[go: up one dir, main page]

JP2006113561A - Producing method of light-scattering film, polarizing plate comprising light-scattering film and liquid crystal display device comprising the polarizing plate - Google Patents

Producing method of light-scattering film, polarizing plate comprising light-scattering film and liquid crystal display device comprising the polarizing plate Download PDF

Info

Publication number
JP2006113561A
JP2006113561A JP2005260998A JP2005260998A JP2006113561A JP 2006113561 A JP2006113561 A JP 2006113561A JP 2005260998 A JP2005260998 A JP 2005260998A JP 2005260998 A JP2005260998 A JP 2005260998A JP 2006113561 A JP2006113561 A JP 2006113561A
Authority
JP
Japan
Prior art keywords
light
film
layer
group
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2005260998A
Other languages
Japanese (ja)
Inventor
Kazuhiro Nakamura
和浩 中村
Katsumi Inoue
克己 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP2005260998A priority Critical patent/JP2006113561A/en
Publication of JP2006113561A publication Critical patent/JP2006113561A/en
Abandoned legal-status Critical Current

Links

Images

Landscapes

  • Polarising Elements (AREA)
  • Laminated Bodies (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a producing method capable of producing a light-scattering film or an antireflection film excellent in uniformity of light-scattering property in the surface of broad width sample and to provide a polarizing plate and a display device using the light-scattering film and the antireflection film produced by the producing method. <P>SOLUTION: In the producing method of light scattering film, a light-scattering layer is applied on a transparent support as follow: a land 18 of a forward end lip 17 of a slot die 13 is disposed close to the surface of a web W, and a coating composition 14 is applied on the web W through a slot 16 of the forward end lip 17, wherein the web W is supported by a backup roller 11 and, at the same time, runs continuously, and wherein the coating composition 14 comprises a light-transmitting fine particle, a light-transmitting resin and a solvent, and the coating composition satisfies the relation (1); (σ-ρ)×d<SP>2</SP>≤1.5 (1), wherein σ is density (g/cm<SP>2</SP>) of the light-transmitting fine particle, ρ is density (g/cm<SP>2</SP>) of the coating composition and (d) is average particle size (μm) of the light-transmitting fine particle. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、光散乱性フィルムの製造方法に関し、更に詳細には、透光性微粒子の沈降を制御した塗布組成物をダイコーターを用いて塗布することによって高い生産性が実現可能な、フィルム面内で均一な散乱性を有する光散乱性フィルムの製造方法に関する。また、該光散乱性フィルムを用いた偏光板、該偏光板を用いた液晶表示装置に関する。   The present invention relates to a method for producing a light-scattering film, and more specifically, a film surface on which high productivity can be realized by applying a coating composition with controlled sedimentation of translucent fine particles using a die coater. It is related with the manufacturing method of the light-scattering film which has a uniform scattering property in the inside. The present invention also relates to a polarizing plate using the light scattering film and a liquid crystal display device using the polarizing plate.

光散乱性フィルムは、大きくは表面散乱性を有する防眩性フィルムと、内部だけに散乱性を有する内部散乱性フィルムとに大別される。防眩性フィルムは一般に、CRT、プラズマディスプレイ(PDP)、エレクトロルミネッセンスディスプレイ(ELD)や液晶表示装置(LCD)のようなディスプレイ装置において、外光の反射による像の映り込みを防止するために、ディスプレイの最表面に配置される。また、特に近年表示装置の高精細化に伴い、防眩性フィルムによる微小な輝度ムラ(ギラツキと呼称する)の改良手段として、表面散乱に加えて内部散乱性を有する防眩性フィルムに関する技術が開示されている(特許文献1〜5)。   The light scattering film is roughly classified into an antiglare film having a surface scattering property and an internal scattering film having a scattering property only inside. Antiglare films are generally used in display devices such as CRT, plasma display (PDP), electroluminescence display (ELD) and liquid crystal display (LCD) to prevent reflection of images due to reflection of external light. Arranged on the outermost surface of the display. In addition, as a means for improving minute brightness unevenness (referred to as glare) due to the anti-glare film in recent years, especially with the increase in the definition of display devices, there is a technique related to an anti-glare film having internal scattering in addition to surface scattering. (Patent Documents 1 to 5).

一方、表面散乱性はなく、内部散乱性のみを有することにより、LCDの視野角特性を向上する散乱性フィルムに関する技術が開示されている(特許文献6)。また、特許文献6、7等で開示されているように、光散乱性フィルムが表示装置の最表面に用いられる場合には、明室にて外光の表面反射を抑制する効果を有する、反射防止機能を併せ持つフィルムが好ましいことが知られている。   On the other hand, there is disclosed a technique relating to a scattering film that improves the viewing angle characteristics of an LCD by having only surface scattering and not internal scattering (Patent Document 6). Further, as disclosed in Patent Documents 6 and 7, etc., when a light scattering film is used on the outermost surface of the display device, the reflection has an effect of suppressing surface reflection of external light in a bright room. It is known that a film having a prevention function is preferable.

以上のような光散乱性フィルムは、従来、バーコート法、グラビア法、マイクログラビア法等を用いて製造されていたが、近年、より高い生産性を達成することができる、比較的ウエット塗布量の少ない領域で好適に用いることができるダイコート法に関する技術が特許文献8等に開示されている。   The light scattering film as described above has been conventionally produced by using a bar coating method, a gravure method, a micro gravure method, etc., but in recent years, a relatively wet coating amount capable of achieving higher productivity. A technique relating to a die coating method that can be suitably used in a region having a small amount is disclosed in Patent Document 8 and the like.

しかしながら、上記特許文献で開示されている光散乱層用の塗布組成物では、ダイコート法で塗布する際に、ダイコーター内部のポケットに透光性微粒子が溜まってしまったり、スロットの幅方向で吐出される塗布組成物中の透光性微粒子の密度が不均一になったりすることに起因する、光散乱性フィルム面内でのムラが問題になり、その対策は困難な課題であった。   However, in the coating composition for the light scattering layer disclosed in the above-mentioned patent document, translucent fine particles accumulate in the pockets inside the die coater or are discharged in the width direction of the slot when applied by the die coating method. Unevenness in the surface of the light-scattering film due to the non-uniform density of the light-transmitting fine particles in the coating composition is a problem, and countermeasures have been difficult.

特開2000−304648号公報JP 2000-304648 A 特許第3507719号公報Japanese Patent No. 3507719 特開平11−3276608号公報Japanese Patent Laid-Open No. 11-3276608 特許第3515401号公報Japanese Patent No. 3515401 特許第3515426号公報Japanese Patent No. 3515426 特開2003−121606号公報JP 2003-121606 A 特開2003−270409号公報JP 2003-270409 A 特開2003−236434号公報JP 2003-236434 A

以上要するに、高い生産性を満たすダイコート法によりフィルム面内で均一な散乱性を有する光散乱性フィルムを製造する方法は提案されてないのが現状である。
従って、本発明の目的は、フィルム面内で均一な散乱性を有する光散乱性フィルム、更には反射防止フィルムを高い生産性で製造することにある。
In short, the present situation is that no method for producing a light-scattering film having a uniform scattering property in the film plane by a die coating method that satisfies high productivity has been proposed.
Accordingly, an object of the present invention is to produce a light scattering film having a uniform scattering property in the film plane, and further to produce an antireflection film with high productivity.

本発明者らは、上述の課題を解消すべく鋭意検討した結果、課題の発生原因は透光性微粒子の沈降速度が速すぎるためであると考え、塗布組成物における透光性微粒子の沈降速度を透光性微粒子の密度、塗布組成物の密度、透光性微粒子の平均粒径のファクターに着目して調整することにより、前記課題を解決し目的を達成しうることを知見し、本発明を完成するに至った。
すなわち、本発明は、下記の構成により、前記目的を達成したものである。
As a result of intensive studies to solve the above-mentioned problems, the present inventors consider that the cause of the problem is that the sedimentation rate of the translucent fine particles is too high, and the sedimentation rate of the translucent microparticles in the coating composition. It is found that the above-mentioned problems can be solved and the object can be achieved by adjusting the density of the light-transmitting fine particles, the density of the coating composition, and the average particle size factor of the light-transmitting fine particles. It came to complete.
That is, the present invention achieves the object by the following configuration.

[1]
透明支持体上に光散乱層を有する光散乱性フィルムの製造方法において、
透光性微粒子、透光性樹脂、および溶媒を含有する該光散乱層用の塗布組成物であって、式(1)を満たすことによって該透光性微粒子の沈降速度が制御された該塗布組成物を、バックアップロールによって支持されて連続走行するウェブの表面にスロットダイの先端リップのランドを近接させて該先端リップのスロットから塗布することにより、該透明支持体上に該光散乱層を塗工する工程
を含むことを特徴とする、光散乱性フィルムの製造方法。
式(1) (σ−ρ)×d2≦1.5
(但し、σ:透光性微粒子の密度(g/cm2)、ρ:塗布組成物の密度(g/cm2)、d:透光性微粒子の平均粒径(μm))
[2]
前記塗布組成物中において、前記透光性微粒子が前記溶媒によって膨潤することにより、膨潤後のσ、ρ、dが、前記式(1)を満たすことを特徴とする、[1]に記載の光散乱性フィルムの製造方法。
[3]
前記透光性微粒子の平均粒子径が0.5〜5μmであり、該透光性微粒子と前記透光性樹脂との屈折率の差が0.01〜0.2であり、該透光性微粒子が前記光散乱層の全固形分中3〜30質量%含有されてなることを特徴とする、[1]または[2]に記載の光散乱性フィルムの製造方法。
[4]
前記透光性微粒子が架橋ポリスチレン、架橋ポリ(アクリル−スチレン)、架橋ポリ((メタ)アクリレート)、またはそれらの混合物であり、前記溶媒がケトン類、トルエン、キシレン、エステル類から選ばれる少なくとも1種類の溶媒からなることを特徴とする、[1]〜[3]の何れかに記載の光散乱性フィルムの製造方法。
[5]
前記光散乱性フィルムが、前記光散乱層上に直接または他の層を介して前記支持体よりも屈折率が低い低屈折率層が形成された反射防止フィルムであることを特徴とする、[1]〜[4]の何れかに記載の光散乱性フィルムの製造方法。
[6]
前記バックアップロールによって支持されて連続走行するウェブの表面に、スロットダイの先端リップのランドを近接させて該先端リップのスロットから塗布することにより、前記透明支持体上に、前記光散乱層、前記低屈折率層またはその他の層を塗工する光散乱性フィルムの製造方法において、
該スロットダイのウェブ進行方向側の先端リップにおけるランド長さが30μm以上100μm以下であるスロットダイであって、該スロットダイを塗布位置に設置したときに、ウェブ進行方向側の先端リップと該ウェブとの隙間がウェブ進行方向とは逆側の先端リップと該ウェブとの隙間よりも30μm以上120μm以下小さくなるようなオーバーバイト形状のスロットダイを用いて塗布することを特徴とする、[1]〜[5]の何れかに記載の光散乱性フィルムの製造方法。
[7]
偏光膜と、該偏光膜の表側および裏側の両面を保護する2枚の保護フィルムをそれぞれ貼り合わせてなる偏光板において、[1]〜[6]の何れかに記載の製造方法で製造された光散乱性フィルムを片側の保護フィルムに用いたことを特徴とする、偏光板。
[8]
前記偏光板を形成するための前記2枚の保護フィルムのうちの前記光散乱性フィルム以外となるフィルムが、前記偏光膜と貼り合せる面とは反対側の面に光学異方性層を含んでなる光学補償層を有する光学補償フィルムであり、該光学異方性層がディスコティック構造単位を有する化合物からなる層であり、該ディスコティック構造単位の円盤面が該保護フィルム面に対して傾いており、且つ該ディスコティック構造単位の円盤面と該保護フィルム面とのなす角度が、該光学異方層の深さ方向において変化していることを特徴とする、[7]に記載の偏光板。
[9]
[1]〜[6]の何れかに記載の製造方法で製造された光散乱性フィルムを有することを特徴とする、画像表示装置。
[10]
[1]〜[6]の何れかに記載の製造方法で製造された光散乱性フィルムまたは請求項7または8に記載の偏光板を少なくとも1枚有することを特徴とする、液晶表示装置。
[11]
液晶セルの両面に偏光子を有し、液晶セルと偏光子の間に、少なくとも1枚の位相差補償素子を有する液晶表示装置の表面に、[1]〜[6]の何れかに記載の製造方法で製造された光散乱性フィルムを有することを特徴とする、液晶表示装置。
[1]
In the method for producing a light scattering film having a light scattering layer on a transparent support,
A coating composition for the light scattering layer, comprising translucent fine particles, a translucent resin, and a solvent, wherein the settling rate of the translucent fine particles is controlled by satisfying the formula (1) The light scattering layer is coated on the transparent support by applying the composition from the slot of the tip lip of the slot die in close proximity to the surface of a continuously running web supported by a backup roll. The manufacturing method of the light-scattering film characterized by including the process to apply.
Formula (1) (σ−ρ) × d 2 ≦ 1.5
(Where, σ: density of translucent fine particles (g / cm 2 ), ρ: density of coating composition (g / cm 2 ), d: average particle diameter of translucent fine particles (μm))
[2]
In the said coating composition, when the said translucent fine particle swells with the said solvent, (sigma), (rho), and d after swelling satisfy | fill said Formula (1), It is characterized by the above-mentioned. A method for producing a light-scattering film.
[3]
The translucent fine particles have an average particle diameter of 0.5 to 5 μm, the difference in refractive index between the translucent fine particles and the translucent resin is 0.01 to 0.2, and the translucency The method for producing a light-scattering film according to [1] or [2], wherein fine particles are contained in an amount of 3 to 30% by mass in the total solid content of the light-scattering layer.
[4]
The translucent fine particles are crosslinked polystyrene, crosslinked poly (acryl-styrene), crosslinked poly ((meth) acrylate), or a mixture thereof, and the solvent is at least one selected from ketones, toluene, xylene, and esters. It consists of a kind of solvent, The manufacturing method of the light-scattering film in any one of [1]-[3] characterized by the above-mentioned.
[5]
The light scattering film is an antireflection film in which a low refractive index layer having a refractive index lower than that of the support is formed on the light scattering layer directly or via another layer. The manufacturing method of the light-scattering film in any one of [1]-[4].
[6]
By applying the land of the tip lip of the slot die close to the surface of the web supported by the backup roll and continuously running from the slot of the tip lip, on the transparent support, the light scattering layer, In the method for producing a light-scattering film in which a low refractive index layer or other layer is applied,
A slot die having a land length at a tip lip on the web traveling direction side of the slot die of 30 μm or more and 100 μm or less, and when the slot die is installed at a coating position, It is applied using a slot die having an overbite shape such that the gap between the tip lip opposite to the web traveling direction and the gap between the web and the web is smaller by 30 μm or more and 120 μm or less [1] The manufacturing method of the light-scattering film in any one of-[5].
[7]
In the polarizing plate formed by laminating a polarizing film and two protective films for protecting both the front side and the back side of the polarizing film, the polarizing film was produced by the production method according to any one of [1] to [6]. A polarizing plate using a light scattering film as a protective film on one side.
[8]
Of the two protective films for forming the polarizing plate, the film other than the light-scattering film includes an optically anisotropic layer on the surface opposite to the surface to be bonded to the polarizing film. An optical compensation film having an optical compensation layer, wherein the optical anisotropic layer is a layer made of a compound having a discotic structural unit, and the disc surface of the discotic structural unit is inclined with respect to the protective film surface. And the angle formed by the disc surface of the discotic structural unit and the surface of the protective film varies in the depth direction of the optically anisotropic layer. .
[9]
It has a light-scattering film manufactured with the manufacturing method in any one of [1]-[6], The image display apparatus characterized by the above-mentioned.
[10]
A liquid crystal display device comprising at least one light-scattering film produced by the production method according to any one of [1] to [6] or the polarizing plate according to claim 7 or 8.
[11]
The liquid crystal cell according to any one of [1] to [6], having a polarizer on both surfaces of the liquid crystal cell, and having at least one phase difference compensation element between the liquid crystal cell and the polarizer. It has a light-scattering film manufactured with the manufacturing method, The liquid crystal display device characterized by the above-mentioned.

本発明の光散乱性フィルムの製造方法は、光散乱層用塗布組成物における透光性微粒子の沈降速度が速すぎることがないように、透光性微粒子の密度、塗布組成物の密度、透光性微粒子の平均粒径のファクターに着目して調整した、透光性微粒子、透光性樹脂、および溶媒を含有する塗布組成物を、透明支持体の表面にダイコート法で塗布することにより、高い生産性を満たすダイコート法によっても、光散乱性フィルム面内でのムラがなく、フィルム面内で均一な散乱性を有する光散乱性フィルムを製造する方法を提供することができた。   The method for producing a light-scattering film of the present invention allows the density of the light-transmitting fine particles, the density of the coating composition, By applying a coating composition containing translucent fine particles, a translucent resin, and a solvent adjusted by paying attention to the factor of the average particle diameter of the light fine particles, to the surface of the transparent support by a die coating method, Even by a die coating method that satisfies high productivity, it was possible to provide a method for producing a light-scattering film having no unevenness in the light-scattering film surface and having uniform scattering properties in the film surface.

以下、本発明について更に詳細に説明する。なお、本明細書において、数値が物性値、特性値等を表す場合に、「(数値1)〜(数値2)」という記載は「(数値1)以上(数値2)以下」の意味を表す。また、本明細書において、「(メタ)アクリレート」との記載は、「アクリレート及びメタクリレートの少なくともいずれか」の意味を表す。「(メタ)アクリル酸」等も同様である。   Hereinafter, the present invention will be described in more detail. In the present specification, when a numerical value represents a physical property value, a characteristic value, etc., the description “(numerical value 1) to (numerical value 2)” means “(numerical value 1) or more and (numerical value 2) or less”. . Moreover, in this specification, description with "(meth) acrylate" represents the meaning of "at least one of an acrylate and a methacrylate." The same applies to “(meth) acrylic acid” and the like.

本発明の製造方法で作製した光散乱性フィルム(以下、「本発明の光散乱性フィルム」ともいう。)について好適な一実施形態の基本的な構成を図面を参照しながら説明する。
ここで、図1は、本発明の光散乱性フィルムの好ましい1実施形態を模式的に示す断面図である。図1は表面凹凸がある防眩性を有する例を示しているが、表面凹凸がない防眩性を有さない光散乱性フィルムも好ましく用いられる。
図1に示す本実施形態の光散乱性フィルム1は、透明支持体2と、透明支持体2上に形成された光散乱層3と、そして光散乱層3上に形成された低屈折率層4とからなる。光散乱層の上に低屈折率層を光の波長の1/4前後の膜厚で形成することにより、薄膜干渉の原理により表面反射を低減することができるため、より好ましい。
光散乱層3は、透光性樹脂と透光性樹脂中に分散された透光性微粒子5とからなる。
本発明における反射防止層を有する光散乱性フィルムを構成する各層の屈折率は以下の関係を満たすことが好ましい。
光散乱層の屈折率>透明支持体の屈折率>低屈折率層の屈折率
本発明においては、光散乱層は、好ましくは防眩性および/またはハードコート性を兼ね備えており、本実施形態においては、1層で形成されたものを例示しているが、複数層、例えば2層〜4層で構成されていてもよい。また、本実施形態のように透明支持体上に直接設けてもよいが、帯電防止層や防湿層等の他の層を介して設けてもよい。
A basic configuration of a preferred embodiment of a light-scattering film produced by the production method of the present invention (hereinafter also referred to as “light-scattering film of the present invention”) will be described with reference to the drawings.
Here, FIG. 1 is a cross-sectional view schematically showing a preferred embodiment of the light-scattering film of the present invention. Although FIG. 1 shows an example of antiglare property having surface irregularities, a light scattering film not having antiglare properties having no surface irregularities is also preferably used.
A light scattering film 1 according to this embodiment shown in FIG. 1 includes a transparent support 2, a light scattering layer 3 formed on the transparent support 2, and a low refractive index layer formed on the light scattering layer 3. It consists of four. Forming a low refractive index layer on the light scattering layer with a film thickness of about ¼ of the wavelength of light is more preferable because surface reflection can be reduced by the principle of thin film interference.
The light scattering layer 3 includes a translucent resin and translucent fine particles 5 dispersed in the translucent resin.
The refractive index of each layer constituting the light-scattering film having an antireflection layer in the present invention preferably satisfies the following relationship.
Refractive index of light scattering layer> refractive index of transparent support> refractive index of low refractive index layer In the present invention, the light scattering layer preferably has antiglare properties and / or hard coat properties. In FIG. 1, although formed by one layer is illustrated, it may be composed of a plurality of layers, for example, two to four layers. Moreover, although you may provide directly on a transparent support body like this embodiment, you may provide via other layers, such as an antistatic layer and a moisture-proof layer.

本発明の光散乱性フィルムに防眩性を付与する場合は、その表面凹凸形状として、中心線平均粗さRaが0.08〜0.40μm、10点平均粗さRzがRaの10倍以下、平均山谷距離Smが1〜100μm、凹凸最深部からの凸部高さの標準偏差が0.5μm以下、中心線を基準とした平均山谷距離Smの標準偏差が20μm以下、傾斜角0〜5度の面が10%以上となるように設計するのが、十分な防眩性と目視での均一なマット感が達成されるので、好ましい。
また、C光源下でのCIE1976L***色空間における反射光の色味がa*値−2〜2、b*値−3〜3、380nm〜780nmの範囲内での反射率の最小値と最大値の比0.5〜0.99とするのが、反射光の色味がニュートラルとなるので、好ましい。またC光源下での透過光のb*値を0〜3とすると、表示装置に適用した際の白表示の黄色味が低減され、好ましい。また、面光源上と本発明の反射防止フィルムの間に120μm×40μmの格子を挿入してフィルム上で輝度分布を測定した際の輝度分布の標準偏差を20以下とすると、高精細パネルに本発明のフィルムを適用したときのギラツキが低減され、好ましい。
When the anti-glare property is imparted to the light-scattering film of the present invention, the center line average roughness Ra is 0.08 to 0.40 μm and the 10-point average roughness Rz is 10 times or less of Ra as the surface irregularity shape. The average deviation between the peaks and valleys Sm is 1 to 100 μm, the standard deviation of the height of the convex part from the deepest part of the irregularities is 0.5 μm or less, the standard deviation of the average mountain valley distance Sm based on the center line is 20 μm or less, and the inclination angle is 0 to 5 It is preferable to design so that the degree of surface is 10% or more because sufficient anti-glare property and visual uniform mat feeling can be achieved.
Further, the minimum reflectance of the reflected light in the CIE 1976 L * a * b * color space under the C light source is in the range of a * value −2 to 2, b * value −3 to 3, 380 nm to 780 nm. A ratio between the value and the maximum value of 0.5 to 0.99 is preferable because the color of the reflected light becomes neutral. Moreover, when the b * value of the transmitted light under the C light source is set to 0 to 3, the yellow color of white display when applied to a display device is reduced, which is preferable. In addition, when a 120 μm × 40 μm grid is inserted between the surface light source and the antireflection film of the present invention and the luminance distribution is measured on the film, the standard deviation of the luminance distribution is set to 20 or less. The glare when the film of the invention is applied is reduced, which is preferable.

一方、本発明の内部散乱性のみを有する光散乱性フィルムは、その表面凹凸形状として、中心線平均粗さRaが0.10以下であることが好ましく、実質上、防眩性は有さない。光散乱層の内部に屈折率の異なる領域が多数存在することにより、内部散乱性を有しており、液晶表示装置の最表面に適用した際の視野角特性の改良効果が得られるように、散乱特性を最適化するのが好ましい。   On the other hand, the light scattering film having only the internal scattering property of the present invention preferably has a center line average roughness Ra of 0.10 or less as its surface irregularity shape, and has substantially no antiglare property. . Since there are many regions with different refractive indexes inside the light scattering layer, it has internal scattering properties, so that the effect of improving viewing angle characteristics when applied to the outermost surface of a liquid crystal display device can be obtained. It is preferred to optimize the scattering properties.

また、本発明の反射防止層を有する光散乱性フィルムは、その光学特性を、鏡面反射率2.5%以下、透過率90%以上とするのが、外光の反射を抑制でき、視認性が向上するため、好ましい。また、ヘイズは1%〜60%が好ましく、20%〜60%が更に好ましく、20%〜50%が特に好ましい。内部ヘイズ/全ヘイズ値0.3〜1、光散乱層までのヘイズ値から低屈折率層を形成後のヘイズ値の低下が15%以内、くし幅0.5mmにおける透過像鮮明度10%〜70%、垂直透過光/垂直から2度傾斜方向の透過率比が1.5〜5.0とするのが、高精細LCDパネル上でのギラツキ防止、文字等のボケの低減が達成されるので、好ましい。なお、防眩性の付与を目的にしない場合は、透過画像鮮明度は65〜99%が好ましく用いられる。   Further, the light scattering film having the antireflection layer of the present invention has an optical characteristic of a specular reflectance of 2.5% or less and a transmittance of 90% or more. Is preferable. The haze is preferably 1% to 60%, more preferably 20% to 60%, and particularly preferably 20% to 50%. Internal haze / total haze value of 0.3 to 1, lowering of haze value after formation of low refractive index layer from haze value to light scattering layer within 15%, transmitted image sharpness at comb width of 0.5 mm 10% to 70% vertical transmission light / transmission ratio in the direction of 2 degrees tilt from vertical is 1.5 to 5.0, which prevents glare on a high-definition LCD panel and reduces blurring of characters, etc. Therefore, it is preferable. In addition, when not aiming at provision of anti-glare property, 65-99% of transmitted image definition is used preferably.

次に、光散乱層について以下に説明する。
<光散乱層>
光散乱層は、表面散乱および/または内部散乱による光拡散性と、好ましくはフィルムの耐擦傷性を向上するためのハードコート性をフィルムに寄与する目的で形成される。従って、好ましくはハードコート性を付与することのできる透光性樹脂、光拡散性を付与するための透光性微粒子、および溶媒を必須成分として含有する。更に、上記式(1)を満たすことによって該透光性微粒子の沈降速度を制御することによって、高い生産性を有するダイコート法によって透明支持体上に、高い面内均一性をもって塗工することが可能となる。上記式(1)の左辺はStokes式より導出される流体中での粒子の沈降速度式(2)の透光性微粒子の密度、粒径と塗布組成物の密度に関する項であり、この値が1.5以下であると、ダイコート法による塗布工程において透光性微粒子の沈降速度が速すぎる事に起因する前述の種々のトラブルを回避しやすくなり、好ましく、1.0以下がより好ましく、0.5以下が更に好ましい。この値が負になる場合は、透光性微粒子は長い時間が経つと浮遊物となるが、連続して送液される際には大きな問題とはならないが、ゼロに近い方が好ましい。
上記以外に透光性微粒子の沈降速度を制御する因子として塗布組成物の粘度が挙げられ、沈降速度の観点からは粘度が高い方がいいが、塗布組成物の粘度は高速塗布適性の観点から、20×10-3(Pa・s)以下が好ましく、特に好ましくは15×10-3(Pa・s)以下であり、10×10-3(Pa・s)以下が更に好ましい。乾燥ムラ防止の観点から、1×10-3(Pa・s)以上が好ましく、3×10-3(Pa・s)以上が特に好ましく、5×10-3(Pa・s)以上が特に好ましい。高速塗布適性と乾燥ムラを両立しながら、粒子沈降性を制御するためには、3〜15×10-3(Pa・s)が好ましく、5〜10×10-3(Pa・s)が特に好ましい。
Next, the light scattering layer will be described below.
<Light scattering layer>
The light scattering layer is formed for the purpose of contributing to the film light diffusibility due to surface scattering and / or internal scattering, and preferably hard coat properties for improving the scratch resistance of the film. Therefore, it preferably contains a translucent resin capable of imparting hard coat properties, translucent fine particles for imparting light diffusibility, and a solvent as essential components. Further, by controlling the sedimentation rate of the light-transmitting fine particles by satisfying the above formula (1), coating can be performed on the transparent support with high in-plane uniformity by a die coating method having high productivity. It becomes possible. The left side of the above formula (1) is a term relating to the density, particle size and density of the coating composition in the sedimentation velocity formula (2) of the particles in the fluid derived from the Stokes formula. When it is 1.5 or less, it becomes easy to avoid the above-mentioned various troubles caused by the sedimentation rate of the translucent fine particles being too high in the coating step by the die coating method, preferably 1.0 or less, more preferably 0 .5 or less is more preferable. When this value is negative, the translucent fine particles become a floating substance after a long time, but this is not a big problem when continuously fed, but it is preferably close to zero.
In addition to the above, the viscosity of the coating composition can be cited as a factor for controlling the sedimentation rate of the light-transmitting fine particles. From the viewpoint of the sedimentation rate, a higher viscosity is preferable, but the viscosity of the coating composition is from the viewpoint of high-speed coating suitability. 20 × 10 −3 (Pa · s) or less, preferably 15 × 10 −3 (Pa · s) or less, and more preferably 10 × 10 −3 (Pa · s) or less. From the viewpoint of preventing drying unevenness, 1 × 10 −3 (Pa · s) or more is preferable, 3 × 10 −3 (Pa · s) or more is particularly preferable, and 5 × 10 −3 (Pa · s) or more is particularly preferable. . 3-15 × 10 −3 (Pa · s) is preferable in order to control the particle sedimentation property while achieving both high-speed application suitability and drying unevenness, and 5 to 10 × 10 −3 (Pa · s) is particularly preferable. preferable.

式(2) 沈降速度Vs=(1/18)×(σ−ρ)×(g/μ)×d2
(但し、σ:透光性微粒子の密度(g/cm2)、ρ:塗布組成物の密度(g/cm2)、g:重力加速度、d:透光性微粒子の平均粒径(μm)、μ:塗布組成物の粘度(Pa・s))
Formula (2) Sedimentation velocity Vs = (1/18) × (σ−ρ) × (g / μ) × d 2
(Where, σ: density of translucent fine particles (g / cm 2 ), ρ: density of coating composition (g / cm 2 ), g: acceleration of gravity, d: average particle diameter of translucent fine particles (μm) , Μ: Viscosity of coating composition (Pa · s))

本発明の光散乱性フィルムを形成するための塗布組成物中において、透光性微粒子が溶媒によってある程度膨潤すると、透光性微粒子の密度と塗布組成物の密度が見かけ上近くなり、前記式(1)中の(σ−ρ)の絶対値が小さくなるため沈降(浮上)速度が遅くなり、好ましい。透光性微粒子が溶媒によって膨潤しやすい組み合わせとして、透光性微粒子が架橋ポリスチレン、または架橋ポリ(アクリル−スチレン)、架橋ポリ((メタ)アクリレート)、またはそれらの混合物であり、溶媒がケトン類、トルエン、キシレン、エステル類から選ばれる少なくとも1種類の溶媒からなることが好ましい。透光性微粒子の膨潤は、粒子の架橋密度によっても制御可能であり、用いる溶媒との組み合わせで調整することもできる。   In the coating composition for forming the light-scattering film of the present invention, when the light-transmitting fine particles are swollen to some extent by the solvent, the density of the light-transmitting fine particles and the density of the coating composition are apparently close to each other. Since the absolute value of (σ−ρ) in 1) is small, the sedimentation (floating) speed is slow, which is preferable. As a combination in which the light-transmitting fine particles are easily swollen by a solvent, the light-transmitting fine particles are cross-linked polystyrene, cross-linked poly (acryl-styrene), cross-linked poly ((meth) acrylate), or a mixture thereof, and the solvent is a ketone. It is preferably composed of at least one solvent selected from toluene, xylene and esters. The swelling of the light-transmitting fine particles can be controlled by the crosslinking density of the particles, and can be adjusted by a combination with the solvent used.

<透光性微粒子>
透光性微粒子の平均粒径は0.5〜5μmが好ましく、より好ましくは1.0〜4.0μmである。平均粒径が0.5μm未満であると、光の散乱角度分布が広角にまで広がるため、ディスプレイの文字解像度の低下を引き起こしたりするため、好ましくない。一方、5μmを超えると、上記式(1)の絶対値が大きくなりすぎるために沈降速度が速くなる、光散乱層の膜厚を厚くする必要が生じ、カールが大きくなる、素材コストが上昇してしまう、等の問題が生じる。
前記透光性微粒子の具体例としては、式(1)の関係を満たす塗布組成物であれば特に限定は無く、例えばシリカ粒子、TiO2粒子等の無機化合物の粒子;ポリ((メタ)アクリレート)粒子、架橋ポリ((メタ)アクリレート)粒子、ポリスチレン粒子、架橋ポリスチレン粒子、架橋ポリ(アクリル−スチレン)粒子、メラミン樹脂粒子、ベンゾグアナミン樹脂粒子等の樹脂粒子が好ましく挙げられるが、一般的に無機粒子は比重が大きいため、使用することは好ましくなく、樹脂粒子が好ましく用いられる。なかでも架橋ポリスチレン粒子、架橋ポリ((メタ)アクリレート)粒子、架橋ポリ(アクリル−スチレン)粒子が好ましい。
透光性微粒子の形状は、球状が好ましい。不定形のものでも使用できるが、沈降速度式における形状因子が球形と異なるため、式(1)の左辺の好ましい範囲は形状毎に異なる。
<Translucent fine particles>
The average particle diameter of the translucent fine particles is preferably 0.5 to 5 μm, more preferably 1.0 to 4.0 μm. If the average particle size is less than 0.5 μm, the light scattering angle distribution spreads to a wide angle, which causes a decrease in character resolution of the display, which is not preferable. On the other hand, if it exceeds 5 μm, the absolute value of the above formula (1) becomes too large, so that the sedimentation speed becomes fast, it is necessary to increase the thickness of the light scattering layer, the curl becomes large, and the material cost increases. Problems occur.
Specific examples of the translucent fine particles are not particularly limited as long as they are coating compositions satisfying the relationship of the formula (1). For example, particles of inorganic compounds such as silica particles and TiO 2 particles; poly ((meth) acrylates ) Particles, cross-linked poly ((meth) acrylate) particles, polystyrene particles, cross-linked polystyrene particles, cross-linked poly (acryl-styrene) particles, melamine resin particles, benzoguanamine resin particles and the like are preferred, but generally inorganic Since the specific gravity of the particles is large, it is not preferable to use them, and resin particles are preferably used. Of these, crosslinked polystyrene particles, crosslinked poly ((meth) acrylate) particles, and crosslinked poly (acryl-styrene) particles are preferable.
The shape of the translucent fine particles is preferably spherical. An indefinite shape can be used, but since the shape factor in the sedimentation velocity formula is different from that of a sphere, the preferred range on the left side of the formula (1) is different for each shape.

