Table 1, it can be seen that Examples 1-4 of the present invention have a high relative permeability of 100 or more at a high frequency of 1 MHz as well as a frequency of 100 kHz. Further, even when the Mo ratio is 20% by weight, it can be seen that the relative permeability at 1 MHz is improved as compared with Comparative Example 1. On the other hand, Comparative Example 1 that does not contain Mo shows a high relative permeability at a frequency of 100 kHz, but the relative permeability at a high frequency of 1 MHz is insufficient.

この結果から明らかなように、金属磁性粒子の組成をNi−Fe−Mo系合金とすることで、より好ましくは、前記合金粒子のMo比率を3重量%以上、15重量%以下とすることで、高周波領域においても高い比透磁率を得ることができることが分かる。これは、熱処理時に金属磁性粒子中のMoがフェライト被膜と金属磁性粒子間で、元素拡散の必要以上の進行を抑制したものと考えられ、このために、フェライト被膜と金属磁性粒子間での元素拡散による磁気的に結合された界面層を形成できるとともに、フェライトの分解も防ぐことができたと考えられる。   As is apparent from the results, the composition of the metal magnetic particles is a Ni—Fe—Mo alloy, more preferably, the Mo ratio of the alloy particles is 3 wt% or more and 15 wt% or less. It can be seen that a high relative permeability can be obtained even in the high frequency region. This is considered to be because Mo in the metal magnetic particles during the heat treatment suppressed the progress of element diffusion more than necessary between the ferrite coating and the metal magnetic particles. For this reason, the element between the ferrite coating and the metal magnetic particles It is considered that the magnetically coupled interface layer can be formed by diffusion and the decomposition of ferrite can be prevented.

また、図1に、実施例1の圧粉成形体のXRD(X−ray diffraction)パターン11と、比較のために、比較例1で得られたMoが添加されていない圧粉成形体のXRDパターン12を示す。この結果から明らかなように、金属磁性粒子の組成をNi−Fe−Mo系合金とすることで、FeO等の非磁性鉄酸化物の生成が抑えられていることがわかる。   Moreover, in FIG. 1, the XRD (X-ray diffraction) pattern 11 of the compacting body of Example 1 and the XRD of the compacting body to which Mo obtained in Comparative Example 1 is not added are compared for comparison. Pattern 12 is shown. As is apparent from this result, it can be seen that the formation of nonmagnetic iron oxides such as FeO is suppressed by using a Ni-Fe-Mo alloy as the composition of the metal magnetic particles.

本発明の複合磁性材料を用いることにより、ノート型パソコン、小型携帯機器、薄型ディスプレイなどのスイッチング電源に向けた高機能でかつ小型、薄型の磁気部品を作製することが可能となる。   By using the composite magnetic material of the present invention, it is possible to produce a high-functional, small, and thin magnetic component for a switching power source such as a notebook personal computer, a small portable device, and a thin display.

実施例1および比較例1で得られた圧粉成形体のXRDパターンである。It is an XRD pattern of the compacting body obtained in Example 1 and Comparative Example 1.

符号の説明Explanation of symbols

11 実施例1で得られた圧粉成形体のXRDパターン
12 比較例1で得られた圧粉成形体のXRDパターン
11 XRD pattern of the green compact obtained in Example 1 12 XRD pattern of the green compact obtained in Comparative Example 1

Claims (5)

