[go: up one dir, main page]

JP2006112272A - Intake air temperature control system for internal combustion engine - Google Patents

Intake air temperature control system for internal combustion engine Download PDF

Info

Publication number
JP2006112272A
JP2006112272A JP2004298857A JP2004298857A JP2006112272A JP 2006112272 A JP2006112272 A JP 2006112272A JP 2004298857 A JP2004298857 A JP 2004298857A JP 2004298857 A JP2004298857 A JP 2004298857A JP 2006112272 A JP2006112272 A JP 2006112272A
Authority
JP
Japan
Prior art keywords
temperature
internal combustion
combustion engine
exhaust gas
intake air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004298857A
Other languages
Japanese (ja)
Inventor
Koichiro Nakatani
好一郎 中谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2004298857A priority Critical patent/JP2006112272A/en
Publication of JP2006112272A publication Critical patent/JP2006112272A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/33Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage controlling the temperature of the recirculated gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • F02M26/28Layout, e.g. schematics with liquid-cooled heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • F02B29/0437Liquid cooled heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Supercharger (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Abstract

【課題】排気再循環装置を備える内燃機関において、より簡潔に且つより精密な吸気温度の制御を可能とする吸気温度制御システムを提供する。
【解決手段】 内燃機関の吸気温度制御システムにおいて、排気の一部を吸気系に再循環する排気再循環装置と、所定時期における内燃機関の燃焼室内の温度を検出、又は推定する燃焼室内温度検出手段と、内燃機関の吸気系を流れる新気の温度、および排気再循環装置を流れる再循環排気の温度のうち少なくとも何れかを調整する温度調整装置と、燃焼室内温度検出手段によって検出され、又は推定された燃焼室内の温度に基づいて、温度調整装置を介して新気温度、および再循環排気温度をそれぞれの目的温度に制御する制御手段と、を備える。
【選択図】 図2
An intake air temperature control system capable of more simply and more accurately controlling an intake air temperature in an internal combustion engine including an exhaust gas recirculation device.
In an intake air temperature control system for an internal combustion engine, an exhaust gas recirculation device for recirculating a part of exhaust gas to an intake system, and a temperature detection in a combustion chamber for detecting or estimating a temperature in a combustion chamber of the internal combustion engine at a predetermined timing. Detected by a temperature adjusting device that adjusts at least one of the temperature of the fresh air flowing through the intake system of the internal combustion engine and the temperature of the recirculated exhaust gas flowing through the exhaust gas recirculation device, or Control means for controlling the fresh air temperature and the recirculated exhaust gas temperature to the respective target temperatures via the temperature adjusting device based on the estimated temperature in the combustion chamber.
[Selection] Figure 2

Description

本発明は、排気再循環装置を備える内燃機関において吸気温度を制御する吸気温度制御システムに関する。   The present invention relates to an intake air temperature control system for controlling intake air temperature in an internal combustion engine including an exhaust gas recirculation device.

内燃機関の排気の状態は、燃焼室内の燃料混合気の燃焼温度と密接に関係し、更に燃焼温度は吸気温度の影響を強く受ける。従って、内燃機関の運転状態をより精密に制御するためには、操作される各種の運転パラメータ(例えば燃料の噴射時期、噴射圧、EGR弁の開度、スロットル弁の開度等)が同一であっても、吸気温度(新気温度および再循環排気温度)が異なればNOx生成量やHC、COの排出量は変化する。そこで、排気の状態を適正に制御するためには吸気温度を考慮する必要がある。   The exhaust state of the internal combustion engine is closely related to the combustion temperature of the fuel mixture in the combustion chamber, and the combustion temperature is strongly influenced by the intake air temperature. Therefore, in order to more precisely control the operating state of the internal combustion engine, the various operating parameters (for example, fuel injection timing, injection pressure, EGR valve opening, throttle valve opening, etc.) are the same. Even if the intake air temperature (fresh air temperature and recirculation exhaust gas temperature) is different, the NOx generation amount and the HC and CO emission amounts change. Therefore, it is necessary to consider the intake air temperature in order to properly control the exhaust state.

そこで、排気再循環装置(EGR装置)を備える内燃機関において、予め決定されている基準である吸気温度と、現在の基準温度との間に偏差が生じている場合、若しくは該偏差が生じることが推定される場合には、排気再循環装置における熱交換装置(EGRクーラ)での熱交換量を制御することで、最終的に気筒内に流入する吸気(新気と再循環排気との混合気)の温度を制御する技術が公開されている(例えば、特許文献1を参照。)。この技術によって、吸気温度のずれに起因する燃焼温度への影響が抑制され得る。
特開2004−44484号公報 特開平11−200955号公報
Therefore, in an internal combustion engine equipped with an exhaust gas recirculation device (EGR device), if there is a deviation between the intake air temperature, which is a predetermined reference, and the current reference temperature, the deviation may occur. In the case of estimation, by controlling the amount of heat exchange in the heat exchange device (EGR cooler) in the exhaust gas recirculation device, the intake air finally flowing into the cylinder (the mixture of fresh air and recirculated exhaust gas) ) Has been disclosed (for example, see Patent Document 1). By this technique, the influence on the combustion temperature due to the deviation of the intake air temperature can be suppressed.
JP 2004-44484 A Japanese Patent Laid-Open No. 11-200955

内燃機関における吸気温度は、燃焼状態を制御するための重要なパラメータである。特に内燃機関が排気再循環装置を備える場合、該吸気温度は新気と再循環排気との混合率やそれぞれの温度によって決定される。ここで、吸気温度を所定の基準値に基づいて精密に制御する場合、外気温度等の内燃機関の置かれる周囲の環境を正確に把握する必要がある。これは、該基準値と内燃機関の周囲環境との関係によって、内燃機関に必要とされる吸気温度と該基準値との関係にずれが生じるためである。   The intake air temperature in the internal combustion engine is an important parameter for controlling the combustion state. In particular, when the internal combustion engine includes an exhaust gas recirculation device, the intake air temperature is determined by the mixing ratio of fresh air and the recirculated exhaust gas, and the respective temperatures. Here, when the intake air temperature is precisely controlled based on a predetermined reference value, it is necessary to accurately grasp the surrounding environment where the internal combustion engine is placed, such as the outside air temperature. This is because the relationship between the reference value and the ambient temperature of the internal combustion engine causes a shift in the relationship between the intake air temperature required for the internal combustion engine and the reference value.

