[go: up one dir, main page]

JP2006097918A - Combustion furnace and waste treatment facility - Google Patents

Combustion furnace and waste treatment facility Download PDF

Info

Publication number
JP2006097918A
JP2006097918A JP2004281739A JP2004281739A JP2006097918A JP 2006097918 A JP2006097918 A JP 2006097918A JP 2004281739 A JP2004281739 A JP 2004281739A JP 2004281739 A JP2004281739 A JP 2004281739A JP 2006097918 A JP2006097918 A JP 2006097918A
Authority
JP
Japan
Prior art keywords
combustion
combustion chamber
gas
furnace
waste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004281739A
Other languages
Japanese (ja)
Inventor
Shinichi Suzuki
紳一 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2004281739A priority Critical patent/JP2006097918A/en
Publication of JP2006097918A publication Critical patent/JP2006097918A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Gasification And Melting Of Waste (AREA)
  • Processing Of Solid Wastes (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Incineration Of Waste (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a combustion furnace and waste treatment facility of a waste gasification melting treatment facility capable of burning while preventing attachment of a melting slug on an inner wall surface of a combustion chamber even in introducing produced gas produced by pyrolyzing waste together with scattered material. <P>SOLUTION: The combustion furnace is provided with the combustion chamber, a susceptible gas supplying means 31 for supplying susceptible gas in the combustion chamber so as to form a swirling flow, and an exhaust port of combustion gas communicating with the combustion chamber, and is further provided with a flammable gas supplying means 28 for supplying flammable gas to the combustion chamber between the susceptible gas supplying means and the exhaust port. An axis of the flammable gas supplying means is coaxial with the combustion chamber and is in contact with a virtual circle of a smaller diameter than an internal diameter of the combustion chamber. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、都市ごみや廃プラスチック等の廃棄物の処理に係わり、特に廃棄物を熱分解または燃焼させて処理する際に発生する可燃性成分を含むガスを燃焼させる燃焼炉に関する。
本発明は、都市ごみや廃プラスチック等の廃棄物の処理に係わり、特に廃棄物を熱分解または燃焼させて処理し溶融スラグと燃焼排ガスを生成する前記燃焼炉を備える廃棄物処理設備に関する。
The present invention relates to the treatment of waste such as municipal waste and waste plastic, and more particularly to a combustion furnace that burns a gas containing a combustible component generated when the waste is thermally decomposed or burned.
The present invention relates to the treatment of waste such as municipal waste and waste plastic, and more particularly, to a waste treatment facility including the combustion furnace that generates a molten slag and combustion exhaust gas by thermally decomposing or treating the waste.

都市ゴミ、産業廃棄物等を燃焼した際の焼却炉内におけるダイオキシン類の生成濃度は、廃棄物燃焼排ガスの一酸化炭素濃度と強い正の相関があり、廃棄物燃焼排ガスの一酸化炭素濃度が大きくなるにつれてダイオキシン類濃度も高くなることが推測される。平成2年12月に厚生省水道環境部環境整備課から発表されたダイオキシン類発生防止等のガイドラインにおいても、ダイオキシン類発生の指標として廃棄物燃焼排ガスの一酸化炭素濃度が採用されている。   The production concentration of dioxins in incinerators when burning municipal waste, industrial waste, etc. has a strong positive correlation with the concentration of carbon monoxide in waste combustion exhaust gas, and the concentration of carbon monoxide in waste combustion exhaust gas is It is estimated that the concentration of dioxins increases as the size increases. The carbon monoxide concentration of waste combustion exhaust gas is also used as an indicator of dioxin generation in the guidelines for prevention of dioxin generation, etc., announced in December 1990 by the Environment Development Division, Ministry of Health and Welfare.

従来、都市ゴミ、産業廃棄物等の燃焼炉、特に小型の燃焼炉としては堅型二段燃焼炉が用いられてきたが、従来の堅型二段燃焼炉では、二次燃焼室において排ガスが完全燃焼されず、一酸化炭素、炭化水素等を含む未燃焼ガスの一部が系外へ排出されていた。即ち、ダイオキシン類などの難分解性有機塩素化合物の低減に関しては、十分の効果が得られないという問題があった。   Conventionally, a solid-type two-stage combustion furnace has been used as a combustion furnace for municipal waste, industrial waste, etc., particularly as a small-sized combustion furnace. However, in a conventional solid-type two-stage combustion furnace, exhaust gas is generated in a secondary combustion chamber. A portion of unburned gas containing carbon monoxide, hydrocarbons and the like was discharged out of the system without being completely burned. That is, there has been a problem that a sufficient effect cannot be obtained with respect to the reduction of hardly decomposable organochlorine compounds such as dioxins.

この問題を解決する二段燃焼炉として、例えば特許文献1に提案された廃棄物熱分解溶融システムがある。これは、任意形状の一次燃焼室と、略円筒状の二次燃焼室と、一次燃焼室から二次燃焼室へ排ガスを導入する排ガス導入路とを有し、排ガスが二次燃焼室円筒面の接線方向に導入されて二次燃焼室内で旋回流を生じるようにした燃焼処理装置である。旋回流により空気と未燃焼成分を含む排ガスの混合を効率的に達成し、未燃焼成分を二酸化炭素へと完全燃焼させる。更にはダイオキシン類等の難分解性有機塩素化合物を極限まで分解できるというものである。   As a two-stage combustion furnace for solving this problem, there is a waste pyrolysis melting system proposed in Patent Document 1, for example. This has a primary combustion chamber having an arbitrary shape, a substantially cylindrical secondary combustion chamber, and an exhaust gas introduction path for introducing exhaust gas from the primary combustion chamber to the secondary combustion chamber. Is a combustion treatment device that is introduced in a tangential direction to generate a swirling flow in the secondary combustion chamber. The swirling flow efficiently achieves mixing of air and exhaust gas containing unburned components, and completely burns unburned components into carbon dioxide. Furthermore, it is possible to decompose a hardly decomposable organochlorine compound such as dioxins to the limit.

特許文献1の燃焼処理装置と同様に燃焼室内で旋回流を形成し、その混合作用を利用して未燃ガスの燃焼を促進させる廃棄物処理技術が特許文献2乃至4に開示されている。   Patent Documents 2 to 4 disclose waste treatment technologies that form a swirl flow in a combustion chamber as in the combustion treatment apparatus of Patent Document 1 and promote the combustion of unburned gas using the mixing action.