また、粒子径の異なる2種以上の透光性微粒子を併用して用いてもよい。より大きな粒子径の透光性微粒子で防眩性を付与し、より小さな粒子径の透光性微粒子で別の光学特性を付与することが可能である。例えば、133ppi以上の高精細ディスプレイに反射防止フィルムを貼り付けた場合に、上述したようなギラツキと呼ばれる光学性能上の不具合のないことが要求される。ギラツキは、フィルム表面に存在する凹凸(防眩性に寄与)により、画素が拡大もしくは縮小され、輝度の均一性を失うことに由来するが、防眩性を付与する透光性微粒子より小さな粒子径で、バインダーの屈折率と異なる透光性微粒子を併用することにより大きく改善することができる。   Further, two or more kinds of translucent fine particles having different particle diameters may be used in combination. It is possible to impart an antiglare property with a light-transmitting fine particle having a larger particle size and to impart another optical characteristic with a light-transmitting fine particle having a smaller particle size. For example, when an antireflection film is attached to a high-definition display of 133 ppi or higher, it is required that there is no problem in optical performance called glare as described above. Glare originates from the fact that pixels are enlarged or reduced due to unevenness existing on the film surface (contributing to anti-glare properties), resulting in loss of brightness uniformity, but smaller particles than translucent fine particles that impart anti-glare properties. The diameter can be greatly improved by using light-transmitting fine particles different from the refractive index of the binder.

前記透光性微粒子は、形成された光散乱層中に、光散乱層全固形分中に3〜30質量%含有されるように配合される。より好ましくは5〜20質量%である。3質量%未満であると、光散乱効果が不足し、30質量%を超えると、像の解像度の低下や表面の白濁やギラツキ等の問題が生じる。
また、透光性微粒子の密度は、好ましくは10〜1000mg/m2、より好ましくは100〜700mg/m2である。
透光性微粒子の粒度分布はコールターカウンター法により測定し、測定された分布を粒子数分布に換算する。
The translucent fine particles are blended in the formed light scattering layer so as to be contained in an amount of 3 to 30% by mass in the total solid content of the light scattering layer. More preferably, it is 5-20 mass%. When the amount is less than 3% by mass, the light scattering effect is insufficient, and when it exceeds 30% by mass, problems such as a reduction in image resolution, surface turbidity and glare occur.
Moreover, the density of the translucent fine particles is preferably 10 to 1000 mg / m 2 , more preferably 100 to 700 mg / m 2 .
The particle size distribution of the translucent fine particles is measured by a Coulter counter method, and the measured distribution is converted into a particle number distribution.

本発明における透光性樹脂と透光性微粒子との混合物のバルクの屈折率は、1.48〜2.00であることが好ましく、より好ましくは1.50〜1.80である。屈折率を前記範囲とするには、透光性樹脂及び透光性微粒子の種類及び量割合を適宜選択すればよい。どのように選択するかは、予め実験的に容易に知ることができる。
また、本発明においては、透光性樹脂と透光性微粒子との屈折率の差(透光性微粒子の屈折率−透光性樹脂の屈折率)は、好ましくは0.01〜0.2であり、より好ましくは0.02〜0.2であり、更に好ましくは0.05〜0.15である。この差が0.02未満であると、内部散乱の効果が不足するためギラツキが悪化し、0.2を超えると、フィルム表面の白濁の問題が生じる。
また、前記透光性樹脂の屈折率は、1.45〜2.00であるのが好ましく、1.48〜1.60であるのが更に好ましい。
また、前記透光性微粒子の屈折率は、1.40〜1.80であるのが好ましく、1.48〜1.70であるのが更に好ましい。
ここで、前記透光性樹脂の屈折率は、アッベ屈折計で直接測定するか、分光反射スペクトルや分光エリプソメトリーを測定するなどして定量評価できる。
The bulk refractive index of the mixture of the translucent resin and translucent fine particles in the present invention is preferably 1.48 to 2.00, more preferably 1.50 to 1.80. In order to set the refractive index within the above range, the kind and amount ratio of the light-transmitting resin and the light-transmitting fine particles may be appropriately selected. How to select can be easily known experimentally in advance.
In the present invention, the difference in refractive index between the translucent resin and the translucent fine particles (the refractive index of the translucent fine particles−the refractive index of the translucent resin) is preferably 0.01 to 0.2. More preferably, it is 0.02-0.2, More preferably, it is 0.05-0.15. If this difference is less than 0.02, the effect of internal scattering is insufficient and the glare deteriorates. If it exceeds 0.2, the problem of cloudiness on the film surface arises.
The refractive index of the translucent resin is preferably 1.45 to 2.00, and more preferably 1.48 to 1.60.
The refractive index of the translucent fine particles is preferably 1.40 to 1.80, more preferably 1.48 to 1.70.
Here, the refractive index of the translucent resin can be quantitatively evaluated by directly measuring the refractive index with an Abbe refractometer or by measuring a spectral reflection spectrum or a spectral ellipsometry.

光散乱層の膜厚は、1〜10μmが好ましく、1.2〜8μmがより好ましい。薄すぎるとハード性が不足し、厚すぎるとカールや脆性が悪化して加工適性が低下する場合があるので、前記範囲内とするのが好ましい。   The film thickness of the light scattering layer is preferably 1 to 10 μm, and more preferably 1.2 to 8 μm. If it is too thin, the hard property is insufficient, and if it is too thick, curling and brittleness may be deteriorated and workability may be lowered.

<透光性樹脂>
透光性樹脂は、飽和炭化水素鎖またはポリエーテル鎖を主鎖として有するバインダーポリマーであることが好ましく、飽和炭化水素鎖を主鎖として有するバインダーポリマーであることがさらに好ましい。また、バインダーポリマーは架橋構造を有することが好ましい。
飽和炭化水素鎖を主鎖として有するバインダーポリマーとしては、エチレン性不飽和モノマーの重合体が好ましい。飽和炭化水素鎖を主鎖として有し、かつ架橋構造を有するバインダーポリマーとしては、二個以上のエチレン性不飽和基を有するモノマーの(共)重合体が好ましい。
バインダーポリマーを高屈折率にするには、このモノマーの構造中に芳香族環や、フッ素以外のハロゲン原子、硫黄原子、リン原子、及び窒素原子から選ばれた少なくとも1種の原子を含む高屈折率モノマーを選択することもできる。
<Translucent resin>
The translucent resin is preferably a binder polymer having a saturated hydrocarbon chain or a polyether chain as a main chain, and more preferably a binder polymer having a saturated hydrocarbon chain as a main chain. The binder polymer preferably has a crosslinked structure.
As the binder polymer having a saturated hydrocarbon chain as a main chain, a polymer of an ethylenically unsaturated monomer is preferable. As the binder polymer having a saturated hydrocarbon chain as the main chain and having a crosslinked structure, a (co) polymer of monomers having two or more ethylenically unsaturated groups is preferable.
In order to increase the refractive index of the binder polymer, the monomer structure has a high refractive index including at least one atom selected from an aromatic ring, a halogen atom other than fluorine, a sulfur atom, a phosphorus atom, and a nitrogen atom. The rate monomer can also be selected.

二個以上のエチレン性不飽和基を有するモノマーとしては、多価アルコールと(メタ)アクリル酸とのエステル〔例えば、エチレングリコールジ(メタ)アクリレート、ブタンジオールジ(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレート、1,4−シクロヘキサンジアクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ペンタエリスリトールヘキサ(メタ)アクリレート、1,2,3−シクロヘキサンテトラメタクリレート、ポリウレタンポリアクリレート、ポリエステルポリアクリレート〕、前記のエステルのエチレンオキサイド変性体、ビニルベンゼンおよびその誘導体〔例、1,4−ジビニルベンゼン、4−ビニル安息香酸−2−アクリロイルエチルエステル、1,4−ジビニルシクロヘキサノン〕、ビニルスルホン(例、ジビニルスルホン)、アクリルアミド(例、メチレンビスアクリルアミド)およびメタクリルアミドが挙げられる。前記モノマーは2種以上併用してもよい。   Examples of the monomer having two or more ethylenically unsaturated groups include esters of polyhydric alcohol and (meth) acrylic acid [for example, ethylene glycol di (meth) acrylate, butanediol di (meth) acrylate, hexanediol di ( (Meth) acrylate, 1,4-cyclohexanediacrylate, pentaerythritol tetra (meth) acrylate, pentaerythritol tri (meth) acrylate, trimethylolpropane tri (meth) acrylate, trimethylolethane tri (meth) acrylate, dipentaerythritol tetra (Meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, pentaerythritol hexa (meth) acrylate, 1,2,3- Chlorohexane tetramethacrylate, polyurethane polyacrylate, polyester polyacrylate], modified ethylene oxide of the above ester, vinylbenzene and derivatives thereof (eg, 1,4-divinylbenzene, 4-vinylbenzoic acid-2-acryloylethyl ester, 1,4-divinylcyclohexanone], vinylsulfone (eg, divinylsulfone), acrylamide (eg, methylenebisacrylamide) and methacrylamide. Two or more of these monomers may be used in combination.

高屈折率モノマーの具体例としては、ビス(4−メタクリロイルチオフェニル)スルフィド、ビニルナフタレン、ビニルフェニルスルフィド、4−メタクリロキシフェニル−4'−メトキシフェニルチオエーテル等が挙げられる。これらのモノマーも2種以上併用してもよい。   Specific examples of the high refractive index monomer include bis (4-methacryloylthiophenyl) sulfide, vinyl naphthalene, vinyl phenyl sulfide, 4-methacryloxyphenyl-4′-methoxyphenyl thioether, and the like. Two or more of these monomers may be used in combination.

これらのエチレン性不飽和基を有するモノマーの重合は、光ラジカル開始剤あるいは熱ラジカル開始剤の存在下、電離放射線の照射または加熱により行うことができる。
従って、前記光散乱層は、上述のエチレン性不飽和モノマー等の透光性樹脂形成用のモノマー、光ラジカル開始剤あるいは熱ラジカル開始剤、透光性微粒子および必要に応じて後述するような無機フィラーを含有する塗液を調製し、該塗液を透明支持体上に塗布後電離放射線または熱による重合反応により硬化させることにより形成することができる。
Polymerization of the monomer having an ethylenically unsaturated group can be performed by irradiation with ionizing radiation or heating in the presence of a photo radical initiator or a thermal radical initiator.
Therefore, the light scattering layer is composed of a monomer for forming a translucent resin such as the above-mentioned ethylenically unsaturated monomer, a photo radical initiator or a thermal radical initiator, translucent fine particles, and an inorganic material as described later if necessary. It can be formed by preparing a coating liquid containing a filler and curing the coating liquid on a transparent support by ionizing radiation or a polymerization reaction with heat.

光ラジカル(重合)開始剤としては、アセトフェノン類、ベンゾイン類、ベンゾフェノン類、ホスフィンオキシド類、ケタール類、アントラキノン類、チオキサントン類、アゾ化合物、過酸化物類、2,3−ジアルキルジオン化合物類、ジスルフィド化合物類、フルオロアミン化合物類や芳香族スルホニウム類が挙げられる。アセトフェノン類の例には、2,2−ジエトキシアセトフェノン、p−ジメチルアセトフェノン、1−ヒドロキシジメチルフェニルケトン、1−ヒドロキシシクロヘキシルフェニルケトン、2−メチル−4−メチルチオ−2−モルフォリノプロピオフェノンおよび2−ベンジル−2−ジメチルアミノ−1−(4−モルフォリノフェニル)−ブタノンが含まれる。ベンゾイン類の例には、ベンゾインベンゼンスルホン酸エステル、ベンゾイントルエンスルホン酸エステル、ベンゾインメチルエーテル、ベンゾインエチルエーテルおよびベンゾインイソプロピルエーテルが含まれる。ベンゾフェノン類の例には、ベンゾフェノン、2,4−ジクロロベンゾフェノン、4,4−ジクロロベンゾフェノンおよびp−クロロベンゾフェノンが含まれる。ホスフィンオキシド類の例には、2,4,6−トリメチルベンゾイルジフェニルフォスフィンオキシドが含まれる。
最新UV硬化技術(p.159,発行人;高薄一弘,発行所;(株)技術情報協会,1991年発行)にも種々の例が記載されており本発明に有用である。
市販の光開裂型の光ラジカル(重合)開始剤としては、チバ・スペシャルティ・ケミカルズ(株)製のイルガキュア(651,184,907)等が好ましい例として挙げられる。
光ラジカル(重合)開始剤は、多官能モノマー100質量部に対して、0.1〜15質量部の範囲で使用することが好ましく、より好ましくは1〜10質量部の範囲である。
光ラジカル(重合)開始剤に加えて、光増感剤を用いてもよい。光増感剤の具体例として、n−ブチルアミン、トリエチルアミン、トリ−n−ブチルホスフィン、ミヒラーのケトンおよびチオキサントンを挙げることができる。
Photo radical (polymerization) initiators include acetophenones, benzoins, benzophenones, phosphine oxides, ketals, anthraquinones, thioxanthones, azo compounds, peroxides, 2,3-dialkyldione compounds, disulfides Examples include compounds, fluoroamine compounds and aromatic sulfoniums. Examples of acetophenones include 2,2-diethoxyacetophenone, p-dimethylacetophenone, 1-hydroxydimethylphenyl ketone, 1-hydroxycyclohexyl phenyl ketone, 2-methyl-4-methylthio-2-morpholinopropiophenone and 2 -Benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone is included. Examples of benzoins include benzoin benzene sulfonate, benzoin toluene sulfonate, benzoin methyl ether, benzoin ethyl ether and benzoin isopropyl ether. Examples of the benzophenones include benzophenone, 2,4-dichlorobenzophenone, 4,4-dichlorobenzophenone and p-chlorobenzophenone. Examples of phosphine oxides include 2,4,6-trimethylbenzoyldiphenylphosphine oxide.
Various examples are described in the latest UV curing technology (p.159, issuer; Kazuhiro Takashiro, publisher; Technical Information Association, Inc., published in 1991), and are useful for the present invention.
Preferable examples of commercially available photocleavable photoradical (polymerization) initiators include Irgacure (651, 184, 907) manufactured by Ciba Specialty Chemicals.
The photo radical (polymerization) initiator is preferably used in the range of 0.1 to 15 parts by mass, more preferably in the range of 1 to 10 parts by mass with respect to 100 parts by mass of the polyfunctional monomer.
In addition to the photoradical (polymerization) initiator, a photosensitizer may be used. Specific examples of the photosensitizer include n-butylamine, triethylamine, tri-n-butylphosphine, Michler's ketone and thioxanthone.

熱ラジカル開始剤としては、有機あるいは無機過酸化物、有機アゾ及びジアゾ化合物等を用いることができる。
具体的には、有機過酸化物として過酸化ベンゾイル、過酸化ハロゲンベンゾイル、過酸化ラウロイル、過酸化アセチル、過酸化ジブチル、クメンヒドロぺルオキシド、ブチルヒドロぺルオキシド、無機過酸化物として、過酸化水素、過硫酸アンモニウム、過硫酸カリウム等、アゾ化合物として2−アゾ−ビス−イソブチロニトリル、2−アゾ−ビス−プロピオニトリル、2−アゾ−ビス−シクロヘキサンジニトリル等、ジアゾ化合物としてジアゾアミノベンゼン、p−ニトロベンゼンジアゾニウム等を挙げることができる。
As the thermal radical initiator, organic or inorganic peroxides, organic azo, diazo compounds, and the like can be used.
Specifically, benzoyl peroxide, halogen benzoyl peroxide, lauroyl peroxide, acetyl peroxide, dibutyl peroxide, cumene hydroperoxide, butyl hydroperoxide as organic peroxides, hydrogen peroxide, peroxides as inorganic peroxides. Ammonium sulfate, potassium persulfate, etc., 2-azo-bis-isobutyronitrile, 2-azo-bis-propionitrile, 2-azo-bis-cyclohexanedinitrile, etc. as diazo compounds, diazoaminobenzene, p -Nitrobenzenediazonium etc. can be mentioned.

ポリエーテルを主鎖として有するポリマーは、多官能エポシキシ化合物の開環重合体が好ましい。多官能エポシキシ化合物の開環重合は、光酸発生剤あるいは熱酸発生剤の存在下、電離放射線の照射または加熱により行うことができる。
従って、多官能エポシキシ化合物、光酸発生剤あるいは熱酸発生剤、透光性微粒子および無機フィラーを含有する塗液を調製し、該塗液を透明支持体上に塗布後電離放射線または熱による重合反応により硬化して光拡散層を形成することができる。
The polymer having a polyether as the main chain is preferably a ring-opening polymer of a polyfunctional epoxy compound. The ring-opening polymerization of the polyfunctional epoxy compound can be performed by irradiation with ionizing radiation or heating in the presence of a photoacid generator or a thermal acid generator.
Therefore, a coating liquid containing a polyfunctional epoxy compound, a photoacid generator or a thermal acid generator, translucent fine particles and an inorganic filler is prepared, and the coating liquid is applied onto a transparent support and then polymerized by ionizing radiation or heat. It can be cured by reaction to form a light diffusion layer.

二個以上のエチレン性不飽和基を有するモノマーの代わりにまたはそれに加えて、架橋性官能基を有するモノマーを用いてポリマー中に架橋性官能基を導入し、この架橋性官能基の反応により、架橋構造をバインダーポリマーに導入してもよい。
架橋性官能基の例には、イソシアナート基、エポキシ基、アジリジン基、オキサゾリン基、アルデヒド基、カルボニル基、ヒドラジン基、カルボキシル基、メチロール基および活性メチレン基が含まれる。ビニルスルホン酸、酸無水物、シアノアクリレート誘導体、メラミン、エーテル化メチロール、エステルおよびウレタン、テトラメトキシシランのような金属アルコキシドも、架橋構造を導入するためのモノマーとして利用できる。ブロックイソシアナート基のように、分解反応の結果として架橋性を示す官能基を用いてもよい。すなわち、本発明において架橋性官能基は、すぐには反応を示すものではなくとも、分解した結果反応性を示すものであってもよい。
これら架橋性官能基を有するバインダーポリマーは塗布後、加熱することによって架橋構造を形成することができる。
Instead of or in addition to a monomer having two or more ethylenically unsaturated groups, a monomer having a crosslinkable functional group is used to introduce a crosslinkable functional group into the polymer, and by reaction of this crosslinkable functional group, A crosslinked structure may be introduced into the binder polymer.
Examples of the crosslinkable functional group include isocyanate group, epoxy group, aziridine group, oxazoline group, aldehyde group, carbonyl group, hydrazine group, carboxyl group, methylol group and active methylene group. Vinylsulfonic acid, acid anhydride, cyanoacrylate derivative, melamine, etherified methylol, ester and urethane, and metal alkoxide such as tetramethoxysilane can also be used as a monomer for introducing a crosslinked structure. A functional group that exhibits crosslinkability as a result of the decomposition reaction, such as a block isocyanate group, may be used. That is, in the present invention, the crosslinkable functional group may not react immediately but may exhibit reactivity as a result of decomposition.
These binder polymers having a crosslinkable functional group can form a crosslinked structure by heating after coating.

光散乱層には、層の屈折率を高めるために、前記の透光性微粒子に加えて、チタン、ジルコニウム、アルミニウム、インジウム、亜鉛、錫、アンチモンのうちより選ばれる少なくとも1種の金属の酸化物からなり、平均粒径が0.2μm以下、好ましくは0.1μm以下、より好ましくは0.06μm以下である無機フィラーを含有してもよい。
また逆に、透光性微粒子との屈折率差を大きくするために、高屈折率透光性微粒子を用いた光散乱層では層の屈折率を低目に保つためにケイ素の酸化物を用いることもできる。好ましい粒径は前述の無機フィラーと同じである。これらの無機フィラーは、一般的に比重が有機物よりも高く、塗布組成物の密度を高くできるため、透光性微粒子の沈降速度を遅くする効果もある。
光散乱層に用いられる無機フィラーは表面をシランカップリング処理又はチタンカップリング処理されることも好ましく、フィラー表面にバインダー種と反応できる官能基を有する表面処理剤が好ましく用いられる。
これらの無機フィラーを用いる場合、その添加量は、光散乱層の全質量の10〜90%であることが好ましく、より好ましくは20〜80%であり、特に好ましくは30〜75%である。
なお、このような無機フィラーは、粒径が光の波長よりも十分小さいために散乱が生じず、バインダーポリマーに該フィラーが分散した分散体は光学的に均一な物質として振舞う。
また、光散乱層にオルガノシラン化合物を用いることができる。オルガノシラン化合物の添加量は、含有層(添加層)の全固形分の0.001〜50質量%が好ましく、0.01〜20質量%がより好ましく、0.05〜10質量%が更に好ましく、0.1〜5質量%が特に好ましい。
In order to increase the refractive index of the layer, the light-scattering layer is oxidized with at least one metal selected from titanium, zirconium, aluminum, indium, zinc, tin, and antimony in addition to the light-transmitting fine particles. An inorganic filler having an average particle diameter of 0.2 μm or less, preferably 0.1 μm or less, more preferably 0.06 μm or less may be contained.
Conversely, in order to increase the difference in refractive index from the translucent fine particles, the light scattering layer using the high refractive index translucent fine particles uses a silicon oxide to keep the refractive index of the layer low. You can also The preferred particle size is the same as that of the aforementioned inorganic filler. Since these inorganic fillers generally have a specific gravity higher than that of organic substances and can increase the density of the coating composition, they also have the effect of slowing the sedimentation rate of the light-transmitting fine particles.
The surface of the inorganic filler used in the light scattering layer is preferably subjected to a silane coupling treatment or a titanium coupling treatment, and a surface treatment agent having a functional group capable of reacting with a binder species on the filler surface is preferably used.
When using these inorganic fillers, the addition amount is preferably 10 to 90% of the total mass of the light scattering layer, more preferably 20 to 80%, and particularly preferably 30 to 75%.
Such an inorganic filler does not scatter because its particle size is sufficiently smaller than the wavelength of light, and a dispersion in which the filler is dispersed in a binder polymer behaves as an optically uniform substance.
An organosilane compound can be used for the light scattering layer. The addition amount of the organosilane compound is preferably 0.001 to 50% by mass, more preferably 0.01 to 20% by mass, and still more preferably 0.05 to 10% by mass, based on the total solid content of the containing layer (addition layer). 0.1 to 5% by mass is particularly preferable.

<光散乱層用界面活性剤>
本発明の光散乱層は、特に塗布ムラ、乾燥ムラ、点欠陥等の面状均一性を確保するために、フッ素系、シリコーン系の何れかの界面活性剤、あるいはその両者を光拡散層形成用の塗布組成物中に含有する。特にフッ素系の界面活性剤は、より少ない添加量において、本発明の反射防止フィルムの塗布ムラ、乾燥ムラ、点欠陥等の面状故障を改良する効果が現れるため、好ましく用いられる。
面状均一性を高めつつ、高速塗布適性を持たせることにより生産性を高めることが目的である。
<Surfactant for light scattering layer>
The light scattering layer of the present invention is formed with a light diffusing layer in order to ensure surface uniformity such as coating unevenness, drying unevenness, point defects, etc. Contained in the coating composition. In particular, a fluorine-based surfactant is preferably used because an effect of improving surface defects such as coating unevenness, drying unevenness, and point defects of the antireflection film of the present invention appears in a smaller addition amount.
The purpose is to increase productivity by giving high-speed coating suitability while improving surface uniformity.

フッ素系の界面活性剤の好ましい例としては、フルオロ脂肪族基含有共重合体(「フッ素系ポリマー」と略記することもある)が挙げられ、該フッ素系ポリマーは、下記(i)のモノマーに相当する繰り返し単位を含むことを特徴とする、あるいは下記(ii)のモノマーに相当する繰り返し単位を含むことを特徴とするアクリル樹脂、メタアクリル樹脂、及びこれらに共重合可能なビニル系モノマーとの共重合体が有用である。   Preferable examples of the fluorosurfactant include a fluoroaliphatic group-containing copolymer (sometimes abbreviated as “fluorine polymer”), and the fluoropolymer includes the following monomer (i): An acrylic resin, a methacrylic resin, and a vinyl monomer copolymerizable therewith, characterized by containing a corresponding repeating unit, or containing a repeating unit corresponding to the monomer (ii) below: Copolymers are useful.

(i)下記一般式イで表されるフルオロ脂肪族基含有モノマー (I) Fluoroaliphatic group-containing monomer represented by the following general formula

一般式イ

Figure 2006113561
General formula
Figure 2006113561

一般式イにおいてR11は水素原子またはメチル基を表し、Xは酸素原子、イオウ原子または−N(R12)−を表し、mは1以上6以下の整数、nは2〜4の整数を表す。R12は水素原子または炭素数1〜4のアルキル基、具体的にはメチル基、エチル基、プロピル基、ブチル基を表し、好ましくは水素原子またはメチル基である。Xは酸素原子が好ましい。 In the general formula A, R 11 represents a hydrogen atom or a methyl group, X represents an oxygen atom, a sulfur atom or —N (R 12 ) —, m is an integer of 1-6, and n is an integer of 2-4. To express. R 12 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, specifically a methyl group, an ethyl group, a propyl group, or a butyl group, preferably a hydrogen atom or a methyl group. X is preferably an oxygen atom.

(ii)前記(i)と共重合可能な下記一般式ロで示されるモノマー (Ii) a monomer represented by the following general formula (b) copolymerizable with (i) above

一般式ロ

Figure 2006113561
General formula
Figure 2006113561

一般式ロにおいて、R13は水素原子またはメチル基を表し、Yは酸素原子、イオウ原子または−N(R15)−を表し、R15は水素原子または炭素数1〜4のアルキル基、具体的にはメチル基、エチル基、プロピル基、ブチル基を表し、好ましくは水素原子またはメチル基である。Yは酸素原子、−N(H)−、および−N(CH3)−が好ましい。
14は置換基を有しても良い炭素数4以上20以下の直鎖、分岐または環状のアルキル基を表す。R14のアルキル基の置換基としては、水酸基、アルキルカルボニル基、アリールカルボニル基、カルボキシル基、アルキルエーテル基、アリールエーテル基、フッ素原子、塩素原子、臭素原子などのハロゲン原子、ニトロ基、シアノ基、アミノ基等があげられるがこの限りではない。炭素数4以上20以下の直鎖、分岐または環状のアルキル基としては、直鎖及び分岐してもよいブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、オクタデシル基、エイコサニル基等、また、シクロヘキシル基、シクロヘプチル基等の単環シクロアルキル基及びビシクロヘプチル基、ビシクロデシル基、トリシクロウンデシル基、テトラシクロドデシル基、アダマンチル基、ノルボルニル基、テトラシクロデシル基、等の多環シクロアルキル基が好適に用いられる。
In general formula B, R 13 represents a hydrogen atom or a methyl group, Y represents an oxygen atom, a sulfur atom or —N (R 15 ) —, R 15 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, specifically Specifically, it represents a methyl group, an ethyl group, a propyl group, or a butyl group, preferably a hydrogen atom or a methyl group. Y is an oxygen atom, -N (H) -, and -N (CH 3) - it is preferred.
R 14 represents a linear, branched or cyclic alkyl group having 4 to 20 carbon atoms which may have a substituent. Examples of the substituent for the alkyl group of R 14 include a hydroxyl group, an alkylcarbonyl group, an arylcarbonyl group, a carboxyl group, an alkyl ether group, an aryl ether group, a halogen atom such as a fluorine atom, a chlorine atom, and a bromine atom, a nitro group, and a cyano group. , Amino groups and the like, but not limited thereto. Examples of the linear, branched or cyclic alkyl group having 4 to 20 carbon atoms include a butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group and undecyl group which may be linear or branched. , Dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, octadecyl group, eicosanyl group, etc., and monocyclic cycloalkyl groups such as cyclohexyl group, cycloheptyl group and bicycloheptyl group, bicyclodecyl group, tricycloundecyl group, A polycyclic cycloalkyl group such as a tetracyclododecyl group, an adamantyl group, a norbornyl group, a tetracyclodecyl group, or the like is preferably used.

本発明で用いられるフッ素系ポリマー中に用いられるこれらの一般式イで示されるフルオロ脂肪族基含有モノマーの量は、該フッ素系ポリマーの各単量体に基づいて10モル%以上であり、好ましくは15〜70モル%であり、より好ましくは20〜60モル%の範囲である。   The amount of the fluoroaliphatic group-containing monomer represented by the general formula (a) used in the fluoropolymer used in the present invention is 10 mol% or more based on each monomer of the fluoropolymer, preferably Is 15 to 70 mol%, more preferably in the range of 20 to 60 mol%.

本発明で用いられるフッ素系ポリマーの好ましい質量平均分子量は、3000〜100,000が好ましく、5,000〜80,000がより好ましい。
更に、本発明で用いられるフッ素系ポリマーの好ましい添加量は、塗布液に対して0.001〜5質量%の範囲であり、好ましくは0.005〜3質量%の範囲であり、更に好ましくは0.01〜1質量%の範囲である。フッ素系ポリマーの添加量が0.001質量%未満では効果が不十分であり、また5質量%より多くなると、塗膜の乾燥が十分に行われなくなったり、塗膜としての性能(例えば反射率、耐擦傷性)に悪影響を及ぼす。
The preferred weight average molecular weight of the fluoropolymer used in the present invention is preferably 3000 to 100,000, more preferably 5,000 to 80,000.
Furthermore, the preferable addition amount of the fluoropolymer used in the present invention is in the range of 0.001 to 5% by mass, preferably in the range of 0.005 to 3% by mass, and more preferably, with respect to the coating solution. It is the range of 0.01-1 mass%. If the addition amount of the fluorine-based polymer is less than 0.001% by mass, the effect is insufficient, and if it exceeds 5% by mass, the coating film may not be sufficiently dried or the performance as a coating film (for example, reflectance) Adversely affect the scratch resistance).

以下、一般式イで表されるフルオロ脂肪族基含有モノマーからなるフッ素系ポリマーの具体的な構造の例を示すがこの限りではない。なお式中の数字は各モノマー成分のモル比率を示す。Mwは質量平均分子量を表す。   Examples of the specific structure of the fluoropolymer composed of the fluoroaliphatic group-containing monomer represented by the general formula (i) are shown below, but this is not restrictive. In addition, the number in a formula shows the molar ratio of each monomer component. Mw represents a mass average molecular weight.

Figure 2006113561
Figure 2006113561

Figure 2006113561
Figure 2006113561

しかしながら、前記のようなフッ素系ポリマーを使用することにより、光散乱層表面にF原子を含有する官能基が偏析することにより光散乱層の表面エネルギーが低下し、前記光散乱層上に低屈折率層をオーバーコートしたときに反射防止性能が悪化する問題が生じる。これは低屈折率層を形成するために用いられる硬化性組成物の濡れ性が悪化するために低屈折率層に目視では検知できない微小なムラが悪化するためと推定される。このような問題を解決するためには、フッ素系ポリマーの構造と添加量を調整することにより、光散乱層の表面エネルギーを好ましくは20mN・m-1〜50mN・m-1に、より好ましくは30mN・m-1〜40mN・m-1に制御することが効果的であることを見出した。前記のような表面エネルギーを実現するためには、X線光電子分光法で測定したフッ素原子由来のピークと炭素原子由来のピークの比であるF/Cが0.1〜1.5であることが必要である。 However, by using the fluorine-based polymer as described above, the surface energy of the light scattering layer is reduced due to segregation of the functional group containing F atoms on the surface of the light scattering layer, resulting in low refraction on the light scattering layer. When the rate layer is overcoated, there arises a problem that the antireflection performance deteriorates. This is presumably because minute unevenness that cannot be visually detected in the low refractive index layer deteriorates because the wettability of the curable composition used for forming the low refractive index layer deteriorates. To solve such problems, by adjusting the structure and amount of the fluorine-based polymer, the surface energy of the light scattering layer preferably in 20mN · m -1 ~50mN · m -1 , more preferably it was found that it is effective to control the 30mN · m -1 ~40mN · m -1 . In order to realize the surface energy as described above, F / C, which is a ratio of a peak derived from a fluorine atom and a peak derived from a carbon atom, measured by X-ray photoelectron spectroscopy is 0.1 to 1.5. is required.