そのため、吸気温度を基準値に基づいて精密に制御する場合、複数の内燃機関の周囲環境を予め想定して吸気温度制御のための制御マップ等を作成する必要があり、吸気温度制御のための工数が増大する虞がある。   For this reason, when the intake air temperature is precisely controlled based on the reference value, it is necessary to create a control map for intake air temperature control by assuming the surrounding environment of a plurality of internal combustion engines in advance. There is a risk that man-hours will increase.

本発明では、上記した問題に鑑み、排気再循環装置を備える内燃機関において、より簡潔に且つより精密な吸気温度の制御を可能とする吸気温度制御システムを提供することを目的とする。   In view of the above problems, an object of the present invention is to provide an intake air temperature control system that enables simpler and more precise control of intake air temperature in an internal combustion engine including an exhaust gas recirculation device.

本発明は、上記した課題を解決するために、内燃機関の燃焼室内の温度、特に燃焼状態に大きく影響する所定時期の燃焼室内温度に着目した。即ち、内燃機関の周囲環境ではなく、直接に燃焼室内の温度、特に燃焼状態に大きく影響する所定時期の燃焼室内温度に基づいて吸気温度を制御することで、該吸気温度の制御をより精密にかつより簡潔に行うことを可能とする。   In order to solve the above-described problems, the present invention focuses on the temperature in the combustion chamber of the internal combustion engine, particularly the temperature in the combustion chamber at a predetermined time that greatly affects the combustion state. That is, the intake air temperature is controlled not directly based on the ambient environment of the internal combustion engine but directly on the temperature in the combustion chamber, particularly on the combustion chamber temperature at a predetermined time that greatly affects the combustion state, thereby controlling the intake air temperature more precisely. And make it more concise.

そこで、本発明は、内燃機関の吸気温度制御システムであって、内燃機関から排出される排気の一部を吸気系に再循環する排気再循環装置と、所定時期における内燃機関の燃焼
室内の温度を検出、又は推定する燃焼室内温度検出手段と、前記内燃機関の吸気系を流れる新気の温度、および前記排気再循環装置を流れる再循環排気の温度のうち少なくとも何れかを調整する温度調整装置と、前記燃焼室内温度検出手段によって検出され、又は推定された燃焼室内の温度に基づいて、前記温度調整装置を介して前記新気温度、および前記再循環排気温度をそれぞれの目的温度に制御する制御手段と、を備える。
Accordingly, the present invention provides an intake air temperature control system for an internal combustion engine, and an exhaust gas recirculation device that recirculates a part of the exhaust gas discharged from the internal combustion engine to the intake system, and a temperature in the combustion chamber of the internal combustion engine at a predetermined time. And a temperature adjustment device for adjusting at least one of a temperature of fresh air flowing through the intake system of the internal combustion engine and a temperature of recirculated exhaust gas flowing through the exhaust gas recirculation device And the fresh air temperature and the recirculated exhaust gas temperature are controlled to the respective target temperatures via the temperature adjusting device based on the temperature in the combustion chamber detected or estimated by the combustion chamber temperature detecting means. Control means.

上記の内燃機関には排気再循環装置が備えられているため、内燃機関の気筒に流入する吸気は、内燃機関外部からの新気と排気再循環装置による再循環排気とから構成される。従って、上記の内燃機関における吸気温度は、新気温度と再循環排気温度、および両者の混合率等によって決定される。当然に、吸気が新気のみ、若しくは再循環排気のみと言う場合も存在し得る。   Since the internal combustion engine is provided with an exhaust gas recirculation device, the intake air flowing into the cylinder of the internal combustion engine is composed of fresh air from the outside of the internal combustion engine and recirculation exhaust gas from the exhaust gas recirculation device. Therefore, the intake air temperature in the internal combustion engine is determined by the fresh air temperature, the recirculation exhaust temperature, the mixing ratio of both, and the like. Of course, there may be cases where the intake air is only fresh air or only recirculated exhaust.

ここで、上記の内燃機関の吸気温度制御システムの特徴点は、内燃機関の周囲環境ではなく、燃焼室内温度検出手段によって検出され又は推定される燃焼室内の温度に基づいて、吸気温度が調整される点である。燃焼状態に直接起因する所定時期における燃焼室内温度に基づいて吸気温度を制御することで、内燃機関の運転パラメータ以外の外的要因である内燃機関の周囲環境にかかわらず、燃焼室における燃焼状態が目的の状態となるべく吸気温度をより精密に制御することが可能となる。換言すると、燃焼室内温度と吸気温度を制御上、直接に関連付けることで、より簡潔に且つより精密に吸気温度の適正な制御が可能となる。尚、燃焼室内温度検出手段によって検出、推定される燃焼室内の温度は所定時期における燃焼室内温度である。この所定時期とは、燃焼室内での燃焼状態に強い関連性を有する時期であり、例えば燃焼室内温度が大きく上昇する圧縮上死点の時期等である。   Here, the feature of the intake air temperature control system for the internal combustion engine is that the intake air temperature is adjusted based on the temperature in the combustion chamber detected or estimated by the combustion chamber temperature detection means, not the surrounding environment of the internal combustion engine. It is a point. By controlling the intake air temperature based on the temperature in the combustion chamber at a predetermined time that is directly attributable to the combustion state, the combustion state in the combustion chamber is controlled regardless of the ambient environment that is an external factor other than the operating parameters of the internal combustion engine. It is possible to control the intake air temperature as precisely as possible to achieve the target state. In other words, it is possible to control the intake air temperature more simply and more precisely by directly relating the combustion chamber temperature and the intake air temperature in terms of control. The temperature in the combustion chamber detected and estimated by the combustion chamber temperature detection means is the temperature in the combustion chamber at a predetermined time. This predetermined time is a time having a strong relationship with the combustion state in the combustion chamber, for example, a time of compression top dead center when the temperature in the combustion chamber is greatly increased.