特許文献2には竪型炉として構成された廃棄物熱分解溶融炉と、廃棄物熱分解溶融炉からの生成ガスを高温燃焼させる円筒状の燃焼室を備えた廃棄物熱分解溶融システムが開示されている。このシステムの特徴は生成ガスを燃焼室の周壁部の内面に沿って旋回供給することと、生成ガスに同伴する炉内からの飛散物を旋回燃焼の熱によって燃焼室の周壁部の内面に付着した状態で溶融させて壁面を流下させ溶融スラグとして回収する点にある。これにより従来は熱分解溶融炉で処理することが困難であった飛散しやすい汚泥、シュレッダーダスト、液状廃棄物等を燃焼室に供給し溶融スラグとして回収できる。また、燃焼室出口から下流側への飛散物の同伴は大きく低減されるため、後続の排ガス路に廃熱ボイラを設けても、その効率を低下させるおそれがないというものである。   Patent Document 2 discloses a waste pyrolysis melting system including a waste pyrolysis melting furnace configured as a vertical furnace, and a cylindrical combustion chamber for high-temperature combustion of a generated gas from the waste pyrolysis melting furnace. Has been. The feature of this system is that the generated gas is swirled along the inner surface of the peripheral wall of the combustion chamber, and the scattered matter accompanying the generated gas adheres to the inner surface of the peripheral wall of the combustion chamber by the heat of swirl combustion. It is in the point which is made to melt | dissolve in the state and flowed down a wall surface and collect | recovered as molten slag. As a result, sludge, shredder dust, liquid waste, and the like, which have been difficult to treat in the conventional pyrolysis melting furnace, can be supplied to the combustion chamber and recovered as molten slag. Further, since entrainment of scattered matter from the outlet of the combustion chamber to the downstream side is greatly reduced, even if a waste heat boiler is provided in the subsequent exhaust gas path, there is no risk of reducing its efficiency.

特許文献3には特許文献2で開示された廃棄物熱分解溶融システムとよく似たガス化溶融炉設備が開示されている。ガス化炉からの生成ガスを燃焼室の内壁面接線方向に導入し旋回流を形成することと、生成ガスに同伴する炉内からの飛散物を旋回燃焼の熱によって燃焼室の周壁部の内面に付着した状態で溶融させて壁面を流下させ溶融スラグとして回収する点で共通している。本文献の発明は燃焼室に設けられた空気供給ノズル近傍の壁面にクリンカが付着成長し、空気供給ノズルおよび燃焼室が閉塞するという課題を解決することを目的としている。それを解決するために燃焼室の天井壁および/又は生成ガス導入口に空気供給ノズルを設け生成ガス流に空気を吹き込むという手段を採用している。これにより生成ガスと空気との混合が促進され速やかに昇温が可能となりクリンカ付着温度領域を最小限に抑えることができ、燃焼室におけるクリンカの壁面への付着を防止できるというものである。   Patent Document 3 discloses a gasification melting furnace facility similar to the waste pyrolysis melting system disclosed in Patent Document 2. The product gas from the gasification furnace is introduced in the tangential direction of the inner wall surface of the combustion chamber to form a swirling flow, and the inner surface of the peripheral wall portion of the combustion chamber is formed by the heat of swirl combustion of the scattered matter entrained by the generated gas. It is common in the point that it melts in a state of adhering to the surface and flows down the wall surface and is recovered as molten slag. An object of the present invention is to solve the problem that the clinker adheres and grows on the wall surface near the air supply nozzle provided in the combustion chamber, and the air supply nozzle and the combustion chamber are blocked. In order to solve the problem, an air supply nozzle is provided on the ceiling wall of the combustion chamber and / or the product gas inlet, and air is blown into the product gas flow. As a result, mixing of the product gas and air is promoted, the temperature can be raised quickly, the clinker adhesion temperature region can be minimized, and adhesion of the clinker to the wall surface in the combustion chamber can be prevented.

特許文献4には特許文献2で開示された廃棄物熱分解溶融システムとよく似た可燃物の溶融処理方法が開示されている。この溶融処理方法は可燃物と含酸素ガスを一次燃焼室に供給し可燃物を還元雰囲気下で部分酸化して可燃性ガスを得るとともに可燃物中の灰分を溶融スラグとして排出し、更に二次燃焼室にて含酸素ガスを供給して可燃性ガスを完全燃焼するものである。本文献の発明による効果は、灰分の溶融から排出までを還元雰囲気下で行うことにより、可燃性廃棄物中の灰分を重金属が溶出しないガラス状のスラグとして回収できるというものである。同文献第15頁第13〜17行および図4の記載によれば、本文献の発明は流動層ガス化炉からの固形カーボンを同伴した生成ガスは、一次燃焼室の上部に設けられたガス供給口に供給され、同時に空気も、ほぼ同じ位置の空気供給口に供給される。いずれも旋回流を形成するように供給されるため、両者は混合しながら強力な旋回流を形成し、高温燃焼が行われる。また、同文献第16頁第10〜12行および図5の記載によれば、流動層ガス化炉からの生成ガスcは一次燃焼室8の内径よりやや小さい旋回流の作る仮想円に接するように供給され、同じく燃焼用の空気bは等配された4方向から同一の仮想円に接するように供給されるとある。これらの記載から燃焼室において強力な旋回流を形成して高温燃焼させるには、ガス供給口と空気供給口がほぼ同じ位置にあり且つ燃焼室の内径よりやや小さい同一の仮想円に接するように供給することが重要であると理解される。一般的には旋回流を形成するには燃焼室の内壁面に接するように供給することが有利であると考えられるが、あえて燃焼室の内径より小さい仮想円に接するように供給する理由については記載されていない。
特開平7−229610号公報 特許第3374020号公報 特開2003−4214号公報 再公表特許WO99/08047号公報
Patent Document 4 discloses a combustible material melting method similar to the waste pyrolysis melting system disclosed in Patent Document 2. In this melting treatment method, combustible material and oxygen-containing gas are supplied to the primary combustion chamber, and the combustible material is partially oxidized in a reducing atmosphere to obtain combustible gas, and the ash content in the combustible material is discharged as molten slag. An oxygen-containing gas is supplied in the combustion chamber to completely burn the combustible gas. The effect of the invention of this document is that the ash content in the combustible waste can be recovered as glassy slag from which heavy metals do not elute by performing the ash content from melting to discharge in a reducing atmosphere. According to the description on page 15 lines 13 to 17 and FIG. 4, the invention of this document is based on the fact that the generated gas accompanied by the solid carbon from the fluidized bed gasifier is a gas provided in the upper part of the primary combustion chamber. The air is supplied to the supply port, and at the same time, the air is supplied to the air supply port at substantially the same position. Since both are supplied so as to form a swirl flow, both form a strong swirl flow while mixing, and high-temperature combustion is performed. Further, according to the description on page 16, lines 10 to 12 and FIG. 5, the generated gas c from the fluidized bed gasifier is in contact with a virtual circle formed by a swirling flow slightly smaller than the inner diameter of the primary combustion chamber 8. Similarly, the combustion air b is supplied so as to be in contact with the same virtual circle from four equally arranged directions. From these descriptions, in order to form a strong swirl flow in the combustion chamber and perform high-temperature combustion, the gas supply port and the air supply port are in substantially the same position and are in contact with the same virtual circle that is slightly smaller than the inner diameter of the combustion chamber. It is understood that it is important to supply. In general, it is thought that it is advantageous to supply the swirl flow so as to be in contact with the inner wall surface of the combustion chamber. Not listed.
Japanese Patent Laid-Open No. 7-229610 Japanese Patent No. 3374020 JP 2003-4214 A Republished patent WO99 / 08047

流動床式とキルン式に代表される廃棄物のガス化とガス化後に残される灰分の溶融をガス化炉と溶融炉とで別々に行う方式の廃棄物ガス化溶融処理設備においては、溶融炉ではガス化炉で生成される生成ガスに同伴する飛散物を旋回燃焼の熱によって溶融炉の周壁部の内面に付着した状態で溶融させて壁面を流下させ溶融スラグとして回収する。この場合の溶融炉は溶融と燃焼の両方を行うので燃焼炉(燃焼室)でもある。   In a waste gasification and melting treatment facility that separates gasification of wastes represented by fluidized bed type and kiln type and ash remaining after gasification separately in the gasification furnace and melting furnace, the melting furnace Then, the scattered matter accompanying the product gas generated in the gasification furnace is melted in a state where it adheres to the inner surface of the peripheral wall portion of the melting furnace by the heat of swirl combustion, and the wall surface flows down and is recovered as molten slag. The melting furnace in this case is also a combustion furnace (combustion chamber) because it performs both melting and combustion.