或いは、上層を塗布する時には上層を形成する溶媒に抽出されるようなフッ素系ポリマーを選択することで、下層表面(=界面)に偏在することがなくなり上層と下層の密着性を持たせることで、高速塗布においても面状の均一性を保ち、かつ耐擦傷性の強い反射防止フィルムを提供できる表面自由エネルギーの低下を防ぐことにより、低屈折率層塗布前の光散乱層の表面エネルギーを前記範囲に制御することでも目的を達成することができる。そのような素材の例は下記一般式ハで表されるフルオロ脂肪族基含有モノマーに相当する繰り返し単位を含むことを特徴とするアクリル樹脂、メタアクリル樹脂、及びこれらに共重合可能なビニル系モノマーとの共重合体である。   Alternatively, by selecting a fluorine-based polymer that is extracted by the solvent that forms the upper layer when the upper layer is applied, it is not unevenly distributed on the lower layer surface (= interface), so that the adhesion between the upper layer and the lower layer is provided. The surface energy of the light-scattering layer before coating the low refractive index layer can be reduced by preventing the surface free energy from being lowered, which can maintain the surface uniformity even during high-speed coating and can provide an antireflection film with high scratch resistance. The purpose can also be achieved by controlling the range. Examples of such materials include an acrylic resin, a methacrylic resin, and a vinyl monomer copolymerizable therewith, containing a repeating unit corresponding to a fluoroaliphatic group-containing monomer represented by the following general formula C And a copolymer.

(iii)下記一般式ハで表されるフルオロ脂肪族基含有モノマー (Iii) A fluoroaliphatic group-containing monomer represented by the following general formula C

一般式ハ

Figure 2006113561
General formula C
Figure 2006113561

一般式ハにおいてR21は水素原子またはハロゲン原子またはメチル基を表し、水素原子、メチル基がより好ましい。X2は酸素原子、イオウ原子または−N(R22)−を表し、
酸素原子または−N(R22)−がより好ましく、酸素原子が更に好ましい。mは1以上6以下の整数(1〜3がより好ましく、1であることが更に好ましい。)、nは1以上18以下の整数(4〜12がより好ましく、6〜8が更に好ましい。)を表す。R22は水素原子または置換基を有しても良い炭素数1〜8のアルキル基を表し、水素原子または炭素数1〜4のアルキル基がより好ましく、水素原子またはメチル基が更に好ましい。Xは酸素原子が好ましい。
またフッ素系ポリマー中に一般式ハで表されるフルオロ脂肪族基含有モノマーが2種類以上構成成分として含まれていても良い。
In the general formula C, R 21 represents a hydrogen atom, a halogen atom or a methyl group, and more preferably a hydrogen atom or a methyl group. X 2 represents an oxygen atom, a sulfur atom or —N (R 22 ) —,
An oxygen atom or —N (R 22 ) — is more preferable, and an oxygen atom is still more preferable. m is an integer from 1 to 6 (more preferably from 1 to 3, more preferably 1), and n is an integer from 1 to 18 (more preferably from 4 to 12, and even more preferably from 6 to 8). Represents. R 22 represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms which may have a substituent, more preferably a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and further preferably a hydrogen atom or a methyl group. X is preferably an oxygen atom.
In addition, two or more kinds of fluoroaliphatic group-containing monomers represented by the general formula C may be contained in the fluorine-based polymer as constituent components.

(iv)前記(iii)と共重合可能な下記一般式ニで示されるモノマー (Iv) a monomer represented by the following general formula D copolymerizable with the above (iii)

一般式ニ

Figure 2006113561
General formula D
Figure 2006113561

一般式ニにおいて、R23は水素原子、ハロゲン原子またはメチル基を表し、水素原子、メチル基がより好ましい。Y2は酸素原子、イオウ原子または−N(R25)−を表し、酸素原子または−N(R25)−がより好ましく、酸素原子が更に好ましい。R25は水素原子または炭素数1〜8のアルキル基を表し、水素原子または炭素数1〜4のアルキル基がより好ましく、水素原子またはメチル基が更に好ましい。
24は置換基を有しても良い炭素数1〜20の直鎖、分岐または環状のアルキル基、ポリ(アルキレンオキシ)基を含むアルキル基、置換基を有していても良い芳香族基(例えば、フェニル基またはナフチル基)を表す。炭素数1〜12の直鎖、分岐、または環状のアルキル基、または総炭素数6〜18の芳香族がより好ましく、炭素数1〜8の直鎖、分岐、または環状のアルキル基が更に好ましい。
In the general formula D, R 23 represents a hydrogen atom, a halogen atom or a methyl group, more preferably a hydrogen atom or a methyl group. Y 2 represents an oxygen atom, a sulfur atom or —N (R 25 ) —, more preferably an oxygen atom or —N (R 25 ) —, and still more preferably an oxygen atom. R 25 represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms, more preferably a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and still more preferably a hydrogen atom or a methyl group.
R 24 is an optionally substituted linear, branched or cyclic alkyl group having 1 to 20 carbon atoms, an alkyl group containing a poly (alkyleneoxy) group, and an optionally substituted aromatic group. (For example, a phenyl group or a naphthyl group). A linear, branched or cyclic alkyl group having 1 to 12 carbon atoms or an aromatic group having 6 to 18 carbon atoms is more preferable, and a linear, branched or cyclic alkyl group having 1 to 8 carbon atoms is more preferable. .

以下、一般式ハで表されるフルオロ脂肪族基含有モノマーに相当する繰り返し単位を含むフッ素系ポリマーの具体的な構造の例を示すがこの限りではない。なお、式中の数字は各モノマー成分のモル比率を示す。Mwは質量平均分子量を表す。   Hereinafter, examples of specific structures of fluoropolymers containing a repeating unit corresponding to the fluoroaliphatic group-containing monomer represented by formula (c) are shown, but the present invention is not limited thereto. In addition, the number in a formula shows the molar ratio of each monomer component. Mw represents a mass average molecular weight.

Figure 2006113561
Figure 2006113561

Figure 2006113561
Figure 2006113561

Figure 2006113561
Figure 2006113561

Figure 2006113561
Figure 2006113561

Figure 2006113561
Figure 2006113561

また光散乱層上に低屈折率層をオーバーコートする時点で表面エネルギーの低下を防げば、反射防止性能の悪化が防げる。光散乱層塗布時にはフッ素系ポリマーを用いて塗布液の表面張力を下げて面状均一性を高め、高速塗布による高生産性を維持し、光散乱層塗布後にコロナ処理、UV処理、熱処理、鹸化処理、溶剤処理といった表面処理手法を用いて、特に好ましいのはコロナ処理であるが、表面自由エネルギーの低下を防ぐことにより、低屈折率層塗布前の光散乱層の表面エネルギーを前記範囲に制御することでも目的を達成することができる。   Further, if the surface energy is prevented from being lowered when the low refractive index layer is overcoated on the light scattering layer, the deterioration of the antireflection performance can be prevented. When coating the light scattering layer, the surface tension of the coating solution is lowered using a fluoropolymer to improve surface uniformity and maintain high productivity by high-speed coating. After coating the light scattering layer, corona treatment, UV treatment, heat treatment, saponification Corona treatment is particularly preferred using surface treatment methods such as treatment and solvent treatment, but the surface energy of the light scattering layer before coating the low refractive index layer is controlled within the above range by preventing the surface free energy from decreasing. You can also achieve your goals.

また、本発明者等は、ゴニオフォトメーターで測定される散乱光の強度分布が視野角改良効果に相関することを確認した。すなわち、バックライトから出射された光が視認側の偏光板表面に設置された光拡散フィルムで拡散されればされるほど視野角特性がよくなる。しかし、あまり拡散されすぎると、後方散乱が大きくなり、正面輝度が減少する、あるいは、散乱が大きすぎて画像鮮明性が劣化する等の問題が生じる。従って、散乱光強度分布をある範囲に制御することが必要となる。そこで、鋭意検討の結果、所望の視認特性を達成するには、散乱光プロファイルの出射角0°の光強度に対して、特に視認角改良効果と相関ある30°の散乱光強度が0.01%〜0.2%であることが好ましく、0.02%〜0.15%が更に好ましい。
散乱光プロファイルは、作成した光散乱性フィルムについて、(株)村上色彩技術研究所製の自動変角光度計GP−5型を用いて測定できる。
In addition, the present inventors have confirmed that the intensity distribution of scattered light measured with a goniophotometer correlates with the viewing angle improvement effect. That is, the more the light emitted from the backlight is diffused by the light diffusion film installed on the polarizing plate surface on the viewing side, the better the viewing angle characteristics. However, if it is diffused too much, backscattering will increase and the front luminance will decrease, or the scattering will be too great and the image clarity will deteriorate. Therefore, it is necessary to control the scattered light intensity distribution within a certain range. Therefore, as a result of intensive studies, in order to achieve the desired visual characteristics, the scattered light intensity at 30 °, which correlates particularly with the visual angle improvement effect, is 0.01 relative to the light intensity at the outgoing angle 0 ° of the scattered light profile. % To 0.2% is preferable, and 0.02% to 0.15% is more preferable.
The scattered light profile can be measured for the created light scattering film using an automatic goniophotometer GP-5 manufactured by Murakami Color Research Laboratory.

また、本発明の光散乱層を形成する為の塗布組成物中に、チクソトロピー剤を添加しても良い。チクソトロピー剤としては、0.1μm以下のシリカ、マイカ等があげられる。これら添加剤の含有量は、通常、紫外線硬化型樹脂100質量部に対して、1〜10質量部程度とするのが好適である。   Moreover, you may add a thixotropic agent in the coating composition for forming the light-scattering layer of this invention. Examples of the thixotropic agent include silica and mica of 0.1 μm or less. In general, the content of these additives is preferably about 1 to 10 parts by mass with respect to 100 parts by mass of the ultraviolet curable resin.

次に、前記低屈折率層について以下に説明する。
<低屈折率層>
本発明の反射防止フィルムにおける低屈折率層の屈折率は、1.30〜1.55であり、好ましくは1.35〜1.45の範囲である。
屈折率が1.30未満であると、反射防止性能は向上するが、膜の機械強度が低下し、1.55を超えると、反射防止性能が著しく悪化してしまう。
さらに、低屈折率層は下記数式(I)を満たすことが低反射率化の点で好ましい。
数式(I)
(m/4)×0.7<n1×d1<(m/4)×1.3
式中、mは正の奇数であり、n1は低屈折率層の屈折率であり、そして、d1は低屈折率層の膜厚(nm)である。また、λは波長であり、500〜550nmの範囲の値である。
なお、前記数式(I)を満たすとは、前記波長の範囲において数式(I)を満たすm(正の奇数、通常1である)が存在することを意味している。
Next, the low refractive index layer will be described below.
<Low refractive index layer>
The refractive index of the low refractive index layer in the antireflection film of the present invention is 1.30 to 1.55, preferably 1.35 to 1.45.
When the refractive index is less than 1.30, the antireflection performance is improved, but the mechanical strength of the film is lowered, and when it exceeds 1.55, the antireflection performance is remarkably deteriorated.
Further, the low refractive index layer preferably satisfies the following formula (I) from the viewpoint of reducing the reflectance.
Formula (I)
(M / 4) × 0.7 <n1 × d1 <(m / 4) × 1.3
In the formula, m is a positive odd number, n1 is the refractive index of the low refractive index layer, and d1 is the film thickness (nm) of the low refractive index layer. Further, λ is a wavelength, which is a value in the range of 500 to 550 nm.
In addition, satisfy | filling said numerical formula (I) means that m (positive odd number, usually 1) which satisfy | fills numerical formula (I) exists in the said wavelength range.

低屈折率層を形成する素材について以下に説明する。
低屈折率層は、例えば含フッ素ポリマーを主成分とする硬化性組成物を塗布、乾燥、硬化して形成される硬化膜である。
<低屈折率層用含フッ素ポリマー>
前記含フッ素ポリマーは、硬化被膜にした場合の被膜の動摩擦係数が0.03〜0.20、水に対する接触角が90〜120°、純水の滑落角が70°以下であり、熱または電離放射線により架橋するポリマーであるのが、ロールフィルムをウェブ搬送しながら塗布、硬化する場合などにおいて生産性向上の点で好ましい。
また、本発明の反射防止フィルムを画像表示装置に装着した時、市販の接着テープとの剥離力が低いほどシールやメモを貼り付けた後に剥がれ易くなるので、剥離力は、500gf以下が好ましく、300gf以下がより好ましく、100gf以下が最も好ましい。また、微小硬度計で測定した表面硬度が高いほど、傷がつき難いので、該表面硬度が、0.3GPa以上が好ましく、0.5GPa以上がより好ましい。
The material for forming the low refractive index layer will be described below.
The low refractive index layer is a cured film formed, for example, by applying, drying and curing a curable composition containing a fluorine-containing polymer as a main component.
<Fluoropolymer for low refractive index layer>
The fluoropolymer has a cured film with a coefficient of dynamic friction of 0.03 to 0.20, a contact angle with water of 90 to 120 °, and a sliding angle of pure water of 70 ° or less, and heat or ionization. A polymer that is cross-linked by radiation is preferable in terms of improving productivity in the case of coating and curing a roll film while transporting the web.
In addition, when the antireflection film of the present invention is mounted on an image display device, the lower the peel strength from a commercially available adhesive tape, the easier it is to peel off after sticking a seal or memo, so the peel strength is preferably 500 gf or less, 300 gf or less is more preferable, and 100 gf or less is most preferable. Further, the higher the surface hardness measured with a microhardness meter, the harder it is to scratch. Therefore, the surface hardness is preferably 0.3 GPa or more, and more preferably 0.5 GPa or more.

低屈折率層に用いられる含フッ素ポリマーは、フッ素原子を35〜80質量%の範囲で含有し、且つ架橋性もしくは重合性の官能基を含む含フッ素ポリマーであり、例えば、パーフルオロアルキル基含有シラン化合物〔例えば(ヘプタデカフルオロ−1,1,2,2−テトラヒドロデシル)トリエトキシシラン〕の加水分解物や脱水縮合物の他、含フッ素モノマー単位と架橋反応性単位とを構成単位とする含フッ素共重合体が挙げられる。含フッ素共重合体の場合、主鎖は、炭素原子のみからなるのが好ましい。すなわち、主鎖骨格に酸素原子や窒素原子などを有しないのが好ましい。   The fluorine-containing polymer used for the low refractive index layer is a fluorine-containing polymer containing a fluorine atom in a range of 35 to 80% by mass and containing a crosslinkable or polymerizable functional group, for example, containing a perfluoroalkyl group In addition to hydrolysates and dehydration condensates of silane compounds [for example, (heptadecafluoro-1,1,2,2-tetrahydrodecyl) triethoxysilane], fluorinated monomer units and crosslinking reactive units are used as constituent units. A fluorine-containing copolymer is mentioned. In the case of a fluorinated copolymer, the main chain preferably consists of only carbon atoms. That is, it is preferable that the main chain skeleton does not have an oxygen atom or a nitrogen atom.

前記含フッ素モノマー単位の具体例としては、例えばフルオロオレフィン類(例えばフルオロエチレン、ビニリデンフルオライド、テトラフルオロエチレン、パーフルオロオクチルエチレン、ヘキサフルオロプロピレン、パーフルオロ−2,2−ジメチル−1,3−ジオキソール等)、(メタ)アクリル酸の部分または完全フッ素化アルキルエステル誘導体類(例えばビスコート6FM(大阪有機化学製)やM−2020(ダイキン製)等)、完全または部分フッ素化ビニルエーテル類等が挙げられるが、好ましくはパーフルオロオレフィン類であり、屈折率、溶解性、透明性、入手性等の観点から特に好ましくはヘキサフルオロプロピレンである。   Specific examples of the fluorine-containing monomer unit include, for example, fluoroolefins (for example, fluoroethylene, vinylidene fluoride, tetrafluoroethylene, perfluorooctylethylene, hexafluoropropylene, perfluoro-2,2-dimethyl-1,3- Dioxoles, etc.), (meth) acrylic acid partial or fully fluorinated alkyl ester derivatives (for example, Biscoat 6FM (manufactured by Osaka Organic Chemicals) and M-2020 (manufactured by Daikin)), fully or partially fluorinated vinyl ethers, etc. However, perfluoroolefins are preferable, and hexafluoropropylene is particularly preferable from the viewpoint of refractive index, solubility, transparency, availability, and the like.

前記架橋反応性単位としては、グリシジル(メタ)アクリレート、グリシジルビニルエーテルのように分子内にあらかじめ自己架橋性官能基を有するモノマーの重合によって得られる構成単位;カルボキシル基やヒドロキシ基、アミノ基、スルホ基等を有するモノマー〔例えば(メタ)アクリル酸、メチロール(メタ)アクリレート、ヒドロキシアルキル(メタ)アクリレート、アリルアクリレート、ヒドロキシエチルビニルエーテル、ヒドロキシブチルビニルエーテル、マレイン酸、クロトン酸等〕の重合によって得られる構成単位に高分子反応によって(メタ)アクリルロイル基等の架橋反応性基を導入した構成単位(例えばヒドロキシ基に対してアクリル酸クロリドを作用させる等の手法で導入できる)が挙げられる。   Examples of the crosslinking reactive unit include a structural unit obtained by polymerization of a monomer having a self-crosslinking functional group in the molecule such as glycidyl (meth) acrylate and glycidyl vinyl ether; carboxyl group, hydroxy group, amino group, sulfo group A structural unit obtained by polymerization of a monomer having, for example, (meth) acrylic acid, methylol (meth) acrylate, hydroxyalkyl (meth) acrylate, allyl acrylate, hydroxyethyl vinyl ether, hydroxybutyl vinyl ether, maleic acid, crotonic acid, etc. And a structural unit in which a crosslinkable reactive group such as a (meth) acryloyl group is introduced by a polymer reaction (for example, it can be introduced by a technique such as allowing acrylic acid chloride to act on a hydroxy group).

また、前記含フッ素モノマー単位及び前記架橋反応性単位以外に溶剤への溶解性、皮膜の透明性等の観点から、適宜フッ素原子を含有しないモノマーを共重合させて、他の重合単位を導入することもできる。併用可能なモノマー単位には特に限定はなく、例えばオレフィン類〔エチレン、プロピレン、イソプレン、塩化ビニル、塩化ビニリデン等〕、アクリル酸エステル類〔アクリル酸メチル、アクリル酸メチル、アクリル酸エチル、アクリル酸2−エチルヘキシル〕、メタクリル酸エステル類〔メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、エチレングリコールジメタクリレート等〕、スチレン誘導体〔スチレン、ジビニルベンゼン、ビニルトルエン、α−メチルスチレン等〕、ビニルエーテル類〔メチルビニルエーテル、エチルビニルエーテル、シクロヘキシルビニルエーテル等〕、ビニルエステル類〔酢酸ビニル、プロピオン酸ビニル、桂皮酸ビニル等〕、アクリルアミド類〔N−tertブチルアクリルアミド、N−シクロヘキシルアクリルアミド等〕、メタクリルアミド類、アクリロ二トリル誘導体等を挙げることができる。   In addition to the fluorine-containing monomer unit and the cross-linking reactive unit, from the viewpoint of solubility in a solvent, film transparency, and the like, a monomer not containing a fluorine atom is appropriately copolymerized to introduce another polymerization unit. You can also There are no particular limitations on the monomer units that can be used in combination, such as olefins [ethylene, propylene, isoprene, vinyl chloride, vinylidene chloride, etc.], acrylic esters [methyl acrylate, methyl acrylate, ethyl acrylate, acrylic acid 2 -Ethylhexyl], methacrylates (methyl methacrylate, ethyl methacrylate, butyl methacrylate, ethylene glycol dimethacrylate, etc.), styrene derivatives (styrene, divinylbenzene, vinyl toluene, α-methylstyrene, etc.), vinyl ethers (methyl) Vinyl ether, ethyl vinyl ether, cyclohexyl vinyl ether, etc.], vinyl esters [vinyl acetate, vinyl propionate, vinyl cinnamate, etc.], acrylamides [N-tertbutylacrylamide, N-silane] B hexyl acrylamide], methacrylamides, and acrylonitrile derivatives.

前記含フッ素ポリマーに対しては特開平10−25388号および特開平10−147739号各公報に記載のごとく適宜硬化剤を併用しても良い。   As described in JP-A-10-25388 and JP-A-10-147739, a curing agent may be appropriately used in combination with the fluoropolymer.

本発明で特に有用な含フッ素ポリマーは、パーフルオロオレフィンとビニルエーテル類またはビニルエステル類とのランダム共重合体である。特に単独で架橋反応可能な基〔(メタ)アクリロイル基等のラジカル反応性基、エポキシ基、オキセタニル基等の開環重合性基等〕を有していることが好ましい。
これらの架橋反応性基含有重合単位はポリマーの全重合単位の5〜70mol%を占めていることが好ましく、特に好ましくは30〜60mol%を占めていることである。
The fluorine-containing polymer particularly useful in the present invention is a random copolymer of perfluoroolefin and vinyl ethers or vinyl esters. In particular, it preferably has a group capable of undergoing crosslinking reaction alone (radical reactive group such as (meth) acryloyl group, ring-opening polymerizable group such as epoxy group and oxetanyl group).
These crosslinkable group-containing polymerized units preferably occupy 5 to 70 mol%, particularly preferably 30 to 60 mol% of the total polymerized units of the polymer.

本発明に用いられる低屈折率層用含フッ素ポリマーの好ましい形態として一般式1で表される共重合体が挙げられる。   A preferred form of the fluorine-containing polymer for the low refractive index layer used in the present invention is a copolymer represented by the general formula 1.

Figure 2006113561
Figure 2006113561

一般式1中、Lは炭素数1〜10の連結基を表し、より好ましくは炭素数1〜6の連結基であり、特に好ましくは2〜4の連結基であり、直鎖であっても分岐構造を有していてもよく、環構造を有していてもよく、O、N及びSから選ばれるヘテロ原子を有していても良い。
好ましい例としては、*−(CH22−O−**, *−(CH22−NH−**, *−(CH24−O−**, *−(CH26−O−**, *−(CH22−O−(CH22−O−**,*−CONH−(CH23−O−**, *−CH2CH(OH)CH2−O−**, *−CH2CH2OCONH(CH23−O−**(* はポリマー主鎖側の連結部位を表し、**は(メタ)アクリロイル基側の連結部位を表す。)等が挙げられる。mは0または1を表わす。
In General Formula 1, L represents a linking group having 1 to 10 carbon atoms, more preferably a linking group having 1 to 6 carbon atoms, particularly preferably a linking group having 2 to 4 carbon atoms, It may have a branched structure, may have a ring structure, or may have a heteroatom selected from O, N and S.
Preferred examples include * — (CH 2 ) 2 —O — **, * — (CH 2 ) 2 —NH — **, * — (CH 2 ) 4 —O — **, * — (CH 2 ). 6 -O - **, * - ( CH 2) 2 -O- (CH 2) 2 -O - **, * - CONH- (CH 2) 3 -O - **, * -CH 2 CH (OH ) CH 2 —O — **, * —CH 2 CH 2 OCONH (CH 2 ) 3 —O — ** (* represents the connecting site on the polymer main chain side, and ** represents the connecting on the (meth) acryloyl group side) Represents a part). m represents 0 or 1;

一般式1中、Xは水素原子またはメチル基を表す。硬化反応性の観点から、より好ましくは水素原子である。   In general formula 1, X represents a hydrogen atom or a methyl group. From the viewpoint of curing reactivity, a hydrogen atom is more preferable.

一般式1中、Aは任意のビニルモノマーから導かれる繰返し単位を表わし、ヘキサフルオロプロピレンと共重合可能な単量体の構成成分であれば特に制限はなく、基材への密着性、ポリマーのTg(皮膜硬度に寄与する)、溶剤への溶解性、透明性、滑り性、防塵・防汚性等種々の観点から適宜選択することができ、目的に応じて単一あるいは複数のビニルモノマーによって構成されていても良い。   In the general formula 1, A represents a repeating unit derived from an arbitrary vinyl monomer, and is not particularly limited as long as it is a constituent component of a monomer copolymerizable with hexafluoropropylene. Tg (contributes to film hardness), solubility in solvents, transparency, slipperiness, dust / antifouling properties, etc., can be selected as appropriate, depending on the purpose, depending on the single or multiple vinyl monomers It may be configured.

好ましい例としては、メチルビニルエーテル、エチルビニルエーテル、t−ブチルビニルエーテル、シクロへキシルビニルエーテル、イソプロピルビニルエーテル、ヒドロキシエチルビニルエーテル、ヒドロキシブチルビニルエーテル、グリシジルビニルエーテル、アリルビニルエーテル等のビニルエーテル類、酢酸ビニル、プロピオン酸ビニル、酪酸ビニル等のビニルエステル類、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ヒドロキシエチル(メタ)アクリレート、グリシジルメタアクリレート、アリル(メタ)アクリレート、(メタ)アクリロイルオキシプロピルトリメトキシシラン等の(メタ)アクリレート類、スチレン、p−ヒドロキシメチルスチレン等のスチレン誘導体、クロトン酸、マレイン酸、イタコン酸等の不飽和カルボン酸およびその誘導体等を挙げることができるが、より好ましくはビニルエーテル誘導体、ビニルエステル誘導体であり、特に好ましくはビニルエーテル誘導体である。   Preferred examples include methyl vinyl ether, ethyl vinyl ether, t-butyl vinyl ether, cyclohexyl vinyl ether, isopropyl vinyl ether, hydroxyethyl vinyl ether, hydroxybutyl vinyl ether, glycidyl vinyl ether, vinyl ethers such as allyl vinyl ether, vinyl acetate, vinyl propionate, butyric acid. (Meth) such as vinyl esters such as vinyl, methyl (meth) acrylate, ethyl (meth) acrylate, hydroxyethyl (meth) acrylate, glycidyl methacrylate, allyl (meth) acrylate, (meth) acryloyloxypropyltrimethoxysilane Acrylates, styrene, styrene derivatives such as p-hydroxymethylstyrene, crotonic acid, maleic acid, itaconic acid Can be mentioned unsaturated carboxylic acids and derivatives thereof, more preferably ether derivatives, vinyl ester derivatives, particularly preferably a vinyl ether derivative.

x、y、zはそれぞれの構成成分のモル%を表わし、30≦x≦60、5≦y≦70、0≦z≦65が好ましく、更に好ましくは、35≦x≦55、30≦y≦60、0≦z≦20の場合であり、特に好ましくは40≦x≦55、40≦y≦55、0≦z≦10の場合である。ただし、x+y+z=100である。
本発明に用いられる共重合体の特に好ましい形態として一般式2が挙げられる。
x, y, and z represent the mol% of each constituent component, and preferably 30 ≦ x ≦ 60, 5 ≦ y ≦ 70, and 0 ≦ z ≦ 65, and more preferably 35 ≦ x ≦ 55 and 30 ≦ y ≦. 60, 0 ≦ z ≦ 20, particularly preferably 40 ≦ x ≦ 55, 40 ≦ y ≦ 55, and 0 ≦ z ≦ 10. However, x + y + z = 100.
A particularly preferred form of the copolymer used in the present invention is General Formula 2.

Figure 2006113561
Figure 2006113561

一般式2においてXは一般式1と同じ意味を表わし、好ましい範囲も同じである。
nは2≦n≦10の整数を表わし、2≦n≦6であることが好ましく、2≦n≦4であることが特に好ましい。
Bは任意のビニルモノマーから導かれる繰返し単位を単位を表わし、単一組成であっても複数の組成によって構成されていても良い。例としては、前記一般式1におけるAの例として説明したものが当てはまる。
x、y、z1およびz2はそれぞれの繰返し単位のmol%を表わし、x及びyは、それぞれ30≦x≦60、5≦y≦70を満たすのが好ましく、更に好ましくは、35≦x≦55、30≦y≦60の場合であり、特に好ましくは40≦x≦55、40≦y≦55の場合である。z1及びz2については、0≦z1≦65、0≦z2≦65を満たすのが好ましく、更に好ましくは0≦z1≦30、0≦z2≦10であることが好ましく、0≦z1≦10、0≦z2≦5であることが特に好ましい。ただし、x+y+z1+z2=100である。
一般式1又は2で表わされる共重合体は、例えば、ヘキサフルオロプロピレン成分とヒドロキシアルキルビニルエーテル成分とを含んでなる共重合体に前記のいずれかの手法により(メタ)アクリロイル基を導入することにより合成できる。この際用いられる再沈殿溶媒としては、イソプロパノール、ヘキサン、メタノール等が好ましい。
一般式1又は2で表わされる共重合体の好ましい具体例としては、特開2004−45462号公報の[0035]〜[0047]に記載されたものを挙げることができ、該公報に記載の方法により合成することができる。
In General Formula 2, X represents the same meaning as in General Formula 1, and the preferred range is also the same.
n represents an integer of 2 ≦ n ≦ 10, preferably 2 ≦ n ≦ 6, and particularly preferably 2 ≦ n ≦ 4.
B represents a unit of a repeating unit derived from an arbitrary vinyl monomer, and may be composed of a single composition or a plurality of compositions. As an example, what was demonstrated as an example of A in the said General formula 1 is applicable.
x, y, z1 and z2 represent mol% of each repeating unit, and x and y preferably satisfy 30 ≦ x ≦ 60 and 5 ≦ y ≦ 70, respectively, more preferably 35 ≦ x ≦ 55. 30 ≦ y ≦ 60, particularly preferably 40 ≦ x ≦ 55 and 40 ≦ y ≦ 55. z1 and z2 preferably satisfy 0 ≦ z1 ≦ 65 and 0 ≦ z2 ≦ 65, more preferably 0 ≦ z1 ≦ 30 and 0 ≦ z2 ≦ 10, and 0 ≦ z1 ≦ 10, 0 It is particularly preferable that ≦ z2 ≦ 5. However, x + y + z1 + z2 = 100.
The copolymer represented by the general formula 1 or 2 is obtained, for example, by introducing a (meth) acryloyl group into a copolymer comprising a hexafluoropropylene component and a hydroxyalkyl vinyl ether component by any of the above-described methods. Can be synthesized. As the reprecipitation solvent used in this case, isopropanol, hexane, methanol and the like are preferable.
Preferable specific examples of the copolymer represented by the general formula 1 or 2 include those described in [0035] to [0047] of JP-A-2004-45462, and the method described in the publication Can be synthesized.

前記硬化性組成物は、(A)前記含フッ素ポリマー、(B)無機微粒子、(C)後述するオルガノシラン化合物を含有してなるのが好ましい。
<低屈折率層用無機微粒子>
無機微粒子の配合量は、1mg/m2〜100mg/m2が好ましく、より好ましくは5mg/m2〜80mg/m2、更に好ましくは10mg/m2〜60mg/m2である。少なすぎると、耐擦傷性の改良効果が減り、多すぎると、低屈折率層表面に微細な凹凸ができ、黒の締まりなどの外観や積分反射率が悪化する場合があるので、上述の範囲内とするのが好ましい。
該無機微粒子は、低屈折率層に含有させることから、低屈折率であることが望ましい。例えば、フッ化マグネシウムやシリカの微粒子が挙げられる。特に、屈折率、分散安定性、コストの点で、シリカ微粒子が好ましい。
無機微粒子の平均粒径は、低屈折率層の厚みの30%以上100%以下が好ましく、より好ましくは35%以上80%以下、更に好ましくは40%以上60%以下である。即ち、低屈折率層の厚みが100nmであれば、シリカ微粒子の粒径は30nm以上100nm以下が好ましく、より好ましくは35nm以上80nm以下、更に好ましくは、40nm以上60nm以下である。
前記無機微粒子の粒径が小さすぎると、耐擦傷性の改良効果が少なくなり、大きすぎると低屈折率層表面に微細な凹凸ができ、黒の締まりといった外観、積分反射率が悪化する場合があるので、上述の範囲内とするのが好ましい。無機微粒子は、結晶質でも、アモルファスのいずれでも良く、また単分散粒子でも、所定の粒径を満たすならば凝集粒子でも構わない。形状は、球径が最も好ましいが、不定形であっても問題無い。
ここで、無機微粒子の平均粒径はコールターカウンターにより測定される。
The curable composition preferably contains (A) the fluoropolymer, (B) inorganic fine particles, and (C) an organosilane compound described later.
<Inorganic fine particles for low refractive index layer>
The amount of the inorganic fine particles is preferably 1mg / m 2 ~100mg / m 2 , more preferably 5mg / m 2 ~80mg / m 2 , more preferably from 10mg / m 2 ~60mg / m 2 . If the amount is too small, the effect of improving the scratch resistance is reduced. It is preferable to be inside.
Since the inorganic fine particles are contained in the low refractive index layer, it is desirable that the inorganic fine particles have a low refractive index. Examples thereof include fine particles of magnesium fluoride and silica. In particular, silica fine particles are preferable in terms of refractive index, dispersion stability, and cost.
The average particle diameter of the inorganic fine particles is preferably 30% or more and 100% or less, more preferably 35% or more and 80% or less, and still more preferably 40% or more and 60% or less of the thickness of the low refractive index layer. That is, when the thickness of the low refractive index layer is 100 nm, the particle size of the silica fine particles is preferably 30 nm to 100 nm, more preferably 35 nm to 80 nm, and still more preferably 40 nm to 60 nm.
If the particle size of the inorganic fine particles is too small, the effect of improving the scratch resistance is reduced. Therefore, it is preferable to be within the above range. The inorganic fine particles may be either crystalline or amorphous, and may be monodispersed particles or aggregated particles as long as a predetermined particle size is satisfied. The shape is most preferably a spherical diameter, but there is no problem even if the shape is indefinite.
Here, the average particle diameter of the inorganic fine particles is measured by a Coulter counter.