また、吸気温度の調整は温度調整装置を介して行われる、この温度調整装置は、新気および再循環排気の少なくとも何れかの温度をそれぞれの目的温度に調整するものであるが、その特徴点は、上記の燃焼室内温度検出手段による検出温度等に基づいて、新気および再循環排気の温度調整が行われる点である。尚、ここでいう目的温度とは、新気と再循環排気とが混合されて吸気となるとき、その吸気温度が燃焼室で行われる燃焼が到達する目標の燃焼状態に対応した新気および再循環排気の温度である。従って、必要に応じて、温度調整装置によって、新気および再循環排気のそれぞれの温度が、上昇、下降される。   In addition, the intake air temperature is adjusted via a temperature adjusting device. This temperature adjusting device adjusts the temperature of at least one of fresh air and recirculated exhaust gas to each target temperature. Is that the temperature of fresh air and recirculated exhaust gas is adjusted based on the temperature detected by the combustion chamber temperature detecting means. Note that the target temperature here means that when fresh air and recirculated exhaust gas are mixed to become intake air, the intake air temperature corresponds to the target combustion state reached by the combustion performed in the combustion chamber, This is the temperature of the circulating exhaust. Accordingly, the temperatures of the fresh air and the recirculated exhaust are raised and lowered as needed by the temperature adjusting device.

また、上記の内燃機関がその圧縮比を任意の圧縮比に変更可能な可変圧縮比機構を有している内燃機関であって、内燃機関の運転状態(機関負荷や機関回転速度等)に応じて可変圧縮比機構によってその圧縮比を変更するような場合であっても、上記の吸気温度制御システムにおいては、所定時期における燃焼室内温度に基づいて吸気温度を制御しているため、変更される圧縮比にかかわらず、燃焼室で行われる燃焼状態の目標となる状態に対応した吸気温度に、より簡潔に且つより精密に制御することが可能となる。   Further, the internal combustion engine has a variable compression ratio mechanism that can change the compression ratio to an arbitrary compression ratio, depending on the operating state (engine load, engine speed, etc.) of the internal combustion engine. Even in the case where the compression ratio is changed by the variable compression ratio mechanism, the intake air temperature is controlled based on the temperature in the combustion chamber at a predetermined timing in the above intake temperature control system. Regardless of the compression ratio, the intake air temperature corresponding to the target state of the combustion state performed in the combustion chamber can be controlled more simply and more precisely.

ここで、上記の内燃機関の吸気温度制御システムにおいて、前記温度調整装置は、前記内燃機関の吸気系を流れる新気と熱交換を行うことで該新気温度を調整する新気用熱交換装置、若しくは前記排気再循環装置を流れる再循環排気と熱交換を行うことで該再循環排気温度を調整する再循環排気用熱交換装置であってもよい。即ち、いわゆる熱交換機によって、新気および再循環排気の温度を調整するものである。   Here, in the intake air temperature control system for an internal combustion engine, the temperature adjustment device adjusts the fresh air temperature by exchanging heat with fresh air flowing through the intake system of the internal combustion engine. Alternatively, it may be a recirculation exhaust heat exchange device that adjusts the recirculation exhaust temperature by exchanging heat with the recirculation exhaust flowing through the exhaust recirculation device. That is, the temperature of fresh air and recirculated exhaust gas is adjusted by a so-called heat exchanger.

また、上述までの内燃機関の吸気温度制御システムにおいて、前記内燃機関において新気に対して過給を行う過給機を更に備える場合、前記制御手段によって前記温度調整装置を介して前記新気温度又は前記再循環排気温度が上昇されたとき、前記過給機による過給圧を上昇させるようにしてもよい。   Further, in the intake air temperature control system for an internal combustion engine described above, when the internal combustion engine further includes a supercharger that supercharges fresh air, the fresh air temperature is controlled by the control means via the temperature adjustment device. Alternatively, when the recirculation exhaust temperature is raised, the supercharging pressure by the supercharger may be raised.

制御手段によって温度調整装置を介して吸気温度が制御されると吸気密度が変化する。
即ち、吸気温度が上昇すると吸気密度が低下して結果的に吸気量が低下する。そこで、吸気温度が上昇するとき、即ち新気温度又は再循環排気温度が上昇するときは、過給機による過給圧を上昇させることで、温度上昇に伴って低下した吸気量を増加させて、以て燃焼室で必要な吸気量を確保し、エミッションの悪化等を抑制することが可能となる。
When the intake air temperature is controlled by the control means via the temperature adjusting device, the intake air density changes.
That is, when the intake air temperature rises, the intake air density decreases, and as a result, the intake air amount decreases. Therefore, when the intake air temperature rises, that is, when the fresh air temperature or the recirculation exhaust gas temperature rises, the intake pressure that decreases as the temperature rises is increased by increasing the supercharging pressure by the supercharger. Thus, it is possible to secure the necessary intake air amount in the combustion chamber and suppress the deterioration of the emission.

