JP2006087793A - Ophthalmic imaging equipment - Google Patents
Ophthalmic imaging equipment Download PDFInfo
- Publication number
- JP2006087793A JP2006087793A JP2004279554A JP2004279554A JP2006087793A JP 2006087793 A JP2006087793 A JP 2006087793A JP 2004279554 A JP2004279554 A JP 2004279554A JP 2004279554 A JP2004279554 A JP 2004279554A JP 2006087793 A JP2006087793 A JP 2006087793A
- Authority
- JP
- Japan
- Prior art keywords
- imaging
- optical system
- light
- fundus
- eye
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Eye Examination Apparatus (AREA)
Abstract
【課題】簡単な構造で装置の小型化とコストダウンが図れると共に、光学調整も簡単で、眼底の同時立体撮影を良好に行なえる眼底撮影装置を提供する。
【解決手段】被検眼の前眼部と略共役な位置に2つの開口10a、10bを備えた2孔絞り10が配置され、立体撮影用CCD16の撮像面に近接してレンチキュラープリズム15あるいはレンチキュラーレンズが配置される。立体撮影用CCDに眼底を結像する結像レンズ12の射出瞳位置が無限遠になるように設定され、それにより結像レンズを通過した光束は略平行になり、レンチキュラープリズムを介して撮影用CCDの一つの画素列に入射する光が、2孔絞りの2つの開口のうちいずれかの一方の開口を通過した光のみになり、かつ両開口からの光が撮影用CCDの各画素列に交互に入射するようにされる。
【選択図】図2Provided is a fundus imaging apparatus that can reduce the size and cost of the apparatus with a simple structure, can be optically adjusted easily, and can perform simultaneous stereoscopic imaging of the fundus.
A two-hole diaphragm 10 having two openings 10a and 10b is arranged at a position substantially conjugate with an anterior eye portion of an eye to be examined, and a lenticular prism 15 or a lenticular lens close to an imaging surface of a stereoscopic imaging CCD 16. Is placed. The exit pupil position of the imaging lens 12 that forms an image of the fundus on the stereoscopic imaging CCD is set to be infinite, so that the light flux that has passed through the imaging lens becomes substantially parallel and is taken through the lenticular prism. The light incident on one pixel column of the CCD is only light that has passed through one of the two apertures of the two-hole aperture, and the light from both apertures enters each pixel column of the CCD for photographing. It is made to inject alternately.
[Selection] Figure 2
Description
本発明は、眼科撮影装置、更に詳細には、被検眼の眼底を立体視するための左右の画像を同時に撮影することが可能な眼科撮影装置に関する。 The present invention relates to an ophthalmologic photographing apparatus, and more particularly to an ophthalmic photographing apparatus capable of simultaneously photographing left and right images for stereoscopic viewing of the fundus of a subject's eye.
従来の同時立体眼底カメラでは、下記の特許文献1及び2などに記載されているように、対物レンズに対して被検眼の前眼部と共役(瞳孔と共役)な位置に、上記左右の画像を得るための左右2つの孔(開口)が形成された2孔絞りが設けられ、その2つの孔を通過した眼底からの光束のそれぞれをプリズムなどで光路を2つに分けて左右一対の結像光学系のそれぞれに導き、フィルム面ないしは撮像素子の撮像面の左右別々の領域、或いは左右別々の撮像素子に結像して撮影するようになっていた。 In the conventional simultaneous stereoscopic fundus camera, as described in Patent Documents 1 and 2 below, the left and right images are positioned at a position conjugate with the anterior eye portion of the eye to be examined (conjugated with the pupil) with respect to the objective lens. A two-hole aperture having two left and right holes (openings) is provided, and each light beam from the fundus that has passed through the two holes is divided into two optical paths by a prism or the like, and a pair of right and left links The image is guided to each of the image optical systems, and is imaged on the film surface or on the left and right separate areas of the image pickup surface of the image pickup device or on the left and right image pickup devices.
また、立体撮影用に瞳共役の2孔絞りの2つの開口の形状を縦長矩形にしたり(特許文献3)、円柱レンズを使用して眼底像を撮像素子の画素に交互に入射して撮像したり(特許文献4)、眼底共役位置と瞳共役位置の絞りを可変にし、同一映像媒体に立体撮影と単眼撮影を可能にする(特許文献5)ことが行われている。 In addition, the shape of the two apertures of the pupil-conjugated two-hole aperture for stereoscopic shooting is made into a vertically long rectangle (Patent Document 3), or a fundus image is alternately incident on the pixels of the image sensor using a cylindrical lens. (Patent Document 4), the diaphragm of the fundus conjugate position and the pupil conjugate position is made variable to enable stereoscopic shooting and monocular shooting on the same video medium (Patent Document 5).