低屈折率層の屈折率上昇をより一層少なくするために、前記無機微粒子は、中空構造であるのが好ましく、また、無機微粒子の屈折率は1.17〜1.40、より好ましくは1.17〜1.35、さらに好ましくは1.17〜1.30である。ここでの屈折率は粒子全体としての屈折率を表し、中空構造の無機微粒子の場合に外殻の無機質のみの屈折率を表すものではない。この時、粒子内の空腔の半径をa、粒子外殻の半径をbとすると、下記数式(II)で表される空隙率xは
(数式II)
x=(4πa3/3)/(4πb3/3)×100
好ましくは10〜60%、さらに好ましくは20〜60%、最も好ましくは30〜60%である。
中空の無機微粒子の屈折率をより低屈折率に、より空隙率を大きくしようとすると、外殻の厚みが薄くなり、粒子の強度としては弱くなるため、耐擦傷性の観点からは屈折率1.17未満の低屈折率の粒子は成り立たない。
なお、無機微粒子の屈折率はアッベ屈折率計(アタゴ(株)製)にて測定を行い測定した。
In order to further reduce the increase in the refractive index of the low refractive index layer, the inorganic fine particles preferably have a hollow structure, and the refractive index of the inorganic fine particles is 1.17 to 1.40, more preferably 1. It is 17-1.35, More preferably, it is 1.17-1.30. Here, the refractive index represents the refractive index of the whole particle, and does not represent the refractive index of only the inorganic material of the outer shell in the case of hollow structure inorganic fine particles. At this time, when the radius of the cavity in the particle is a and the radius of the particle outer shell is b, the porosity x represented by the following formula (II) is (formula II)
x = (4πa 3/3) / (4πb 3/3) × 100
Preferably it is 10 to 60%, More preferably, it is 20 to 60%, Most preferably, it is 30 to 60%.
If the refractive index of the hollow inorganic fine particles is made lower and the porosity is increased, the thickness of the outer shell becomes thinner and the strength of the particles becomes weaker. From the viewpoint of scratch resistance, the refractive index is 1 Particles with a low refractive index of less than .17 do not hold.
The refractive index of the inorganic fine particles was measured with an Abbe refractometer (manufactured by Atago Co., Ltd.).

また、平均粒径が低屈折率層の厚みの25%未満である無機微粒子(以下「小サイズ無機微粒子」と称す)の少なくとも1種を前記の好ましい範囲内の粒径の無機微粒子(以下「大サイズ無機微粒子」と称す)と併用してもよい。
小サイズ無機微粒子は、大サイズ無機微粒子同士の隙間に存在することができるため、大サイズ無機微粒子の保持剤として寄与することができる。
小サイズ無機微粒子の平均粒径は、低屈折率層が100nmの場合、1nm以上20nm以下が好ましく、5nm以上15nm以下が更に好ましく、10nm以上15nm以下が特に好ましい。このような無機微粒子を用いると、原料コストおよび保持剤効果の点で好ましい。
上述のように前記無機微粒子としては、平均粒径が上述のように低屈折率層の厚みの30〜100%であり、中空構造からなり、屈折率が上述のように1.17〜1.40であるものが特に好ましく用いられる。
In addition, at least one kind of inorganic fine particles (hereinafter referred to as “small size inorganic fine particles”) having an average particle size of less than 25% of the thickness of the low refractive index layer is referred to as “inorganic fine particles (hereinafter referred to as“ small size inorganic fine particles ”). It may be used in combination with “large-size inorganic fine particles”.
Since the small-sized inorganic fine particles can be present in the gaps between the large-sized inorganic fine particles, they can contribute as a retaining agent for the large-sized inorganic fine particles.
When the low refractive index layer is 100 nm, the average particle size of the small-sized inorganic fine particles is preferably 1 nm to 20 nm, more preferably 5 nm to 15 nm, and particularly preferably 10 nm to 15 nm. Use of such inorganic fine particles is preferable in terms of raw material costs and a retaining agent effect.
As described above, the inorganic fine particles have an average particle diameter of 30 to 100% of the thickness of the low refractive index layer as described above, have a hollow structure, and have a refractive index of 1.17 to 1. What is 40 is used especially preferably.

無機微粒子は、分散液中あるいは塗布液中で、分散安定化を図るために、あるいはバインダー成分との親和性、結合性を高めるために、プラズマ放電処理やコロナ放電処理のような物理的表面処理、界面活性剤やカップリング剤等による化学的表面処理がなされていても良い。中でもカップリング剤の使用が特に好ましい。カップリング剤としては、アルコキシメタル化合物(例、チタンカップリング剤、シランカップリング剤)が好ましく用いられる。なかでも、シランカップリング処理が特に有効である。
前記カップリング剤は、低屈折率層の無機微粒子の表面処理剤として該層塗布液調製以前にあらかじめ表面処理を施すために用いられるが、該層塗布液調製時にさらに添加剤として添加して該層に含有させることが好ましい。
無機微粒子は、表面処理前に、媒体中に予め分散されていることが、表面処理の負荷軽減のために好ましい。
Inorganic fine particles are treated with physical surface treatment such as plasma discharge treatment or corona discharge treatment in order to stabilize dispersion in the dispersion or coating solution, or to improve the affinity and binding properties with the binder component. Further, chemical surface treatment with a surfactant, a coupling agent or the like may be performed. Of these, the use of a coupling agent is particularly preferred. As the coupling agent, an alkoxy metal compound (eg, titanium coupling agent, silane coupling agent) is preferably used. Of these, silane coupling treatment is particularly effective.
The coupling agent is used as a surface treatment agent for the inorganic fine particles of the low refractive index layer in advance for surface treatment prior to the preparation of the layer coating solution, and is further added as an additive during preparation of the layer coating solution. It is preferable to make it contain in a layer.
The inorganic fine particles are preferably dispersed in the medium in advance before the surface treatment in order to reduce the load of the surface treatment.

次に、(C)オルガノシラン化合物について説明する。
<低屈折率層用オルガノシラン化合物>
前記硬化性組成物には、オルガノシラン化合物の加水分解物および/またはその部分縮合物等(以下、得られた反応溶液を「ゾル成分」とも称する)を含有させることが、耐擦傷性の点で、特に反射防止能と耐擦傷性とを両立させる点で、好ましい。
このゾル成分は、前記硬化性組成物を塗布後、乾燥、加熱工程で縮合して硬化物を形成することにより低屈折率層のバインダーとして機能する。また、本発明においては、前記含フッ素ポリマーを有するので、活性光線の照射により3次元構造を有するバインダーが形成される。
前記オルガノシラン化合物は、下記一般式[A]で表されるものが好ましい。
一般式[A]
(R10m−Si(X)4-m

前記一般式[A]において、R10は置換もしくは無置換のアルキル基、置換もしくは無置換のアリール基を表す。アルキル基としてはメチル、エチル、プロピル、イソプロピル、ヘキシル、デシル、ヘキサデシル等が挙げられる。アルキル基として好ましくは炭素数1〜30、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜6のものである。アリール基としてはフェニル、ナフチル等が挙げられ、好ましくはフェニル基である。
Xは、水酸基または加水分解可能な基を表し、例えばアルコキシ基(炭素数1〜5のアルコキシ基が好ましい。例えばメトキシ基、エトキシ基等が挙げられる)、ハロゲン原子(例えばCl、Br、I等)、及びR2COO(R2は水素原子または炭素数1〜5のアルキル基が好ましい。例えばCH3COO、C25COO等が挙げられる)で表される基が挙げられ、好ましくはアルコキシ基であり、特に好ましくはメトキシ基またはエトキシ基である。
mは1〜3の整数を表し、好ましくは1または2であり、特に好ましくは1である。
Next, (C) the organosilane compound will be described.
<Organosilane compound for low refractive index layer>
The curable composition contains a hydrolyzate of an organosilane compound and / or a partial condensate thereof (hereinafter, the obtained reaction solution is also referred to as a “sol component”). In particular, it is preferable in terms of achieving both the antireflection ability and the scratch resistance.
This sol component functions as a binder for the low refractive index layer by applying the curable composition and then condensing in a drying and heating process to form a cured product. Moreover, in this invention, since it has the said fluorine-containing polymer, the binder which has a three-dimensional structure is formed by irradiation of actinic light.
The organosilane compound is preferably represented by the following general formula [A].
Formula [A]
(R 10 ) m -Si (X) 4-m

In the general formula [A], R 10 represents a substituted or unsubstituted alkyl group or a substituted or unsubstituted aryl group. Examples of the alkyl group include methyl, ethyl, propyl, isopropyl, hexyl, decyl, hexadecyl and the like. The alkyl group is preferably an alkyl group having 1 to 30 carbon atoms, more preferably 1 to 16 carbon atoms, and particularly preferably 1 to 6 carbon atoms. Examples of the aryl group include phenyl and naphthyl, and a phenyl group is preferable.
X represents a hydroxyl group or a hydrolyzable group, for example, an alkoxy group (preferably an alkoxy group having 1 to 5 carbon atoms, such as a methoxy group or an ethoxy group), a halogen atom (for example, Cl, Br, I or the like). ), And R 2 COO (R 2 is preferably a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, such as CH 3 COO, C 2 H 5 COO, etc.), preferably An alkoxy group, particularly preferably a methoxy group or an ethoxy group.
m represents an integer of 1 to 3, preferably 1 or 2, and particularly preferably 1.

10あるいはXが複数存在するとき、複数のR10あるいはXはそれぞれ同じであっても異なっていても良い。
10に含まれる置換基としては特に制限はないが、ハロゲン原子(フッ素、塩素、臭素等)、水酸基、メルカプト基、カルボキシル基、エポキシ基、アルキル基(メチル、エチル、i−プロピル、プロピル、t−ブチル等)、アリール基(フェニル、ナフチル等)、芳香族ヘテロ環基(フリル、ピラゾリル、ピリジル等)、アルコキシ基(メトキシ、エトキシ、i−プロポキシ、ヘキシルオキシ等)、アリールオキシ(フェノキシ等)、アルキルチオ基(メチルチオ、エチルチオ等)、アリールチオ基(フェニルチオ等)、アルケニル基(ビニル、1−プロペニル等)、アシルオキシ基(アセトキシ、アクリロイルオキシ、メタクリロイルオキシ等)、アルコキシカルボニル基(メトキシカルボニル、エトキシカルボニル等)、アリールオキシカルボニル基(フェノキシカルボニル等)、カルバモイル基(カルバモイル、N−メチルカルバモイル、N,N−ジメチルカルバモイル、N−メチル−N−オクチルカルバモイル等)、アシルアミノ基(アセチルアミノ、ベンゾイルアミノ、アクリルアミノ、メタクリルアミノ等)等が挙げられ、これら置換基は更に置換されていても良い。
When R 10 or X there are a plurality, a plurality of R 10 or X groups may be different, even the same, respectively.
The substituent contained in R 10 is not particularly limited, but a halogen atom (fluorine, chlorine, bromine, etc.), hydroxyl group, mercapto group, carboxyl group, epoxy group, alkyl group (methyl, ethyl, i-propyl, propyl, t-butyl etc.), aryl groups (phenyl, naphthyl etc.), aromatic heterocyclic groups (furyl, pyrazolyl, pyridyl etc.), alkoxy groups (methoxy, ethoxy, i-propoxy, hexyloxy etc.), aryloxy (phenoxy etc.) ), Alkylthio groups (methylthio, ethylthio, etc.), arylthio groups (phenylthio, etc.), alkenyl groups (vinyl, 1-propenyl, etc.), acyloxy groups (acetoxy, acryloyloxy, methacryloyloxy, etc.), alkoxycarbonyl groups (methoxycarbonyl, ethoxy) Carbonyl, etc.), aryloxy Carbonyl groups (phenoxycarbonyl, etc.), carbamoyl groups (carbamoyl, N-methylcarbamoyl, N, N-dimethylcarbamoyl, N-methyl-N-octylcarbamoyl, etc.), acylamino groups (acetylamino, benzoylamino, acrylicamino, methacrylamino) Etc.), and these substituents may be further substituted.

10が複数ある場合は、少なくとも一つが置換アルキル基もしくは置換アリール基であることが好ましい。
前記一般式[A]で表されるオルガノシラン化合物の中でも、下記一般式[B]で表されるビニル重合性の置換基を有するオルガノシラン化合物が好ましい。
When there are a plurality of R 10 s , at least one is preferably a substituted alkyl group or a substituted aryl group.
Among the organosilane compounds represented by the general formula [A], an organosilane compound having a vinyl polymerizable substituent represented by the following general formula [B] is preferable.

一般式[B]

Figure 2006113561
General formula [B]
Figure 2006113561

前記一般式[B]において、R1は水素原子、メチル基、メトキシ基、アルコキシカルボニル基、シアノ基、フッ素原子、または塩素原子を表す。アルコキシカルボニル基としては、メトキシカルボニル基、エトキシカルボニル基などが挙げられる。水素原子、メチル基、メトキシ基、メトキシカルボニル基、シアノ基、フッ素原子、および塩素原子が好ましく、水素原子、メチル基、メトキシカルボニル基、フッ素原子、および塩素原子が更に好ましく、水素原子およびメチル基が特に好ましい。
Yは単結合もしくは *−COO−**, *−CONH−**又は *−O−**を表し、単結合、 *−COO−**および *−CONH−**が好ましく、単結合および *−COO−**が更に好ましく、 *−COO−**が特に好ましい。* は=C(R1)−に結合する位置を、**はLに結合する位置を表す。
In the general formula [B], R 1 represents a hydrogen atom, a methyl group, a methoxy group, an alkoxycarbonyl group, a cyano group, a fluorine atom, or a chlorine atom. Examples of the alkoxycarbonyl group include a methoxycarbonyl group and an ethoxycarbonyl group. A hydrogen atom, a methyl group, a methoxy group, a methoxycarbonyl group, a cyano group, a fluorine atom and a chlorine atom are preferred, a hydrogen atom, a methyl group, a methoxycarbonyl group, a fluorine atom and a chlorine atom are more preferred, and a hydrogen atom and a methyl group Is particularly preferred.
Y represents a single bond or * -COO-**, * -CONH-** or * -O-**, preferably a single bond, * -COO-** or * -CONH-**, * -COO-** is more preferable, and * -COO-** is particularly preferable. * Represents a position bonded to ═C (R 1 ) —, and ** represents a position bonded to L.

Lは2価の連結鎖を表す。具体的には、置換もしくは無置換のアルキレン基、置換もしくは無置換のアリーレン基、内部に連結基(例えば、エーテル、エステル、アミドなど)を有する置換もしくは無置換のアルキレン基、内部に連結基を有する置換もしくは無置換のアリーレン基が挙げられ、置換もしくは無置換のアルキレン基、置換もしくは無置換のアリーレン基、内部に連結基を有するアルキレン基が好ましく、無置換のアルキレン基、無置換のアリーレン基、内部にエーテルあるいはエステル連結基を有するアルキレン基が更に好ましく、無置換のアルキレン基、内部にエーテルあるいはエステル連結基を有するアルキレン基が特に好ましい。置換基は、ハロゲン、水酸基、メルカプト基、カルボキシル基、エポキシ基、アルキル基、アリール基等が挙げられ、これら置換基は更に置換されていても良い。   L represents a divalent linking chain. Specifically, a substituted or unsubstituted alkylene group, a substituted or unsubstituted arylene group, a substituted or unsubstituted alkylene group having a linking group (for example, ether, ester, amide, etc.) inside, and a linking group inside. A substituted or unsubstituted arylene group, a substituted or unsubstituted alkylene group, a substituted or unsubstituted arylene group, an alkylene group having a linking group therein is preferred, an unsubstituted alkylene group, an unsubstituted arylene group Further, an alkylene group having an ether or ester linking group inside is more preferable, an unsubstituted alkylene group, and an alkylene group having an ether or ester linking group inside is particularly preferable. Examples of the substituent include a halogen, a hydroxyl group, a mercapto group, a carboxyl group, an epoxy group, an alkyl group, and an aryl group, and these substituents may be further substituted.

nは0または1を表す。Xが複数存在するとき、複数のXはそれぞれ同じであっても異なっていても良い。nとして好ましくは0である。
10は一般式[A]と同義であり、置換もしくは無置換のアルキル基、無置換のアリール基が好ましく、無置換のアルキル基、無置換のアリール基が更に好ましい。
Xは一般式[A]と同義であり、ハロゲン原子、水酸基、無置換のアルコキシ基が好ましく、塩素原子、水酸基、無置換の炭素数1〜6のアルコキシ基が更に好ましく、水酸基、炭素数1〜3のアルコキシ基が更に好ましく、メトキシ基が特に好ましい。
n represents 0 or 1. When there are a plurality of Xs, the plurality of Xs may be the same or different. n is preferably 0.
R 10 has the same meaning as in formula [A], preferably a substituted or unsubstituted alkyl group or an unsubstituted aryl group, and more preferably an unsubstituted alkyl group or an unsubstituted aryl group.
X has the same meaning as in the general formula [A], preferably a halogen atom, a hydroxyl group or an unsubstituted alkoxy group, more preferably a chlorine atom, a hydroxyl group or an unsubstituted alkoxy group having 1 to 6 carbon atoms, a hydroxyl group or a carbon number of 1 -3 alkoxy groups are more preferred, and methoxy groups are particularly preferred.

一般式[A]、一般式[B]の化合物は2種類以上を併用しても良い。以下に一般式[A]、一般式[B]で表される化合物の具体例を示すが、限定されるものではない。   Two or more compounds of the general formula [A] and general formula [B] may be used in combination. Although the specific example of a compound represented by general formula [A] and general formula [B] is shown below, it is not limited.

Figure 2006113561
Figure 2006113561

Figure 2006113561
Figure 2006113561

これらのうち、(M−1)、(M−2)、および(M−5)が特に好ましい。   Of these, (M-1), (M-2), and (M-5) are particularly preferable.

そして、前記オルガノシラン化合物の加水分解物および/または部分縮合物は、一般に前記オルガノシラン化合物を触媒の存在下で処理して製造されるものである。触媒としては、塩酸、硫酸、硝酸等の無機酸類;シュウ酸、酢酸、ギ酸、メタンスルホン酸、トルエンスルホン酸等の有機酸類;水酸化ナトリウム、水酸化カリウム、アンモニア等の無機塩基類;トリエチルアミン、ピリジン等の有機塩基類;トリイソプロポキシアルミニウム、テトラブトキシジルコニウム等の金属アルコキシド類;Zr、Ti又はAlなどの金属を中心金属とする金属キレート化合物等が挙げられる。本発明においては、金属キレート化合物、無機酸類及び有機酸類の酸触媒を用いるのが好ましい。無機酸では塩酸、硫酸が好ましく、有機酸では、水中での酸解離定数(pKa値(25℃))が4.5以下のものが好ましく、更には、塩酸、硫酸、水中での酸解離定数が3.0以下の有機酸が好ましく、特に、塩酸、硫酸、水中での酸解離定数が2.5以下の有機酸が好ましく、水中での酸解離定数が2.5以下の有機酸が更に好ましく、具体的には、メタンスルホン酸、シュウ酸、フタル酸、マロン酸が更に好ましく、シュウ酸が特に好ましい。   The hydrolyzate and / or partial condensate of the organosilane compound is generally produced by treating the organosilane compound in the presence of a catalyst. Catalysts include inorganic acids such as hydrochloric acid, sulfuric acid and nitric acid; organic acids such as oxalic acid, acetic acid, formic acid, methanesulfonic acid and toluenesulfonic acid; inorganic bases such as sodium hydroxide, potassium hydroxide and ammonia; triethylamine, Examples thereof include organic bases such as pyridine; metal alkoxides such as triisopropoxyaluminum and tetrabutoxyzirconium; metal chelate compounds having a metal such as Zr, Ti or Al as a central metal. In the present invention, it is preferable to use a metal chelate compound, an acid catalyst of inorganic acids and organic acids. Inorganic acids are preferably hydrochloric acid and sulfuric acid, and organic acids are preferably those having an acid dissociation constant (pKa value (25 ° C.)) of 4.5 or less in water, and further, acid dissociation constants in hydrochloric acid, sulfuric acid and water. Is preferably an organic acid having an acid dissociation constant of 2.5 or less in hydrochloric acid, sulfuric acid or water, more preferably an organic acid having an acid dissociation constant of 2.5 or less in water. Specifically, methanesulfonic acid, oxalic acid, phthalic acid, and malonic acid are more preferable, and oxalic acid is particularly preferable.

金属キレート化合物としては、一般式R3OH(式中、R3は炭素数1〜10のアルキル基を示す)で表されるアルコールとR4COCH2COR5(式中、R4は炭素数1〜10のアルキル基、R5は炭素数1〜10のアルキル基または炭素数1〜10のアルコキシ基を示す)で表される化合物とを配位子とした、Zr、Ti、Alから選ばれる金属を中心金属とするものであれば特に制限なく好適に用いることができる。この範疇であれば、2種以上の金属キレート化合物を併用しても良い。本発明に用いられる金属キレート化合物は、一般式Zr(OR3p1(R4COCHCOR5p2、Ti(OR3q1(R4COCHCOR5q2、およびAl(OR3r1(R4COCHCOR5r2で表される化合物群から選ばれるものが好ましく、前記オルガノシラン化合物の加水分解物および/または部分縮合物の縮合反応を促進する作用をなす。
金属キレート化合物中のR3およびR4は、同一または異なってもよく炭素数1〜10のアルキル基、具体的にはエチル基、n−プロピル基、i−プロピル基、n−ブチル基、sec−ブチル基、t−ブチル基、n−ペンチル基、フェニル基などである。また、R5は、前記と同様の炭素数1〜10のアルキル基のほか、炭素数1〜10のアルコキシ基、例えばメトキシ基、エトキシ基、n−プロポキシ基、i−プロポキシ基、n−ブトキシ基、sec−ブトキシ基、t−ブトキシ基などである。また、金属キレート化合物中のp1、p2、q1、q2、r1、およびr2は、それぞれp1+p2=4、q1+q2=4、r1+r2=3となる様に決定される整数を表す。
As the metal chelate compound, (wherein, R 3 represents an alkyl group having 1 to 10 carbon atoms) Formula R 3 OH alcohol and R 4 COCH 2 COR 5 (formula represented by, R 4 is the number of carbon atoms 1 to 10 alkyl groups, R 5 represents an alkyl group having 1 to 10 carbon atoms or a compound represented by an alkoxy group having 1 to 10 carbon atoms), and is selected from Zr, Ti, and Al. Any metal having a central metal as the metal can be used without any particular limitation. Within this category, two or more metal chelate compounds may be used in combination. The metal chelate compound used in the present invention has the general formula Zr (OR 3 ) p1 (R 4 COCHCOR 5 ) p2 , Ti (OR 3 ) q1 (R 4 COCHCOR 5 ) q2 , and Al (OR 3 ) r1 (R 4 Those selected from the group of compounds represented by COCHCOR 5 ) r2 are preferred and serve to promote the condensation reaction of the hydrolyzate and / or partial condensate of the organosilane compound.
R 3 and R 4 in the metal chelate compound may be the same or different and each is an alkyl group having 1 to 10 carbon atoms, specifically, an ethyl group, n-propyl group, i-propyl group, n-butyl group, sec -Butyl group, t-butyl group, n-pentyl group, phenyl group and the like. R 5 represents an alkyl group having 1 to 10 carbon atoms as described above, or an alkoxy group having 1 to 10 carbon atoms such as a methoxy group, an ethoxy group, an n-propoxy group, an i-propoxy group, and n-butoxy. Group, sec-butoxy group, t-butoxy group and the like. Moreover, p1, p2, q1, q2, r1, and r2 in the metal chelate compound represent integers determined so as to be p1 + p2 = 4, q1 + q2 = 4, and r1 + r2 = 3, respectively.

これらの金属キレート化合物の具体例としては、トリ−n−ブトキシエチルアセトアセテートジルコニウム、ジ−n−ブトキシビス(エチルアセトアセテート)ジルコニウム、n−ブトキシトリス(エチルアセトアセテート)ジルコニウム、テトラキス(n−プロピルアセトアセテート)ジルコニウム、テトラキス(アセチルアセトアセテート)ジルコニウム、テトラキス(エチルアセトアセテート)ジルコニウムなどのジルコニウムキレート化合物;ジイソプロポキシ・ビス(エチルアセトアセテート)チタニウム、ジイソプロポキシ・ビス(アセチルアセテート)チタニウム、ジイソプロポキシ・ビス(アセチルアセトン)チタニウムなどのチタニウムキレート化合物;ジイソプロポキシエチルアセトアセテートアルミニウム、ジイソプロポキシアセチルアセトナートアルミニウム、イソプロポキシビス(エチルアセトアセテート)アルミニウム、イソプロポキシビス(アセチルアセトナート)アルミニウム、トリス(エチルアセトアセテート)アルミニウム、トリス(アセチルアセトナート)アルミニウム、モノアセチルアセトナート・ビス(エチルアセトアセテート)アルミニウムなどのアルミニウムキレート化合物などが挙げられる。
これらの金属キレート化合物のうち好ましいものは、トリ−n−ブトキシエチルアセトアセテートジルコニウム、ジイソプロポキシビス(アセチルアセトナート)チタニウム、ジイソプロポキシエチルアセトアセテートアルミニウム、トリス(エチルアセトアセテート)アルミニウムである。これらの金属キレート化合物は、1種単独であるいは2種以上混合して使用することができる。また、これらの金属キレート化合物の部分加水分解物を使用することもできる。
Specific examples of these metal chelate compounds include tri-n-butoxyethylacetoacetate zirconium, di-n-butoxybis (ethylacetoacetate) zirconium, n-butoxytris (ethylacetoacetate) zirconium, tetrakis (n-propylacetate). Zirconium chelate compounds such as acetate) zirconium, tetrakis (acetylacetoacetate) zirconium, tetrakis (ethylacetoacetate) zirconium; diisopropoxy bis (ethylacetoacetate) titanium, diisopropoxy bis (acetylacetate) titanium, diiso Titanium chelate compounds such as propoxy bis (acetylacetone) titanium; diisopropoxyethyl acetoacetate aluminum, diisopropyl Poxyacetylacetonate aluminum, isopropoxybis (ethylacetoacetate) aluminum, isopropoxybis (acetylacetonate) aluminum, tris (ethylacetoacetate) aluminum, tris (acetylacetonate) aluminum, monoacetylacetonate bis (ethyl) An aluminum chelate compound such as acetoacetate) aluminum.
Among these metal chelate compounds, tri-n-butoxyethyl acetoacetate zirconium, diisopropoxybis (acetylacetonate) titanium, diisopropoxyethyl acetoacetate aluminum, and tris (ethyl acetoacetate) aluminum are preferable. These metal chelate compounds can be used individually by 1 type or in mixture of 2 or more types. Moreover, the partial hydrolyzate of these metal chelate compounds can also be used.

また、本発明においては、前記硬化性組成物に、更にβ−ジケトン化合物および/またはβ−ケトエステル化合物が添加されることが好ましい。以下にさらに説明する。   In the present invention, it is preferable that a β-diketone compound and / or a β-ketoester compound is further added to the curable composition. This will be further described below.

本発明で使用されるのは、一般式R4COCH2COR5で表されるβ−ジケトン化合物および/またはβ−ケトエステル化合物であり、本発明に用いられる硬化性組成物の安定性向上剤として作用するものである。ここで、R4は炭素数1〜10のアルキル基、R5は炭素数1〜10のアルキル基または炭素数1〜10のアルコキシ基を表す。すなわち、前記金属キレート化合物(ジルコニウム、チタニウムおよび/またはアルミニウム化合物)中の金属原子に配位することにより、これらの金属キレート化合物によるオルガノシラン化合物の加水分解物および/または部分縮合物の縮合反応を促進する作用を抑制し、得られる組成物の保存安定性を向上させる作用をなすものと考えられる。β−ジケトン化合物および/またはβ−ケトエステル化合物を構成するR4およびR5は、前記金属キレート化合物を構成するR4およびR5と同様である。 The β-diketone compound and / or β-ketoester compound represented by the general formula R 4 COCH 2 COR 5 is used in the present invention, and is used as a stability improver for the curable composition used in the present invention. It works. Here, R 4 represents an alkyl group having 1 to 10 carbon atoms, and R 5 represents an alkyl group having 1 to 10 carbon atoms or an alkoxy group having 1 to 10 carbon atoms. That is, by coordinating with a metal atom in the metal chelate compound (zirconium, titanium and / or aluminum compound), the condensation reaction of the hydrolyzate and / or partial condensate of the organosilane compound by these metal chelate compounds is performed. It is considered that the promoting action is suppressed and the storage stability of the resulting composition is improved. R 4 and R 5 constituting the β- diketone compound and / or β- ketoester compound are the same as R 4 and R 5 constituting the metal chelate compound.

このβ−ジケトン化合物および/またはβ−ケトエステル化合物の具体例としては、アセチルアセトン、アセト酢酸メチル、アセト酢酸エチル、アセト酢酸−n−プロピル、アセト酢酸−i−プロピル、アセト酢酸−n−ブチル、アセト酢酸−sec−ブチル、アセト酢酸−t−ブチル、2,4−ヘキサン−ジオン、2,4−ヘプタン−ジオン、3,5−ヘプタン−ジオン、2,4−オクタン−ジオン、2,4−ノナン−ジオン、5−メチル−ヘキサン−ジオンなどを挙げることができる。これらのうち、アセト酢酸エチルおよびアセチルアセトンが好ましく、特にアセチルアセトンが好ましい。これらのβ−ジケトン化合物および/またはβ−ケトエステル化合物は、1種単独でまたは2種以上を混合して使用することもできる。本発明においてβ−ジケトン化合物および/またはβ−ケトエステル化合物は、金属キレート化合物1モルに対し好ましくは2モル以上、より好ましくは3〜20モル用いられる。2モル未満では得られる組成物の保存安定性に劣るおそれがあり好ましいものではない。   Specific examples of the β-diketone compound and / or β-ketoester compound include acetylacetone, methyl acetoacetate, ethyl acetoacetate, acetoacetate-n-propyl, acetoacetate-i-propyl, acetoacetate-n-butyl, acetoacetate. Acetic acid-sec-butyl, acetoacetic acid-t-butyl, 2,4-hexane-dione, 2,4-heptane-dione, 3,5-heptane-dione, 2,4-octane-dione, 2,4-nonane -Dione, 5-methyl-hexane-dione and the like can be mentioned. Of these, ethyl acetoacetate and acetylacetone are preferred, and acetylacetone is particularly preferred. These β-diketone compounds and / or β-ketoester compounds may be used alone or in combination of two or more. In the present invention, the β-diketone compound and / or β-ketoester compound is preferably used in an amount of 2 mol or more, more preferably 3 to 20 mol, per 1 mol of the metal chelate compound. If it is less than 2 mol, the storage stability of the resulting composition may be inferior, which is not preferable.

前記オルガノシラン化合物の配合量は、低屈折率層の全固形分の0.1〜50質量%が好ましく、0.5〜20質量%がより好ましく、1〜10質量%が最も好ましい。
前記オルガノシラン化合物は硬化性組成物(光散乱層用、低屈折率層用等の塗布液)に直接添加してもよいが、前記オルガノシラン化合物をあらかじめ触媒の存在下に処理して前記オルガノシラン化合物の加水分解物および/または部分縮合物を調製し、得られた反応溶液(ゾル液)を用いて前記硬化性組成物を調整するのが好ましく、本発明においてはまず前記オルガノシラン化合物の加水分解物および/または部分縮合物および金属キレート化合物を含有する組成物を調製し、これにβ−ジケトン化合物および/またはβ−ケトエステル化合物を添加した液を光散乱層もしくは低屈折率層の少なくとも1層の塗布液に含有せしめて塗設することが好ましい。
The compounding amount of the organosilane compound is preferably 0.1 to 50% by mass, more preferably 0.5 to 20% by mass, and most preferably 1 to 10% by mass based on the total solid content of the low refractive index layer.
The organosilane compound may be added directly to the curable composition (coating liquid for light scattering layer, low refractive index layer, etc.), but the organosilane compound is treated in the presence of a catalyst in advance. It is preferable to prepare a hydrolyzate and / or partial condensate of a silane compound and prepare the curable composition using the obtained reaction solution (sol solution). In the present invention, first, the organosilane compound A composition containing a hydrolyzate and / or a partial condensate and a metal chelate compound is prepared, and a liquid obtained by adding a β-diketone compound and / or a β-ketoester compound thereto is added to at least a light scattering layer or a low refractive index layer. It is preferable to coat it in a single layer coating solution.

低屈折率層における、含フッ素ポリマーに対するオルガノシランのゾル成分の使用量は、5〜100質量%が好ましく、5〜40質量%がより好ましく、8〜35質量%が更に好ましく、10〜30質量%が特に好ましい。使用量が少ないと本発明の効果が得にくく、使用量が多すぎると屈折率が増加したり、膜の形状・面状が悪化したりするので好ましくない。   5-100 mass% is preferable, the usage-amount of the sol component of the organosilane with respect to a fluorine-containing polymer in a low refractive index layer has more preferable 5-40 mass%, 8-35 mass% is still more preferable, 10-30 mass % Is particularly preferred. If the amount used is small, it is difficult to obtain the effect of the present invention, and if the amount used is too large, the refractive index increases or the shape / surface shape of the film deteriorates.

前記硬化性組成物には、上述した無機微粒子以外の無機フィラーを本発明の所望の効果を損なわない範囲の添加量で添加することもできる。無機フィラーの詳細については後述する。   An inorganic filler other than the above-described inorganic fine particles can be added to the curable composition in an addition amount within a range that does not impair the desired effect of the present invention. Details of the inorganic filler will be described later.