燃焼室の周壁部の内面に付着し壁面を流下する溶融スラグは周壁部の内面を構成する耐火材の表面を侵食し、侵食した耐火材の融点を下げ、母材との熱膨張率の違いによりその部分が剥離する。この繰り返しにより耐火材が機能を発揮できないほどに損傷するという問題点がある。損傷した耐火材を交換するには廃棄物処理設備の運転を一旦停止しなければならないため耐火材の張り替え費用だけでなく処理設備の運転効率を低下させる。よって、交換頻度を下げるために耐火材はできるだけ溶融スラグによる損傷を受けないようにする必要がある。   The molten slag that adheres to the inner surface of the peripheral wall of the combustion chamber and flows down the wall erodes the surface of the refractory material that forms the inner surface of the peripheral wall, lowers the melting point of the eroded refractory material, and the difference in thermal expansion coefficient from the base material The part peels off. Due to this repetition, there is a problem that the refractory material is damaged to such an extent that it cannot perform its function. In order to replace a damaged refractory material, the operation of the waste treatment facility must be stopped temporarily, which reduces not only the cost of replacing the refractory material but also the operation efficiency of the treatment facility. Therefore, in order to reduce the replacement frequency, it is necessary to prevent the refractory material from being damaged by the molten slag as much as possible.

一方、シャフト式に代表される廃棄物のガス化とガス化後に残される灰分の溶融の両方を竪型炉で行う方式の廃棄物ガス化溶融処理設備においては、熱分解されて生じた炭化物は竪型炉内を流下し燃焼して灰分が残る。灰分は竪型炉の炉底部にある高温炉床で更に加熱溶融されて溶融スラグとなり出滓口から回収される。そのため竪型炉で生成される生成ガスに同伴する飛散物は比較的少ない。したがって、竪型炉に続く燃焼室において求められる主な機能は生成ガスの燃焼であり溶融スラグ回収の機能は必要無い。しかし、生成ガスに同伴する飛散物は少ないとはいえ溶融スラグとなり燃焼室の周壁部の内面に付着し壁面を流下して徐々に耐火材の表面を侵食するという問題点がある。燃焼室内壁面への溶融スラグの付着を防ぎ後続の除塵装置で飛散物を除去することができれば耐火材の交換頻度を下げ処理設備の運転効率を上げることが可能になる。   On the other hand, in the waste gasification and melting treatment facility where the gasification of the waste represented by the shaft type and the melting of the ash remaining after gasification are both performed in a vertical furnace, the carbide generated by pyrolysis is It flows down in the vertical furnace and burns, leaving ash. The ash content is further heated and melted in a high-temperature hearth at the bottom of the vertical furnace to form molten slag and recovered from the outlet. For this reason, there are relatively few scattered matters accompanying the generated gas generated in the vertical furnace. Therefore, the main function required in the combustion chamber following the vertical furnace is the combustion of the produced gas, and the function of recovering the molten slag is not necessary. However, there is a problem that although the amount of scattered matter accompanying the generated gas is small, it becomes molten slag, adheres to the inner surface of the peripheral wall portion of the combustion chamber, flows down the wall surface, and gradually erodes the surface of the refractory material. If it is possible to prevent the molten slag from adhering to the wall surface of the combustion chamber and remove the scattered matter with a subsequent dust removing device, it is possible to reduce the replacement frequency of the refractory material and increase the operating efficiency of the processing equipment.

したがって本発明の目的は、廃棄物ガス化溶融処理設備において、廃棄物を熱分解して生じる生成ガスを飛散物を同伴しながら燃焼炉へ導入しても、燃焼室内壁面への溶融スラグの付着を防ぎつつ燃焼することのできる燃焼炉および廃棄物処理設備を提供することにある。   Therefore, the object of the present invention is to adhere molten slag to the wall surface of the combustion chamber even when the product gas generated by pyrolyzing the waste is introduced into the combustion furnace with the scattered matter in the waste gasification and melting treatment facility. An object of the present invention is to provide a combustion furnace and a waste treatment facility capable of burning while preventing the above.

本願発明者は、種種の知見や実験に基づき竪型炉に続く燃焼室において求められる主な機能は生成ガスの燃焼であり溶融スラグ回収の機能は必要無いことから、旋回流を形成しながら支燃性ガスと生成ガスの混合が燃焼室内壁面から離れた位置で行われるようにすることが上記目的の達成に有効であると想到するに至った。   The inventor of the present application supports the formation of a swirling flow because the main function required in the combustion chamber following the vertical furnace based on various kinds of knowledge and experiments is the combustion of the produced gas and the function of recovering the molten slag is not necessary. It has been thought that it is effective to achieve the above-mentioned purpose to perform the mixing of the flammable gas and the generated gas at a position away from the wall surface of the combustion chamber.

よって、本願第1の発明は、燃焼室と、燃焼室内に支燃性ガスを旋回流が形成されるように供給する支燃性ガス供給手段と、燃焼室と連通する燃焼ガスの排出口とを備え、燃焼室内に可燃性ガスを供給する可燃性ガス供給手段を支燃性ガス供給手段と排出口との間に設け、可燃性ガス供給手段の軸線は燃焼室と同軸で且つ燃焼室の内径より小さい直径の仮想円に接することを特徴とする燃焼炉である。   Therefore, the first invention of the present application includes a combustion chamber, a combustion support gas supply means for supplying the combustion support gas so that a swirling flow is formed in the combustion chamber, and a combustion gas discharge port communicating with the combustion chamber. The combustible gas supply means for supplying the combustible gas into the combustion chamber is provided between the combustion support gas supply means and the discharge port, and the axis of the combustible gas supply means is coaxial with the combustion chamber and the combustion chamber. It is a combustion furnace characterized by being in contact with a virtual circle having a diameter smaller than the inner diameter.