更に、撮像素子の交互の画素をプリズムなどを介してそれぞれ左目と右目の導き画像を立体視させることが行われている(特許文献6、7)。
しかしながら、特許文献1、2、3などの従来の構成では、左右別々の2光路に左右一対の結像光学系の各レンズを配置する必要があったため、構成が複雑で装置が大型化してしまうと共にコストが高くなってしまう。また、左右2光路の光学調整が大変複雑で調整に時間がかかってしまうという問題があった。また、左右の画像を左右別々の領域ないし素子に別々に結像するため、左右の画像の位置を後から正確に合わせる作業が必要であるという問題があった。 However, in the conventional configurations such as Patent Documents 1, 2, and 3, it is necessary to dispose each lens of the pair of left and right imaging optical systems in two right and left optical paths, so the configuration is complicated and the apparatus becomes large. At the same time, the cost becomes high. In addition, there is a problem that the optical adjustment of the two left and right optical paths is very complicated and takes time to adjust. In addition, since the left and right images are separately formed on the left and right regions or elements, there is a problem that it is necessary to accurately align the left and right images later.
また、特許文献4などの構成では、2孔絞りからの2つの画像(右像と左像)を撮像素子の交互に画素に入射させるようにしているが、例えば、画面の周辺では1画素に右像と左像が入射してしまい、良好な立体視ができないという問題があった。 Further, in the configuration of Patent Document 4 and the like, two images (right image and left image) from the two-hole aperture are made to enter the pixels alternately in the image pickup device. The right image and the left image are incident, and there is a problem that good stereoscopic viewing cannot be performed.
そこで本発明は、上記のような問題を解消し、簡単な構造で装置の小型化とコストダウンが図れると共に、光学調整も簡単で、眼底の同時立体撮影を良好に行うことが可能な眼底撮影装置を提供することを課題とする。 Therefore, the present invention solves the above-described problems, and can reduce the size and cost of the apparatus with a simple structure, and can easily perform optical adjustment, so that fundus photographing can be performed satisfactorily. It is an object to provide an apparatus.
上記の課題を解決するための発明は、
被検眼の眼底を結像する光学系と、前記光学系による眼底像の結像位置に配置されたマトリクス状配列の画素を有した撮像手段とを有する眼科撮影装置において、
前記光学系内に、被検眼視度の個体差による結像位置のずれを補正するために光軸方向に移動可能なレンズを配置し、
被検眼の前眼部と略共役な位置に2つの開口を備えた絞りを配置し、
前記撮像手段の撮像面に近接して偏向光学素子を設け、
前記光学系の射出瞳位置が無限遠になるように設定して、偏向光学素子を介して撮像手段の一つの画素列に入射する光が前記絞りの2つの開口のうちいずれかの一方の開口を通過した光のみになり、かつ両開口からの光が撮像手段の各画素列に交互に入射するようにしたことを特徴とする。
The invention for solving the above problems is as follows.
In an ophthalmologic photographing apparatus comprising: an optical system that forms an image of the fundus of the eye to be examined; and an imaging unit having pixels in a matrix arrangement arranged at the image formation position of the fundus image by the optical system.
In the optical system, a lens movable in the direction of the optical axis is arranged to correct a shift in the imaging position due to individual differences in the eye diopter,
A diaphragm having two openings is arranged at a position substantially conjugate with the anterior segment of the eye to be examined,
Providing a deflection optical element close to the imaging surface of the imaging means,
The exit pupil position of the optical system is set to be infinite, and light incident on one pixel column of the imaging means via the deflection optical element is one of the two apertures of the diaphragm. In this case, only the light that has passed through the aperture and the light from both apertures are alternately incident on each pixel column of the imaging means.