排気再循環装置を備える内燃機関の吸気温度制御システムにおいて、より簡潔に且つより精密な吸気温度の制御を可能とする。   In an intake air temperature control system for an internal combustion engine having an exhaust gas recirculation device, the intake air temperature can be controlled more simply and more precisely.

ここで、本発明に係る内燃機関の吸気温度制御システムの実施の形態について図面に基づいて説明する。   Here, an embodiment of an intake air temperature control system for an internal combustion engine according to the present invention will be described based on the drawings.

図1は、本発明に係る吸気温度制御システムが適用される圧縮着火内燃機関(以下、単に「内燃機関」という。)1およびその制御系統の概略構成を表すブロック図である。内燃機関1は、4つの気筒2を有する圧縮着火式内燃機関である。また、気筒2の燃焼室に直接燃料を噴射する燃料噴射弁3を備えている。燃料噴射弁3は、所定圧に加圧された燃料を貯留する蓄圧室4と接続されている。内燃機関1には吸気枝管7が接続されており、吸気枝管7の各枝管は、吸気ポートを介して燃焼室に接続される。同様に、内燃機関1には排気枝管12が接続され、排気枝管12の各枝管は排気ポートを介して燃焼室に接続される。ここで、吸気ポートおよび排気ポートには、各々吸気弁および排気弁が設けられている。   FIG. 1 is a block diagram showing a schematic configuration of a compression ignition internal combustion engine (hereinafter simply referred to as “internal combustion engine”) 1 to which an intake air temperature control system according to the present invention is applied and a control system thereof. The internal combustion engine 1 is a compression ignition type internal combustion engine having four cylinders 2. Further, a fuel injection valve 3 for directly injecting fuel into the combustion chamber of the cylinder 2 is provided. The fuel injection valve 3 is connected to a pressure accumulating chamber 4 that stores fuel pressurized to a predetermined pressure. An intake branch pipe 7 is connected to the internal combustion engine 1, and each branch pipe of the intake branch pipe 7 is connected to a combustion chamber via an intake port. Similarly, an exhaust branch pipe 12 is connected to the internal combustion engine 1, and each branch pipe of the exhaust branch pipe 12 is connected to a combustion chamber via an exhaust port. Here, the intake port and the exhaust port are provided with an intake valve and an exhaust valve, respectively.

また、吸気枝管7は吸気管8に接続されている。吸気管8の上流部には吸気管8を流れる吸入空気量を検出するエアフローメータ9が設けられ、更にその下流には、吸気管8内を流れる吸気の流量を調節する吸気絞り弁10が設けられている。この吸気絞り弁10には、ステップモータ等で構成されて該吸気絞り弁10を開閉駆動する吸気絞り用アクチュエータ11が取り付けられている。   The intake branch pipe 7 is connected to the intake pipe 8. An air flow meter 9 for detecting the amount of intake air flowing through the intake pipe 8 is provided upstream of the intake pipe 8, and an intake throttle valve 10 for adjusting the flow rate of intake air flowing through the intake pipe 8 is provided further downstream thereof. It has been. The intake throttle valve 10 is provided with an intake throttle actuator 11 that is configured by a step motor or the like and that opens and closes the intake throttle valve 10.

吸気絞り弁10の下流側の吸気管8には、排気のエネルギーを駆動源として作動する過給機16のコンプレッサ側が設けられ、排気枝管12には過給機16のタービン側が設けられている。過給機16はいわゆる可変容量型過給機であって、その内部に可動式のノズルベーンを有し、該ノズルベーンの開度を調整することで、過給機16による過給圧が制御される。過給機16より下流の吸気管8には、過給機16によって加圧されて高温となった吸入空気を冷却するためのインタークーラ15が設けられている。インタークーラ15は冷却用の冷却水が供給されており、その供給量が調整されることで、インタークーラ15の冷却能力が制御される熱交換装置である。   The intake pipe 8 on the downstream side of the intake throttle valve 10 is provided with a compressor side of a supercharger 16 that operates using exhaust energy as a drive source, and the exhaust branch pipe 12 is provided with a turbine side of the supercharger 16. . The supercharger 16 is a so-called variable capacity supercharger. The supercharger 16 has a movable nozzle vane therein, and the supercharging pressure by the supercharger 16 is controlled by adjusting the opening degree of the nozzle vane. . The intake pipe 8 downstream of the supercharger 16 is provided with an intercooler 15 for cooling the intake air that has been pressurized by the supercharger 16 and has reached a high temperature. The intercooler 15 is a heat exchange device to which cooling water for cooling is supplied and the cooling capacity of the intercooler 15 is controlled by adjusting the supply amount.

また、過給機16のタービン側は、排気管13と接続され、この排気管13は、下流にてマフラーに接続されている。そして、排気管13の途中には、いわゆる吸蔵還元型NOx触媒のNOx触媒14が設けられている。   Further, the turbine side of the supercharger 16 is connected to an exhaust pipe 13, and the exhaust pipe 13 is connected to a muffler downstream. In the middle of the exhaust pipe 13, a NOx catalyst 14 of a so-called storage reduction type NOx catalyst is provided.

更に、内燃機関1には、EGR装置21が設けられている。EGR装置21は排気枝管12を流れる排気の一部を吸気枝管7へ再循環させる。EGR装置21は、排気枝管12(上流側)から吸気枝管7(下流側)へ延出しているEGR通路22と、EGR通路22上に上流側から順に設けられたEGRガス冷却用のEGRクーラ23と、EGRガスの流量調整用のEGR弁24と、から構成される。EGRクーラ23は、冷却用の冷却水が供給されており、その供給量が調整されることで、EGRクーラ23の冷却能力が制御される熱交換装置である。   Further, the internal combustion engine 1 is provided with an EGR device 21. The EGR device 21 recirculates a part of the exhaust gas flowing through the exhaust branch pipe 12 to the intake branch pipe 7. The EGR device 21 includes an EGR passage 22 extending from the exhaust branch pipe 12 (upstream side) to the intake branch pipe 7 (downstream side), and an EGR for cooling EGR gas provided in order from the upstream side on the EGR passage 22. A cooler 23 and an EGR valve 24 for adjusting the flow rate of EGR gas are included. The EGR cooler 23 is a heat exchange device to which cooling water for cooling is supplied and the supply capacity of the EGR cooler 23 is adjusted to control the cooling capacity of the EGR cooler 23.