本願第2の発明は、廃棄物のガス化とガス化後に残される灰分の溶融の両方を行う竪型炉と、竪型炉で生成した可燃性ガスを燃焼する燃焼炉を備える廃棄物処理設備であって、燃焼炉は燃焼室と、燃焼室内に支燃性ガスを旋回流が形成されるように供給する支燃性ガス供給手段と、燃焼室と連通する燃焼ガスの排出口とを備え、燃焼室内に可燃性ガスを供給する可燃性ガス供給手段を支燃性ガス供給手段と排出口との間に設け、可燃性ガス供給手段の軸線は燃焼室と同軸で且つ燃焼室の内径より小さい直径の仮想円に接することを特徴とする廃棄物処理設備である。   The second invention of the present application is a waste treatment facility comprising a vertical furnace that performs both gasification of waste and melting of ash remaining after gasification, and a combustion furnace that burns combustible gas generated in the vertical furnace The combustion furnace includes a combustion chamber, combustion support gas supply means for supplying the combustion support gas so that a swirl flow is formed in the combustion chamber, and a combustion gas discharge port communicating with the combustion chamber. The combustible gas supply means for supplying the combustible gas into the combustion chamber is provided between the combustion support gas supply means and the discharge port, and the axis of the combustible gas supply means is coaxial with the combustion chamber and from the inner diameter of the combustion chamber. It is a waste treatment facility characterized by being in contact with a virtual circle having a small diameter.

上述のように、本発明の燃焼炉および廃棄物処理設備によれば、廃棄物を熱分解して生じる生成ガスを飛散物を同伴しながら燃焼炉へ導入しても、燃焼室内壁面への溶融スラグの付着を防ぎつつ燃焼することができる。   As described above, according to the combustion furnace and the waste treatment facility of the present invention, even if the product gas generated by pyrolyzing the waste is introduced into the combustion furnace while being accompanied by the scattered matter, It is possible to burn while preventing the slag from adhering.

次に本発明を実施例によって具体的に説明するが、これら実施例により本発明が限定されるものではない。   EXAMPLES Next, although an Example demonstrates this invention concretely, this invention is not limited by these Examples.

図1及び図2において、シャフト炉体2の底部近傍にプラズマトーチ1と、その上方に第一の空気供給手段3及び第二の空気供給手段4が設けられている。本実施例ではプラズマトーチ1は炉体の同一高さの円周上に2ヶ所に設けられており、プラズマトーチ1から吹き出す熱風の方向は炉体の直径方向でかつ炉底方向である。第一の空気供給手段3及び第二の空気供給手段4は同じく円周上6ヶ所に設けられている。第一の空気供給手段3及び第二の空気供給手段4から吹き込む空気は、二次燃焼炉の高温ガスと熱交換器で熱交換して高温になったものを使用することができる。   1 and 2, a plasma torch 1 is provided near the bottom of the shaft furnace body 2, and a first air supply means 3 and a second air supply means 4 are provided thereabove. In this embodiment, the plasma torch 1 is provided at two locations on the circumference of the same height of the furnace body, and the direction of the hot air blown out from the plasma torch 1 is the diameter direction of the furnace body and the furnace bottom direction. The first air supply means 3 and the second air supply means 4 are also provided at six locations on the circumference. The air blown from the first air supply means 3 and the second air supply means 4 may be one that has been heated to a high temperature by exchanging heat with the high-temperature gas of the secondary combustion furnace using a heat exchanger.

炉体2の外殻201の内側には、耐火材202が内貼りされている。また炉体2は炉本体部20と炉底体部21とが結合してなり、炉底体部21を炉本体部20に吊り下げる構造とし、必要あれば炉底体部21を台車(図示せず)上に取り外して所定の場所に移動させることができる。そのため炉底体部21及びプラズマトーチ1や炉本体部20内部の点検及び補修が容易である。炉体2の垂直方向ほぼ中間部に供給口5が設けてあり、供給口5に連結してプッシャー6が設けてあり、プッシャー6には可燃ゴミ供給装置7とコークス供給装置8が連結している。そして可燃ゴミ供給装置7とコークス供給装置8には二重のバタフライバルブ(図示せず)を設けて、外気の進入を極力遮断している。炉体2の上部近傍に排ガス口9が設けてあり、排ガス口9に連結して二次燃焼炉10、一次冷却塔11、熱交換器12、二次冷却塔13及び集塵機14が連結しており、集塵器14の後は誘引ファン及び排気塔(図示せず)が連結している。炉体2の炉底部22には炉体2内と連通した溶融スラグ排出口23が設けてあり、それに連ねてスラグ樋15とスラグ冷却水槽16とが設けられている。   A refractory material 202 is attached inside the outer shell 201 of the furnace body 2. In addition, the furnace body 2 has a structure in which the furnace body 20 and the furnace bottom body 21 are joined, and the furnace bottom body 21 is suspended from the furnace body 20, and if necessary, the furnace bottom body 21 is a cart (see FIG. (Not shown) and can be moved to a predetermined location. Therefore, it is easy to inspect and repair the inside of the furnace bottom body 21 and the plasma torch 1 and the furnace body 20. A supply port 5 is provided at a substantially middle portion in the vertical direction of the furnace body 2, and a pusher 6 is connected to the supply port 5, and a combustible dust supply device 7 and a coke supply device 8 are connected to the pusher 6. Yes. The combustible waste supply device 7 and the coke supply device 8 are provided with a double butterfly valve (not shown) to block the entry of outside air as much as possible. An exhaust gas port 9 is provided in the vicinity of the upper portion of the furnace body 2, and the secondary combustion furnace 10, the primary cooling tower 11, the heat exchanger 12, the secondary cooling tower 13 and the dust collector 14 are connected to the exhaust gas port 9. In addition, an attracting fan and an exhaust tower (not shown) are connected after the dust collector 14. A molten slag discharge port 23 communicating with the inside of the furnace body 2 is provided in the furnace bottom portion 22 of the furnace body 2, and a slag tank 15 and a slag cooling water tank 16 are provided in connection therewith.

図1において、可燃ゴミはコークス及び石灰石とともにシャフト炉2に装入され、そこで生成した可燃性ガスは炉の上部から二次燃焼室10に排出される。二次燃焼室10では、このガスに含まれる可燃成分が還元性雰囲気にて燃焼され、窒素化合物がNに分解される。ダイオキシンの発生を防ぐために、燃焼温度は1000 〜1200℃の範囲で、生成ガスの滞留時間は2秒以上になるように二次燃焼が行われる。この燃焼ガスは、一次冷却室11で500〜700℃に冷却され、次いで熱交換器(空気予熱室)12で熱交換された後二次冷却室13でダイオキシンの再合成温度領域をすばやく通過するために150〜200℃に急速に冷却され、有害ガス(塩素ガス等)を中和するために活性炭と消石灰が混合された集塵機14を経て、無害化された排ガスが大気中に排出される。なお二次燃焼室10、一次冷却室11、二次冷却室13及び熱交換器12で発生したダストは一箇所に集められ、固化されて再利用できる。 In FIG. 1, combustible waste is charged into a shaft furnace 2 together with coke and limestone, and the combustible gas generated there is discharged from the upper part of the furnace into the secondary combustion chamber 10. In the secondary combustion chamber 10, a combustible component contained in the gas is burned in a reducing atmosphere, the nitrogen compound is decomposed into N 2. In order to prevent generation of dioxins, secondary combustion is performed such that the combustion temperature is in the range of 1000 to 1200 ° C. and the residence time of the product gas is 2 seconds or more. This combustion gas is cooled to 500 to 700 ° C. in the primary cooling chamber 11, then heat-exchanged in the heat exchanger (air preheating chamber) 12, and then quickly passes through the dioxin resynthesis temperature region in the secondary cooling chamber 13. Therefore, it is rapidly cooled to 150 to 200 ° C., and detoxified exhaust gas is discharged into the atmosphere through a dust collector 14 in which activated carbon and slaked lime are mixed to neutralize harmful gas (chlorine gas or the like). The dust generated in the secondary combustion chamber 10, the primary cooling chamber 11, the secondary cooling chamber 13, and the heat exchanger 12 is collected in one place, solidified, and can be reused.