また、本発明は、
被検眼の眼底を結像する第1の光学系と、該第1の光学系の眼底共役位置に配置した視野絞りと、該視野絞りの近傍に結像した眼底像を再結像する第2の光学系と、該第2の光学系による眼底像の再結像位置に配置されたマトリクス状配列の画素を有した撮像手段とを有する眼科撮影装置において、
前記第1の光学系内に、被検眼視度の個体差による結像位置のずれを補正するために光軸方向に移動可能なレンズを配置し、
前記第2の光学系内またはその近傍で、2つの開口を備えた絞りを被検眼の前眼部と略共役な位置に配置し、
前記撮像手段の撮像面に近接して偏向光学素子を配置し、
前記第2の光学系の射出瞳位置が無限遠になるように設定して、偏向光学素子を介して撮像手段の一つの画素列に入射する光が前記絞りの2つの開口のうちいずれかの一方の開口を通過した光のみになり、かつ両開口からの光が撮像手段の各画素列に交互に入射するようにしたことを特徴とする。
The present invention also provides:
A first optical system that forms an image of the fundus of the eye to be examined; a field stop disposed at a fundus conjugate position of the first optical system; and a second image that re-forms a fundus image formed in the vicinity of the field stop. An ophthalmologic photographing apparatus having an optical system and an imaging unit having pixels in a matrix arrangement arranged at a re-imaging position of a fundus image by the second optical system,
In the first optical system, a lens that is movable in the direction of the optical axis in order to correct a shift in the imaging position due to individual differences in the eye diopter to be examined is disposed,
In or near the second optical system, a diaphragm having two apertures is arranged at a position substantially conjugate with the anterior segment of the eye to be examined,
A deflecting optical element is disposed adjacent to the imaging surface of the imaging means;
The exit pupil position of the second optical system is set to be infinite, and light incident on one pixel row of the imaging means via the deflection optical element is one of the two apertures of the diaphragm. Only light that has passed through one of the apertures is used, and light from both apertures is alternately incident on each pixel column of the image pickup means.
本発明によれば、眼底像を立体撮影用の撮像手段に結像する光学系の射出瞳位置が無限遠になるように設定されているので、偏向光学素子への光線入射角が一定となり、立体撮影のための左眼用の画像と右眼用の画像が撮像素子に分離されて画素列に交互に入射するようになるので、左眼用の画像と右眼用の画像が一つの画素列に重なって入射することがなく、良好な立体視用の画像を得ることができる、という利点が得られる。 According to the present invention, since the exit pupil position of the optical system that forms the fundus image on the imaging means for stereoscopic photography is set to be infinite, the light incident angle to the deflecting optical element is constant, Since the image for the left eye and the image for the right eye for stereoscopic shooting are separated into the image sensor and alternately enter the pixel row, the image for the left eye and the image for the right eye are one pixel. There is an advantage that a good stereoscopic image can be obtained without overlapping the rows and entering.
本発明は、立体視用ステレオ撮影が可能な眼科撮影装置であり、以下に添付図面を参照し、眼科撮影装置を、眼底カメラとした実施例に基づいて本発明を詳細に説明する。 The present invention is an ophthalmologic photographing apparatus capable of performing stereo photography for stereoscopic viewing, and the present invention will be described in detail based on an embodiment in which the ophthalmologic photographing apparatus is a fundus camera with reference to the accompanying drawings.
図1には、本発明の第1の実施例が図示されており、同図の眼底カメラでは、被検眼Eの眼底Erを照明する照明光学系と、照明された眼底を撮影する撮影光学系が設けられている。照明光学系では、ハロゲンランプなどの光源1から発せられた光並びに凹面鏡2で反射した光は、可視カット赤外透過フィルタ3を介して赤外光となり、ストロボ4、コンデンサレンズ5を通過して、被検眼Eの前眼部(瞳)Epと共役な位置に配置された立体視用のスリット6を照明する。このスリット6からの照明光は、レンズ7を通過し、中心に穴の開いた穴あき全反射ミラー8で反射されてから対物レンズ9を経て、被検眼Eの前眼部Epより眼底Erに入射し、眼底Erを赤外光で照明する。 FIG. 1 shows a first embodiment of the present invention. In the fundus camera shown in FIG. 1, an illumination optical system for illuminating the fundus Er of the eye E and an imaging optical system for photographing the illuminated fundus Is provided. In the illumination optical system, the light emitted from the light source 1 such as a halogen lamp and the light reflected by the concave mirror 2 become infrared light through the visible cut infrared transmission filter 3 and pass through the strobe 4 and the condenser lens 5. The stereoscopic slit 6 arranged at a position conjugate with the anterior eye part (pupil) Ep of the eye E is illuminated. The illumination light from the slit 6 passes through the lens 7, is reflected by the perforated total reflection mirror 8 having a hole in the center, passes through the objective lens 9, and passes from the anterior segment Ep of the eye E to the fundus Er. Incident light and illuminate the fundus Er with infrared light.