(ゾルゲル素材)
低屈折率層用の素材として、各種ゾルゲル素材を用いることもできる。このようなゾルゲル素材としては、金属アルコレート(シラン、チタン、アルミニウム、ジルコニウム等のアルコレート)、オルガノアルコキシ金属化合物、およびその加水分解物を用いることができる。特に、アルコキシシラン、オルガノアルコキシシランおよびその加水分解物が好ましい。これらの例としては、テトラアルコキシシラン(テトラメトキシシラン、テトラエトキシシラン等)、アルキルトリアルコキシシラン(メチルトリメトキシシラン、エチルトリメトキシシラン等)、アリールトリアルコキシシラン(フェニルトリメトキシシラン等)、ジアルキルジアルコキシシラン、ジアリールジアルコキシシラン等が挙げられる。また、各種の官能基を有するオルガノアルコキシシラン(ビニルトリアルコキシシラン、メチルビニルジアルコキシシラン、γ−グリシジルオキシプロピルトリアルコキシシラン、γ−グリシジルオキシプロピルメチルジアルコキシシラン、β−(3,4−エポキジシクロヘキシル)エチルトリアルコキシシラン、γ−メタクリロイルオキシプロピルトリアルコキシシラン、γ−アミノプロピルトリアルコキシシラン、γ−メルカプトプロピルトリアルコキシシラン、γ−クロロプロピルトリアルコキシシラン等)、パーフルオロアルキル基含有シラン化合物(例えば(ヘプタデカフルオロ−1,1,2,2−テトラデシル)トリエトキシシラン、3,3,3−トリフルオロプロピルトリメトキシシラン等)を用いることも好ましい。特にフッ素含有のシラン化合物を用いることは、層の低屈折率化および撥水・撥油性付与の点で好ましい。
(Sol-gel material)
Various sol-gel materials can also be used as the material for the low refractive index layer. As such a sol-gel material, metal alcoholates (alcohols such as silane, titanium, aluminum, and zirconium), organoalkoxy metal compounds, and hydrolysates thereof can be used. In particular, alkoxysilane, organoalkoxysilane and its hydrolyzate are preferable. Examples of these include tetraalkoxysilane (tetramethoxysilane, tetraethoxysilane, etc.), alkyltrialkoxysilane (methyltrimethoxysilane, ethyltrimethoxysilane, etc.), aryltrialkoxysilane (phenyltrimethoxysilane, etc.), dialkyl. Examples thereof include dialkoxysilane and diaryl dialkoxysilane. In addition, organoalkoxysilanes having various functional groups (vinyl trialkoxysilane, methylvinyl dialkoxysilane, γ-glycidyloxypropyltrialkoxysilane, γ-glycidyloxypropylmethyl dialkoxysilane, β- (3,4-epoxy) Dicyclohexyl) ethyltrialkoxysilane, γ-methacryloyloxypropyltrialkoxysilane, γ-aminopropyltrialkoxysilane, γ-mercaptopropyltrialkoxysilane, γ-chloropropyltrialkoxysilane, etc.), perfluoroalkyl group-containing silane compounds ( For example, it is also preferable to use (heptadecafluoro-1,1,2,2-tetradecyl) triethoxysilane, 3,3,3-trifluoropropyltrimethoxysilane, etc.). In particular, the use of a fluorine-containing silane compound is preferable in terms of lowering the refractive index of the layer and imparting water and oil repellency.

[低屈折率層用硬化性組成物に含有するその他の物質]
前記硬化性組成物は、前述の(A)含フッ素ポリマー、(B)無機微粒子及び(C)オルガノシラン化合物に、必要に応じて各種添加剤およびラジカル重合開始剤、カチオン重合開始剤を添加し、更にこれらを適当な溶剤に溶解して作製される。この際固形分の濃度は、用途に応じて適宜選択されるが一般的には0.01〜60質量%程度であり、好ましくは0.5〜50質量%、特に好ましくは1%〜20質量%程度である。
[Other substances contained in curable composition for low refractive index layer]
The curable composition is prepared by adding various additives, a radical polymerization initiator, and a cationic polymerization initiator to the (A) fluorine-containing polymer, (B) inorganic fine particles, and (C) the organosilane compound as necessary. Further, they are prepared by dissolving them in a suitable solvent. At this time, the concentration of the solid content is appropriately selected according to the use, but is generally about 0.01 to 60% by mass, preferably 0.5 to 50% by mass, particularly preferably 1% to 20% by mass. %.

低屈折率層と直接接する下層との界面密着性等の観点からは、多官能(メタ)アクリレート化合物、多官能エポキシ化合物、ポリイソシアネート化合物、アミノプラスト、多塩基酸またはその無水物等の硬化剤を少量添加することもできる。これらを添加する場合には低屈折率層皮膜の全固形分に対して30質量%以下の範囲とすることが好ましく、20質量%以下の範囲とすることがより好ましく、10質量%以下の範囲とすることが特に好ましい。   Curing agents such as polyfunctional (meth) acrylate compounds, polyfunctional epoxy compounds, polyisocyanate compounds, aminoplasts, polybasic acids or anhydrides thereof from the viewpoint of interfacial adhesion with the lower layer directly in contact with the low refractive index layer Can also be added in small amounts. When adding these, it is preferable to set it as the range of 30 mass% or less with respect to the total solid of a low-refractive-index layer film, It is more preferable to set it as the range of 20 mass% or less, The range of 10 mass% or less It is particularly preferable that

また、防汚性、耐水性、耐薬品性、滑り性等の特性を付与する目的で、公知のシリコーン系化合物あるいはフッ素系化合物の防汚剤、滑り剤等を適宜添加することもできる。これらの添加剤を添加する場合には低屈折率層全固形分の0.01〜20質量%の範囲で添加されることが好ましく、より好ましくは0.05〜10質量%の範囲で添加される場合であり、特に好ましくは0.1〜5質量%の場合である。   In addition, for the purpose of imparting properties such as antifouling properties, water resistance, chemical resistance, and slipping properties, a known silicone compound or fluorine compound antifouling agent, slipping agent, and the like may be appropriately added. When these additives are added, it is preferably added in the range of 0.01 to 20% by mass of the total solid content of the low refractive index layer, more preferably in the range of 0.05 to 10% by mass. Particularly preferred is 0.1 to 5% by mass.

シリコーン系化合物の好ましい例としてはジメチルシリルオキシ単位を繰り返し単位として複数個含む化合物鎖の末端および/または側鎖に置換基を有するものが挙げられる。ジメチルシリルオキシを繰り返し単位として含む化合物鎖中にはジメチルシリルオキシ以外の構造単位を含んでもよい。置換基は同一であっても異なっていても良く、複数個あることが好ましい。好ましい置換基の例としてはアクリロイル基、メタクリロイル基、ビニル基、アリール基、シンナモイル基、エポキシ基、オキセタニル基、水酸基、フルオロアルキル基、ポリオキシアルキレン基、カルボキシル基、アミノ基などを含む基が挙げられる。分子量に特に制限はないが、10万以下であることが好ましく、5万以下であることが特に好ましく、3000〜30000であることが最も好ましい。シリコーン系化合物のシリコーン原子含有量には特に制限はないが18.0質量%以上であることが好ましく、25.0〜37.8質量%であることが特に好ましく、30.0〜37.0質量%であることが最も好ましい。好ましいシリコーン系化合物の例としては信越化学(株)製、X−22−174DX、X−22−2426、X−22−164B、X22−164C、X−22−170DX、X−22−176D、X−22−1821(以上商品名)やチッソ(株)製、FM−0725、FM−7725、FM−4421、FM−5521、FM6621、FM−1121やGelest製DMS−U22、RMS−033、RMS−083、UMS−182、DMS−H21、DMS−H31、HMS−301、FMS121、FMS123、FMS131、FMS141、FMS221(以上商品名)などが挙げられるがこれらに限定されるものではない。   Preferable examples of the silicone compound include those having a substituent at the terminal and / or side chain of a compound chain containing a plurality of dimethylsilyloxy units as repeating units. The compound chain containing dimethylsilyloxy as a repeating unit may contain a structural unit other than dimethylsilyloxy. The substituents may be the same or different, and a plurality of substituents are preferable. Examples of preferred substituents include acryloyl group, methacryloyl group, vinyl group, aryl group, cinnamoyl group, epoxy group, oxetanyl group, hydroxyl group, fluoroalkyl group, polyoxyalkylene group, carboxyl group, amino group and the like. It is done. Although there is no restriction | limiting in particular in molecular weight, It is preferable that it is 100,000 or less, It is especially preferable that it is 50,000 or less, It is most preferable that it is 3000-30000. Although there is no restriction | limiting in particular in silicone atom content of a silicone type compound, it is preferable that it is 18.0 mass% or more, it is especially preferable that it is 25.0-37.8 mass%, and 30.0-37.0. Most preferably, it is mass%. Examples of preferred silicone compounds are X-22-174DX, X-22-2426, X-22-164B, X22-164C, X-22-170DX, X-22-176D, X, manufactured by Shin-Etsu Chemical Co., Ltd. -22-1821 (named above), Chisso Corporation, FM-0725, FM-7725, FM-4421, FM-5521, FM6621, FM-1121, Gelest DMS-U22, RMS-033, RMS- 083, UMS-182, DMS-H21, DMS-H31, HMS-301, FMS121, FMS123, FMS131, FMS141, FMS221 (named above) but not limited thereto.

フッ素系化合物としては、フルオロアルキル基を有する化合物が好ましい。該フルオロアルキル基は炭素数1〜20であることが好ましく、より好ましくは1〜10であり、直鎖(例えば−CF2CF3,−CH2(CF24H,−CH2(CF28CF3,−CH2CH2(CF24H等)であっても、分岐構造(例えば−CH(CF32,−CH2CF(CF32,−CH(CH3)CF2CF3,−CH(CH3)(CF25CF2H等)であっても、脂環式構造(好ましくは5員環または6員環、例えばパーフルオロシクロへキシル基、パーフルオロシクロペンチル基またはこれらで置換されたアルキル基等)であっても良く、エーテル結合を有していても良い(例えば−CH2OCH2CF2CF3,−CH2CH2OCH248H,−CH2CH2OCH2CH2817,−CH2CH2OCF2CF2OCF2CF2H等)。該フルオロアルキル基は同一分子中に複数含まれていてもよい。
フッ素系化合物は、さらに低屈折率層皮膜との結合形成あるいは相溶性に寄与する置換基を有していることが好ましい。該置換基は同一であっても異なっていても良く、複数個あることが好ましい。好ましい置換基の例としてはアクリロイル基、メタクリロイル基、ビニル基、アリール基、シンナモイル基、エポキシ基、オキセタニル基、水酸基、ポリオキシアルキレン基、カルボキシル基、アミノ基などが挙げられる。フッ素系化合物はフッ素原子を含まない化合物とのポリマーであってもオリゴマーであってもよく、分子量に特に制限はない。フッ素系化合物のフッ素原子含有量には特に制限は無いが20質量%以上であることが好ましく、30〜70質量%であることが特に好ましく、40〜70質量%であることが最も好ましい。好ましいフッ素系化合物の例としてはダイキン化学工業(株)製、R−2020、M−2020、R−3833、M−3833(以上商品名)、大日本インキ(株)製、メガファックF−171、F−172、F−179A、ディフェンサMCF−300(以上商品名)などが挙げられるがこれらに限定されるものではない。
As the fluorine compound, a compound having a fluoroalkyl group is preferable. The fluoroalkyl group preferably has 1 to 20 carbon atoms, more preferably 1 to 10 carbon atoms, and a straight chain (for example, —CF 2 CF 3 , —CH 2 (CF 2 ) 4 H, —CH 2 (CF 2 ) 8 CF 3 , —CH 2 CH 2 (CF 2 ) 4 H, etc.), even branched structures (eg, —CH (CF 3 ) 2 , —CH 2 CF (CF 3 ) 2 , —CH (CH 3 ) CF 2 CF 3 , —CH (CH 3 ) (CF 2 ) 5 CF 2 H, etc.), but alicyclic structures (preferably 5-membered or 6-membered rings such as perfluorocyclohexyl groups) , A perfluorocyclopentyl group or an alkyl group substituted with these, and may have an ether bond (for example, —CH 2 OCH 2 CF 2 CF 3 , —CH 2 CH 2 OCH 2 C). 4 F 8 H, —CH 2 CH 2 OCH 2 CH 2 C 8 F 17 , —CH 2 C H 2 OCF 2 CF 2 OCF 2 CF 2 H, etc.). A plurality of the fluoroalkyl groups may be contained in the same molecule.
It is preferable that the fluorine-based compound further has a substituent that contributes to bond formation or compatibility with the low refractive index layer film. The substituents may be the same or different, and a plurality of substituents are preferable. Examples of preferred substituents include acryloyl group, methacryloyl group, vinyl group, aryl group, cinnamoyl group, epoxy group, oxetanyl group, hydroxyl group, polyoxyalkylene group, carboxyl group, amino group and the like. The fluorine-based compound may be a polymer or an oligomer with a compound not containing a fluorine atom, and the molecular weight is not particularly limited. Although there is no restriction | limiting in particular in fluorine atom content of a fluorine-type compound, It is preferable that it is 20 mass% or more, It is especially preferable that it is 30-70 mass%, It is most preferable that it is 40-70 mass%. Examples of preferred fluorine-based compounds include Daikin Chemical Industries, R-2020, M-2020, R-3833, M-3833 (named above), Dainippon Ink, Megafac F-171. , F-172, F-179A, defender MCF-300 (trade name), etc., but are not limited thereto.

防塵性、帯電防止等の特性を付与する目的で、公知のカチオン系界面活性剤あるいはポリオキシアルキレン系化合物のような防塵剤、帯電防止剤等を適宜添加することもできる。これら防塵剤、帯電防止剤は前述したシリコーン系化合物やフッ素系化合物にその構造単位が機能の一部として含まれていてもよい。これらを添加剤として添加する場合には低n層全固形分の0.01〜20質量%の範囲で添加されることが好ましく、より好ましくは0.05〜10質量%の範囲で添加される場合であり、特に好ましくは0.1〜5質量%の場合である。好ましい化合物の例としては大日本インキ(株)製、メガファックF−150(商品名)、東レダウコーニング(株)製、SH−3748(商品名)などが挙げられるが、これらに限定されるわけではない。   For the purpose of imparting properties such as dust resistance and antistatic properties, a known cationic surfactant or a dustproof agent such as a polyoxyalkylene compound, an antistatic agent, or the like can be appropriately added. These dustproofing agent and antistatic agent may contain the structural unit as a part of the function in the above-mentioned silicone compound or fluorine compound. When these are added as additives, it is preferably added in the range of 0.01 to 20% by mass, more preferably in the range of 0.05 to 10% by mass of the total solid content of the low n layer. Particularly preferably 0.1 to 5% by mass. Examples of preferred compounds include, but are not limited to, Dainippon Ink Co., Ltd., Megafac F-150 (trade name), Toray Dow Corning Co., Ltd., SH-3748 (trade name), and the like. Do not mean.

<透明支持体>
本発明の光散乱性フィルムないし反射防止フィルムの透明支持体としては、プラスチックフィルムを用いることが好ましい。プラスチックフィルムを形成するポリマーとしては、セルロースアシレート(例、トリアセチルセルロース、ジアセチルセルロース、セルロースアセテートプロピオネート、セルロースアセテートブチレート、代表的には富士写真フイルム社製TAC−TD80U,TD80ULなど)、ポリアミド、ポリカーボネート、ポリエステル(例、ポリエチレンテレフタレート、ポリエチレンナフタレート)、ポリスチレン、ポリオレフィン、ノルボルネン系樹脂(アートン:商品名、JSR社製)、非晶質ポリオレフィン(ゼオネックス:商品名、日本ゼオン社製)、などが挙げられる。このうちトリアセチルセルロース、ポリエチレンテレフタレート、ノルボルネン系樹脂、非晶質ポリオレフィンが好ましく、特にトリアセチルセルロースが好ましい。
セルロースアシレートは、単層または複数の層からなる。単層のセルロースアシレートは、特開平7−11055号等で開示されているドラム流延、あるいはバンド流延等により作成され、後者の複数の層からなるセルロースアシレートは、公開特許公報の特開昭61−94725号、特公昭62−43846号等で開示されている、いわゆる共流延法により作成される。すなわち、原料フレークをハロゲン化炭化水素類(ジクロロメタン等、アルコール類(メタノール、エタノール、ブタノール等)、エステル類(蟻酸メチル、酢酸メチル等)、エーテル類(ジオキサン、ジオキソラン、ジエチルエーテル等)等の溶剤にて溶解し、これに必要に応じて可塑剤、紫外線吸収剤、劣化防止剤、滑り剤、剥離促進剤等の各種の添加剤を加えた溶液(ドープと称する)を、水平式のエンドレスの金属ベルトまたは回転するドラムからなる支持体の上に、ドープ供給手段(ダイと称する)により流延する際、単層ならば単一のドープを単層流延し、複数の層ならば高濃度のセルロースエステルドープの両側に低濃度ドープを共流延し、支持体上である程度乾燥して剛性が付与されたフィルムを支持体から剥離し、次いで各種の搬送手段により乾燥部を通過させて溶剤を除去することからなる方法である。
<Transparent support>
A plastic film is preferably used as the transparent support of the light scattering film or antireflection film of the present invention. As the polymer forming the plastic film, cellulose acylate (eg, triacetyl cellulose, diacetyl cellulose, cellulose acetate propionate, cellulose acetate butyrate, typically TAC-TD80U, TD80UL, etc. manufactured by Fuji Photo Film), Polyamide, polycarbonate, polyester (eg, polyethylene terephthalate, polyethylene naphthalate), polystyrene, polyolefin, norbornene resin (Arton: trade name, manufactured by JSR), amorphous polyolefin (ZEONEX: trade name, manufactured by ZEON Corporation), Etc. Among these, triacetyl cellulose, polyethylene terephthalate, norbornene resin, and amorphous polyolefin are preferable, and triacetyl cellulose is particularly preferable.
Cellulose acylate consists of a single layer or a plurality of layers. A single-layer cellulose acylate is prepared by drum casting or band casting disclosed in Japanese Patent Application Laid-Open No. 7-11055, and the latter cellulose acylate is a feature of the published patent publication. It is prepared by the so-called co-casting method disclosed in Japanese Utility Model Publication Nos. 61-94725 and 62-43846. That is, the raw material flakes are solvents such as halogenated hydrocarbons (dichloromethane, alcohols (methanol, ethanol, butanol, etc.), esters (methyl formate, methyl acetate, etc.), ethers (dioxane, dioxolane, diethyl ether, etc.), etc. A solution (called a dope) with various additives such as a plasticizer, an ultraviolet absorber, an anti-degradation agent, a slipping agent, and a peeling accelerator is added to the horizontal endless as necessary. When casting by a dope supply means (called a die) on a support composed of a metal belt or a rotating drum, a single dope is cast in a single layer if it is a single layer, and a high concentration in the case of multiple layers. A low-concentration dope is co-cast on both sides of the cellulose ester dope, and the film is dried to some extent on the support to release the rigid film, and then peeled off from the support. A process comprising passed through a drying section by species of the conveying means to remove the solvent.

前記のような、セルロースアシレートを溶解するための溶剤としては、ジクロロメタンが代表的である。しかし地球環境や作業環境の観点から、溶剤はジクロロメタン等のハロゲン化炭化水素を実質的に含まないことが好ましい。「実質的に含まない」とは、有機溶剤中のハロゲン化炭化水素の割合が5質量%未満(好ましくは2質量%未満)であることを意味する。   A typical solvent for dissolving cellulose acylate as described above is dichloromethane. However, from the viewpoint of the global environment and working environment, the solvent preferably does not substantially contain a halogenated hydrocarbon such as dichloromethane. “Substantially free” means that the proportion of halogenated hydrocarbon in the organic solvent is less than 5% by mass (preferably less than 2% by mass).

前記のような種々のセルロースアシレートフィルム(トリアセチルセルロースなどからなるフィルム)およびその製造法については発明協会公開技報公技番号2001−1745号(2001年3月15日発行)に記載されている。   Various cellulose acylate films as described above (films made of triacetyl cellulose and the like) and production methods thereof are described in JIII Journal of Technical Disclosure No. 2001-1745 (issued on March 15, 2001). Yes.

セルロースアシレートフィルムの厚みとしては40μm〜120μmが好ましい。ハンドリング適性、塗布適性等を考慮すると80μm前後が好ましいが、近年の表示装置の薄手化の傾向から、偏光板の薄手化のニーズが大きく、偏光板薄手化の観点では40μm〜60μm前後が好ましい。このような薄手のセルロースアシレートフィルムを本発明の光散乱性フィルムないし反射防止フィルムの透明支持体として用いる場合には、セルロースアシレートフィルムに直接塗布する層の溶媒、膜厚、架橋収縮率等を最適化することにより前記のハンドリング、塗布適性等の問題を回避することが好ましい。
<他の層について>
透明支持体と本発明の光散乱層の間に設けても良い他の層として、帯電防止層(ディスプレイ側からの表面抵抗値を下げる等の要求がある場合、表面等へのゴミつきが問題となる場合)、ハードコート層(光散乱層だけで硬度が不足する場合)、防湿層、密着改良層、虹ムラ(干渉ムラ)防止層等が挙げられる。
これらの層は、公知の方法にて形成することができる。
The thickness of the cellulose acylate film is preferably 40 μm to 120 μm. In consideration of handling suitability, coating suitability, etc., about 80 μm is preferable. However, due to the recent trend of thinning display devices, there is a great need for thinning of the polarizing plate. When such a thin cellulose acylate film is used as a transparent support for the light scattering film or antireflection film of the present invention, the solvent, film thickness, crosslinking shrinkage ratio, etc. of the layer directly applied to the cellulose acylate film It is preferable to avoid problems such as handling and application suitability by optimizing the above.
<About other layers>
As another layer that may be provided between the transparent support and the light scattering layer of the present invention, an antistatic layer (when there is a request to reduce the surface resistance value from the display side, there is a problem of dust on the surface, etc. And a hard coat layer (when the light scattering layer alone is insufficient in hardness), a moisture-proof layer, an adhesion improving layer, a rainbow unevenness (interference unevenness) preventing layer, and the like.
These layers can be formed by a known method.

本発明の光散乱性フィルムは以下の方法で形成することができるが、この方法に制限されない。
[塗布液の調整]
Although the light-scattering film of this invention can be formed with the following method, it is not restrict | limited to this method.
[Adjustment of coating solution]

まず、各層を形成するための成分を含有した塗布液が調製される。その際、溶剤の揮発量を最小限に抑制することにより、塗布液中の含水率の上昇を抑制できる。塗布液中の含水率は5%以下が好ましく、2%以下がより好ましい。溶剤の揮発量の抑制は、各素材をタンクに投入後の攪拌時の密閉性を向上すること、移液作業時の塗布液の空気接触面積を最小化すること等で達成される。また、塗布中、或いはその前後に塗布液中の含水率を低減する手段を設けてもよい。   First, a coating solution containing components for forming each layer is prepared. In that case, the raise of the moisture content in a coating liquid can be suppressed by suppressing the volatilization amount of a solvent to the minimum. The moisture content in the coating solution is preferably 5% or less, more preferably 2% or less. The suppression of the volatilization amount of the solvent is achieved by improving the sealing property at the time of stirring after putting each material into the tank, minimizing the air contact area of the coating liquid at the time of liquid transfer operation, and the like. Moreover, you may provide the means to reduce the moisture content in a coating liquid during application | coating, or before and behind that.

光散乱層を形成する塗布液中には、直接その上に形成される低屈折率層の乾燥膜厚(50nm〜120nm程度)に相当する異物を概ね全て(90%以上を指す)除去できるろ過をすることが好ましい。光拡散性を付与する為の透光性微粒子が低屈折率層の膜厚と同等以上であるため、前記ろ過は、透光性微粒子以外の全ての素材を添加した中間液に対して行うことが好ましい。また、前記のような粒径の小さな異物を除去可能なフィルターが入手できない場合には、少なくとも直接その上に形成される層のウエット膜厚(1〜10μm程度)に相当する異物を概ね全て除去できるろ過をすることが好ましい。このような手段により、直接その上に形成される層の点欠陥を減少することができる。   Filtration capable of removing almost all foreign substances (pointing to 90% or more) corresponding to the dry film thickness (about 50 nm to 120 nm) of the low refractive index layer directly formed on the coating liquid for forming the light scattering layer It is preferable to Since the light-transmitting fine particles for imparting light diffusivity are equal to or greater than the film thickness of the low refractive index layer, the filtration is performed on the intermediate liquid to which all materials other than the light-transmitting fine particles are added. Is preferred. In addition, when a filter capable of removing foreign substances having a small particle diameter as described above is not available, almost all foreign substances corresponding to the wet film thickness (about 1 to 10 μm) of the layer directly formed thereon are removed. It is preferable to perform filtration. By such means, the point defects of the layer formed directly thereon can be reduced.

[塗布]
次に、光散乱層、および必要に応じて低屈折率層を形成するための塗布液をエクストルージョン法(ダイコート法)により連続走行するウェブの表面に塗布することにより透明支持体上に塗工し、加熱・乾燥する。その後、光照射および/または加熱して、光散乱層ないし低屈折率層を形成するためのモノマーを重合して硬化する。これにより光散乱層、低屈折率層が形成される。なお、光散乱層は、1層で形成されても、複数層、例えば2層〜4層で構成されていてもよい。また、透明支持体上に直接設けてもよいが、帯電防止層や防湿層等の他の層を介して設けてもよい。
[Application]
Next, a coating solution for forming a light scattering layer and, if necessary, a low refractive index layer is applied on the surface of a continuously running web by an extrusion method (die coating method), and then coated on a transparent support. Heat and dry. Thereafter, the monomer for forming the light scattering layer or the low refractive index layer is polymerized and cured by light irradiation and / or heating. Thereby, a light scattering layer and a low refractive index layer are formed. Note that the light scattering layer may be formed of one layer or a plurality of layers, for example, two to four layers. Moreover, although you may provide directly on a transparent support body, you may provide through other layers, such as an antistatic layer and a moisture-proof layer.

一般に高い生産速度の観点で、エクストルージョン法(ダイコート法)が好ましく用いられる。特に、本発明の光散乱層や反射防止層のような、ウエット塗布量の少ない領域(20cc/m2以下)で好ましく用いることができるダイコーターについて、以下に説明する。
<ダイコーターの構成>
In general, the extrusion method (die coating method) is preferably used from the viewpoint of a high production rate. In particular, a die coater that can be preferably used in a region with a small amount of wet coating (20 cc / m 2 or less) such as the light scattering layer or the antireflection layer of the present invention will be described below.
<Die coater configuration>

図2は本発明を実施したスロットダイを用いたコーターの断面図である。コーター10はバックアップロール11に支持されて連続走行するウェブWに対して、スロットダイ13から塗布液14をビード14aにして塗布することにより、ウェブW上に塗膜14bを形成する。   FIG. 2 is a sectional view of a coater using a slot die embodying the present invention. The coater 10 is applied to the web W supported by the backup roll 11 and continuously applied from the slot die 13 as a bead 14a to form a coating film 14b on the web W.

スロットダイ13の内部にはポケット15、スロット16が形成されている。ポケット15は、その断面が曲線及び直線で構成されており、例えば図2に示すような略円形でもよいし、あるいは半円形でもよい。ポケット15は、スロットダイ13の幅方向にその断面形状をもって延長された塗布液の液溜め空間で、その有効延長の長さは、塗布幅と同等か若干長めにするのが一般的である。ポケット15への塗布液14の供給は、スロットダイ13の側面から、あるいはスロット開口部16aとは反対側の面中央から行う。また、ポケット15には塗布液14が漏れ出ることを防止する栓が設けられている。   Inside the slot die 13, a pocket 15 and a slot 16 are formed. The cross section of the pocket 15 is configured by a curve and a straight line. For example, the pocket 15 may be substantially circular as shown in FIG. 2 or may be semicircular. The pocket 15 is a liquid storage space for the coating liquid extended in the width direction of the slot die 13 with its cross-sectional shape, and the length of the effective extension is generally equal to or slightly longer than the coating width. The supply of the coating liquid 14 to the pocket 15 is performed from the side surface of the slot die 13 or from the center of the surface opposite to the slot opening 16a. The pocket 15 is provided with a stopper that prevents the coating liquid 14 from leaking out.

スロット16は、ポケット15からウェブWへの塗布液14の流路であり、ポケット15と同様にスロットダイ13の幅方向にその断面形状をもち、ウェブ側に位置する開口部16aは、一般に、図示しない幅規制板のようなものを用いて、概ね塗布幅と同じ長さの幅になるように調整する。このスロット16のスロット先端における、バックアップロール11のウェブ走行方向の接線とのなす角は、30°以上90°以下が好ましい。   The slot 16 is a flow path of the coating liquid 14 from the pocket 15 to the web W, and has a cross-sectional shape in the width direction of the slot die 13 similarly to the pocket 15, and the opening 16a located on the web side is generally Using a width regulating plate (not shown), the width is adjusted to be approximately the same as the coating width. The angle between the slot tip of the slot 16 and the tangent in the web running direction of the backup roll 11 is preferably 30 ° or more and 90 ° or less.

スロット16の開口部16aが位置するスロットダイ13の先端リップ17は先細り状に形成されており、その先端はランドと呼ばれる平坦部18とされている。このランド18であって、スロット16に対してウェブWの進行方向の上流側を上流側リップランド18a、下流側を下流側リップランド18bと称する。   The tip lip 17 of the slot die 13 where the opening 16a of the slot 16 is located is tapered, and the tip is a flat part 18 called a land. In the land 18, the upstream side in the traveling direction of the web W with respect to the slot 16 is referred to as an upstream lip land 18 a and the downstream side is referred to as a downstream lip land 18 b.

図3は、スロットダイ13の断面形状を従来のものと比較して示すもので、(A)は本発明のスロットダイ13を示し、(B)は従来のスロットダイ30を示している。従来のスロットダイ30では、上流側リップランド31aと下流側リップランド31bのウェブとの距離は等しい。なお、符号32はポケット、33はスロットを示している。これに対して、本発明のスロットダイ13では、下流側リップランド長さILOが短くされており、これによって、湿潤膜厚が20μm以下の塗布を精度良くおこなうことができる。また、湿潤膜厚が20μm以上であっても、塗布面状をより良好にすることができる。 FIG. 3 shows a cross-sectional shape of the slot die 13 in comparison with a conventional one, (A) shows the slot die 13 of the present invention, and (B) shows a conventional slot die 30. In the conventional slot die 30, the distance between the upstream lip land 31a and the web of the downstream lip land 31b is equal. Reference numeral 32 denotes a pocket, and 33 denotes a slot. On the other hand, in the slot die 13 of the present invention, the downstream side lip land length I LO is shortened, whereby the wet film thickness of 20 μm or less can be applied with high accuracy. Even when the wet film thickness is 20 μm or more, the coated surface can be made more favorable.

上流側リップランド18aのランド長さIUPは特に限定はされないが、500μm〜1mmの範囲で好ましく用いられる。下流側リップランド18bのランド長さILOは30μm以上100μm以下であり、好ましくは30μm以上80μm以下、さらに好ましくは30μm以上60μm以下である。下流側リップのランド長さILOが30μmよりも短い場合は、先端リップのエッジあるいはランドが欠けやすく、塗膜にスジが発生しやすくなり、結果的には塗布が不可能になる。また、下流側の濡れ線位置の設定が困難になり、塗布液が下流側で広がりやすくなるという問題も発生する。この下流側での塗布液の濡れ広がりは、濡れ線の不均一化を意味し、塗布面上にスジなどの不良形状を招くという問題につながることが従来より知られている。一方、下流側リップのランド長さILOが100μmよりも長い場合は、ビードそのものを形成することができないために、薄層塗布を行うことは不可能である。 The land length I UP of the upstream lip land 18a is not particularly limited, but is preferably used in the range of 500 μm to 1 mm. The land length I LO of the downstream lip land 18b is not less than 30 μm and not more than 100 μm, preferably not less than 30 μm and not more than 80 μm, more preferably not less than 30 μm and not more than 60 μm. If the land length I LO of the downstream lip is shorter than 30 μm, the edge or land of the tip lip is likely to be chipped, streaks are likely to occur in the coating film, and consequently application is impossible. In addition, it becomes difficult to set the position of the wetting line on the downstream side, and there is a problem that the coating liquid tends to spread on the downstream side. It has been conventionally known that this spreading of the coating liquid on the downstream side means non-uniform wetting lines and leads to a problem of causing a defective shape such as a streak on the coating surface. On the other hand, when the land length I LO of the downstream lip is longer than 100 μm, the bead itself cannot be formed, so that it is impossible to apply the thin layer.

さらに、下流側リップランド18bは、上流側リップランド18aよりもウェブWに近接したオーバーバイト形状であり、このため減圧度を下げることができて薄膜塗布に適したビード形成が可能となる。下流側リップランド18bと上流側リップランド18aのウェブWとの距離の差(以下、オーバーバイト長さLOと称する)は30μm以上120μm以下が好ましく、さらに好ましくは30μm以上100μm以下、もっとも好ましくは30μm以上80μm以下である。スロットダイ13がオーバーバイト形状のとき、先端リップ17とウェブWの隙間GL とは、下流側リップランド18bとウェブWの隙間を示す。 Further, the downstream lip land 18b has an overbite shape closer to the web W than the upstream lip land 18a. Therefore, the degree of decompression can be lowered, and a bead suitable for thin film coating can be formed. The difference in distance between the downstream side lip land 18b and the web W of the upstream side lip land 18a (hereinafter referred to as overbit length LO) is preferably 30 μm or more and 120 μm or less, more preferably 30 μm or more and 100 μm or less, and most preferably 30 μm. It is 80 μm or less. When the slot die 13 has an overbite shape, the gap GL between the tip lip 17 and the web W indicates the gap between the downstream lip land 18b and the web W.