図2は本発明の別の実施例によるガス化溶融炉を示す。円筒状シャフト炉2は、出口9を介して二次燃焼室10に連通する上部2a、その下方の中間部2b、縮径部2c及び炉床部2dを有する。中間部2bの途中には、ゴミ(例えば低含水率の都市ゴミ)RとコークスCの投入口5が設けられ、出口9を介して二次燃焼室10に連通する上部2aにはバーナ(図示せず)が装着されている。バーナは通常運転時は使用しないが、高含水率のゴミが投入されたときや炉の立ち上げ時等に使用することがある。縮径部2cには空気供給手段(羽口)3が設けられ、炉床部2dにはプラズマトーチ11が装着され、炉床部2dの底部には出滓口23が形成されている。 FIG. 2 shows a gasification melting furnace according to another embodiment of the present invention. The cylindrical shaft furnace 2 has an upper part 2a that communicates with the secondary combustion chamber 10 via an outlet 9, an intermediate part 2b below it, a reduced diameter part 2c, and a hearth part 2d. In the middle of the intermediate portion 2b, there is provided an inlet 5 for garbage (for example, low-moisture municipal waste) R and coke C, and a burner (see FIG. 5) is connected to the secondary combustion chamber 10 via the outlet 9. (Not shown) is installed. The burner is not used during normal operation, but may be used when high-moisture content garbage is thrown in or when the furnace is started up. An air supply means (tuyere) 3 is provided in the reduced diameter portion 2c, a plasma torch 11 is attached to the hearth portion 2d, and a spout 23 is formed at the bottom of the hearth portion 2d.

シャフト炉2には、ゴミを主体とするゴミ・リッチ層261(高さh1)と、ゴミとコークスがほぼ等分に存在するゴミ・コークス混在層262(高さh2)と、コークスを主体とするコークス・リッチ層263(高さh3)が上から順に形成される。図2のガス化溶融炉2により、次のようにしてゴミの処理を行うことができる。炉床部2dにコークスCを充填し、プラズマトーチ1を通ってコークス・リッチ層263に送り込まれたプラズマ状態の高温空気によりコークスが燃焼して炉内を充分に加熱する。ゴミRとコークスC(必要に応じさらに石灰石を混合しても良い)を投入口5からゴミ・リッチ層261に装入すると、ゴミ・リッチ層261では、空気供給手段3から供給された空気により一部のゴミRとコークスCが燃焼され、さらに順次下方に移動しながらプラズマトーチ11及びコークス層25から上昇してくる高温ガスにより可燃性ガスと炭化物とに熱分解される。この燃焼過程で生成した炭化物は下降しながら空気供給手段3から供給された空気により燃焼し、コークス・リッチ層263に達する時点で灰分(1000〜1500℃)になる。灰分はプラズマトーチ11及びコークス層25による熱(約1300℃)で更に加熱されて溶融しスラグとなり約1500℃まで加熱される。 The shaft furnace 2 has a waste / rich layer 261 (height h1) mainly composed of dust, a waste / coke mixed layer 262 (height h2) in which waste and coke are almost equally divided, and a coke mainly. A coke rich layer 263 (height h3) is formed in order from the top. With the gasification melting furnace 2 of FIG. 2, it is possible to treat garbage as follows. The coke C is filled in the hearth 2d, and the coke is burned by the high-temperature air in the plasma state sent to the coke rich layer 263 through the plasma torch 1 to sufficiently heat the inside of the furnace. When garbage R and coke C (which may be further mixed with limestone if necessary) are charged into the dust / rich layer 261 from the inlet 5, the dust / rich layer 261 is filled with air supplied from the air supply means 3. A part of the dust R and the coke C are combusted, and further thermally decomposed into combustible gas and carbide by the high temperature gas rising from the plasma torch 11 and the coke layer 25 while moving downward. The carbide generated in this combustion process burns with the air supplied from the air supply means 3 while descending, and becomes ash (1000 to 1500 ° C.) when reaching the coke rich layer 263. The ash is further heated by the heat (about 1300 ° C.) by the plasma torch 11 and the coke layer 25 to melt and become slag, and is heated to about 1500 ° C.

上記の燃焼・熱分解過程で生成した可燃性ガスは出口9から二次燃焼室10に排出される。一方、炭化物は炉底部に近づくに従いさらに加熱されプラズマトーチ11の近傍に達すると溶融し、酸化物を主体とするスラグと金属とに分離し、排出口23から排出される。炉床部では、コークスにより隙間が形成され、またコークスは溶融スラグに濡れにくいので、出滓口23から安定した出滓が可能となる。排出されたスラグは冷却後スラグと金属に分離し、各々再利用することができる。   The combustible gas generated in the combustion / pyrolysis process is discharged from the outlet 9 to the secondary combustion chamber 10. On the other hand, the carbide is further heated as it approaches the furnace bottom, and when it reaches the vicinity of the plasma torch 11, it melts, separates into slag mainly composed of oxide and metal, and is discharged from the discharge port 23. In the hearth, a gap is formed by the coke, and the coke is difficult to get wet with the molten slag. The discharged slag can be separated into slag and metal after cooling and reused.

図3は二次燃焼室10の一部拡大断面図である。支燃性ガス供給手段31は二次燃焼室10の最上部とそれより下の位置に設けられ支燃性ガス(空気、酸素富化空気、酸素などの酸素を含む気体)は2段に分けて供給される。3段以上にすることもできる。可燃性ガス供給手段28は2段階の支燃性ガス供給手段31の間で上段のそれに近い位置に設けられる。支燃性ガスの少なくとも一部を可燃性ガスが供給される位置よりも高い位置(上流側)で供給するのは二次燃焼室10の内壁面を支燃性ガスで覆い飛散物を同伴した可燃性ガスが供給される際に内壁面に接触し難くする効果を狙ったものである。   FIG. 3 is a partially enlarged sectional view of the secondary combustion chamber 10. The combustion-supporting gas supply means 31 is provided at the uppermost position of the secondary combustion chamber 10 and a position below it, and the combustion-supporting gas (air, oxygen-enriched air, oxygen-containing gas) is divided into two stages. Supplied. Three or more stages can be used. The combustible gas supply means 28 is provided between the two stages of the combustion support gas supply means 31 at a position close to that of the upper stage. Supplying at least a part of the combustion-supporting gas at a position higher than the position where the combustible gas is supplied (upstream side) covers the inner wall surface of the secondary combustion chamber 10 with the combustion-supporting gas and entrains the scattered matter. It aims at the effect which makes it difficult to contact an inner wall surface when flammable gas is supplied.