眼底Erからの反射光は、対物レンズ9、穴あき全反射ミラー8の穴を通過して、被検眼前眼部(瞳)と略共役な位置Pに配置された2つの開口を有する2孔絞り10に入射し、右眼用の光束と、左眼用の光束に分離されてから、合焦レンズ11に入射する。この合焦レンズ11は、光軸に沿って移動可能で被検眼視度の個体差による眼底結像位置のずれを補正する。 The reflected light from the fundus Er passes through the holes of the objective lens 9 and the perforated total reflection mirror 8, and has two holes having two openings arranged at a position P substantially conjugate with the anterior eye part (pupil) of the eye to be examined. The light enters the diaphragm 10 and is separated into a light beam for the right eye and a light beam for the left eye, and then enters the focusing lens 11. The focusing lens 11 is movable along the optical axis, and corrects the shift of the fundus imaging position due to individual differences in the eye diopter.
眼底からの光束は、続いて被検眼眼底を結像する結像レンズ12を通過して、リターンミラー13で反射され、結像レンズ12による眼底の結像位置、つまり眼底Erと共役な位置に配置された赤外光に感度を有する観察用CCD14に入射する。リターンミラー13が光路から離脱すると、眼底からの光束は、眼底Erと共役な位置に配置された撮像手段としての可視光に感度を有する撮像用CCD16に入射する。撮像用CCD16は、マトリックス状に配置された多数の画素を有しており、この撮像用CCD16の撮像面に近接して、偏向光学素子としてのレンチキュラープリズム15が配置される。 The light beam from the fundus subsequently passes through the imaging lens 12 that forms an image on the fundus of the subject, is reflected by the return mirror 13, and is imaged on the fundus by the imaging lens 12, that is, at a position conjugate with the fundus Er. The light enters the observation CCD 14 having sensitivity to the arranged infrared light. When the return mirror 13 leaves the optical path, the light beam from the fundus enters the imaging CCD 16 that is sensitive to visible light as imaging means arranged at a position conjugate with the fundus Er. The imaging CCD 16 has a large number of pixels arranged in a matrix, and a lenticular prism 15 as a deflection optical element is arranged in the vicinity of the imaging surface of the imaging CCD 16.
なお、図1では、2孔絞り10は、光束を図面上で上下に分割するように、図示されており、また、レンチキュラープリズム15と撮影用CCD16は、図1で紙面に垂直な方向の並びが上下方向に図示されているが、実際には、2孔絞り10は、図2に示したように、光束を、左右方向(図1で紙面に垂直な方向)に分割し、レンチキュラープリズム15の両プリズム面15a、15bは、図2で紙面に垂直な方向に延びている。 In FIG. 1, the two-hole aperture 10 is illustrated so as to divide the light beam vertically in the drawing, and the lenticular prism 15 and the photographing CCD 16 are arranged in a direction perpendicular to the paper surface in FIG. In FIG. 2, the two-hole aperture 10 actually divides the light beam in the left-right direction (the direction perpendicular to the paper surface in FIG. 1), as shown in FIG. Both prism surfaces 15a and 15b extend in a direction perpendicular to the paper surface in FIG.
また、結像光学系(合焦レンズ11、結像レンズ12)の射出瞳位置は、無限遠あるいはその近くに設定されており、それにより、図2、図3に示したように(図2では、簡略のために合焦レンズ11が省略されている。あるいは合焦レンズと結像レンズを統合した光学系が一つのレンズ12として図示されているとしてもよい)、略瞳共役な位置にある2孔絞りの開口10aを通過する光束は、結像レンズ12を通過した後、略平行光束となり、レンチキュラープリズム15の一方のプリズム面15aに入射してから、撮影用CCD16の奇数番目の画素列(斜線部分)16aに入射するとともに、2孔絞りの開口10bを通過する光束は、結像レンズ12を通過した後、略平行光束となり、レンチキュラープリズム15の他方のプリズム面15bに入射してから、撮影用CCD16の偶数番目の画素列に16bに入射するようになる。なお、図3において太い実線部分15cは、遮光部を示している。 Further, the exit pupil position of the imaging optical system (focusing lens 11 and imaging lens 12) is set at or near infinity, and as shown in FIGS. 2 and 3 (FIG. 2). However, for the sake of simplicity, the focusing lens 11 is omitted, or an optical system in which the focusing lens and the imaging lens are integrated may be illustrated as one lens 12), at a substantially pupil conjugate position. A light beam that passes through an aperture 10a of a certain two-hole aperture becomes a substantially parallel light beam after passing through the imaging lens 12 and is incident on one prism surface 15a of the lenticular prism 15, and then the odd-numbered pixels of the photographing CCD 16 The light beam that enters the row (shaded portion) 16a and passes through the aperture 10b of the two-hole aperture becomes the substantially parallel light beam after passing through the imaging lens 12, and the other prism of the lenticular prism 15 After entering the 15b, it will be incident on 16b on the even-numbered pixel columns of the imaging CCD 16. In FIG. 3, a thick solid line portion 15c indicates a light shielding portion.