図4は、本発明を実施した塗布工程のスロットダイ及びその周辺を示す斜視図である。ウェブWの進行方向側とは反対側に、ビード14aに対して十分な減圧調整を行えるよう、接触しない位置に減圧チャンバー40を設置する。減圧チャンバー40は、その作動効率を保持するためのバックプレート40aとサイドプレート40bを備えており、バックプレート40aとウェブWの間、サイドプレート40bとウェブWの間にはそれぞれ隙間GB 、GS が存在する。図5及び図6は、近接している減圧チャンバー40とウェブWを示す断面図である。サイドプレートとバックプレートは図5のようにチャンバー本体と一体のものであってもよいし、図6のように適宜隙間を変えられるようにチャンバーにネジ40cなどで留められている構造でもよい。いかなる構造でも、バックプレート40aとウェブWの間、サイドプレート40bとウェブWの間に実際にあいている部分を、それぞれ隙間GB、GS と定義する。減圧チャンバー40のバックプレート40aとウェブWとの隙間GB とは、減圧チャンバー40を図4のようにウェブW及びスロットダイ13の下方に設置した場合、バックプレート40aの最上端からウェブWまでの隙間を示す。 FIG. 4 is a perspective view showing the slot die and its periphery in the coating process in which the present invention is implemented. On the opposite side of the web W in the direction of travel, the decompression chamber 40 is installed at a position where it does not come into contact with the bead 14a so that sufficient decompression adjustment can be performed. The decompression chamber 40 is provided with a back plate 40a and a side plate 40b for maintaining its operating efficiency, and there are gaps G B , G between the back plate 40a and the web W and between the side plate 40b and the web W, respectively. S exists. 5 and 6 are cross-sectional views showing the decompression chamber 40 and the web W that are close to each other. The side plate and the back plate may be integrated with the chamber main body as shown in FIG. 5, or may have a structure fastened to the chamber with screws 40c or the like so that the gap can be appropriately changed as shown in FIG. In any structure, portions that are actually opened between the back plate 40a and the web W and between the side plate 40b and the web W are defined as gaps G B and G S , respectively. The gap G B between the back plate 40a and the web W of the decompression chamber 40, when the vacuum chamber 40 is placed under the web W and the slot die 13 as shown in FIG. 4, from the uppermost end of the back plate 40a to the web W Indicates the gap.

バックプレート40aとウェブWとの隙間GB をスロットダイ13の先端リップ17とウェブWとの隙間GLよりも大きくして設置するのが好ましく、これによりバックアップロール11の偏心に起因するビード近傍の減圧度変化を抑制することができる。例えば、スロットダイ13の先端リップ17とウェブWとの隙間GLが30μm以上100μm以下のとき、バックプレート40aとウェブWの間の隙間GB は100μm以上500μm以下が好ましい。 Is preferably placed in the gap G B between the back plate 40a and the web W is larger than the gap G L between the end lip 17 and the web W of the slot die 13, beads vicinity due to the eccentricity of the backup roll 11 thereby The change in the degree of decompression can be suppressed. For example, when the gap G L between the end lip 17 and the web W of the slot die 13 is 30μm or more 100μm or less, the gap G B between the back plate 40a and the web W is preferably 100μm or 500μm or less.

<材質、精度>
前記ウェブの進行方向側の先端リップのウェブ走行方向における長さは、長いほどビード形成に不利であり、この長さがスロットダイ幅方向における任意の個所間でばらつくと、かすかな外乱によりビードが不安定になる。したがって、この長さをスロットダイ幅方向における変動幅が20μm以内とすることが好ましい。
また、スロットダイの先端リップの材質については、ステンレス鋼などのような材質を用いるとダイ加工の段階でだれてしまい、前記のようにスロットダイ先端リップのウェブ走行方向における長さを30〜100μmの範囲にしても、先端リップの精度を満足できない。したがって、高い加工精度を維持するためには、特許第2817053号公報に記載されているような超硬材質のものを用いることが重要である。具体的には、スロットダイの少なくとも先端リップを、平均粒径5μm以下の炭化物結晶を結合してなる超硬合金にすることが好ましい。超硬合金としては、タングステンカーバイド(以下、WCと称す)などの炭化物結晶粒子をコバルトなどの結合金属によって結合したものなどがあり、結合金属としては他にチタン、タンタル、ニオブ及びこれらの混合金属を用いることも出来る。WC結晶の平均粒径としては、粒径3μm以下がさらに好ましい。
高精度な塗布を実現するためには、先端リップのウェブ進行方向側のランドの前記長さ及びウェブとの隙間のスロットダイ幅方向のばらつきも重要な因子となる。この二つの因子の組み合わせ、つまり隙間の変動幅をある程度抑えられる範囲内の真直度を達成することが望ましい。好ましくは、前記隙間のスロットダイ幅方向における変動幅が5μm以下になるように先端リップとバックアップロールの真直度を出す。
<Material and accuracy>
The longer the length of the tip lip on the traveling direction side of the web in the web traveling direction, the more disadvantageous it is for bead formation.If this length varies between arbitrary locations in the slot die width direction, It becomes unstable. Therefore, it is preferable that the fluctuation width in the slot die width direction is within 20 μm.
Further, regarding the material of the tip lip of the slot die, if a material such as stainless steel is used, the length of the slot die tip lip in the web running direction is set to 30 to 100 μm as described above. Even within this range, the accuracy of the tip lip cannot be satisfied. Therefore, in order to maintain high processing accuracy, it is important to use a cemented carbide material as described in Japanese Patent No. 2817053. Specifically, at least the tip lip of the slot die is preferably made of a cemented carbide formed by bonding carbide crystals having an average particle size of 5 μm or less. Cemented carbides include carbide carbide particles such as tungsten carbide (hereinafter referred to as WC) bonded by a bonding metal such as cobalt, and other bonding metals include titanium, tantalum, niobium, and mixed metals thereof. Can also be used. The average particle size of the WC crystal is more preferably 3 μm or less.
In order to realize high-precision coating, the length of the land on the web traveling direction side of the tip lip and the variation in the slot die width direction of the gap with the web are also important factors. It is desirable to achieve a combination of these two factors, that is, straightness within a range in which the fluctuation range of the gap can be suppressed to some extent. Preferably, the straightness of the tip lip and the backup roll is set so that the fluctuation width of the gap in the slot die width direction is 5 μm or less.

<塗布速度>
上記の様なバックアップロール及び先端リップの精度を達成することにより、本発明で好ましく用いられる塗布方式は高速塗布時における膜厚の安定性が高い。さらに、本発明の塗布方式は前計量方式であるために高速塗布時でも安定した膜厚の確保が容易である。本発明の反射防止フィルムの様な低塗布量の塗布液に対して、本発明の塗布方式は高速で膜厚安定性良く塗布が可能である。他の塗布方式でも塗布は可能であるが、ディップコート法は液受け槽中の塗布液振動が不可避であり、段状のムラが発生しやすい。リバースロールコート法では、塗布に関連するロールの偏芯やたわみにより段状のムラが発生しやすい。また、これらの塗布方式は後計量方式であるため、安定した膜厚の確保が困難である。本発明の製造方法を用いることで25m/分以上で塗布することが生産性の面から好ましい。
<Application speed>
By achieving the accuracy of the backup roll and the tip lip as described above, the coating method preferably used in the present invention has high film thickness stability during high-speed coating. Furthermore, since the coating method of the present invention is a pre-measuring method, it is easy to ensure a stable film thickness even during high-speed coating. The coating method of the present invention can be applied at high speed and with good film thickness stability to a coating solution having a low coating amount such as the antireflection film of the present invention. Although coating is possible with other coating methods, the dip coating method inevitably causes vibration of the coating liquid in the liquid receiving tank, and stepped unevenness is likely to occur. In the reverse roll coating method, stepped unevenness is likely to occur due to eccentricity or deflection of the roll related to coating. In addition, since these coating methods are post-measuring methods, it is difficult to ensure a stable film thickness. From the viewpoint of productivity, it is preferable to apply at a rate of 25 m / min or more by using the production method of the present invention.

<ウエット塗布量>
光散乱層を形成する際には、基材フィルム上に直接又は他の層を介してウエット塗布膜厚として6〜30μmの範囲で前記塗液を塗布するのが好ましく、乾燥ムラ防止の観点からさらに3〜20μmの範囲がより好ましい。また、低屈折率層を形成する際には、光散乱層上に直接、或いは他の層を介してウエット塗布膜厚として1〜10μmの範囲で塗布組成物を塗布するのが好ましく、2〜5μmの範囲で塗布されるのがより好ましい。
<Wet application amount>
When forming the light scattering layer, it is preferable to apply the coating liquid in the range of 6 to 30 μm as a wet coating film thickness directly or via another layer on the base film, from the viewpoint of preventing drying unevenness. Furthermore, the range of 3-20 micrometers is more preferable. Further, when forming the low refractive index layer, it is preferable to apply the coating composition in the range of 1 to 10 μm as the wet coating thickness directly on the light scattering layer or via another layer. More preferably, it is applied in the range of 5 μm.

[乾燥]
光散乱層および低屈折率層は、基材フィルム上に直接又は他の層を介して塗布された後、溶剤を乾燥するために加熱されたゾーンにウェブで搬送される。その際の乾燥ゾーンの温度は25℃〜140℃が好ましく、乾燥ゾーンの前半は比較的低温であり、後半は比較的高温であることが好ましい。但し、各層の塗布組成物に含有される溶剤以外の成分の揮発が始まる温度以下であることが好ましい。例えば、紫外線硬化樹脂と併用される市販の光ラジカル発生剤のなかには120℃の温風中で数分以内にその数10%前後が揮発してしまうものもあり、また、単官能、2官能のアクリレートモノマー等は100℃の温風中で揮発が進行するものもある。そのような場合には、前記のように各層の塗布組成物に含有される溶剤以外の成分の揮発が始まる温度以下であることが好ましい。
[Dry]
The light scattering layer and the low refractive index layer are applied on the substrate film directly or via other layers, and then conveyed in a web to a heated zone to dry the solvent. In this case, the temperature of the drying zone is preferably 25 ° C. to 140 ° C., the first half of the drying zone is relatively low temperature, and the second half is preferably relatively high temperature. However, it is preferably below the temperature at which components other than the solvent contained in the coating composition of each layer start to volatilize. For example, some of the commercially available photo radical generators used in combination with ultraviolet curable resins volatilize around several tens of percent within a few minutes in warm air at 120 ° C. Some acrylate monomers and the like undergo volatilization in warm air at 100 ° C. In such a case, it is preferable that it is below the temperature at which components other than the solvent contained in the coating composition of each layer start to volatilize as described above.

また、各層の塗布組成物を基材フィルム上に塗布した後の乾燥風は、前記塗布組成物の固形分濃度が1〜50%の間は塗膜表面の風速が0.1〜2m/秒の範囲にあることが、乾燥ムラを防止するために好ましい。ただし、塗布組成物によっては、より高速で乾燥させるのが望ましい場合もある。
また、各層の塗布組成物を基材フィルム上に塗布した後、乾燥ゾーン内で基材フィルムの塗布面とは反対の面に接触する搬送ロールと基材フィルムとの温度差が0℃〜20℃以内とすると、搬送ロール上での伝熱ムラによる乾燥ムラが防止でき、好ましい。
Moreover, the dry wind after apply | coating the coating composition of each layer on a base film is 0.1-2 m / sec on the surface of a coating film, when the solid content concentration of the said coating composition is 1 to 50%. It is preferable to be in the range in order to prevent drying unevenness. However, depending on the coating composition, it may be desirable to dry at a higher speed.
Moreover, after apply | coating the coating composition of each layer on a base film, the temperature difference of the conveyance roll and base film which contacts the surface opposite to the coating surface of a base film in a drying zone is 0 degreeC-20. Within the range of ° C., drying unevenness due to heat transfer unevenness on the transport roll can be prevented, which is preferable.

[硬化]
溶剤の乾燥ゾーンの後に、ウェブで電離放射線および/または熱により各塗膜を硬化させるゾーンを通過させ、塗膜を硬化する。例えば塗膜が紫外線硬化性であれば、紫外線ランプにより10mJ/cm2〜1000mJ/cm2の照射量の紫外線を照射して各層を硬化するのが好ましい。その際、ウェブの幅方向の照射量分布は中央の最大照射量に対して両端まで含めて50〜100%の分布が好ましく、80〜100%の分布がより好ましい。更に表面硬化を促進する為に窒素ガス等をパージして酸素濃度を低下する必要がある際には、酸素濃度0.01%〜5%が好ましく、幅方向の分布は酸素濃度で2%以下が好ましい。
[Curing]
After the solvent drying zone, the coating is cured by passing through a zone where the coating is cured by ionizing radiation and / or heat on the web. For example, if the coating film is UV curable, it is to cure each layer by irradiating an irradiation amount of ultraviolet rays of 10mJ / cm 2 ~1000mJ / cm 2 by an ultraviolet lamp preferred. At that time, the irradiation distribution in the width direction of the web is preferably 50 to 100%, more preferably 80 to 100%, including both ends with respect to the central maximum irradiation. Further, when it is necessary to purge nitrogen gas or the like to lower the oxygen concentration in order to promote surface hardening, the oxygen concentration is preferably 0.01% to 5%, and the distribution in the width direction is 2% or less in terms of oxygen concentration. Is preferred.

また、光散乱層の硬化率(100−残存官能基含率)が100%未満のある値となった場合、その上に本発明の低屈折率層を設けて電離放射線および/または熱により低屈折率層を硬化した際に下層の光散乱層の硬化率が低屈折率層を設ける前よりも高くなると、光散乱層と低屈折率層との間の密着性が改良され、好ましい。   In addition, when the curing rate (100-residual functional group content) of the light scattering layer becomes a certain value less than 100%, the low refractive index layer of the present invention is provided on the light scattering layer to reduce the light scattering layer by ionizing radiation and / or heat. When the refractive index layer is cured, if the curing rate of the lower light scattering layer is higher than before the low refractive index layer is provided, the adhesion between the light scattering layer and the low refractive index layer is improved, which is preferable.

前記のようにして製造された本発明の光散乱性フィルム、反射防止フィルムは、これを用いて偏光板を作成することにより液晶表示装置に用いることができる。この場合、片面に粘着層を設ける等してディスプレイの最表面に配置する。本発明の反射防止フィルムは、偏光板における偏光膜を両面から挟む2枚の保護フィルムのうち少なくとも1枚に用いることが好ましい。
本発明の反射防止フィルムが保護フィルムを兼ねることで、偏光板の製造コストを低減できる。また、本発明の反射防止フィルムを最表層に使用することにより、外光の映り込み等が防止され、耐擦傷性、防汚性等も優れた偏光板とすることができる。
The light-scattering film and antireflection film of the present invention produced as described above can be used for a liquid crystal display device by forming a polarizing plate using the film. In this case, it arrange | positions on the outermost surface of a display by providing an adhesive layer on one side. The antireflection film of the present invention is preferably used for at least one of the two protective films sandwiching the polarizing film in the polarizing plate from both sides.
Since the antireflection film of the present invention also serves as a protective film, the production cost of the polarizing plate can be reduced. Further, by using the antireflection film of the present invention as the outermost layer, reflection of external light and the like can be prevented, and a polarizing plate having excellent scratch resistance, antifouling property and the like can be obtained.

本発明の光散乱性フィルムや反射防止フィルムを2枚の偏光膜の表面保護フィルムの内の一方として用いて偏光板を作成する際には、前記の反射防止フィルムを、反射防止構造を有する側とは反対側の透明支持体の表面、すなわち偏光膜と貼り合わせる側の表面を親水化することで、接着面における接着性を改良することが好ましい。   When creating a polarizing plate using the light-scattering film or antireflection film of the present invention as one of the surface protective films of two polarizing films, the antireflection film is provided on the side having an antireflection structure. It is preferable to improve the adhesion on the adhesive surface by hydrophilizing the surface of the transparent support opposite to the surface, that is, the surface to be bonded to the polarizing film.

[鹸化処理]
(1)アルカリ液に浸漬する法
アルカリ液の中に光散乱性フィルムや反射防止フィルムを適切な条件で浸漬して、フィルム全表面のアルカリと反応性を有する全ての面を鹸化処理する手法であり、特別な設備を必要としないため、コストの観点で好ましい。アルカリ液は、水酸化ナトリウム水溶液であることが好ましい。好ましい濃度は0.5〜3mol/Lであり、特に好ましくは1〜2mol/Lである。好ましいアルカリ液の液温は30〜75℃、特に好ましくは40〜60℃である。
前記の鹸化条件の組合せは比較的穏和な条件同士の組合せであることが好ましいが、光散乱性フィルムや反射防止フィルムの素材や構成、目標とする接触角によって設定することができる。
アルカリ液に浸漬した後は、フィルムの中にアルカリ成分が残留しないように、水で十分に水洗したり、希薄な酸に浸漬してアルカリ成分を中和することが好ましい。
[Saponification]
(1) Method of immersing in an alkali solution A method of saponifying all surfaces having reactivity with alkali on the entire surface of the film by immersing a light-scattering film or an antireflection film in an alkali solution under appropriate conditions. There is no need for special equipment, which is preferable from the viewpoint of cost. The alkaline liquid is preferably a sodium hydroxide aqueous solution. A preferred concentration is 0.5 to 3 mol / L, particularly preferably 1 to 2 mol / L. The liquid temperature of a preferable alkali liquid is 30-75 degreeC, Most preferably, it is 40-60 degreeC.
The combination of the saponification conditions is preferably a combination of relatively mild conditions, but can be set according to the material and configuration of the light scattering film and the antireflection film, and the target contact angle.
After being immersed in the alkaline solution, it is preferable to sufficiently wash with water or neutralize the alkaline component by immersing in a dilute acid so that the alkaline component does not remain in the film.

鹸化処理することにより、透明支持体の光散乱層や反射防止層を有する表面と反対の表面が親水化される。偏光板用保護フィルムは、透明支持体の親水化された表面を偏光膜と接着させて使用する。
親水化された表面は、ポリビニルアルコールを主成分とする接着層との接着性を改良するのに有効である。
鹸化処理は、光散乱層や低屈折率層を有する側とは反対側の透明支持体の表面の水に対する接触角が低いほど、偏光膜との接着性の観点では好ましいが、一方、浸漬法では同時に光散乱層や低屈折率層を有する表面から内部までアルカリによるダメージを受ける為、必要最小限の反応条件とすることが重要となる。アルカリによる各層の受けるダメージの指標として、反対側の表面の透明支持体の水に対する接触角を用いた場合、特に透明支持体がトリアセチルセルロースであれば、好ましくは10度〜50度、より好ましくは30度〜50度、さらに好ましくは40度〜50度となる。50度以上では、偏光膜との接着性に問題が生じる為、好ましくない。一方、10度未満では、反射防止膜の受けるダメージが大きすぎる為、物理強度を損ない、好ましくない。
By saponification treatment, the surface of the transparent support opposite to the surface having the light scattering layer or antireflection layer is hydrophilized. The protective film for polarizing plate is used by adhering the hydrophilic surface of the transparent support to the polarizing film.
The hydrophilized surface is effective for improving the adhesiveness with the adhesive layer mainly composed of polyvinyl alcohol.
In the saponification treatment, the lower the contact angle with respect to the surface of the transparent support on the side opposite to the side having the light scattering layer or the low refractive index layer, the better from the viewpoint of adhesion to the polarizing film. At the same time, since it is damaged by alkali from the surface having the light scattering layer and the low refractive index layer to the inside, it is important to set the necessary minimum reaction conditions. When the contact angle to water of the transparent support on the opposite surface is used as an index of damage to each layer due to alkali, particularly when the transparent support is triacetylcellulose, preferably 10 to 50 degrees, more preferably Is 30 to 50 degrees, more preferably 40 to 50 degrees. If it is 50 degrees or more, there is a problem in the adhesion to the polarizing film, which is not preferable. On the other hand, if it is less than 10 degrees, the damage received by the antireflection film is too large, and physical strength is impaired, which is not preferable.

(2)アルカリ液を塗布する方法
上述の浸漬法における各膜へのダメージを回避する手段として、適切な条件でアルカリ液を光散乱層や反射防止膜を有する表面と反対側の表面のみに塗布、加熱、水洗、乾燥するアルカリ液塗布法が好ましく用いられる。なお、この場合の塗布とは、鹸化を行う面に対してのみアルカリ液などを接触させることを意味し、塗布以外にも噴霧、液を含んだベルト等に接触させる、などによって行われることも含む。これらの方法を採ることにより、別途、アルカリ液を塗布する設備、工程が必要となるため、コストの観点では(1)の浸漬法に劣る。一方で、鹸化処理を施す面にのみアルカリ液が接触するため、反対側の面にはアルカリ液に弱い素材を用いた層を有することができる。例えば、蒸着膜やゾル−ゲル膜では、アルカリ液によって、腐食、溶解、剥離など様々な影響が起こるため、浸漬法では設けることが望ましくないが、この塗布法では液と接触しないため問題なく使用することが可能である。
(2) Method of applying alkaline solution As a means for avoiding damage to each film in the above-mentioned immersion method, the alkaline solution is applied only to the surface opposite to the surface having the light scattering layer or antireflection film under appropriate conditions. An alkaline solution coating method of heating, washing with water and drying is preferably used. The application in this case means that an alkaline solution or the like is brought into contact only with the surface to be saponified, and in addition to the application, spraying, contact with a belt containing the solution, or the like may be performed. Including. By adopting these methods, a separate facility and process for applying an alkaline solution are required, which is inferior to the immersion method (1) from the viewpoint of cost. On the other hand, since the alkali solution contacts only the surface to be saponified, the opposite surface can have a layer using a material that is weak against the alkali solution. For example, vapor deposition films and sol-gel films have various effects such as corrosion, dissolution, and peeling due to alkali solution, so it is not desirable to use the immersion method. Is possible.

前記(1)、(2)のどちらの鹸化方法においても、ロール状の支持体から巻き出して各層を形成後に行うことができるため、前述の光散乱性フィルムや反射防止フィルム製造工程の後に加えて一連の操作で行っても良い。さらに、同様に巻き出した支持体からなる偏光板との張り合わせ工程もあわせて連続で行うことにより、枚葉で同様の操作をするよりもより効率良く偏光板を作成することができる。   In any of the saponification methods (1) and (2), it can be carried out after each layer is formed by unwinding from a roll-shaped support, so that it is added after the light scattering film or antireflection film manufacturing step. It may be performed by a series of operations. Furthermore, the polarizing plate can be produced more efficiently than the same operation with a single wafer by continuously performing the pasting step with the polarizing plate made of the unwound support.

(3)光散乱層や反射防止層をラミネートフィルムで保護して鹸化する方法
前記(2)と同様に、光散乱層および/または低屈折率層がアルカリ液に対する耐性が不足している場合に、最終層まで形成した後に該最終層を形成した面にラミネートフィルムを貼り合せてからアルカリ液に浸漬することで最終層を形成した面とは反対側のトリアセチルセルロース面だけを親水化し、然る後にラミネートフィルムを剥離することができる。この方法でも、光散乱層、低屈折率層へのダメージなしに偏光板保護フィルムとして必要なだけの親水化処理をトリアセチルセルロースフィルムの最終層を形成した面とは反対の面だけに施すことができる。前記(2)の方法と比較して、ラミネートフィルムが廃棄物として発生する半面、特別なアルカリ液を塗布する装置が不要である利点がある。
(3) Method of protecting and saponifying a light scattering layer and an antireflection layer with a laminate film When the light scattering layer and / or the low refractive index layer is insufficient in resistance to an alkaline solution as in the above (2) Then, after forming the final layer, the laminate film is bonded to the surface on which the final layer is formed and then immersed in an alkaline solution to hydrophilize only the surface of the triacetyl cellulose opposite to the surface on which the final layer is formed. After being laminated, the laminate film can be peeled off. Even in this method, only the surface opposite to the surface on which the final layer of the triacetyl cellulose film is formed is subjected to the hydrophilization treatment necessary for the polarizing plate protective film without damaging the light scattering layer and the low refractive index layer. Can do. Compared with the method (2), the laminate film is generated as waste, but there is an advantage that a device for applying a special alkaline solution is unnecessary.

(4)光散乱層まで形成後にアルカリ液に浸漬する方法
光散乱層まではアルカリ液に対する耐性があるが、低屈折率層がアルカリ液に対する耐性不足である場合には、光散乱層まで形成後にアルカリ液に浸漬して両面を親水化処理し、然る後に光散乱層上に低屈折率層を形成することもできる。製造工程が煩雑になるが、特に低屈折率層がフッ素含有ゾル−ゲル膜等、親水基を有する場合には光散乱層と低屈折率層との層間密着性が向上する利点がある。
(4) Method of immersing in an alkali solution after forming up to the light scattering layer Although the light scattering layer is resistant to the alkaline solution, if the low refractive index layer is insufficiently resistant to the alkaline solution, after forming up to the light scattering layer It is also possible to soak both surfaces in an alkaline solution to hydrophilize both sides, and then form a low refractive index layer on the light scattering layer. Although the manufacturing process is complicated, there is an advantage that the interlayer adhesion between the light scattering layer and the low refractive index layer is improved particularly when the low refractive index layer has a hydrophilic group such as a fluorine-containing sol-gel film.

(5)予め鹸化済のトリアセチルセルロースフィルムに光散乱層や反射防止層を形成する方法
トリアセチルセルロースフィルムを予めアルカリ液に浸漬するなどして鹸化し、何れか一方の面に直接または他の層を介して光散乱層、低屈折率層を形成してもよい。アルカリ液に浸漬して鹸化する場合には、光散乱層または他の層と鹸化により親水化されたトリアセチルセルロース面との層間密着性が悪化することがある。そのような場合には、鹸化後、光散乱層または他の層を形成する面だけにコロナ放電、グロー放電等の処理をすることで親水化面を除去してから光散乱層または他の層を形成することで対処できる。また、光散乱層または他の層が親水性基を有する場合には層間密着が良好なこともある。
(5) Method of forming a light scattering layer or an antireflection layer on a previously saponified triacetyl cellulose film The saponification of the triacetyl cellulose film by immersing it in an alkaline solution in advance, either directly or on the other side You may form a light-scattering layer and a low-refractive-index layer through a layer. In the case of saponification by dipping in an alkali solution, interlayer adhesion between the light scattering layer or other layers and the triacetyl cellulose surface hydrophilized by saponification may deteriorate. In such a case, after the saponification, only the surface on which the light scattering layer or other layer is formed is treated with corona discharge, glow discharge or the like to remove the hydrophilic surface, and then the light scattering layer or other layer. Can be dealt with by forming Further, when the light scattering layer or other layer has a hydrophilic group, the interlayer adhesion may be good.

以下に、本発明の光散乱性フィルムまたは反射防止フィルムを用いた偏光板及び該偏光板を用いた液晶表示装置について説明する。
[偏光板]
本発明の好ましい偏光板は、偏光膜の保護フィルム(偏光板用保護フィルム)の少なくとも一方として、本発明の光散乱性フィルムまたは反射防止フィルムを有する。偏光板用保護フィルムは、前記のように、光散乱層や反射防止層を有する側とは反対側の透明支持体の表面、すなわち偏光膜と貼り合わせる側の表面の水に対する接触角が10度〜50度の範囲にあることが好ましい。
本発明の光散乱性フィルムや反射防止フィルムを偏光板用保護フィルムとして用いることにより、物理強度、耐光性に優れた光散乱機能、あるいは反射防止機能を有する偏光板が作製でき、大幅なコスト削減、表示装置の薄手化が可能となる。
また、本発明の光散乱性フィルムや反射防止フィルムを偏光板用保護フィルムの一方に、後述する光学異方性のある光学補償フィルムを偏光膜の保護フィルムのもう一方に用いた偏光板を作製することにより、さらに、液晶表示装置の明室での視認性やコントラストを改良し、上下左右の視野角が非常に広げることができる偏光板を作製できる。
Below, the polarizing plate using the light-scattering film or antireflection film of this invention and the liquid crystal display device using this polarizing plate are demonstrated.
[Polarizer]
The preferable polarizing plate of this invention has the light-scattering film or antireflection film of this invention as at least one of the protective film (polarizing plate protective film) of a polarizing film. As described above, the protective film for polarizing plate has a contact angle with water of 10 ° on the surface of the transparent support opposite to the side having the light scattering layer and the antireflection layer, that is, the surface to be bonded to the polarizing film. It is preferably in the range of ˜50 degrees.
By using the light scattering film or antireflection film of the present invention as a protective film for a polarizing plate, a light scattering function with excellent physical strength and light resistance, or a polarizing plate having an antireflection function can be produced, resulting in significant cost reduction. Therefore, the display device can be thinned.
In addition, a polarizing plate using the light-scattering film or antireflection film of the present invention as one of the protective films for a polarizing plate and an optical compensation film having optical anisotropy described later as the other protective film of the polarizing film is prepared. By doing so, the visibility and contrast in the bright room of a liquid crystal display device can be improved, and the polarizing plate which can expand the viewing angle of the upper and lower, right and left very much can be produced.

[光学補償層]
偏光板には光学補償層(位相差層)を設けることにより、液晶表示画面の視野角特性を改良することができる。
光学補償層としては、公知のものを用いることができるが、視野角を広げるという点では、ディスコティック構造単位を有する化合物からなる光学異方性を有する層を有し、該ディスコティック化合物と透明支持体とのなす角度が透明支持体からの距離に伴って変化していることを特徴とする光学補償層が好ましい。
該角度は該ディスコティック化合物からなる光学異方性層の透明支持体面側からの距離の増加とともに増加していることが好ましい。
光学補償層を偏光膜の保護フィルムとして用いる場合、偏光膜と貼り合わせる側の表面が鹸化処理されていることが好ましく、前記の鹸化処理に従って実施することが好ましい。
[Optical compensation layer]
By providing the polarizing plate with an optical compensation layer (retardation layer), the viewing angle characteristics of the liquid crystal display screen can be improved.
As the optical compensation layer, a known layer can be used. However, in terms of widening the viewing angle, the optical compensation layer has a layer having optical anisotropy made of a compound having a discotic structural unit, and is transparent to the discotic compound. An optical compensation layer characterized in that the angle formed with the support varies with the distance from the transparent support.
The angle preferably increases as the distance from the transparent support surface side of the optically anisotropic layer made of the discotic compound increases.
When the optical compensation layer is used as a protective film for a polarizing film, the surface on the side to be bonded to the polarizing film is preferably saponified, and is preferably performed according to the saponifying process.

[偏光膜]
偏光膜としては公知の偏光膜や、偏光膜の吸収軸が長手方向に平行でも垂直でもない長尺の偏光膜から切り出された偏光膜を用いてもよい。偏光膜の吸収軸が長手方向に平行でも垂直でもない長尺の偏光膜は以下の方法により作成される。
即ち、連続的に供給されるポリマーフィルムの両端を保持手段により保持しつつ張力を付与して延伸した偏光膜で、少なくともフィルム幅方向に1.1〜20.0倍に延伸し、フィルム両端の保持装置の長手方向進行速度差が3%以内であり、フィルム両端を保持する工程の出口におけるフィルムの進行方向と、フィルムの実質延伸方向のなす角が、20〜70゜傾斜するようにフィルム進行方向を、フィルム両端を保持させた状態で屈曲させてなる延伸方法によって製造することができる。特に45°傾斜させたものが生産性の観点から好ましく用いられる。
[Polarizing film]
As the polarizing film, a known polarizing film or a polarizing film cut out from a long polarizing film whose absorption axis is neither parallel nor perpendicular to the longitudinal direction may be used. A long polarizing film whose absorption axis is neither parallel nor perpendicular to the longitudinal direction is produced by the following method.
That is, a polarizing film stretched by applying tension while holding both ends of a continuously supplied polymer film by a holding means, stretched at least 1.1 to 20.0 times in the film width direction, The progress of the film is such that the difference between the moving speeds in the longitudinal direction of the holding device is within 3%, and the angle formed by the film moving direction at the exit of the step of holding both ends of the film and the substantial stretching direction of the film is inclined by 20 to 70 °. The film can be produced by a stretching method in which the direction is bent while holding both ends of the film. In particular, those inclined by 45 ° are preferably used from the viewpoint of productivity.

ポリマーフィルムの延伸方法については、特開2002−86554号公報の段落0020〜0030に詳しい記載がある。   The method for stretching the polymer film is described in detail in paragraphs 0020 to 0030 of JP-A-2002-86554.

<画像表示装置>
本発明の製造方法で作製した光散乱性フィルムや反射防止フィルムは、液晶表示装置(LCD)、プラズマディスプレイパネル(PDP)、エレクトロルミネッセンスディスプレイ(ELD)や陰極管表示装置(CRT)、電界放出ディスプレイ(FED)、表面電界ディスプレイ(SED)のような画像表示装置に適用することができるが、特に好ましくは液晶表示装置(LCD)に適用することができる。
<Image display device>
The light-scattering film and antireflection film produced by the production method of the present invention are liquid crystal display devices (LCD), plasma display panels (PDP), electroluminescence displays (ELD), cathode ray tube display devices (CRT), field emission displays. (FED) and surface electric field display (SED) can be applied to an image display device, but it is particularly preferably applicable to a liquid crystal display device (LCD).