図4は図3におけるA−A矢視断面図である。旋回流を形成し易いように支燃性ガス供給手段31は1段が周方向に等分に分かれている。第1の発明において前記の効果を得やすくするには支燃性ガスaが燃焼室内で旋回流を形成するように供給する。旋回流を形成するには必ずしも支燃性ガスを燃焼室内面に接するように供給する必要は無く、供給流量が多い場合は燃焼室と同軸で且つ燃焼室の内径より小さい直径の仮想円Cに各支燃性ガス供給手段31の延長した軸線が接するように供給してもよい。通常は1段の支燃性ガス供給量は可燃性ガス供給量より多いため仮想円は小さくても旋回流は形成され易い。供給流量が少ない場合は燃焼室内面に接するように供給するか、又はそれに近い仮想円に接するように供給するとよい。 4 is a cross-sectional view taken along line AA in FIG. One stage of the combustion-supporting gas supply means 31 is equally divided in the circumferential direction so as to easily form a swirl flow. In order to easily obtain the above-described effect in the first invention, the combustion-supporting gas a is supplied so as to form a swirling flow in the combustion chamber. To form a swirl flow is not always necessary to supply in contact with combustion-supporting gas into the combustion chamber surface, the virtual circle when the supply flow rate is high is less than the inner diameter of and a combustion chamber in the combustion chamber coaxially diameter C 1 The fuel gas may be supplied so that the extended axis of each combustion-supporting gas supply means 31 is in contact with each other. Normally, the amount of supply of the combustion-supporting gas in one stage is larger than the supply amount of combustible gas, so that a swirl flow is easily formed even if the virtual circle is small. When the supply flow rate is small, it may be supplied so as to be in contact with the inner surface of the combustion chamber, or may be supplied so as to be in contact with a virtual circle close thereto.

図5は図3におけるB−B矢視断面図である。飛散物を同伴した可燃性ガスbは内壁面に接触し難くするために内壁面からやや離れた位置で支燃性ガスと混合するように供給する。可燃性ガス供給手段28はその延長した軸線が燃焼室と同軸で且つ燃焼室の内径より小さい直径の仮想円Cに接するように設ける。内壁面からやや離れた位置で支燃性ガスと可燃性ガスの混合が行われると溶融スラグの内壁面への衝突の確率が減ること、及び燃焼熱が燃焼室の内壁面に及び難くなり内壁面の温度が付着した飛散物を溶融させる温度まで上がらないという効果が得られる。このため溶融スラグの付着が減り内壁面の耐火材の損傷を減らすことができるのである。 5 is a cross-sectional view taken along arrow BB in FIG. The combustible gas b accompanied by the scattered matter is supplied so as to be mixed with the combustion-supporting gas at a position slightly away from the inner wall surface in order to make it difficult to contact the inner wall surface. Combustible gas supplying means 28 extended axis provided so as to contact the imaginary circle C 2 of smaller diameter than the inner diameter of and a combustion chamber in the combustion chamber coaxially thereof. If the combustion-supporting gas and the combustible gas are mixed at a position slightly away from the inner wall surface, the probability of collision of the molten slag with the inner wall surface decreases, and the combustion heat hardly reaches the inner wall surface of the combustion chamber. The effect that the temperature of the wall surface does not rise to the temperature at which the scattered matter adhered thereto is melted can be obtained. For this reason, adhesion of molten slag is reduced and damage to the refractory material on the inner wall surface can be reduced.

図2に示すガス化溶融炉(竪型炉)と図3〜5に示す燃焼炉を使用して図1の処理フローで可燃ゴミをガス化溶融処理し、生成ガスを燃焼処理した。処理条件を下記に示す。
〔竪型炉〕
・可燃ゴミの種類 :一般廃棄物(家庭ゴミが主)
・水分率 :55重量%
・低位発熱量 :358 KJ/kg
・灰分量 :8重量%
・可燃ゴミ供給量 :1000 kg/hr
・コークス供給量 :20 kg/hr
・総合空気量 :700 Nm3/hr
・プラズマトーチからの空気量:150 Nm3/hr
〔燃焼炉〕
・内部寸法 :φ3.6m×H15m
・可燃性ガス量 :9000 Nm3/hr
・二次空気(支燃性ガス)量(上段) :11000 Nm3/hr
・二次空気(支燃性ガス)量(下段) :11000 Nm3/hr
・循環排ガス量 : 8000 Nm3/hr
Using the gasification melting furnace (vertical furnace) shown in FIG. 2 and the combustion furnace shown in FIGS. The processing conditions are shown below.
(Vertical furnace)
・ Types of combustible waste: General waste (mainly household waste)
-Moisture content: 55% by weight
・ Lower heating value: 358 KJ / kg
・ Ash content: 8% by weight
・ Combustible waste supply: 1000 kg / hr
・ Coke supply: 20 kg / hr
・ Total air volume: 700 Nm 3 / hr
・ Air volume from plasma torch: 150 Nm 3 / hr
[Combustion furnace]
・ Internal dimensions: φ3.6m x H15m
・ Combustible gas volume: 9000 Nm 3 / hr
・ Secondary air (flammable gas) volume (top): 11000 Nm 3 / hr
-Secondary air (flammable gas) amount (lower): 11000 Nm 3 / hr
・ Circulating exhaust gas volume: 8000 Nm 3 / hr

Figure 2006097918
Figure 2006097918

上記条件による溶融処理のときのプラズマトーチから供給する熱空気の温度は約1800℃であり、炉底部のコークス層25の雰囲気温度は1500℃であり、また炉底部22の圧力は平均的に正圧で1.5 kPaであった。炉体2内における各部の温度は、コークス層25中で約1500℃でほぼ一定しており、可燃ゴミ層26の上方空間では500〜900℃であった。この温度が上下したのは、可燃ゴミは1回/minのバッチで供給されるが、供給された瞬間は可燃ゴミ中の水分が蒸発するために、熱が奪われて温度が低下するからである。可燃ゴミを供給し始めてから約60分経過後に溶融スラグ排出口23から溶融スラグが出始めた。溶融スラグの排出量は平均的に1時間当たり約80 kgであった。   The temperature of the hot air supplied from the plasma torch during the melting process under the above conditions is about 1800 ° C., the atmospheric temperature of the coke layer 25 at the furnace bottom is 1500 ° C., and the pressure at the furnace bottom 22 is positive on average. The pressure was 1.5 kPa. The temperature of each part in the furnace body 2 was substantially constant at about 1500 ° C. in the coke layer 25, and was 500 to 900 ° C. in the space above the combustible dust layer 26. This temperature went up and down because combustible garbage is supplied in batches at a rate of 1 / min, but at the moment of supply, moisture in the combustible garbage evaporates, so heat is taken away and the temperature drops. is there. About 60 minutes after starting to supply combustible waste, molten slag began to be discharged from the molten slag outlet 23. The average discharge of molten slag was about 80 kg per hour.