このような入射特性は、例えば、2孔絞り10の2つの開口10aと10b間の距離、つまり瞳分割距離DをD=3mm、開口10a、10bの直径ΦをΦ=0.5mm、結像レンズ12の焦点距離fをf=20mm、撮影用CCD16を1/3インチCCDとして、2孔絞り10と結像レンズ12間の距離X1を略fとし、すなわち、2孔絞り10を結像レンズ12の焦点距離にまたはその近傍に配置し、レンチキュラープリズム15並びに撮影用CCD16と、結像レンズ12との距離X2を、焦点距離fより大きい値に配置することにより得られる。このとき、結像レンズ12からの光束がプリズム15に入射する角度θは、θ=4.3°となり、また、各平行光束が、レンチキュラープリズム15の各プリズム面15a、15bにほぼ垂直に入射するように、プリズム角が設定される。また、撮影用CCD16の行方向(図2、図3で左右方向)の画素ピッチ(画素幅)P1は、レンチキュラープリズム15のプリズムのピッチ(プリズムの頂点間の距離)P2の略半分に設定される。 Such incident characteristics include, for example, the distance between the two openings 10a and 10b of the two-hole aperture 10, that is, the pupil division distance D is D = 3 mm, the diameters Φ of the openings 10a and 10b are Φ = 0.5 mm, and the image is formed. The focal length f of the lens 12 is f = 20 mm, the photographing CCD 16 is 1/3 inch CCD, and the distance X1 between the two-hole aperture 10 and the imaging lens 12 is substantially f. The distance X2 between the imaging lens 12 and the lenticular prism 15, the photographing CCD 16, and the focal length f is obtained by arranging at or near the focal length of 12. At this time, the angle θ at which the light beam from the imaging lens 12 enters the prism 15 is θ = 4.3 °, and each parallel light beam enters the prism surfaces 15 a and 15 b of the lenticular prism 15 almost perpendicularly. In this way, the prism angle is set. Further, the pixel pitch (pixel width) P1 in the row direction (left-right direction in FIGS. 2 and 3) of the photographing CCD 16 is set to substantially half of the prism pitch (distance between the apexes of the prism) P2 of the lenticular prism 15. The
このような構成において、光源1を点灯して、被検眼Eの眼底Erを赤外光で照明し、眼底からの反射光を観察用CCD14に導いてその画像を観察することにより、アライメントを行い、また合焦レンズ11を光軸に沿って移動させてピント合わせを行う。 In such a configuration, alignment is performed by turning on the light source 1, illuminating the fundus Er of the eye E with infrared light, and guiding the reflected light from the fundus to the observation CCD 14 and observing the image. Further, focusing is performed by moving the focusing lens 11 along the optical axis.
アライメントとピント合わせが終了すると、ストロボ4が発光され、リターンミラー13が光路から離脱される。ストロボ光で照明された眼底からの光束は、対物レンズ9、穴あき全反射ミラー8の穴を通過して、2孔絞り10に入射し、右眼用の光束と、左眼用の光束に分離されてから、合焦レンズ11に入射し、眼底が結像レンズ12により、レンチキュラープリズム15を介して撮影用CCD16の撮像面に結像される。 When the alignment and focusing are completed, the strobe 4 emits light and the return mirror 13 is removed from the optical path. The light beam from the fundus illuminated by the strobe light passes through the hole of the objective lens 9 and the perforated total reflection mirror 8 and enters the two-hole aperture 10 to be converted into the right-eye light beam and the left-eye light beam. After separation, the light enters the focusing lens 11, and the fundus is imaged by the imaging lens 12 on the imaging surface of the imaging CCD 16 via the lenticular prism 15.