また、内燃機関1には、該内燃機関1を制御するための電子制御ユニット(以下、「ECU」という)20が併設されている。このECU20は、CPUの他、後述する各種のプログラム及びマップを記憶するROM、RAM等を備えており、内燃機関1の運転条件や運転者の要求に応じて内燃機関1の運転状態等を制御するユニットである。   The internal combustion engine 1 is also provided with an electronic control unit (hereinafter referred to as “ECU”) 20 for controlling the internal combustion engine 1. The ECU 20 includes a CPU, a ROM, a RAM, and the like for storing various programs and maps to be described later, and controls the operating conditions of the internal combustion engine 1 according to the operating conditions of the internal combustion engine 1 and the driver's request. Unit.

ここで、燃料噴射弁3は、ECU20からの制御信号によって開閉動作を行う。即ち、ECU20からの指令によって、燃料噴射弁3からの燃料噴射時期および燃料噴射量が、内燃機関1の機関負荷や機関回転速度等の運転状態に応じて、噴射弁毎に制御される。また、EGR弁24の開度やインタークーラ15への冷却水供給量、EGRクーラ23への冷却水供給量、過給機16のノズルベーン開度等も、ECU20からの指令に従って制御される。   Here, the fuel injection valve 3 performs an opening / closing operation by a control signal from the ECU 20. That is, according to a command from the ECU 20, the fuel injection timing and the fuel injection amount from the fuel injection valve 3 are controlled for each injection valve in accordance with the operation state such as the engine load and engine speed of the internal combustion engine 1. Further, the opening degree of the EGR valve 24, the cooling water supply amount to the intercooler 15, the cooling water supply amount to the EGR cooler 23, the nozzle vane opening degree of the supercharger 16, and the like are also controlled in accordance with commands from the ECU 20.

更に、クランクポジションセンサ30がECU20と電気的に接続されており、ECU20は内燃機関1の出力軸の回転角に応じた信号を受け取り、内燃機関1の機関回転速度や、各気筒2におけるピストン位置等を検出する。更に、気筒2の燃焼室内の圧力を検出する気筒内圧力センサ31が設けられ、ECU20と電気的に接続されている。これによりECU20は、燃焼室内の圧力を検出する。尚、図1においては、表示の都合上、一つの気筒にのみ気筒内圧力センサ31が取り付けられている。また、エアフローメータ9もECU20と電気的に接続されており、燃焼室内に流れ込む新気量が検出される。   Further, the crank position sensor 30 is electrically connected to the ECU 20. The ECU 20 receives a signal corresponding to the rotation angle of the output shaft of the internal combustion engine 1, and the engine rotational speed of the internal combustion engine 1 and the piston position in each cylinder 2. Etc. are detected. Further, an in-cylinder pressure sensor 31 that detects the pressure in the combustion chamber of the cylinder 2 is provided and is electrically connected to the ECU 20. Thereby, ECU20 detects the pressure in a combustion chamber. In FIG. 1, the in-cylinder pressure sensor 31 is attached to only one cylinder for convenience of display. The air flow meter 9 is also electrically connected to the ECU 20 to detect the amount of fresh air flowing into the combustion chamber.

図1のように構成される内燃機関1においては、気筒2の燃焼室における燃焼状態に大きな影響を及ぼす吸気温度を、ECU20は、図2に示す吸気温度制御のフローに従って調整する。尚、本実施例における吸気温度制御は、ECU20によって一定のサイクルで繰り返し実行されるルーチンである。   In the internal combustion engine 1 configured as shown in FIG. 1, the ECU 20 adjusts the intake air temperature that greatly affects the combustion state in the combustion chamber of the cylinder 2 in accordance with the flow of intake air temperature control shown in FIG. Note that the intake air temperature control in this embodiment is a routine that is repeatedly executed by the ECU 20 at a constant cycle.

S101では、気筒2の圧縮上死点時における燃焼室内温度Tcが推定される。具体的には、エアフローメータ9によって検出された新気量とEGR弁24の開度から推定される吸気枝管7に流れ込む再循環排気量との総量と、気筒内圧力センサ31によって検出される圧縮上死点時の気筒内圧力とから、圧縮上死点時における燃焼室内温度Tcが算出される。尚、圧縮上死点を迎えているか否かの判定は、クランクポジションセンサ30からの信号に基づいて行われる。ECU20によるこのS101の処理が、本発明に係る吸気温度制御システムの燃焼室内温度検出手段に相当する。S101の処理が終了すると、S102へ進む。   In S101, the combustion chamber temperature Tc at the time of compression top dead center of the cylinder 2 is estimated. Specifically, the total amount of the fresh air amount detected by the air flow meter 9 and the recirculated exhaust amount flowing into the intake branch pipe 7 estimated from the opening degree of the EGR valve 24 and the in-cylinder pressure sensor 31 are detected. The combustion chamber temperature Tc at the compression top dead center is calculated from the pressure in the cylinder at the compression top dead center. Whether or not the compression top dead center has been reached is determined based on a signal from the crank position sensor 30. The process of S101 by the ECU 20 corresponds to the combustion chamber temperature detecting means of the intake air temperature control system according to the present invention. When the process of S101 ends, the process proceeds to S102.