<液晶表示装置>
本発明の製造方法で作製した光散乱性フィルムや反射防止フィルムは、偏光膜の表面保護フィルムの片側として用いた場合、ツイステットネマチック(TN)、スーパーツイステットネマチック(STN)、バーティカルアライメント(VA)、インプレインスイッチング(IPS)、オプティカリーコンペンセイテットベンドセル(OCB)等のモードの透過型、反射型、または半透過型の液晶表示装置に好ましく用いることができる。
<Liquid crystal display device>
When the light-scattering film and the antireflection film produced by the production method of the present invention are used as one side of the surface protective film of the polarizing film, twisted nematic (TN), super twisted nematic (STN), vertical alignment (VA) ), In-plane switching (IPS), optically compensated bend cell (OCB), and other modes of transmissive, reflective, or transflective liquid crystal display devices.

VAモードの液晶セルには、(1)棒状液晶性分子を電圧無印加時に実質的に垂直に配向させ、電圧印加時に実質的に水平に配向させる狭義のVAモードの液晶セル(特開平2−176625号公報記載)に加えて、(2)視野角拡大のため、VAモードをマルチドメイン化した(MVAモードの)液晶セル(SID97、Digest of tech. Papers(予稿集)28(1997)845記載)、(3)棒状液晶性分子を電圧無印加時に実質的に垂直配向させ、電圧印加時にねじれマルチドメイン配向させるモード(n−ASMモード)の液晶セル(日本液晶討論会の予稿集58〜59(1998)記載)および(4)SURVAIVALモードの液晶セル(LCDインターナショナル98で発表)が含まれる。   The VA mode liquid crystal cell includes (1) a narrowly defined VA mode liquid crystal cell in which rod-like liquid crystalline molecules are aligned substantially vertically when no voltage is applied, and substantially horizontally when a voltage is applied (Japanese Patent Laid-Open No. Hei 2-). 176625 (in Japanese Patent Publication No. 176625), and (2) a liquid crystal cell (SID97, Digest of tech. Papers (Proceedings) 28 (1997) 845 in which the VA mode is converted into a multi-domain (for MVA mode) in order to enlarge the viewing angle. ), (3) A liquid crystal cell in a mode (n-ASM mode) in which rod-like liquid crystalline molecules are substantially vertically aligned when no voltage is applied and twisted multi-domain alignment is applied when a voltage is applied (Preliminary collections 58-59 of the Japan Liquid Crystal Society) (1998)) and (4) SURVAVAL mode liquid crystal cells (announced at LCD International 98).

OCBモードの液晶セルは、棒状液晶性分子を液晶セルの上部と下部とで実質的に逆の方向に(対称的に)配向させるベンド配向モードの液晶セルを用いた液晶表示装置であり、米国特許4583825号、同5410422号の各明細書に開示されている。棒状液晶性分子が液晶セルの上部と下部とで対称的に配向しているため、ベンド配向モードの液晶セルは、自己光学補償機能を有する。そのため、この液晶モードは、OCB(Optically Compensatory Bend)液晶モードとも呼ばれる。ベンド配向モードの液晶表示装置は、応答速度が速いとの利点がある。   The OCB mode liquid crystal cell is a liquid crystal display device using a bend alignment mode liquid crystal cell in which rod-like liquid crystalline molecules are aligned in a substantially opposite direction (symmetrically) between the upper part and the lower part of the liquid crystal cell. It is disclosed in the specifications of Japanese Patent Nos. 45882525 and 5410422. Since the rod-like liquid crystal molecules are symmetrically aligned at the upper and lower portions of the liquid crystal cell, the bend alignment mode liquid crystal cell has a self-optical compensation function. For this reason, this liquid crystal mode is also called an OCB (Optically Compensatory Bend) liquid crystal mode. The bend alignment mode liquid crystal display device has an advantage of high response speed.

ECBモードの液晶セルでは、電圧無印加時に棒状液晶性分子が実質的に水平配向しており、カラーTFT液晶表示装置として最も多く利用されており、多数の文献に記載がある。例えば「EL、PDP、LCDディスプレイ」東レリサーチセンター発行(2001)などに記載されている。   In an ECB mode liquid crystal cell, rod-like liquid crystal molecules are substantially horizontally aligned when no voltage is applied, and is most frequently used as a color TFT liquid crystal display device, and is described in many documents. For example, it is described in “EL, PDP, LCD display” published by Toray Research Center (2001).

特にTNモードやIPSモードの液晶表示装置に対しては、特開2001−100043等に記載されているように、視野角拡大効果を有する光学補償フィルムを偏光膜の裏表2枚の保護フィルムの内の本発明の反射防止フィルムとは反対側の面に用いることにより、1枚の偏光板の厚みで反射防止効果と視野角拡大効果を有する偏光板を得ることができ、特に好ましい。   In particular, for TN mode and IPS mode liquid crystal display devices, as described in JP-A-2001-100043, an optical compensation film having a viewing angle widening effect is included in the two protective films on the back and front of the polarizing film. By using it on the surface opposite to the antireflection film of the present invention, a polarizing plate having an antireflection effect and a viewing angle expansion effect can be obtained with the thickness of one polarizing plate, which is particularly preferable.

本発明を詳細に説明するために、以下に実施例を挙げて説明するが、本発明はこれらに限定されるものではない。なお、特別の断りの無い限り、「部」及び「%」は質量基準である。   In order to describe the present invention in detail, examples will be described below, but the present invention is not limited thereto. Unless otherwise specified, “part” and “%” are based on mass.

(パーフルオロオレフィン共重合体(1)の合成)

Figure 2006113561
(Synthesis of perfluoroolefin copolymer (1))
Figure 2006113561

内容量100mlのステンレス製撹拌機付オートクレーブに酢酸エチル40ml、ヒドロキシエチルビニルエーテル14.7gおよび過酸化ジラウロイル0.55gを仕込み、系内を脱気して窒素ガスで置換した。さらにヘキサフルオロプロピレン(HFP)25gをオートクレーブ中に導入して65℃まで昇温した。オートクレーブ内の温度が65℃に達した時点の圧力は0.53Mpa(5.4kg/cm2)であった。該温度を保持し8時間反応を続け、圧力が0.31MPa(3.2kg/cm2)に達した時点で加熱をやめ放冷した。室温まで内温が下がった時点で未反応のモノマーを追い出し、オートクレーブを開放して反応液を取り出した。得られた反応液を大過剰のヘキサンに投入し、デカンテーションにより溶剤を除去することにより沈殿したポリマーを取り出した。さらにこのポリマーを少量の酢酸エチルに溶解してヘキサンから2回再沈殿を行うことによって残存モノマーを完全に除去した。乾燥後ポリマー28gを得た。次に該ポリマーの20gをN,N−ジメチルアセトアミド100mlに溶解、氷冷下アクリル酸クロライド11.4gを滴下した後、室温で10時間攪拌した。反応液に酢酸エチルを加え水洗、有機層を抽出後濃縮し、得られたポリマーをヘキサンで再沈殿させることによりパーフルオロオレフィン共重合体(1)を19g得た。得られたポリマーの屈折率は1.421であった。 Into a stainless steel autoclave with a stirrer of 100 ml, 40 ml of ethyl acetate, 14.7 g of hydroxyethyl vinyl ether and 0.55 g of dilauroyl peroxide were charged, and the inside of the system was deaerated and replaced with nitrogen gas. Further, 25 g of hexafluoropropylene (HFP) was introduced into the autoclave and the temperature was raised to 65 ° C. The pressure when the temperature in the autoclave reached 65 ° C. was 0.53 Mpa (5.4 kg / cm 2 ). The reaction was continued for 8 hours while maintaining the temperature, and when the pressure reached 0.31 MPa (3.2 kg / cm 2 ), the heating was stopped and the mixture was allowed to cool. When the internal temperature dropped to room temperature, unreacted monomers were driven out, the autoclave was opened, and the reaction solution was taken out. The obtained reaction solution was poured into a large excess of hexane, and the polymer was precipitated by removing the solvent by decantation. Further, this polymer was dissolved in a small amount of ethyl acetate and reprecipitated twice from hexane to completely remove the residual monomer. After drying, 28 g of polymer was obtained. Next, 20 g of the polymer was dissolved in 100 ml of N, N-dimethylacetamide, and 11.4 g of acrylic acid chloride was added dropwise under ice cooling, followed by stirring at room temperature for 10 hours. Ethyl acetate was added to the reaction solution, washed with water, the organic layer was extracted and concentrated, and the resulting polymer was reprecipitated with hexane to obtain 19 g of perfluoroolefin copolymer (1). The resulting polymer had a refractive index of 1.421.

(ゾル液aの調製)
攪拌機、還流冷却器を備えた反応器、メチルエチルケトン120部、アクリロイルオキシプロピルトリメトキシシラン(KBM−5103、信越化学工業(株)製)100部、ジイソプロポキシアルミニウムエチルアセトアセテート3部を加え混合したのち、イオン交換水30部を加え、60℃で4時間反応させたのち、室温まで冷却し、ゾル液aを得た。質量平均分子量は1600であり、オリゴマー成分以上の成分のうち、分子量が1000〜20000の成分は100%であった。また、ガスクロマトグラフィー分析から、原料のアクリロイルオキシプロピルトリメトキシシランは全く残存していなかった。
(Preparation of sol solution a)
A stirrer, a reactor equipped with a reflux condenser, 120 parts of methyl ethyl ketone, 100 parts of acryloyloxypropyltrimethoxysilane (KBM-5103, manufactured by Shin-Etsu Chemical Co., Ltd.), 3 parts of diisopropoxyaluminum ethyl acetoacetate were added and mixed. Thereafter, 30 parts of ion-exchanged water was added and reacted at 60 ° C. for 4 hours, and then cooled to room temperature to obtain sol solution a. The mass average molecular weight was 1600, and among the components higher than the oligomer component, the component having a molecular weight of 1000 to 20000 was 100%. Further, from the gas chromatography analysis, the raw material acryloyloxypropyltrimethoxysilane did not remain at all.

(ゾル液bの調製)
反応後室温まで冷却した後、アセチルアセトン6部を添加したこと以外は前記ゾル液aと同様にしてゾル液bを得た。
(Preparation of sol liquid b)
After cooling to room temperature after the reaction, a sol solution b was obtained in the same manner as the sol solution a except that 6 parts of acetylacetone was added.

(光散乱層用塗布液Aの調製)
ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレートの混合物(PET−30、日本化薬(株)製)50gをトルエン40gで希釈した。更に、重合開始剤(イルガキュア184、チバ・スペシャルティ・ケミカルズ(株)製)を2g添加し、混合攪拌した。この溶液を塗布、紫外線硬化して得られた塗膜の屈折率は1.51であった。
さらにこの溶液にポリトロン分散機にて10000rpmで20分分散した平均粒径3.5μmの架橋ポリスチレン粒子(屈折率1.61、SX−350、綜研化学(株)製)の30%トルエン分散液を1.7gおよび平均粒径3.5μmの架橋アクリル−スチレン粒子(屈折率1.55、綜研化学(株)製)の30%トルエン分散液を13.3g加え、最後に、フッ素系表面改質剤(FP−149)0.75g、シランカップリング剤(KBM−5103、信越化学工業(株)製)を10gを加え、完成液とした。
前記混合液を孔径30μmのポリプロピレン製フィルターでろ過して光散乱層の塗布液Aを調製した。
本塗布組成物の液密度は0.99、透光性微粒子の密度は1.06であり、従って(σ−ρ)×d2=0.86であった。
(Preparation of coating solution A for light scattering layer)
50 g of a mixture of pentaerythritol triacrylate and pentaerythritol tetraacrylate (PET-30, manufactured by Nippon Kayaku Co., Ltd.) was diluted with 40 g of toluene. Further, 2 g of a polymerization initiator (Irgacure 184, manufactured by Ciba Specialty Chemicals Co., Ltd.) was added and mixed and stirred. The refractive index of the coating film obtained by applying this solution and curing with ultraviolet rays was 1.51.
Further, a 30% toluene dispersion of crosslinked polystyrene particles having an average particle size of 3.5 μm (refractive index 1.61, SX-350, manufactured by Soken Chemical Co., Ltd.) dispersed in this solution for 20 minutes at 10,000 rpm with a Polytron disperser. Add 13.3 g of 30% toluene dispersion of 1.7 g and crosslinked acrylic-styrene particles having an average particle size of 3.5 μm (refractive index 1.55, manufactured by Soken Chemical Co., Ltd.), and finally, fluorine-based surface modification 0.75 g of an agent (FP-149) and 10 g of a silane coupling agent (KBM-5103, manufactured by Shin-Etsu Chemical Co., Ltd.) were added to obtain a finished solution.
The mixed solution was filtered through a polypropylene filter having a pore diameter of 30 μm to prepare a coating solution A for a light scattering layer.
The liquid density of this coating composition was 0.99, and the density of the translucent fine particles was 1.06. Therefore, (σ−ρ) × d 2 = 0.86.

(光散乱層用塗布液Bの調製)
市販ジルコニア含有UV硬化型ハードコート液(デソライトZ7404、JSR(株)製、固形分濃度約61%、固形分中ZrO2含率約70%、重合性モノマー、重合開始剤含有)285g、ジペンタエリスリトールペンタアクリレートとジペンタエリスリトールヘキサアクリレートの混合物(DPHA、日本化薬(株)製)85gを混合し、更に、メチルイソブチルケトン60g、メチルエチルケトン17gで希釈した。更に、シランカップリング剤(KBM−5103、信越化学(株)製)28gを混合攪拌した。この溶液を塗布、紫外線硬化して得られた塗膜の屈折率は1.61であった。
さらにこの溶液に平均粒径3.0μmの分級強化架橋PMMA粒子(屈折率1.49、MXS−300、綜研化学(株)製)の30%メチルイソブチルケトン分散液をポリトロン分散機にて10000rpmで20分分散した分散液を34g加え、次いで、平均粒径1.5μmのシリカ粒子(屈折率1.46、シーホスターKE−P150、日本触媒(株)製)の30%メチルエチルケトン分散液をポリトロン分散機にて10000rpmで30分分散した分散液を90g加え、最後に、フッ素系表面改質剤(FP−1)0.12gを混合攪拌し、完成液とした。
前記混合液を孔径30μmのポリプロピレン製フィルターでろ過して光散乱層の塗布液Bを調製した。
本塗布組成物の液密度は1.15、透光性微粒子の密度はPMMA:1.18、シリカ:2.0であるが、PMMAは塗布組成物中で溶媒により膨潤し、平均粒径が約30%増加したため、見かけ上、密度が1.17となり、従ってPMMA:(σ−ρ)×d2=0.30、シリカ:1.91であった。
(Preparation of coating solution B for light scattering layer)
285 g of commercially available zirconia-containing UV curable hard coat liquid (Desolite Z7404, manufactured by JSR Corporation, solid content concentration of about 61%, ZrO 2 content of solid content of about 70%, polymerizable monomer, polymerization initiator contained), dipenta 85 g of a mixture of erythritol pentaacrylate and dipentaerythritol hexaacrylate (DPHA, manufactured by Nippon Kayaku Co., Ltd.) was mixed, and further diluted with 60 g of methyl isobutyl ketone and 17 g of methyl ethyl ketone. Furthermore, 28 g of a silane coupling agent (KBM-5103, manufactured by Shin-Etsu Chemical Co., Ltd.) was mixed and stirred. The refractive index of the coating film obtained by applying this solution and curing with ultraviolet rays was 1.61.
Further, a 30% methyl isobutyl ketone dispersion of classified strengthened crosslinked PMMA particles (refractive index: 1.49, MXS-300, manufactured by Soken Chemical Co., Ltd.) having an average particle size of 3.0 μm was added to this solution at 10,000 rpm with a Polytron disperser. 34 g of a dispersion dispersed for 20 minutes was added, and then a 30% methyl ethyl ketone dispersion of silica particles having an average particle diameter of 1.5 μm (refractive index 1.46, Seahoster KE-P150, manufactured by Nippon Shokubai Co., Ltd.) 90 g of a dispersion dispersed at 10,000 rpm for 30 minutes was added, and finally 0.12 g of a fluorine-based surface modifier (FP-1) was mixed and stirred to obtain a finished solution.
The mixed solution was filtered through a polypropylene filter having a pore size of 30 μm to prepare a coating solution B for a light scattering layer.
The liquid density of the present coating composition is 1.15, and the density of the light-transmitting fine particles is PMMA: 1.18 and silica: 2.0. PMMA swells with a solvent in the coating composition, and the average particle diameter is Since it increased by about 30%, the apparent density was 1.17, and thus PMMA: (σ−ρ) × d 2 = 0.30 and silica: 1.91.

(光散乱層用塗布液Cの調製)
前記光散乱層用塗布液Bにおいて平均粒径1.5μmのシリカ粒子の代わりに、平均粒径1.5μmの分級強化高架橋PMMA粒子(MXS−150H、架橋剤エチレングリコールジメタクリレート、架橋剤量30%、綜研化学(株)製、屈折率1.49)の30%メチルエチルケトン分散液を120g用いた以外は添加量も含め前記塗布液Aと同様にして、光散乱層用塗布液Cを作成した。
本塗布組成物の液密度は1.15、透光性微粒子の密度は何れも1.18であるが、何れも塗布組成物中で溶媒により膨潤し、平均粒径が約30%増加したため、見かけ上、密度が1.17となり、従って1.5μm粒子:(σ−ρ)×d2=0.076、3μm粒子:(σ−ρ)×d2=0.30であった。
(Preparation of coating solution C for light scattering layer)
In the light scattering layer coating solution B, instead of silica particles having an average particle diameter of 1.5 μm, classified reinforcing highly crosslinked PMMA particles having an average particle diameter of 1.5 μm (MXS-150H, a crosslinking agent ethylene glycol dimethacrylate, an amount of crosslinking agent of 30 %, A coating solution C for a light scattering layer was prepared in the same manner as the coating liquid A, including the addition amount, except that 120 g of 30% methyl ethyl ketone dispersion having a refractive index of 1.49) manufactured by Soken Chemical Co., Ltd. was used. .
The liquid density of the present coating composition was 1.15, and the density of the light-transmitting fine particles was 1.18, but both were swollen by the solvent in the coating composition, and the average particle size was increased by about 30%. Apparently, the density was 1.17, so 1.5 μm particles: (σ−ρ) × d 2 = 0.076, 3 μm particles: (σ−ρ) × d 2 = 0.30.

(低屈折率層用塗布液Aの調整)
ポリシロキサンおよび水酸基を含有する屈折率1.42の熱架橋性含フッ素ポリマー(JN7228A、固形分濃度6%、JSR(株)製)15g、シリカゾル(シリカ、MEK−ST、平均粒径15nm、固形分濃度30%、日産化学社製)0.6g、シリカゾル(シリカ、MEK−STの粒子サイズ違い、平均粒径45nm、固形分濃度30%、日産化学(株)製)0.8g、ゾル液a 0.4gおよびメチルエチルケトン3g、シクロヘキサノ0.6gを添加、攪拌の後、孔径1μmのポリプロピレン製フィルターでろ過して、低屈折率層用塗布液Aを調製した。この塗布液により形成される層の屈折率は、1.43であった。
(Adjustment of coating solution A for low refractive index layer)
Thermally crosslinkable fluorine-containing polymer having a refractive index of 1.42 containing polysiloxane and hydroxyl group (JN7228A, solid content concentration 6%, manufactured by JSR Corporation), 15 g silica sol (silica, MEK-ST, average particle size 15 nm, solid Partial concentration 30%, Nissan Chemical Co., Ltd. 0.6 g, silica sol (silica, MEK-ST particle size difference, average particle size 45 nm, solid content concentration 30%, Nissan Chemical Co., Ltd.) 0.8 g, sol solution a 0.4 g, 3 g of methyl ethyl ketone and 0.6 g of cyclohexano were added, stirred, and then filtered through a polypropylene filter having a pore size of 1 μm to prepare a coating solution A for a low refractive index layer. The refractive index of the layer formed with this coating solution was 1.43.

(低屈折率層用塗布液Bの調整)
前記低屈折率層用塗布液Aにおいて、シリカゾルの代わりに中空シリカゾル(屈折率1.31、平均粒径60nm、固形分濃度20%)を1.95g用いた以外は添加量も含め前記塗布液Aと同様にして、低屈折率層用塗布液Bを作成した。この塗布液により形成される層の屈折率は、1.38であった。
(Adjustment of coating liquid B for low refractive index layer)
In the coating liquid A for the low refractive index layer, the coating liquid including the addition amount was used except that 1.95 g of hollow silica sol (refractive index 1.31, average particle size 60 nm, solid content concentration 20%) was used instead of silica sol. In the same manner as A, a coating solution B for a low refractive index layer was prepared. The refractive index of the layer formed by this coating solution was 1.38.

(低屈折率層用塗布液Cの調製)
パーフルオロオレフィン共重合体(1)の15.2g、シリカゾル(シリカ、MEK−STの粒子径違い品、平均粒径45nm、固形分濃度30%、日産化学社製)1.4g、反応性シリコーンX−22−164B(商品名;信越化学工業社製)0.3g、ゾル液a 7.3g、光重合開始剤(イルガキュア907(商品名)、チバ・スペシャルティ・ケミカルズ(株)製)0.76g、メチルエチルケトン301g、シクロヘキサノン9.0gを添加、攪拌の後、孔径5μmのポリプロピレン製フィルターでろ過して、低屈折率層用塗布液Dを調製した。この塗布液により形成される層の屈折率は、1.44であった。
(Preparation of coating solution C for low refractive index layer)
15.2 g of perfluoroolefin copolymer (1), silica sol (silica, MEK-ST with different particle size, average particle size 45 nm, solid content concentration 30%, manufactured by Nissan Chemical Co., Ltd.) 1.4 g, reactive silicone X-22-164B (trade name; manufactured by Shin-Etsu Chemical Co., Ltd.) 0.3 g, sol solution a 7.3 g, photopolymerization initiator (Irgacure 907 (trade name), manufactured by Ciba Specialty Chemicals Co., Ltd.) 76 g, methyl ethyl ketone 301 g and cyclohexanone 9.0 g were added, and after stirring, the mixture was filtered through a polypropylene filter having a pore size of 5 μm to prepare a coating solution D for a low refractive index layer. The refractive index of the layer formed with this coating solution was 1.44.

(低屈折率層用塗布液Dの調整)
前記低屈折率層用塗布液Cにおいて、シリカゾルの代わりに中空シリカゾル(屈折率1.31、平均粒径60nm、固形分濃度20%)を1.95g用いた以外は添加量も含め前記塗布液Dと同様にして、低屈折率層用塗布液Dを作成した。この塗布液により形成される層の屈折率は、1.40であった。
(Adjustment of coating liquid D for low refractive index layer)
In the coating liquid C for the low refractive index layer, the coating liquid including the addition amount is used except that 1.95 g of hollow silica sol (refractive index 1.31, average particle size 60 nm, solid content concentration 20%) is used instead of silica sol. In the same manner as D, a coating solution D for a low refractive index layer was prepared. The refractive index of the layer formed by this coating solution was 1.40.

(低屈折率層用塗布液Eの調整)
前記低屈折率層用塗布液Aにおいて、熱架橋性含フッ素ポリマーJN7228Aの代わりに、JTA113(固形分濃度6%、JSR(株)製)を使用した以外は添加量も含め前記塗布液Aと同様にして、低屈折率層用塗布液Eを作成した。JTA113は、JN7228Aより更に耐擦傷性を改良した屈折率1.44の熱架橋性含フッ素ポリマーである。この塗布液により形成される層の屈折率は、1.45であった。
(Adjustment of coating liquid E for low refractive index layer)
In the coating liquid A for the low refractive index layer, the coating liquid A including the addition amount was used except that JTA113 (solid content concentration 6%, manufactured by JSR Corporation) was used instead of the thermally crosslinkable fluorine-containing polymer JN7228A. Similarly, a coating liquid E for a low refractive index layer was prepared. JTA113 is a thermally crosslinkable fluorine-containing polymer having a refractive index of 1.44, which is further improved in scratch resistance than JN7228A. The refractive index of the layer formed with this coating solution was 1.45.

[実施例1]
(1)光散乱層の塗設
80μmの厚さのトリアセチルセルロースフィルム(TAC−TD80U、富士写真フイルム(株)製)をロール形態で巻き出して、下記の装置構成および塗布条件で示されるダイコート法によって光散乱層用塗布液Aを塗布し、30℃で15秒間、90℃で20秒間乾燥の後、さらに窒素パージ下で160W/cmの空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて、照度400mW/cm2、照射量90mJ/cm2の紫外線を照射して塗布層を硬化させ、厚さ6μmの防眩性を有する光散乱層を形成し、巻き取った。これを実施例1−1とする。
光散乱層用塗布液Aを光散乱層用塗布液B,Cに変更してウエット塗布量を10cc/m2に変更する以外は、同様にして光散乱層を形成し、巻き取った。光散乱層用塗布液Bを塗布したものを比較例1−1とし、光散乱層用塗布液Cを塗布したものを実施例1−2とする。
[Example 1]
(1) Coating of light scattering layer A 80 μm-thick triacetyl cellulose film (TAC-TD80U, manufactured by Fuji Photo Film Co., Ltd.) is unrolled in a roll form, and the die coat shown by the following apparatus configuration and coating conditions The coating solution A for the light scattering layer was applied by the method, dried at 30 ° C. for 15 seconds and at 90 ° C. for 20 seconds, and then air-cooled metal halide lamp (manufactured by Eye Graphics Co., Ltd.) of 160 W / cm under a nitrogen purge. The coating layer was cured by irradiating with ultraviolet rays having an illuminance of 400 mW / cm 2 and an irradiation amount of 90 mJ / cm 2 to form a 6 μm thick anti-glare light scattering layer and wound up. This is Example 1-1.
A light scattering layer was formed and wound in the same manner except that the light scattering layer coating liquid A was changed to light scattering layer coating liquids B and C and the wet coating amount was changed to 10 cc / m 2 . The one coated with the light scattering layer coating liquid B is referred to as Comparative Example 1-1, and the one coated with the light scattering layer coating liquid C is referred to as Example 1-2.

基本条件:スロットダイ13は、上流側リップランド長IUPが0.5mm、下流側リップランド長ILOが50μmで,スロット16の開口部のウェブ走行方向における長さが150μm、スロット16の長さが50mmのものを使用した。上流側リップランド18aとウェブWの隙間を、下流側リップランド18bとウェブWの隙間よりも50μm長くし(以下、オーバーバイト長さ50μmと称する)、下流側リップランド18bとウェブWとの隙間GL を50μmに設定した。また、減圧チャンバー40のサイドプレート40bとウェブWとの隙間GS、及びバックプレート40aとウェブWとの隙間GB はともに200μmとした。それぞれの塗布液の液物性に合わせて、光散乱層:塗布速度=50m/分、ウエット塗布量=17ml/m2で、低屈折率層:塗布速度=40m/分、ウエット塗布量=5ml/m2で塗布を行った。なお、塗布幅:1300mm、有効幅:1280mmとした。 Basic conditions: The slot die 13 has an upstream lip land length I UP of 0.5 mm, a downstream lip land length I LO of 50 μm, a length of the opening of the slot 16 in the web running direction of 150 μm, and the length of the slot 16 The one with a length of 50 mm was used. The gap between the upstream lip land 18a and the web W is 50 μm longer than the gap between the downstream lip land 18b and the web W (hereinafter referred to as an overbite length of 50 μm), and the gap between the downstream lip land 18b and the web W GL was set to 50 μm. Further, the gap G B between the gap G S, and the back plate 40a and the web W between the side plate 40b and the web W in the vacuum chamber 40 were both 200 [mu] m. According to the liquid physical properties of each coating solution, light scattering layer: coating speed = 50 m / min, wet coating amount = 17 ml / m 2 , low refractive index layer: coating speed = 40 m / min, wet coating amount = 5 ml / m Application was performed at m 2 . The application width was 1300 mm and the effective width was 1280 mm.

(2)低屈折率層の塗設
上記光散乱層用塗布液A,B,Cを塗布して光散乱層を塗設したトリアセチルセルロースフィルムを再び巻き出して、前記低屈折率層用塗布液Aを上記の基本条件で塗布し、120℃で150秒乾燥の後、更に140℃で8分乾燥させてから窒素パージ下で240W/cmの空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて、照度400mW/cm2、照射量900mJ/cm2の紫外線を照射し、厚さ100nmの低屈折率層を形成し、巻き取った。
(反射防止フィルムの鹸化処理)
製膜後、前記試料1について、以下の処理を行った。
1.5mol/lの水酸化ナトリウム水溶液を調製し、55℃に保温した。0.01mol/lの希硫酸水溶液を調製し、35℃に保温した。作製した反射防止フィルムを前記の水酸化ナトリウム水溶液に2分間浸漬した後、水に浸漬し水酸化ナトリウム水溶液を十分に洗い流した。次いで、前記の希硫酸水溶液に1分間浸漬した後、水に浸漬し希硫酸水溶液を十分に洗い流した。最後に試料を120℃で十分に乾燥させた。
このようにして、鹸化処理済み反射防止フィルムを作製した。これらを実施例1−3、比較例1−2、実施例1−4とする。
(2) Coating of low refractive index layer The triacetyl cellulose film coated with the light scattering layer coating liquids A, B, and C is unwound again to apply the low refractive index layer. Liquid A was applied under the above basic conditions, dried at 120 ° C. for 150 seconds, further dried at 140 ° C. for 8 minutes, and then air-cooled metal halide lamp (made by Eye Graphics Co., Ltd.) at 240 W / cm under a nitrogen purge. Was used to irradiate ultraviolet rays having an illuminance of 400 mW / cm 2 and an irradiation amount of 900 mJ / cm 2 to form a low refractive index layer having a thickness of 100 nm and wound up.
(Saponification treatment of antireflection film)
After the film formation, the sample 1 was subjected to the following treatment.
A 1.5 mol / l aqueous sodium hydroxide solution was prepared and kept at 55 ° C. A 0.01 mol / l dilute sulfuric acid aqueous solution was prepared and kept at 35 ° C. The prepared antireflection film was immersed in the aqueous sodium hydroxide solution for 2 minutes, and then immersed in water to sufficiently wash away the aqueous sodium hydroxide solution. Subsequently, after being immersed in the dilute sulfuric acid aqueous solution for 1 minute, it was immersed in water to sufficiently wash away the dilute sulfuric acid aqueous solution. Finally, the sample was thoroughly dried at 120 ° C.
In this way, a saponified antireflection film was produced. These are referred to as Example 1-3, Comparative Example 1-2, and Example 1-4.

(光散乱性フィルムの評価)
得られたフィルムについて、以下の項目の評価を行った。結果を表1に示す。
(Evaluation of light scattering film)
About the obtained film, the following items were evaluated. The results are shown in Table 1.

(1)平均反射率
フィルムの裏面を祖面化した後に黒色インクで処理し、裏面反射をなくした状態で、表面側を、分光光度計(日本分光(株)製)を用いて、380〜780nmの波長領域において、入射角5°における分光反射率を測定した。結果には450〜650nmの鏡面反射率の算術平均値を用いた。
(1) Average reflectance The back side of the film was treated with a black ink after making the back surface, and the surface side was 380 to 380 with a spectrophotometer (manufactured by JASCO Corporation) in a state where the back side reflection was eliminated. Spectral reflectance at an incident angle of 5 ° was measured in the wavelength region of 780 nm. The arithmetic average value of the specular reflectance of 450-650 nm was used for the result.

(2)光散乱性バラツキ
1340mm幅フィルムの長手方向に500mmを切り取り、透過モードで光散乱性の幅方向のバラツキを目視面検し、以下の基準で評価した。
バラツキが極めて小さく、目視ではムラが判らない: ◎
バラツキが小さく、目視で殆どムラが判らない: ○
ややバラツキが大きく、目視でムラが判る: △
バラツキが大きく、一目でムラが判る: ×
(2) Light Scattering Variation 500 mm was cut in the longitudinal direction of a 1340 mm wide film, and the light scattering variation in the width direction was visually inspected in the transmission mode, and evaluated according to the following criteria.
Variations are extremely small, and unevenness cannot be seen visually: ◎
Small variation and almost no unevenness can be seen visually: ○
Slightly large variation and visually visible unevenness: △
Large variation and unevenness at a glance: ×

表1の記載の通り、実施例1−3(光散乱層用塗布液A、低屈折率層用塗布液Aを塗布した反射防止フィルム)、実施例1−4(光散乱層用塗布液C、低屈折率層用塗布液Aを塗布した反射防止フィルム)において、低屈折率層用塗布液をB〜Eに変える以外は、実施例1−3、実施例1−4と同様にして作製、評価を行った。これらを実施例1−5〜実施例1−12とする。結果を表1に示す。なお、低屈折率層用塗布液CおよびDは塗布後、120℃で30秒乾燥の後、窒素パージ下で240W/cmの空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて、照度400mW/cm2、照射量900mJ/cm2の紫外線を照射して、低屈折率層を形成した。 As shown in Table 1, Example 1-3 (antireflection film coated with coating solution A for light scattering layer, coating solution A for low refractive index layer), Example 1-4 (coating solution C for light scattering layer) The antireflective film coated with the coating liquid A for the low refractive index layer) was prepared in the same manner as in Examples 1-3 and 1-4 except that the coating liquid for the low refractive index layer was changed to BE. And evaluated. These are referred to as Example 1-5 to Example 1-12. The results are shown in Table 1. The coating solutions C and D for the low refractive index layer were coated, dried at 120 ° C. for 30 seconds, and then air-cooled with a 240 W / cm air-cooled metal halide lamp (made by Eye Graphics Co., Ltd.) under nitrogen purge A low refractive index layer was formed by irradiating ultraviolet rays at 400 mW / cm 2 and an irradiation amount of 900 mJ / cm 2 .