合焦レンズ11と結像レンズ12からなる光学系の射出瞳位置は、無限遠あるいはその近くに設定されているので、図2、図3に示したように、2孔絞りの開口10aを通過する光束は、結像レンズ12を通過した後、略平行光束となり、レンチキュラープリズム15の一方のプリズム面15aに入射してから、撮影用CCD16の奇数番目の画素列16aに入射する。また、2孔絞りの開口10bを通過する光束は、結像レンズ12を通過した後、略平行光束となり、レンチキュラープリズム15の他方のプリズム面15bに入射してから、撮影用CCD16の偶数番目の画素列16bに入射する。また、撮影用CCD16の行方向(図4で左右方向)の画素ピッチ(画素幅)P1は、レンチキュラープリズム15のプリズムのピッチ(プリズムの頂点間の距離)P2の半分になっているので、撮影用CCD16の一つの画素列Rj(j=1〜n)には、2孔絞り10の開口10aを通過した光のみになり、他方の開口10bを通過した光が入射することはなく、また画素列Lj(j=1〜n)には、2孔絞り10の開口10bを通過した光のみになり、他方の開口10aを通過した光が入射することはない。また、両開口10a、10bからの光が各画素列Rj、Ljに交互に入射する。 Since the exit pupil position of the optical system comprising the focusing lens 11 and the imaging lens 12 is set at or near infinity, as shown in FIGS. 2 and 3, it passes through the aperture 10a of the two-hole aperture. After passing through the imaging lens 12, the luminous flux becomes a substantially parallel luminous flux, enters the one prism surface 15 a of the lenticular prism 15, and then enters the odd-numbered pixel row 16 a of the photographing CCD 16. Further, the light beam passing through the aperture 10b of the two-hole aperture becomes a substantially parallel light beam after passing through the imaging lens 12, and enters the other prism surface 15b of the lenticular prism 15, and then the even-numbered CCD 16 for photographing. It enters the pixel row 16b. Further, the pixel pitch (pixel width) P1 in the row direction (left-right direction in FIG. 4) of the photographing CCD 16 is half of the prism pitch (distance between the apexes of the prism) P2 of the lenticular prism 15. One pixel row Rj (j = 1 to n) of the CCD 16 is only light that has passed through the opening 10a of the two-hole aperture 10, and no light that has passed through the other opening 10b is incident on the pixel row Rj. In the row Lj (j = 1 to n), only the light that has passed through the opening 10b of the two-hole aperture 10 is obtained, and the light that has passed through the other opening 10a is not incident. In addition, light from both the openings 10a and 10b is incident on the pixel rows Rj and Lj alternately.
このような撮影用CCD16の撮像面での像分布が,図4に示されており、R1、R2、.....Rnは、奇数番目の画素列16aであり、L1、L2、.....Lnは偶数番目の画素列であり、各画素は行方向にそれぞれP1の幅を有している。 The image distribution on the imaging surface of such a photographing CCD 16 is shown in FIG. 4, and R1, R2,. . . . . Rn is an odd-numbered pixel row 16a, and L1, L2,. . . . . Ln is an even-numbered pixel column, and each pixel has a width of P1 in the row direction.
また、レンチキュラープリズム15に代えて、図5に示したようなレンチキュラーレンズ20を用いることもできる。このレンチキュラーレンズ20は、図5で紙面に垂直に延びる半円柱のレンズ20aをピッチP2(画素ピッチP1の2倍)で左右方向に等配列したもので、2孔絞り10の開口10aを通過した光束は、結像レンズ12を通過して略平行光束となって、レンチキュラーレンズ20の半円柱のレンズ20aで屈折して撮影用CCD16の画素列16aに集光され、また、孔絞り10の開口10bを通過した光束は、結像レンズ12を通過して略平行光束となって、同じ半円柱のレンズ20aで撮影用CCD16の画素列16aの左側の画素列16bに集光され、レンチキュラープリズム15と同様な効果を得ることができる。 Further, a lenticular lens 20 as shown in FIG. 5 can be used instead of the lenticular prism 15. This lenticular lens 20 is a lens in which the semicylindrical lenses 20a extending perpendicularly to the paper surface in FIG. 5 are arranged in the left-right direction at a pitch P2 (twice the pixel pitch P1) and pass through the opening 10a of the two-hole aperture 10. The light beam passes through the imaging lens 12 to become a substantially parallel light beam, is refracted by the semi-cylindrical lens 20a of the lenticular lens 20, and is condensed on the pixel row 16a of the photographing CCD 16, and the aperture of the aperture stop 10 is opened. The light beam that has passed through 10b passes through the imaging lens 12 to become a substantially parallel light beam, and is condensed by the same semi-cylindrical lens 20a onto the pixel row 16b on the left side of the pixel row 16a of the photographing CCD 16, and the lenticular prism 15 The same effect can be obtained.
なお、撮影用CCD16で撮像された画像は、例えば、市販のレンチキュラー方式のモニタ、パララックスバリア方式のモニタなどの表示手段で立体表示でき、また偏光メガネを使用して立体視することができる。 The image captured by the photographing CCD 16 can be stereoscopically displayed on a display means such as a commercially available lenticular monitor or a parallax barrier monitor, or can be stereoscopically viewed using polarized glasses.