S102では、S101で推定された燃焼室内温度Tcに基づいて、インタークーラ15に供給される冷却水量およびEGRクーラ23に供給される冷却水量が調整される。具体的には、図3に示す制御マップに従って、インタークーラ15とEGRクーラ23への各冷却水量が決定される。該制御マップは、内燃機関1が異なる機関負荷に対して仕事を行っている場合の、燃焼室内温度Tcと該仕事を行うために好適な吸気温度となるインタークーラ15への供給冷却水量とEGRクーラ23への供給却水量との関係を予め実験等で求め、それをマップ化したものである。即ち、内燃機関1における燃焼状態は燃焼室内の温度Tcに大きく左右され、且つ燃焼室内温度Tcと吸気温度とは密接な関係があることを鑑みて、燃焼室内温度Tcと吸気温度を決定する新気温度と再循環排気温度との関係を一義的にマップ化したものである。   In S102, the amount of cooling water supplied to the intercooler 15 and the amount of cooling water supplied to the EGR cooler 23 are adjusted based on the combustion chamber temperature Tc estimated in S101. Specifically, each cooling water amount to the intercooler 15 and the EGR cooler 23 is determined according to the control map shown in FIG. When the internal combustion engine 1 is working on different engine loads, the control map indicates the combustion chamber temperature Tc, the amount of cooling water supplied to the intercooler 15 that is a suitable intake air temperature, and EGR. The relationship with the amount of rejected water supplied to the cooler 23 is obtained in advance through experiments or the like and is mapped. That is, the combustion state in the internal combustion engine 1 is greatly influenced by the temperature Tc in the combustion chamber, and the combustion chamber temperature Tc and the intake air temperature are determined in view of the close relationship between the combustion chamber temperature Tc and the intake air temperature. The relationship between the air temperature and the recirculation exhaust temperature is uniquely mapped.

尚、図3の制御マップには、燃焼室内温度Tcと、インタークーラ15とEGRクーラ23への供給冷却水量との関係のみが示されているが、一定のインタークーラ冷却水量WICn、EGRクーラ冷却水量WECnが決定されるとき、EGR弁24の開度も併せて決定される。即ち、新気と再循環排気との混合率も決定される。このS102の処理によ
って、気筒2の燃焼室に供給される吸気温度が、燃焼室内温度Tcに基づいて直接的に決定されることになる。ECU20によるこのS102の処理が、本発明に係る吸気温度制御システムの制御手段に相当する。S102の処理が終了すると、S103へ進む。
The control map of FIG. 3 shows only the relationship between the combustion chamber temperature Tc and the amount of cooling water supplied to the intercooler 15 and the EGR cooler 23. However, the constant intercooler cooling water amounts WICn and EGR cooler cooling are shown. When the water amount WECn is determined, the opening degree of the EGR valve 24 is also determined. That is, the mixing ratio of fresh air and recirculated exhaust is also determined. By the process of S102, the intake air temperature supplied to the combustion chamber of the cylinder 2 is directly determined based on the combustion chamber temperature Tc. The process of S102 by the ECU 20 corresponds to the control means of the intake air temperature control system according to the present invention. When the process of S102 ends, the process proceeds to S103.

S103では、過給機16のノズルベーンの開度を調整することで、過給圧が調整される。これは、S102において結果的に吸気温度が調整されるため、吸気の密度が変更する。その結果、内燃機関での燃焼状態において必要とされる吸気量が十分に供給できない場合、若しくは吸気量が過度に多すぎる場合が存在する。例えば、S102において、インタークーラ15やEGRクーラ23に供給される冷却水量が少なく調整されると、吸気温度は上昇する。その結果、吸気の密度が低下するため、このような場合は過給機16による過給圧を上昇させて、最終的に気筒2内に流入する吸気量を目的とする量とする。S103の処理が終了後、本制御を終了する。   In S103, the supercharging pressure is adjusted by adjusting the opening degree of the nozzle vane of the supercharger 16. As a result, since the intake air temperature is adjusted in S102, the density of the intake air changes. As a result, there is a case where the intake amount required in the combustion state in the internal combustion engine cannot be sufficiently supplied, or the intake amount is excessively large. For example, if the amount of cooling water supplied to the intercooler 15 or the EGR cooler 23 is adjusted to be small in S102, the intake air temperature rises. As a result, the density of the intake air is reduced. In such a case, the supercharging pressure by the supercharger 16 is increased and the intake air amount finally flowing into the cylinder 2 is set as a target amount. After the process of S103 is completed, this control is terminated.

本制御によると、気筒2の燃焼室内温度Tcに基づいて、新気の温度調整装置であるインタークーラ15および再循環排気の温度調整装置であるEGRクーラ23を介して、吸気温度を、ECU20が直接に制御する。従って、より簡潔に且つより精密な吸気温度の制御をすることが可能となる。   According to this control, on the basis of the combustion chamber temperature Tc of the cylinder 2, the ECU 20 determines the intake air temperature via the intercooler 15 that is a fresh air temperature adjusting device and the EGR cooler 23 that is a recirculated exhaust gas temperature adjusting device. Control directly. Accordingly, it is possible to control the intake air temperature more simply and more precisely.

尚、本制御においては、燃焼室内温度Tcは、気筒内圧力センサ31等からの信号に基づいて推定されるが、燃焼室内の温度を検出する温度センサを設け、直接燃焼室内温度Tcを検出してもよい。また、吸気枝管7を流れる吸気の温度と内燃機関1の冷却水温度とから推定するようにしてもよい。   In this control, the combustion chamber temperature Tc is estimated based on a signal from the cylinder pressure sensor 31 or the like. However, a temperature sensor for detecting the temperature in the combustion chamber is provided to directly detect the combustion chamber temperature Tc. May be. Further, it may be estimated from the temperature of the intake air flowing through the intake branch pipe 7 and the cooling water temperature of the internal combustion engine 1.