生成ガスの燃焼処理の結果を表1に示す。支燃性ガスの供給で何れも旋回流が形成された。可燃性ガスを供給する仮想円が燃焼炉の内径より小さくなるほど内壁面への溶融スラグの付着が少なくなることが分かる。支燃性ガスaと可燃性ガスbが内壁面からやや離れた位置で混合・燃焼するため内壁面の温度上昇が小さくなる。また、両方のガスの混合性については流量の多い支燃性ガスによって旋回流が形成されるため可燃性ガスを供給する仮想円Cの大きさは混合性に影響を与えない。 The results of the product gas combustion treatment are shown in Table 1. A swirl flow was formed by supplying the combustion-supporting gas. It can be seen that the adhesion of the molten slag to the inner wall surface decreases as the imaginary circle supplying the combustible gas becomes smaller than the inner diameter of the combustion furnace. Since the combustion-supporting gas a and the combustible gas b are mixed and burned at a position slightly away from the inner wall surface, the temperature rise on the inner wall surface is reduced. The virtual size of the circle C 2 do not affect the miscibility supplying a combustible gas for swirling flow is formed by the flow-rich combustion supporting gas for mixing of both gases.

実施例1の条件での燃焼炉内壁面への溶融スラグの付着状況を図6に示す。溶融スラグの付着はほとんど見られない。実施例2,3の条件では図7,8に示すとおり可燃性ガスの供給口付近に僅かに付着Mが見られるが耐火材の損傷は非常に少なく実用上問題はなかった。そして、比較例1の条件では図9に示すとおり可燃性ガスの供給口付近から旋回流の下流側へ向けて広い範囲で多量の付着Mが見られ耐火材の損傷が認められた。支燃性ガスaと可燃性ガスbが内壁面と接触する位置で混合・燃焼するため内壁面の温度上昇が大きく、溶融スラグも付着し易いためである。   The adhesion state of the molten slag on the inner wall surface of the combustion furnace under the conditions of Example 1 is shown in FIG. There is almost no adhesion of molten slag. Under the conditions of Examples 2 and 3, as shown in FIGS. 7 and 8, a slight adhesion M was observed in the vicinity of the supply port of the combustible gas. Under the conditions of Comparative Example 1, a large amount of adhesion M was observed in a wide range from the vicinity of the combustible gas supply port to the downstream side of the swirl flow as shown in FIG. 9, and damage to the refractory material was observed. This is because the combustion-supporting gas a and the combustible gas b are mixed and burned at a position where they come into contact with the inner wall surface, so that the temperature rise of the inner wall surface is large and molten slag is likely to adhere.

本発明は、廃棄物ガス化溶融処理設備において、廃棄物を熱分解して生じる生成ガスを飛散物を同伴しながら燃焼炉へ導入しても、燃焼室内壁面への溶融スラグの付着を防ぎつつ燃焼することのできる燃焼炉および廃棄物処理設備を提供するものである。   In the waste gasification and melting treatment facility, the present invention prevents molten slag from adhering to the wall surface of the combustion chamber even if the product gas generated by pyrolyzing the waste is introduced into the combustion furnace with accompanying scattered matter. A combustion furnace and a waste treatment facility capable of combustion are provided.

本発明の燃焼炉および廃棄物処理設備を適用した廃棄物のガス化溶融設備の全体フローの一例を示す概略図である。It is the schematic which shows an example of the whole flow of the waste gasification melting equipment to which the combustion furnace and waste processing equipment of this invention are applied. 本発明の廃棄物処理設備に使用できるガス化溶融炉の一例を示す断面図である。It is sectional drawing which shows an example of the gasification melting furnace which can be used for the waste disposal facility of this invention. 本発明の燃焼炉の一部断面図である。It is a partial sectional view of the combustion furnace of the present invention. 図3におけるA−A断面矢視図である。It is an AA cross-sectional arrow view in FIG. 図3におけるB−B断面矢視図である。It is a BB cross-sectional arrow view in FIG. 実施例1の燃焼炉の内壁面における溶融スラグ付着状況を示す模式図である。It is a schematic diagram which shows the molten slag adhesion state in the inner wall surface of the combustion furnace of Example 1. FIG. 実施例2の燃焼炉の内壁面における溶融スラグ付着状況を示す模式図である。It is a schematic diagram which shows the molten slag adhesion state in the inner wall face of the combustion furnace of Example 2. FIG. 実施例3の燃焼炉の内壁面における溶融スラグ付着状況を示す模式図である。FIG. 6 is a schematic diagram showing a state of adhesion of molten slag on the inner wall surface of the combustion furnace of Example 3. 比較例1の燃焼炉の内壁面における溶融スラグ付着状況を示す模式図である。6 is a schematic diagram showing a state of adhesion of molten slag on the inner wall surface of the combustion furnace of Comparative Example 1. FIG.

符号の説明Explanation of symbols

2 シャフト炉体
3 第一の空気供給手段
4 第二の空気供給手段
11プラズマトーチ
5 供給口
6 プッシャー
7 可燃ゴミ供給装置
8 コークス供給装置
9 排ガス口
10 二次燃焼炉
11 一次冷却塔
12 熱交換器
13 二次冷却塔
14 集塵機
22 炉底部
23 溶融スラグ排出口
201 外殻
202 耐火材
20 炉本体部
21 炉底体部
28 可燃性ガス供給手段
31 支燃性ガス供給手段
a 支燃性ガス
b 可燃性ガス
,C仮想円
M 燃焼炉内壁面の溶融スラグの付着





2 Shaft furnace body 3 First air supply means 4 Second air supply means 11 Plasma torch 5 Supply port 6 Pusher 7 Combustible dust supply device 8 Coke supply device 9 Exhaust gas port
10 Secondary combustion furnace
11 Primary cooling tower
12 Heat exchanger
13 Secondary cooling tower
14 Dust collector
22 Furnace bottom
23 Molten slag outlet
201 outer shell
202 Refractory material
20 Furnace body
21 Furnace bottom body
28 Combustible gas supply means
31 Combustion gas supply means a Combustion gas b Combustible gas C 1 , C 2 virtual circle M Adhesion of molten slag on the inner wall of the combustion furnace





Claims (2)

燃焼室と、燃焼室内に支燃性ガスを旋回流が形成されるように供給する支燃性ガス供給手段と、燃焼室と連通する燃焼ガスの排出口とを備え、燃焼室内に可燃性ガスを供給する可燃性ガス供給手段を支燃性ガス供給手段と排出口との間に設け、可燃性ガス供給手段の軸線は燃焼室と同軸で且つ燃焼室の内径より小さい直径の仮想円に接することを特徴とする燃焼炉。 A combustion chamber, a combustion support gas supply means for supplying the combustion support gas so that a swirling flow is formed in the combustion chamber, and a combustion gas discharge port communicating with the combustion chamber. The combustible gas supply means is provided between the combustion support gas supply means and the discharge port, and the axis of the combustible gas supply means is coaxial with the combustion chamber and is in contact with a virtual circle having a diameter smaller than the inner diameter of the combustion chamber. A combustion furnace characterized by that. 廃棄物のガス化とガス化後に残される灰分の溶融の両方を行う竪型炉と、竪型炉で生成した可燃性ガスを燃焼する燃焼炉を備える廃棄物処理設備であって、
燃焼炉は燃焼室と、燃焼室内に支燃性ガスを旋回流が形成されるように供給する支燃性ガス供給手段と、燃焼室と連通する燃焼ガスの排出口とを備え、燃焼室内に可燃性ガスを供給する可燃性ガス供給手段を支燃性ガス供給手段と排出口との間に設け、可燃性ガス供給手段の軸線は燃焼室と同軸で且つ燃焼室の内径より小さい直径の仮想円に接することを特徴とする廃棄物処理設備。


