また、上述した各光学素子の諸元は、瞳結像倍率が約1倍を想定しており、この条件では、画角が約10度の撮影範囲となり、視神経乳頭の陥凹を立体視することができ、緑内障診断で有効な手段となる。 In addition, the specifications of each of the optical elements described above assume a pupil imaging magnification of about 1. Under this condition, the field of view is an imaging range of about 10 degrees, and the depression of the optic nerve head is stereoscopically viewed. Can be an effective means of diagnosing glaucoma.
図6には、他の実施例が図示されており、同実施例では、単眼撮影と立体撮影が可能となっている。 FIG. 6 shows another embodiment, in which monocular photography and stereoscopic photography are possible.
図6において、ハロゲンランプなどの光源30から発せられた光並びに凹面鏡31で反射した光は、可視カット赤外透過フィルタ32を介して赤外光となり、ストロボ33を通過して被検眼Eの前眼部(瞳)Epと共役な位置に配置されたリングスリット34を照明する。このリングスリット34は、立体撮影時には、立体用の照明絞り34’に切り換えられる。リングスリット34あるいは照明絞り34’からの照明光は、レンズ35、黒点板36、リレーレンズ37を通過し、中心に穴の開いた穴あき全反射ミラー39で反射されてから対物レンズ38を経て、被検眼Eの前眼部Epより眼底Erに入射し、眼底Erを赤外光で照明する。 In FIG. 6, the light emitted from the light source 30 such as a halogen lamp and the light reflected by the concave mirror 31 become infrared light through the visible cut infrared transmission filter 32 and pass through the strobe 33 before the eye E to be examined. The ring slit 34 arranged at a position conjugate with the eye part (pupil) Ep is illuminated. The ring slit 34 is switched to a three-dimensional illumination stop 34 'during stereoscopic shooting. Illumination light from the ring slit 34 or the illumination stop 34 'passes through the lens 35, the black spot plate 36, and the relay lens 37, and is reflected by a perforated total reflection mirror 39 having a hole in the center, and then passes through the objective lens 38. Then, the light enters the fundus Er from the anterior segment Ep of the eye E and illuminates the fundus Er with infrared light.
眼底Erからの反射光は、対物レンズ38を介して受光され、穴あき全反射ミラー39の穴を通過して前眼部(瞳)Epと共役な位置Pに配置された撮影絞り40に入射し、レンズ41、合焦レンズ42を通過する。この合焦レンズ42は、光軸に沿って移動可能で被検眼視度の個体差による眼底結像位置のずれを補正する。なお、撮影絞り40は、立体撮影のときは、立体撮影用の撮影絞り40’に切り換えられる。 The reflected light from the fundus Er is received through the objective lens 38, passes through the hole of the perforated total reflection mirror 39, and enters the photographing aperture 40 disposed at a position P conjugate with the anterior eye part (pupil) Ep. Then, it passes through the lens 41 and the focusing lens 42. The focusing lens 42 is movable along the optical axis, and corrects the shift of the fundus imaging position due to individual differences in the eye eye diopter. Note that the photographing aperture 40 is switched to a photographing aperture 40 'for stereoscopic shooting during stereoscopic shooting.
眼底からの光束は、続いてレンズ43を通過して、ミラー44で反射され、眼底Erと共役な位置Rに配置された視野絞り45を介して赤外反射可視透過ミラー46に入射し、赤外反射可視透過ミラー46で反射された赤外光は、結像レンズ47を通過して赤外光に感度を有する撮像手段としての観察用CCD48に入射され、一方、ミラー46を透過した可視光は、リターンミラー49で反射され、結像レンズ50を通過して可視光に感度を有する撮像手段としての単眼撮影用CCD51に入射する。 The light flux from the fundus subsequently passes through the lens 43, is reflected by the mirror 44, enters the infrared reflection visible transmission mirror 46 via the field stop 45 disposed at a position R conjugate with the fundus Er, and is red. The infrared light reflected by the external reflection visible transmission mirror 46 passes through the imaging lens 47 and enters the observation CCD 48 as an imaging means having sensitivity to the infrared light, while the visible light transmitted through the mirror 46. Is reflected by the return mirror 49, passes through the imaging lens 50, and enters the monocular imaging CCD 51 as imaging means having sensitivity to visible light.