また、新気の温度調整装置として吸気管8に吸気を加熱するヒータを設け、該ヒータに通電することで吸気を加熱し、その温度調整を行っても良い。このとき、新気に関して図3に相当する制御マップは、燃焼室内温度Tcとヒータへの通電量との関係を示す制御マップとなる。   Further, a heater for heating the intake air may be provided in the intake pipe 8 as a fresh air temperature adjustment device, and the intake air may be heated by energizing the heater to adjust the temperature. At this time, the control map corresponding to FIG. 3 with respect to the fresh air is a control map showing the relationship between the combustion chamber temperature Tc and the energization amount to the heater.

また、再循環排気の温度調整装置として、EGRクーラ23と並列にバイパス路を設け、EGRクーラ23を流れる排気量と該バイパス路を流れる排気量の比率を調整する調整弁を設けてもよい。この調整弁による該比率の調整を行うことで、再循環排気の温度が調整される。このとき、再循環排気に関して図3に相当する制御マップは、燃焼室内温度Tcと該比率との関係を示す制御マップとなる。   Further, as a recirculation exhaust gas temperature adjusting device, a bypass passage may be provided in parallel with the EGR cooler 23, and an adjustment valve for adjusting the ratio of the exhaust amount flowing through the EGR cooler 23 and the exhaust amount flowing through the bypass passage may be provided. By adjusting the ratio by this adjusting valve, the temperature of the recirculated exhaust gas is adjusted. At this time, the control map corresponding to FIG. 3 regarding the recirculated exhaust gas is a control map showing the relationship between the combustion chamber temperature Tc and the ratio.

本発明の実施例に係る内燃機関の吸気温度制御システムが適用される圧縮着火内燃機関の概略構成を表す図である。It is a figure showing the schematic structure of the compression ignition internal combustion engine to which the intake air temperature control system of the internal combustion engine which concerns on the Example of this invention is applied. 本発明の実施例に係る内燃機関の吸気温度制御システムにおける吸気温度制御に関するフローチャートである。It is a flowchart regarding the intake air temperature control in the intake air temperature control system of the internal combustion engine which concerns on the Example of this invention. 本発明の実施例に係る内燃機関の吸気温度制御システムにおける吸気温度制御で用いられる制御マップを示す図である。It is a figure which shows the control map used by the intake air temperature control in the intake air temperature control system of the internal combustion engine which concerns on the Example of this invention.

符号の説明Explanation of symbols

1・・・・圧縮着火内燃機関(内燃機関)
7・・・・吸気枝管
8・・・・吸気管
9・・・・エアフローメータ
12・・・・排気枝管
13・・・・排気管
15・・・・インタークーラ
16・・・・過給機
20・・・・ECU
21・・・・EGR装置
23・・・・EGRクーラ
24・・・・EGR弁
31・・・・気筒内圧力センサ
1. Compression compression internal combustion engine (internal combustion engine)
7 .... Intake branch pipe 8 .... Intake pipe 9 .... Air flow meter 12 .... Exhaust branch pipe 13 .... Exhaust pipe 15 .... Intercooler 16 .... Excess Feeder 20 ... ECU
21 ... EGR device 23 ... EGR cooler 24 ... EGR valve 31 ... In-cylinder pressure sensor

Claims (3)

内燃機関から排出される排気の一部を吸気系に再循環する排気再循環装置と、
所定時期における内燃機関の燃焼室内の温度を検出、又は推定する燃焼室内温度検出手段と、
前記内燃機関の吸気系を流れる新気の温度、および前記排気再循環装置を流れる再循環排気の温度のうち少なくとも何れかを調整する温度調整装置と、
前記燃焼室内温度検出手段によって検出され、又は推定された燃焼室内の温度に基づいて、前記温度調整装置を介して前記新気温度、および前記再循環排気温度をそれぞれの目的温度に制御する制御手段と、
を備えることを特徴とする内燃機関の吸気温度制御システム。
An exhaust gas recirculation device that recirculates part of the exhaust gas discharged from the internal combustion engine to the intake system;
Combustion chamber temperature detection means for detecting or estimating the temperature in the combustion chamber of the internal combustion engine at a predetermined time;
A temperature adjusting device that adjusts at least one of the temperature of fresh air flowing through the intake system of the internal combustion engine and the temperature of recirculated exhaust gas flowing through the exhaust gas recirculation device;
Control means for controlling the fresh air temperature and the recirculated exhaust gas temperature to the respective target temperatures via the temperature adjusting device based on the temperature in the combustion chamber detected or estimated by the combustion chamber temperature detecting means. When,
An intake air temperature control system for an internal combustion engine, comprising:
前記温度調整装置は、前記内燃機関の吸気系を流れる新気と熱交換を行うことで該新気温度を調整する新気用熱交換装置、若しくは前記排気再循環装置を流れる再循環排気と熱交換を行うことで該再循環排気温度を調整する再循環排気用熱交換装置であることを特徴とする請求項1に記載の内燃機関の吸気温度制御システム。   The temperature adjusting device is a heat exchanger for fresh air that adjusts the fresh air temperature by exchanging heat with fresh air that flows through the intake system of the internal combustion engine, or recirculated exhaust gas and heat that flows through the exhaust gas recirculation device. 2. An intake air temperature control system for an internal combustion engine according to claim 1, wherein the recirculation exhaust heat exchange device adjusts the recirculation exhaust temperature by performing exchange. 前記内燃機関において新気に対して過給を行う過給機を更に備え、
前記制御手段によって前記温度調整装置を介して前記新気温度又は前記再循環排気温度が上昇されたとき、前記過給機による過給圧を上昇させることを特徴とする請求項1又は請求項2に記載の内燃機関の吸気温度制御システム。
A supercharger for supercharging fresh air in the internal combustion engine;
3. The supercharging pressure by the supercharger is increased when the fresh air temperature or the recirculated exhaust gas temperature is increased by the control means via the temperature adjusting device. An intake air temperature control system for an internal combustion engine according to claim 1.
JP2004298857A 2004-10-13 2004-10-13 Intake air temperature control system for internal combustion engine Pending JP2006112272A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004298857A JP2006112272A (en) 2004-10-13 2004-10-13 Intake air temperature control system for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004298857A JP2006112272A (en) 2004-10-13 2004-10-13 Intake air temperature control system for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2006112272A true JP2006112272A (en) 2006-04-27