金属磁性粒子が酸化物磁性材料被膜により被覆されている複合磁性粒子において、前記金属磁性粒子の材料がNi−Fe−Mo合金であることを特徴とする複合磁性粒子。   A composite magnetic particle in which metal magnetic particles are covered with an oxide magnetic material coating, wherein the material of the metal magnetic particles is a Ni-Fe-Mo alloy. 前記金属磁性粒子中のMo比率が、3重量%以上15重量%以下であることを特徴とする請求項1に記載の複合磁性粒子。   2. The composite magnetic particle according to claim 1, wherein the Mo ratio in the metal magnetic particle is 3 wt% or more and 15 wt% or less. 前記酸化物磁性材料が、フェライトであることを特徴とする請求項1または2に記載の複合磁性粒子。   The composite magnetic particle according to claim 1, wherein the magnetic oxide material is ferrite. 前記フェライトが、Ni−Znフェライトであることを特徴とする請求項3に記載の複合磁性粒子。   The composite magnetic particle according to claim 3, wherein the ferrite is Ni—Zn ferrite. 請求項1〜4のいずれかに記載の複合磁性粒子の粉末を成形後、熱処理したことを特徴とする複合磁性部品。   A composite magnetic part, wherein the composite magnetic particle powder according to claim 1 is molded and then heat-treated.
JP2004311327A 2004-10-26 2004-10-26 Composite magnetic particles and composite magnetic parts Pending JP2006128216A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004311327A JP2006128216A (en) 2004-10-26 2004-10-26 Composite magnetic particles and composite magnetic parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004311327A JP2006128216A (en) 2004-10-26 2004-10-26 Composite magnetic particles and composite magnetic parts

Publications (1)

Publication Number Publication Date
JP2006128216A true JP2006128216A (en) 2006-05-18

Family

ID=36722634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004311327A Pending JP2006128216A (en) 2004-10-26 2004-10-26 Composite magnetic particles and composite magnetic parts

Country Status (1)

Country Link
JP (1) JP2006128216A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006186072A (en) * 2004-12-27 2006-07-13 Fuji Electric Holdings Co Ltd Manufacturing method of composite magnetic parts
JP2019143198A (en) * 2018-02-21 2019-08-29 山陽特殊製鋼株式会社 Powder for magnetic member

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04226003A (en) * 1990-05-09 1992-08-14 Tdk Corp Composite soft magnetic material and coated particles for composite soft magnetic material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04226003A (en) * 1990-05-09 1992-08-14 Tdk Corp Composite soft magnetic material and coated particles for composite soft magnetic material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006186072A (en) * 2004-12-27 2006-07-13 Fuji Electric Holdings Co Ltd Manufacturing method of composite magnetic parts
JP2019143198A (en) * 2018-02-21 2019-08-29 山陽特殊製鋼株式会社 Powder for magnetic member
JP7277076B2 (en) 2018-02-21 2023-05-18 山陽特殊製鋼株式会社 Powder for magnetic parts

Similar Documents

Publication Publication Date Title
JP5710427B2 (en) Magnetic material, method for manufacturing magnetic material, and inductor element using magnetic material
JP5058031B2 (en) Core-shell magnetic particles, high-frequency magnetic material, and magnetic sheet
WO2016010098A1 (en) Magnetic core, method for producing magnetic core, and coil component
JP2008270368A (en) Powder magnetic core and manufacturing method thereof
JP4888784B2 (en) Soft magnetic metal particles with insulating oxide coating
JP2009164401A (en) Manufacturing method of dust core
US9607740B2 (en) Hard-soft magnetic MnBi/SiO2/FeCo nanoparticles
JP5168637B2 (en) Metal magnetic fine particles and production method thereof, dust core
JP2006351946A (en) Method for producing soft magnetic compact
CN105081342B (en) Prepare soft-hard magnetic FeCo/SiO with Magnetic guidance form2The method of/MnBi nano particles
JP2005068526A (en) Method for producing composite magnetic particle powder compact
JP2009158802A (en) Manufacturing method of dust core
JPH11260618A (en) Composite magnetic material, method for producing the same, and Fe-Al-Si soft magnetic alloy powder used therefor
JP2012222062A (en) Composite magnetic material
JP2009295613A (en) Method of manufacturing dust core
JP2000232014A (en) Manufacturing method of composite magnetic material
WO2013140762A1 (en) Composite magnetic material and method for manufacturing same
JP2005167097A (en) Magnetic component and method for manufacturing the same
JP4507176B2 (en) Composite magnetic materials and magnetic components
JP2006080166A (en) Dust core
JP2006128216A (en) Composite magnetic particles and composite magnetic parts
JP2006128215A (en) Composite magnetic particles and composite magnetic parts
JP2010070814A (en) Soft magnetic material
JP2005311078A (en) Method of manufacturing composite magnetic component and composite magnetic component
JP2005310919A (en) Composite magnetic materials and magnetic components

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070726

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070810

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070913

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070913

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20091112

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20091112

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100129

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100528