A waste treatment facility comprising a vertical furnace that performs both gasification of waste and melting of ash remaining after gasification, and a combustion furnace that burns combustible gas generated in the vertical furnace,
The combustion furnace includes a combustion chamber, combustion support gas supply means for supplying the combustion support gas so that a swirling flow is formed in the combustion chamber, and a combustion gas discharge port communicating with the combustion chamber. A flammable gas supply means for supplying a flammable gas is provided between the flammable gas supply means and the discharge port, and the axis of the flammable gas supply means is coaxial with the combustion chamber and has a diameter smaller than the inner diameter of the combustion chamber. A waste treatment facility that touches a circle.


































JP2004281739A 2004-09-28 2004-09-28 Combustion furnace and waste treatment facility Pending JP2006097918A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004281739A JP2006097918A (en) 2004-09-28 2004-09-28 Combustion furnace and waste treatment facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004281739A JP2006097918A (en) 2004-09-28 2004-09-28 Combustion furnace and waste treatment facility

Publications (1)

Publication Number Publication Date
JP2006097918A true JP2006097918A (en) 2006-04-13

Family

ID=36237912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004281739A Pending JP2006097918A (en) 2004-09-28 2004-09-28 Combustion furnace and waste treatment facility

Country Status (1)

Country Link
JP (1) JP2006097918A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010270936A (en) * 2009-05-19 2010-12-02 Osaka Gas Co Ltd Tubular flame burner
WO2011128990A1 (en) * 2010-04-14 2011-10-20 Michimae Kiyoharu Dry distillation apparatus
KR101288967B1 (en) * 2011-03-07 2013-07-22 재단법인 포항산업과학연구원 Generator unsing gasification of organic material waste
JP2013155956A (en) * 2012-01-31 2013-08-15 Kobelco Eco-Solutions Co Ltd Furnace and method of two-stage combustion
JP2013155955A (en) * 2012-01-31 2013-08-15 Kobelco Eco-Solutions Co Ltd Furnace and method of two-stage combustion
JP2013155954A (en) * 2012-01-31 2013-08-15 Kobelco Eco-Solutions Co Ltd Furnace and method of two-stage combustion
JP2013234835A (en) * 2012-05-04 2013-11-21 Gs Platech Co Ltd Gasification melting furnace and method for treating combustible material using the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10103630A (en) * 1996-09-30 1998-04-21 Chikyu Kankyo Sangyo Gijutsu Kenkyu Kiko Waste pyrolysis melting system
WO1999008047A1 (en) * 1997-08-11 1999-02-18 Ebara Corporation Method of melt disposal of combustibles
JPH11173523A (en) * 1997-12-10 1999-06-29 Ebara Corp Method and device for treating waste through combustion
JP2001324117A (en) * 2000-05-15 2001-11-22 Takuma Co Ltd Secondary combustion device of dust-containing exhaust gas
JP2003004214A (en) * 2001-04-20 2003-01-08 Ebara Corp Melting furnace for gasifying melting furnace facility and method of supplying combustion gas to the melting furnace

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10103630A (en) * 1996-09-30 1998-04-21 Chikyu Kankyo Sangyo Gijutsu Kenkyu Kiko Waste pyrolysis melting system
WO1999008047A1 (en) * 1997-08-11 1999-02-18 Ebara Corporation Method of melt disposal of combustibles
JPH11173523A (en) * 1997-12-10 1999-06-29 Ebara Corp Method and device for treating waste through combustion
JP2001324117A (en) * 2000-05-15 2001-11-22 Takuma Co Ltd Secondary combustion device of dust-containing exhaust gas
JP2003004214A (en) * 2001-04-20 2003-01-08 Ebara Corp Melting furnace for gasifying melting furnace facility and method of supplying combustion gas to the melting furnace

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010270936A (en) * 2009-05-19 2010-12-02 Osaka Gas Co Ltd Tubular flame burner
WO2011128990A1 (en) * 2010-04-14 2011-10-20 Michimae Kiyoharu Dry distillation apparatus
KR101288967B1 (en) * 2011-03-07 2013-07-22 재단법인 포항산업과학연구원 Generator unsing gasification of organic material waste
JP2013155956A (en) * 2012-01-31 2013-08-15 Kobelco Eco-Solutions Co Ltd Furnace and method of two-stage combustion
JP2013155955A (en) * 2012-01-31 2013-08-15 Kobelco Eco-Solutions Co Ltd Furnace and method of two-stage combustion
JP2013155954A (en) * 2012-01-31 2013-08-15 Kobelco Eco-Solutions Co Ltd Furnace and method of two-stage combustion
JP2013234835A (en) * 2012-05-04 2013-11-21 Gs Platech Co Ltd Gasification melting furnace and method for treating combustible material using the same

Similar Documents

Publication Publication Date Title
JP4434752B2 (en) Waste gasification and melting system
JP2002081624A (en) Waste Gasification Melting Furnace and Operating Method of the Melting Furnace
JP2007078239A (en) Melting furnace of waste gasifying melting device, and control method and device for the same
JP2006097918A (en) Combustion furnace and waste treatment facility
JP4372978B2 (en) Industrial waste incineration method
JPH11294726A (en) Waste treatment method
JP2007255844A (en) Fusing equipment and fusing method of gasification fusing system
JP2003166705A (en) Method and device for waste disposal by stoker furnace
JP2002295817A (en) Gasification melting furnace for combustible refuse, and method for gasification melting
JP2006266537A (en) Waste treatment facility for treating refuse and sludge together
JP6541039B2 (en) Incineration ash processing apparatus and incineration ash processing method
JP2011089672A (en) Waste melting treatment method
JP5103848B2 (en) Dust blowing device for waste melting furnace
JP3977995B2 (en) Cyclone melting equipment
JP2001304524A (en) Waste heat recovery apparatus in melting furnace
JP2011052097A (en) Highly efficient dry distillation furnace and dry distillation method
JP4055560B2 (en) Oxygenated gas supply device and supply method for high temperature oxidation furnace
JP2006097915A (en) Incineration facility
JPH04302909A (en) Method and apparatus for treating waste
JP2004035749A (en) Gasification method of waste plastic
JP4000033B2 (en) Swirl melting furnace
JP2007010309A (en) Method for recovering flammable gas from sludge
JP2002115829A (en) Method for waste treatment and gasification and melting apparatus
JP2006010199A (en) Melting treatment method of waste
JP2001227726A (en) Gasifying and melting furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100521

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100924