Family

ID=36381007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004298857A Pending JP2006112272A (en) 2004-10-13 2004-10-13 Intake air temperature control system for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2006112272A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011501011A (en) * 2007-10-10 2011-01-06 ヴァレオ システム ドゥ コントロール モトゥール Gasoline engine with low-pressure exhaust gas recirculation circuit
JP2020090903A (en) * 2018-12-03 2020-06-11 日立オートモティブシステムズ株式会社 Control device of internal combustion engine

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01240741A (en) * 1988-03-22 1989-09-26 Toyota Motor Corp Fuel supply amount control method for internal combustion engine
JPH1181993A (en) * 1997-09-12 1999-03-26 Toyota Motor Corp Exhaust purifying device in internal combustion engine
JP2000002121A (en) * 1998-06-16 2000-01-07 Nissan Motor Co Ltd Supercharge control device for internal combustion engine
JP2001082147A (en) * 1999-09-16 2001-03-27 Nissan Motor Co Ltd Self-ignition gasoline engine
JP2001152908A (en) * 1999-09-07 2001-06-05 Nissan Motor Co Ltd Control device for self-ignition and spark ignition internal combustion engine
JP2002115594A (en) * 2000-10-04 2002-04-19 Suzuki Motor Corp Intake air temperature compensation control apparatus for engine
JP2002339768A (en) * 2001-05-14 2002-11-27 Denso Corp Control device for diesel engine
JP2003176741A (en) * 2001-10-05 2003-06-27 Denso Corp Controller for internal combustion engine
JP2004257316A (en) * 2003-02-26 2004-09-16 Toyota Motor Corp Control device for internal combustion engine

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01240741A (en) * 1988-03-22 1989-09-26 Toyota Motor Corp Fuel supply amount control method for internal combustion engine
JPH1181993A (en) * 1997-09-12 1999-03-26 Toyota Motor Corp Exhaust purifying device in internal combustion engine
JP2000002121A (en) * 1998-06-16 2000-01-07 Nissan Motor Co Ltd Supercharge control device for internal combustion engine
JP2001152908A (en) * 1999-09-07 2001-06-05 Nissan Motor Co Ltd Control device for self-ignition and spark ignition internal combustion engine
JP2001082147A (en) * 1999-09-16 2001-03-27 Nissan Motor Co Ltd Self-ignition gasoline engine
JP2002115594A (en) * 2000-10-04 2002-04-19 Suzuki Motor Corp Intake air temperature compensation control apparatus for engine
JP2002339768A (en) * 2001-05-14 2002-11-27 Denso Corp Control device for diesel engine
JP2003176741A (en) * 2001-10-05 2003-06-27 Denso Corp Controller for internal combustion engine
JP2004257316A (en) * 2003-02-26 2004-09-16 Toyota Motor Corp Control device for internal combustion engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011501011A (en) * 2007-10-10 2011-01-06 ヴァレオ システム ドゥ コントロール モトゥール Gasoline engine with low-pressure exhaust gas recirculation circuit
JP2020090903A (en) * 2018-12-03 2020-06-11 日立オートモティブシステムズ株式会社 Control device of internal combustion engine

Similar Documents

Publication Publication Date Title
JP5143170B2 (en) Control method for internal combustion engine
US7831370B2 (en) Apparatus for controlling injection of fuel into engine and apparatus for controlling combustion in engine
EP3244055B1 (en) Egr system for internal-combustion engine
US8001953B2 (en) Exhaust gas recirculation system for internal combustion engine and method for controlling the same
US9410509B2 (en) Adaptive individual-cylinder thermal state control using intake air heating for a GDCI engine
JP2005090468A (en) Egr device of premixed compression self ignition internal combustion engine, and ignition timing control method of premixed compression self ignition internal combustion engine
JP4442643B2 (en) Exhaust gas purification control device for internal combustion engine
JP2008261300A (en) Exhaust gas recirculation device for internal combustion engine
US20140352670A1 (en) System and method for operating an engine
US20180266365A1 (en) Exhaust gas control apparatus of internal combustion engine
JP3992016B2 (en) Control device for premixed compression self-ignition internal combustion engine
JP2007211594A (en) engine
CN111788378A (en) Internal combustion engine and control method thereof
WO2008152491A1 (en) Exhaust gas recirculation system for internal combustion engine and exhaust gas recirculation system control method
JP2009264335A (en) Multistage supercharging system for internal combustion engine
JP2017036695A (en) Control device of diesel engine
JP2008267207A (en) Diesel engine control device
JP4765966B2 (en) Exhaust gas recirculation device for internal combustion engine
JP4867713B2 (en) Control device for internal combustion engine with EGR device
JP6701868B2 (en) Engine warm-up device
JP4481179B2 (en) Control device for internal combustion engine
JP2009191660A (en) Control device for internal combustion engine
JP2006112272A (en) Intake air temperature control system for internal combustion engine
JP4455353B2 (en) Control device for internal combustion engine
CN107269404B (en) Control apparatus and control method for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070830

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090303

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090804