Figure 2006113561
Figure 2006113561

表1に示された結果より、以下のことが明らかである。
本発明の光散乱性フィルムの製造方法は、前記式(1)を満たすことによって該透光性微粒子の沈降速度が制御されているため、特にダイコート法で塗布する際に問題となるポケット内等への透光性微粒子の沈降がなく、得られたフィルムは広幅サンプル面内での光散乱性の均一性に優れる。また、本発明のダイコート法は、特に20cc/cm2以下のウエット塗布量での高速塗布適性に優れた構成であるため、生産性が高い。
From the results shown in Table 1, the following is clear.
In the method for producing a light-scattering film of the present invention, since the sedimentation rate of the light-transmitting fine particles is controlled by satisfying the formula (1), the inside of the pocket, which is a problem particularly when applied by a die coating method, is used. There is no sedimentation of translucent fine particles on the film, and the obtained film is excellent in light scattering uniformity within the wide sample surface. In addition, the die coating method of the present invention has a high productivity because it is excellent in high-speed coating suitability particularly with a wet coating amount of 20 cc / cm 2 or less.

実施例1−1〜1−12において、光散乱層用塗布液A、Cで用いる希釈溶剤をトルエンの代わりにトルエン/シクロヘキサノン=85/15、トルエン/シクロヘキサノン=70/30という溶剤組成にすると、シクロヘキサノンの比率が高くなるにつれて透明支持体/光散乱層の界面密着力が強化され、耐擦傷性能が向上した。
また実施例1−1〜1−12において、低屈折率層塗布液に使用しているオルガノシランのゾル液aの代わりにbを使用したところ、塗布液の経時安定性が良くなり、連続塗布に対する適性が高くなった。
また低屈折率層塗布液C、Dにジペンタエリスリトールペンタアクリレートとジペンタエリスリトールヘキサアクリレートの混合物(DPHA、日本化薬(株)製)10gを添加して、同様に塗布したところ、耐擦傷性が著しく向上した。
In Examples 1-1 to 1-12, when the diluent solvent used in the coating liquids A and C for the light scattering layer has a solvent composition of toluene / cyclohexanone = 85/15 and toluene / cyclohexanone = 70/30 instead of toluene, As the ratio of cyclohexanone increased, the adhesion strength of the transparent support / light scattering layer was enhanced and the scratch resistance was improved.
In Examples 1-1 to 1-12, when b was used in place of the organosilane sol liquid a used in the low refractive index layer coating liquid, the temporal stability of the coating liquid was improved, and continuous coating was performed. The suitability for became higher.
Further, 10 g of a mixture of dipentaerythritol pentaacrylate and dipentaerythritol hexaacrylate (DPHA, manufactured by Nippon Kayaku Co., Ltd.) was added to the low refractive index layer coating liquids C and D. Improved significantly.

実施例1−1〜1−12において、光散乱層用塗布液A、Cを粘度7×10-3Pa・sになるように、増粘剤として塗布液Aに対してはアクリル系ポリマー(分子量75,000、三菱レイヨン製)、塗布液Cに対しては分子量40,000のセルロースアセテートブチレート(CAB−531−1、イーストマンケミカル(株)製)を添加し、増粘させて塗布を行った。下流側リップランド18bとウェブWとの隙間GL を40μmに設定した。その結果、粒子沈降が更に改善され、増粘前の塗布液に認められた24時間塗布後の送液配管内の一部分での粒子沈降が認められなくなり、連続生産性に更に優れることが判った。
更に増粘剤を添加し、塗布液A、Cの粘度を13cpまで増粘させた結果、静置状態で粒子沈降が更に遅くなるのが確認できたが、塗布速度は30m/分までしか塗布できず、高速塗布適性が少し劣った。
In Examples 1-1 to 1-12, an acrylic polymer (for the coating liquid A as a thickener was used so that the coating liquids A and C for the light scattering layer had a viscosity of 7 × 10 −3 Pa · s. For molecular weight 75,000, manufactured by Mitsubishi Rayon) and coating liquid C, cellulose acetate butyrate having a molecular weight of 40,000 (CAB-531-1, manufactured by Eastman Chemical Co., Ltd.) is added to increase the viscosity. Went. The gap GL between the downstream lip land 18b and the web W was set to 40 μm. As a result, it was found that the particle sedimentation was further improved and the particle sedimentation in a part of the liquid delivery pipe after 24 hours application observed in the coating solution before thickening was not observed, and the continuous productivity was further improved. .
As a result of adding a thickener and increasing the viscosity of the coating liquids A and C to 13 cp, it was confirmed that the particle sedimentation was further slowed in a stationary state, but the coating speed was only applied up to 30 m / min. The high-speed coating suitability was slightly inferior.

[実施例2]
1.5mol/L、55℃のNaOH水溶液中に2分間浸漬したあと中和、水洗した、80μmの厚さのトリアセチルセルロースフィルム(TAC−TD80U、富士写真フイルム(株)製)と、実施例1で作製した光散乱性フィルム(実施例1−1、実施例1−2)および反射防止フィルム(鹸化処理済み:実施例1−3〜実施例1−12)を、ポリビニルアルコールにヨウ素を吸着させ、延伸して作製した偏光子の両面に接着、保護して偏光板を作製した。これらの偏光板を用いて光散乱層または反射防止層を最表層に配置した透過型TN液晶表示装置を作製したところ、外光の映り込みがないために視認性に優れ、特に反射防止フィルムを用いたものは外光の反射光量が低減するためにコントラストが向上し、より優れた視認性を有していた。
[Example 2]
80 μm-thick triacetyl cellulose film (TAC-TD80U, manufactured by Fuji Photo Film Co., Ltd.), which was immersed in an aqueous 1.5 mol / L, 55 ° C. NaOH solution for 2 minutes, then neutralized and washed with water, and Examples 1 was adsorbed to polyvinyl alcohol using the light-scattering films (Example 1-1, Example 1-2) and the antireflection film (saponified: Examples 1-3 to 1-12) prepared in 1. A polarizing plate was prepared by adhering and protecting both sides of a polarizer prepared by stretching. Using these polarizing plates, a transmissive TN liquid crystal display device in which a light scattering layer or an antireflection layer is arranged on the outermost layer was produced. As a result, there was no reflection of external light, and the visibility was excellent. What was used had a better visibility since the amount of reflected external light was reduced and the contrast was improved.

[実施例3]
実施例2の透過型TN液晶セルの視認側の偏光板の液晶セル側の保護フィルム、およびバックライト側の偏光板の液晶セル側の保護フィルムとして、視野角拡大フィルム(ワイドビューフィルムSA 12B、富士写真フイルム(株)製)を用いたところ、上下左右の視野角が非常に広く、極めて視認性に優れ、表示品位の高い液晶表示装置が得られた。
また、自動変角光度計GP−5型((株)村上色彩技術研究所製)を用いて、入射光に対してフィルムを垂直に配置し、全方位に渡って散乱光プロファイルを測定した。このプロファイルより、出射角0°に対する30℃の散乱光強度を求めた。実施例1−2、1−4、1−9〜1−12(光散乱層用塗布液Cを用いた試料)は、出射角0°に対する30°の散乱光強度が0.06%であり、この光拡散性により、特に下方向の視野角アップ、左右方向の黄色味が改善され、非常に良好な液晶表示装置であった。
また、実施例2の透過型TN液晶セルに110ppiの高精細セルを用いた所、特に実施例1−1、1−3、1−5〜1−8の試料を用いたものは防眩層のレンズ効果による各画素の不均一な拡大/縮小に起因する所謂ギラツキの発生が殆ど確認できないほど、高精細適性の高いものであった。
[Example 3]
As the protective film on the liquid crystal cell side of the polarizing plate on the viewing side of the transmission type TN liquid crystal cell of Example 2 and the protective film on the liquid crystal cell side of the polarizing plate on the backlight side, a viewing angle widening film (wide view film SA 12B, When Fuji Photo Film Co., Ltd. was used, a liquid crystal display device with a very wide viewing angle in the vertical and horizontal directions, excellent visibility, and high display quality was obtained.
Further, using an automatic goniophotometer GP-5 type (manufactured by Murakami Color Research Laboratory Co., Ltd.), the film was placed perpendicular to the incident light, and the scattered light profile was measured in all directions. From this profile, the scattered light intensity at 30 ° C. with respect to an emission angle of 0 ° was obtained. Examples 1-2, 1-4, 1-9 to 1-12 (samples using the coating solution C for the light scattering layer) have a scattered light intensity of 30 ° with respect to an emission angle of 0 ° of 0.06%. The light diffusibility particularly improved the viewing angle in the downward direction and the yellowness in the left and right direction, and was a very good liquid crystal display device.
Further, when a 110 ppi high-definition cell is used as the transmission type TN liquid crystal cell of Example 2, particularly those using the samples of Examples 1-1, 1-3, and 1-5 to 1-8 are antiglare layers. The so-called glare caused by non-uniform enlargement / reduction of each pixel due to the lens effect was so high that the high-definition suitability was high.

本発明の光散乱性フィルムの好ましい1実施形態(反射防止フィルムの層構成)を模式的に示す断面図である。It is sectional drawing which shows typically one preferable embodiment (layer structure of an antireflection film) of the light-scattering film of this invention. 本発明を実施したスロットダイ13を用いたコーター10の断面図である。It is sectional drawing of the coater 10 using the slot die 13 which implemented this invention. (A)は本発明のスロットダイ13の断面形状を示し、(B)は従来のスロットダイ30の断面形状を示す。(A) shows the cross-sectional shape of the slot die 13 of the present invention, and (B) shows the cross-sectional shape of the conventional slot die 30. 本発明を実施した塗布工程のスロットダイ13及びその周辺を示す斜視図である。It is a perspective view which shows the slot die 13 of the application | coating process which implemented this invention, and its periphery. 近接している減圧チャンバー40とウェブWを示す断面図である。(バックプレート40aはチャンバー40本体と一体)It is sectional drawing which shows the pressure reduction chamber 40 and the web W which are adjoining. (The back plate 40a is integrated with the main body of the chamber 40) 同(バックプレート40aがチャンバー40にネジ40c留め)Same (back plate 40a fastened to chamber 40 with screw 40c)

符号の説明Explanation of symbols

1 光散乱性フィルム(反射防止フィルム)
2 透明支持体
3 光散乱層
4 低屈折率層
5 透光性微粒子
10 コーター
11 バックアップロール
W ウェブ
13 スロットダイ
14 塗布液
14a ビード
14b 塗膜
15 ポケット
16 スロット
17 先端リップ
18 ランド
18a 上流側リップランド
18b 下流側リップランド
UP 上流側リップランド18aのランド長さ
LO 下流側リップランド18bのランド長さ
LO オーバーバイト長さ(下流側リップランド18bと上流側リップランド18aのウェブWとの距離の差)
L 先端リップ17とウェブWの隙間(下流側リップランド18bとウェブWの隙間)
30 従来のスロットダイ
31a 上流側リップランド
31b 下流側リップランド
32 ポケット
33 スロット
40 減圧チャンバー
40a バックプレート
40b サイドプレート
40c ネジ
B バックプレート40aとウェブWの間の隙間
S サイドプレート40bとウェブWの間の隙間
1 Light-scattering film (antireflection film)
2 Transparent Support 3 Light Scattering Layer 4 Low Refractive Index Layer 5 Translucent Fine Particle 10 Coater 11 Backup Roll W Web 13 Slot Die 14 Coating Solution 14a Bead 14b Coating 15 Pocket 16 Slot 17 Tip Lip 18 Land 18a Upstream Lip Land 18b Downstream lip land I UP Land length I of upstream lip land 18a Land length of LO downstream lip land 18b LO Over bit length (distance between downstream lip land 18b and web W of upstream lip land 18a Difference)
G L Tip lip 17 and web W gap (downstream lip land 18b and web W gap)
30 the gap G S side plate 40b and the web W between the conventional slot-die 31a upstream lip land 31b downstream lip land 32 pocket 33 slot 40 vacuum chamber 40a back plate 40b side plate 40c screws G B back plate 40a and the web W Gap between

Claims (11)

透明支持体上に光散乱層を有する光散乱性フィルムの製造方法において、
透光性微粒子、透光性樹脂、および溶媒を含有する該光散乱層用の塗布組成物であって、式(1)を満たすことによって該透光性微粒子の沈降速度が制御された該塗布組成物を、バックアップロールによって支持されて連続走行するウェブの表面にスロットダイの先端リップのランドを近接させて該先端リップのスロットから塗布することにより、該透明支持体上に該光散乱層を塗工する工程
を含むことを特徴とする、光散乱性フィルムの製造方法。
式(1) (σ−ρ)×d2≦1.5
(但し、σ:透光性微粒子の密度(g/cm2)、ρ:塗布組成物の密度(g/cm2)、d:透光性微粒子の平均粒径(μm))
In the method for producing a light scattering film having a light scattering layer on a transparent support,
A coating composition for the light scattering layer, comprising translucent fine particles, a translucent resin, and a solvent, wherein the settling rate of the translucent fine particles is controlled by satisfying the formula (1) The light scattering layer is coated on the transparent support by applying the composition from the slot of the tip lip of the slot die in close proximity to the surface of a continuously running web supported by a backup roll. The manufacturing method of the light-scattering film characterized by including the process to apply.
Formula (1) (σ−ρ) × d 2 ≦ 1.5
(Where, σ: density of translucent fine particles (g / cm 2 ), ρ: density of coating composition (g / cm 2 ), d: average particle diameter of translucent fine particles (μm))
前記塗布組成物中において、前記透光性微粒子が前記溶媒によって膨潤することにより、膨潤後のσ、ρ、dが、前記式(1)を満たすことを特徴とする、請求項1に記載の光散乱性フィルムの製造方法。   The σ, ρ, d after swelling satisfy the formula (1) when the translucent fine particles are swollen by the solvent in the coating composition. A method for producing a light-scattering film. 前記透光性微粒子の平均粒子径が0.5〜5μmであり、該透光性微粒子と前記透光性樹脂との屈折率の差が0.01〜0.2であり、該透光性微粒子が前記光散乱層の全固形分中3〜30質量%含有されてなることを特徴とする、請求項1または2に記載の光散乱性フィルムの製造方法。   The translucent fine particles have an average particle diameter of 0.5 to 5 μm, the difference in refractive index between the translucent fine particles and the translucent resin is 0.01 to 0.2, and the translucency The method for producing a light-scattering film according to claim 1, wherein fine particles are contained in an amount of 3 to 30% by mass in the total solid content of the light-scattering layer. 前記透光性微粒子が架橋ポリスチレン、架橋ポリ(アクリル−スチレン)、架橋ポリ((メタ)アクリレート)、またはそれらの混合物であり、前記溶媒がケトン類、トルエン、キシレン、エステル類から選ばれる少なくとも1種類の溶媒からなることを特徴とする、請求項1〜3の何れかに記載の光散乱性フィルムの製造方法。   The translucent fine particles are crosslinked polystyrene, crosslinked poly (acryl-styrene), crosslinked poly ((meth) acrylate), or a mixture thereof, and the solvent is at least one selected from ketones, toluene, xylene, and esters. It consists of a kind of solvent, The manufacturing method of the light-scattering film in any one of Claims 1-3 characterized by the above-mentioned. 前記光散乱性フィルムが、前記光散乱層上に直接または他の層を介して前記支持体よりも屈折率が低い低屈折率層が形成された反射防止フィルムであることを特徴とする、請求項1〜4の何れかに記載の光散乱性フィルムの製造方法。   The light scattering film is an antireflection film in which a low refractive index layer having a lower refractive index than that of the support is formed on the light scattering layer directly or via another layer. Item 5. A method for producing a light-scattering film according to any one of Items 1 to 4. 前記バックアップロールによって支持されて連続走行するウェブの表面に、スロットダイの先端リップのランドを近接させて該先端リップのスロットから塗布することにより、前記透明支持体上に、前記光散乱層、前記低屈折率層またはその他の層を塗工する光散乱性フィルムの製造方法において、
該スロットダイのウェブ進行方向側の先端リップにおけるランド長さが30μm以上100μm以下であるスロットダイであって、該スロットダイを塗布位置に設置したときに、ウェブ進行方向側の先端リップと該ウェブとの隙間がウェブ進行方向とは逆側の先端リップと該ウェブとの隙間よりも30μm以上120μm以下小さくなるようなオーバーバイト形状のスロットダイを用いて塗布することを特徴とする、請求項1〜5の何れかに記載の光散乱性フィルムの製造方法。
By applying the land of the tip lip of the slot die close to the surface of the web supported by the backup roll and continuously running from the slot of the tip lip, on the transparent support, the light scattering layer, In the method for producing a light-scattering film in which a low refractive index layer or other layer is applied,
A slot die having a land length at a tip lip on the web traveling direction side of the slot die of 30 μm or more and 100 μm or less, and when the slot die is installed at a coating position, the tip lip on the web traveling direction side and the web 2. The coating is performed using an overbite-shaped slot die in which the gap between the tip end lip opposite to the web traveling direction and the gap between the web is 30 μm or more and 120 μm or less. The manufacturing method of the light-scattering film in any one of -5.
偏光膜と、該偏光膜の表側および裏側の両面を保護する2枚の保護フィルムをそれぞれ貼り合わせてなる偏光板において、請求項1〜6の何れかに記載の製造方法で製造された光散乱性フィルムを片側の保護フィルムに用いたことを特徴とする、偏光板。   In the polarizing plate which bonds together the polarizing film and the two protective films which protect both the front side and back side of this polarizing film, the light scattering manufactured with the manufacturing method in any one of Claims 1-6 A polarizing plate characterized by using a conductive film as a protective film on one side. 前記偏光板を形成するための前記2枚の保護フィルムのうちの前記光散乱性フィルム以外となるフィルムが、前記偏光膜と貼り合せる面とは反対側の面に光学異方性層を含んでなる光学補償層を有する光学補償フィルムであり、該光学異方性層がディスコティック構造単位を有する化合物からなる層であり、該ディスコティック構造単位の円盤面が該保護フィルム面に対して傾いており、且つ該ディスコティック構造単位の円盤面と該保護フィルム面とのなす角度が、該光学異方層の深さ方向において変化していることを特徴とする、請求項7に記載の偏光板。   Of the two protective films for forming the polarizing plate, the film other than the light-scattering film includes an optically anisotropic layer on the surface opposite to the surface to be bonded to the polarizing film. An optical compensation film having an optical compensation layer, wherein the optical anisotropic layer is a layer made of a compound having a discotic structural unit, and the disc surface of the discotic structural unit is inclined with respect to the protective film surface. The polarizing plate according to claim 7, wherein an angle formed by the disc surface of the discotic structural unit and the surface of the protective film changes in the depth direction of the optically anisotropic layer. . 請求項1〜6の何れかに記載の製造方法で製造された光散乱性フィルムを有することを特徴とする、画像表示装置。   An image display device comprising a light-scattering film produced by the production method according to claim 1. 請求項1〜6の何れかに記載の製造方法で製造された光散乱性フィルムまたは請求項7または8に記載の偏光板を少なくとも1枚有することを特徴とする、液晶表示装置。   A liquid crystal display device comprising at least one light-scattering film produced by the production method according to claim 1 or at least one polarizing plate according to claim 7 or 8. 液晶セルの両面に偏光子を有し、液晶セルと偏光子の間に、少なくとも1枚の位相差補償素子を有する液晶表示装置の表面に、請求項1〜6の何れかに記載の製造方法で製造された光散乱性フィルムを有することを特徴とする、液晶表示装置。   The manufacturing method according to claim 1, wherein a polarizer is provided on both surfaces of the liquid crystal cell, and the liquid crystal display device has at least one phase difference compensation element between the liquid crystal cell and the polarizer. A liquid crystal display device comprising a light-scattering film manufactured in (1).
JP2005260998A 2004-09-16 2005-09-08 Producing method of light-scattering film, polarizing plate comprising light-scattering film and liquid crystal display device comprising the polarizing plate Abandoned JP2006113561A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005260998A JP2006113561A (en) 2004-09-16 2005-09-08 Producing method of light-scattering film, polarizing plate comprising light-scattering film and liquid crystal display device comprising the polarizing plate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004269886 2004-09-16
JP2005260998A JP2006113561A (en) 2004-09-16 2005-09-08 Producing method of light-scattering film, polarizing plate comprising light-scattering film and liquid crystal display device comprising the polarizing plate

Publications (1)

Publication Number Publication Date
JP2006113561A true JP2006113561A (en) 2006-04-27

Family

ID=36382076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005260998A Abandoned JP2006113561A (en) 2004-09-16 2005-09-08 Producing method of light-scattering film, polarizing plate comprising light-scattering film and liquid crystal display device comprising the polarizing plate

Country Status (1)

Country Link
JP (1) JP2006113561A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1857841A1 (en) * 2006-05-15 2007-11-21 Matsushita Electric Industrial Co., Ltd. Light absorbing antireflection structure, optical unit and lens barrel unit including the light absorbing antireflection structure, and optical device including the optical unit and the lens barrel unit
JP2008129509A (en) * 2006-11-24 2008-06-05 Sumitomo Osaka Cement Co Ltd Anti-glare member and image display device provided with the same
JP2008292987A (en) * 2007-04-24 2008-12-04 Tomoegawa Paper Co Ltd Optical laminate
JP2010097011A (en) * 2008-10-17 2010-04-30 Lintec Corp Anti-glare hardcoat film, and polarizing plate using the same
JP2011197329A (en) * 2010-03-18 2011-10-06 Dainippon Printing Co Ltd Anti-glare film, method for manufacturing the same, polarizing plate, and image display device
WO2012046663A1 (en) * 2010-10-04 2012-04-12 大日本印刷株式会社 Anti-glare film, method for manufacturing anti-glare film, polarizing plate, and image display device
WO2012046664A1 (en) * 2010-10-04 2012-04-12 大日本印刷株式会社 Anti-glare film, method for manufacturing anti-glare film, polarizing plate, and image display device
WO2012046662A1 (en) * 2010-10-04 2012-04-12 大日本印刷株式会社 Anti-glare film, method for manufacturing anti-glare film, polarizing plate, and image display device
US8778489B2 (en) 2007-03-31 2014-07-15 Tomoegawa Co., Ltd. Optical layered product
WO2015050750A1 (en) * 2013-10-02 2015-04-09 3M Innovative Properties Company Microstuctured diffuser comprising first microstructured layer and coating, optical stacks, and method
US9850405B2 (en) 2013-10-02 2017-12-26 3M Innovative Properties Company Article comprising polyacrylate pressure sensitive primer and adhesive comprising polyacrylate component
US10113089B2 (en) 2013-10-02 2018-10-30 3M Innovative Properties Company Articles and methods comprising polyacrylate primer with nitrogen-containing polymer
CN110720058A (en) * 2017-08-04 2020-01-21 株式会社大赛璐 Anti-dazzle film
JPWO2019026466A1 (en) * 2017-08-04 2020-01-23 株式会社ダイセル Anti-glare film
US11313995B2 (en) 2017-08-04 2022-04-26 Daicel Corporation Anti-glare film
US11650357B2 (en) 2017-08-04 2023-05-16 Daicel Corporation Anti-glare film
US12037513B2 (en) 2017-08-04 2024-07-16 Daicel Corporation Antiglare film

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000180611A (en) * 1998-12-18 2000-06-30 Dainippon Printing Co Ltd Glare preventive film, polarizing plate, and transmissive display device
JP2002268053A (en) * 2001-03-13 2002-09-18 Kyocera Corp Color liquid crystal display
JP2003211052A (en) * 2002-01-23 2003-07-29 Fuji Photo Film Co Ltd Coater and coating method
JP2003222713A (en) * 2002-01-31 2003-08-08 Fuji Photo Film Co Ltd Glare shielding optical film, polarizing plate and display device using the same
JP2004115599A (en) * 2002-09-25 2004-04-15 Nippon Paper Industries Co Ltd Coating composition and antiglare film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000180611A (en) * 1998-12-18 2000-06-30 Dainippon Printing Co Ltd Glare preventive film, polarizing plate, and transmissive display device
JP2002268053A (en) * 2001-03-13 2002-09-18 Kyocera Corp Color liquid crystal display
JP2003211052A (en) * 2002-01-23 2003-07-29 Fuji Photo Film Co Ltd Coater and coating method
JP2003222713A (en) * 2002-01-31 2003-08-08 Fuji Photo Film Co Ltd Glare shielding optical film, polarizing plate and display device using the same
JP2004115599A (en) * 2002-09-25 2004-04-15 Nippon Paper Industries Co Ltd Coating composition and antiglare film

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007304466A (en) * 2006-05-15 2007-11-22 Matsushita Electric Ind Co Ltd Light-absorbing antireflection structure, optical unit and lens barrel unit equipped with the same, and optical device equipped with them
EP1857841A1 (en) * 2006-05-15 2007-11-21 Matsushita Electric Industrial Co., Ltd. Light absorbing antireflection structure, optical unit and lens barrel unit including the light absorbing antireflection structure, and optical device including the optical unit and the lens barrel unit
JP2008129509A (en) * 2006-11-24 2008-06-05 Sumitomo Osaka Cement Co Ltd Anti-glare member and image display device provided with the same
US8778489B2 (en) 2007-03-31 2014-07-15 Tomoegawa Co., Ltd. Optical layered product
JP2008292987A (en) * 2007-04-24 2008-12-04 Tomoegawa Paper Co Ltd Optical laminate
JP2010097011A (en) * 2008-10-17 2010-04-30 Lintec Corp Anti-glare hardcoat film, and polarizing plate using the same
JP2011197329A (en) * 2010-03-18 2011-10-06 Dainippon Printing Co Ltd Anti-glare film, method for manufacturing the same, polarizing plate, and image display device
KR102012045B1 (en) * 2010-03-18 2019-08-19 다이니폰 인사츠 가부시키가이샤 Anti-glare film, manufacturing method for same, polarizing plate and image display device
US9164204B2 (en) 2010-03-18 2015-10-20 Dai Nippon Printing Co., Ltd. Anti-glare film, manufacturing method for same, polarizing plate and image display device
KR20130008047A (en) 2010-03-18 2013-01-21 다이니폰 인사츠 가부시키가이샤 Anti-glare film, manufacturing method for same, polarizing plate and image display device
US9164203B2 (en) 2010-03-18 2015-10-20 Dai Nippon Printing Co., Ltd. Anti-glare film, manufacturing method for same, polarizing plate and image display device
TWI474052B (en) * 2010-03-18 2015-02-21 Dainippon Printing Co Ltd Anti-glare film, anti-glare film manufacturing method, polarizing film and image display device
US9529121B2 (en) 2010-10-04 2016-12-27 Dai Nippon Printing Co., Ltd. Anti-glare film, method for producing anti-glare film, polarizer and image display device
KR101828115B1 (en) * 2010-10-04 2018-02-09 다이니폰 인사츠 가부시키가이샤 Anti-glare film, method for manufacturing anti-glare film, polarizing plate, and image display device
WO2012046663A1 (en) * 2010-10-04 2012-04-12 大日本印刷株式会社 Anti-glare film, method for manufacturing anti-glare film, polarizing plate, and image display device
CN103119478A (en) * 2010-10-04 2013-05-22 大日本印刷株式会社 Anti-glare film, method for manufacturing anti-glare film, polarizing plate, and image display device
WO2012046662A1 (en) * 2010-10-04 2012-04-12 大日本印刷株式会社 Anti-glare film, method for manufacturing anti-glare film, polarizing plate, and image display device
JP5979000B2 (en) * 2010-10-04 2016-08-24 大日本印刷株式会社 Antiglare film, method for producing antiglare film, polarizing plate and image display device
JP5979002B2 (en) * 2010-10-04 2016-08-24 大日本印刷株式会社 Antiglare film, method for producing antiglare film, polarizing plate and image display device
JP5979001B2 (en) * 2010-10-04 2016-08-24 大日本印刷株式会社 Antiglare film, method for producing antiglare film, polarizing plate and image display device
WO2012046664A1 (en) * 2010-10-04 2012-04-12 大日本印刷株式会社 Anti-glare film, method for manufacturing anti-glare film, polarizing plate, and image display device
US9606271B2 (en) 2010-10-04 2017-03-28 Dai Nippon Printing Co., Ltd. Anti-glare film, method for producing anti-glare film, polarizer, and image display device having different size particles with impregnation layers
US9618656B2 (en) 2010-10-04 2017-04-11 Dai Nippon Printing Co., Ltd. Anti-glare film, method for producing anti-glare film, polarizer and image display device
KR101788357B1 (en) 2010-10-04 2017-10-19 다이니폰 인사츠 가부시키가이샤 Anti-glare film, method for manufacturing anti-glare film, polarizing plate, and image display device
KR101788358B1 (en) * 2010-10-04 2017-10-19 다이니폰 인사츠 가부시키가이샤 Anti-glare film, method for manufacturing anti-glare film, polarizing plate, and image display device
CN103140781A (en) * 2010-10-04 2013-06-05 大日本印刷株式会社 Anti-glare film, method for manufacturing anti-glare film, polarizing plate, and image display device
US10113089B2 (en) 2013-10-02 2018-10-30 3M Innovative Properties Company Articles and methods comprising polyacrylate primer with nitrogen-containing polymer
US10928563B2 (en) 2013-10-02 2021-02-23 3M Innovative Properties Company Microstructured diffuser comprising first microstructured layer and coating, optical stacks, and method
WO2015050750A1 (en) * 2013-10-02 2015-04-09 3M Innovative Properties Company Microstuctured diffuser comprising first microstructured layer and coating, optical stacks, and method
US9850405B2 (en) 2013-10-02 2017-12-26 3M Innovative Properties Company Article comprising polyacrylate pressure sensitive primer and adhesive comprising polyacrylate component
US11613643B2 (en) 2017-08-04 2023-03-28 Daicel Corporation Antiglare film
JPWO2019026467A1 (en) * 2017-08-04 2020-01-23 株式会社ダイセル Anti-glare film
JPWO2019026466A1 (en) * 2017-08-04 2020-01-23 株式会社ダイセル Anti-glare film
JP2022051877A (en) * 2017-08-04 2022-04-01 株式会社ダイセル Antiglare film
US11313995B2 (en) 2017-08-04 2022-04-26 Daicel Corporation Anti-glare film
CN110720058A (en) * 2017-08-04 2020-01-21 株式会社大赛璐 Anti-dazzle film
JP7262633B2 (en) 2017-08-04 2023-04-21 株式会社ダイセル antiglare film
US11650357B2 (en) 2017-08-04 2023-05-16 Daicel Corporation Anti-glare film
US11733431B2 (en) 2017-08-04 2023-08-22 Daicel Corporation Anti-glare film
US11880051B2 (en) 2017-08-04 2024-01-23 Daicel Corporation Anti-glare film
US11976214B2 (en) 2017-08-04 2024-05-07 Daicel Corporation Antiglare film
US12037513B2 (en) 2017-08-04 2024-07-16 Daicel Corporation Antiglare film
US12228753B2 (en) 2017-08-04 2025-02-18 Daicel Corporation Anti-glare film

Similar Documents

Publication Publication Date Title
JP5049628B2 (en) Coating composition, optical film, polarizing plate, image display device, and method for producing optical film
JP4666983B2 (en) Method for producing optical functional film
JP2007293303A (en) Light-scattering film, polarizing plate and image display
JP2007045142A (en) Anti-glare and anti-reflection film, its manufacturing process, polarizing plate using the film and liquid crystal display device using the polarizing plate
US20060153979A1 (en) Anti-glare and anti-reflection film, polarizing plate using the anti-glare and anti-reflection film, and liquid crystal display device using the polarizing plate
JP4887013B2 (en) Antireflection film and display device using the same
JP2007108725A (en) Optical film, antireflection film, polarizing plate using the same and display device
JP2007256844A (en) Optical film, antireflection film, manufacturing method of optical film, and polarizing plate and display device using the same
JP2007188070A (en) Optical film, polarizing plate using the same, image display device and liquid crystal display device
JP2007133384A (en) Antiglare film, polarizing plate and image display apparatus
JP2008105191A (en) Optical film, antireflection film, polarizing plate, display device and manufacturing method of optical film
JP2006113561A (en) Producing method of light-scattering film, polarizing plate comprising light-scattering film and liquid crystal display device comprising the polarizing plate
US20070298193A1 (en) Method of Producing Light-Scattering Film, Polarizing Plate Comprising Light-Scattering Film and Liquid Crystal Display Device Comprising the Polarizing Plate
JP2007065635A (en) Optical film, particularly antireflection film and method of manufacturing the same, and polarizer and liquid crystal display device using antireflection film
JP4792305B2 (en) Antireflection film, polarizing plate, and image display device
JP2005234476A (en) Antireflection coating, antireflection film and image display apparatus
JP2003315505A (en) Method for manufacturing antireflection film
JP4393232B2 (en) Method for producing antireflection film
JP2007213045A (en) Antireflection film, polarizing plate, and display apparatus
JP2005309399A (en) Method for manufacturing light diffusing film, antireflection film, and polarizing plate using the same, and liquid crystal display device
JP2006048025A (en) Antireflection film and manufacturing method thereof
JP2006096861A (en) Coating composition, optically functional layer, antireflection film, polarization plate and image display device
JP2007177192A (en) Transparent film and its production process, polarizing plate and image display device
JP5010813B2 (en) Antiglare antireflection film, production method thereof, polarizing plate using antiglare antireflection film, and liquid crystal display device using the polarizing plate
JP2006268031A (en) Antireflection film, polarizing plate, and image display apparatus

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060328

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061127

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071109

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071116

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071126

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110111

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20110311