立体撮影時には、リターンミラー49が光路から離脱し、ミラー46を透過した可視光は、ミラー52で反射され、前眼部(瞳)Epと共役な位置Pに配置された2孔絞り53を通過して結像レンズ54に入射し、可視光に感度を有する撮像手段としての立体撮影用CCD55に入射し、この立体撮影用CCD55の撮像面に近接して偏向光学素子としてのレンチキュラープリズム56が配置される。2孔絞り53、レンチキュラープリズム56、立体撮影用CCD55は、それぞれ実施例1の2孔絞り10、レンチキュラープリズム15、撮影用CCD16に対応している。 During stereoscopic shooting, the return mirror 49 leaves the optical path, and the visible light transmitted through the mirror 46 is reflected by the mirror 52 and passes through the two-hole aperture 53 arranged at a position P conjugate with the anterior eye (pupil) Ep. Then, the light enters the imaging lens 54, enters a stereoscopic photographing CCD 55 as an imaging means having sensitivity to visible light, and a lenticular prism 56 as a deflection optical element is disposed in the vicinity of the imaging surface of the stereoscopic photographing CCD 55. Is done. The two-hole aperture 53, the lenticular prism 56, and the stereoscopic photographing CCD 55 correspond to the two-hole aperture 10, the lenticular prism 15, and the photographing CCD 16 of the first embodiment, respectively.
このような結像光学系において、被検眼Eの眼底Erと共役な位置がRで、また前眼部(特に瞳)Epと共役な位置がPで図示されており、対物レンズ38、レンズ41、43などは、被検眼の眼底を視野絞り45に結像する第1の光学系を構成し、また、結像レンズ50、54は、第1の光学系により視野絞り45の近傍に結像した眼底像を単眼撮影用CCD51、立体撮影用CCD55に再結像する第2の光学系を構成している。また、立体撮影用CCD55を第1の撮像手段とすると、リターンミラー49は、視野絞り45と第1の撮像手段との間に配置された光路分割手段であり、その位置に応じて被検眼からの光束を切り換え、第1の撮像手段あるいは単眼撮影用CCD(第2の撮像手段)51に選択して導く。 In such an imaging optical system, the position conjugate with the fundus Er of the eye E is indicated by R, and the position conjugate with the anterior eye part (particularly the pupil) Ep is indicated by P. The objective lens 38 and the lens 41 are shown. , 43 and the like constitute a first optical system that forms an image of the fundus of the subject's eye on the field stop 45, and the imaging lenses 50 and 54 form an image near the field stop 45 by the first optical system. A second optical system for re-imaging the fundus image thus formed on the CCD 51 for monocular photography and the CCD 55 for stereoscopic photography is constructed. When the stereoscopic imaging CCD 55 is the first image pickup means, the return mirror 49 is an optical path dividing means arranged between the field stop 45 and the first image pickup means. From the eye to be examined according to the position of the return mirror 49. Are switched and selected and guided to the first imaging means or the monocular imaging CCD (second imaging means) 51.
このような構成で、観察時用CCD48には、眼底の赤外像が結像されるので、観察用CCD48の画像をモニタ(不図示)で観察し、アライメントや合焦操作を行う。 With such a configuration, since an infrared image of the fundus is formed on the observation CCD 48, the image of the observation CCD 48 is observed on a monitor (not shown), and alignment and focusing operations are performed.
アライメント並びに合焦が完了すると、ストロボ33が発光され、単眼撮影時には、リングスリット34、撮影絞り40、リターンミラー49が光路にあり、眼底からの光束が単眼撮影用CCD51に入射し眼底が単眼撮影用CCD51により撮影される。 When alignment and focusing are completed, the strobe 33 emits light, and at the time of monocular photography, the ring slit 34, the photographing aperture 40, and the return mirror 49 are in the optical path, and the luminous flux from the fundus is incident on the monocular photographing CCD 51 and the fundus is monocularly photographed. The image is taken by the CCD 51.
一方、立体撮影時には、リターンミラー49が光路から離脱し、またそのとき、照明絞りがスリット34’に、撮影絞りが立体用の撮影絞り40’に切り替わり、眼底からの光束が、2孔絞り53で左眼用の光束と、右眼用の光束に分割され、各光束が、レンチキュラープリズム56を介して立体撮影用CCD55に結像され、眼底の立体像が撮影される。 On the other hand, at the time of stereoscopic shooting, the return mirror 49 is detached from the optical path. At that time, the illumination diaphragm is switched to the slit 34 ′, the imaging diaphragm is switched to the stereoscopic imaging diaphragm 40 ′, and the luminous flux from the fundus is changed to the two-hole diaphragm 53. Are split into a left eye light beam and a right eye light beam, and each light beam is imaged on the stereoscopic photographing CCD 55 via the lenticular prism 56, and a three-dimensional image of the fundus is photographed.
結像レンズ54からなる第2の光学系の射出瞳位置は、実施例1の結像レンズ12の光学系と同様に、無限遠あるいはその近くに設定されているので、2孔絞り53の一方の開口を通過する光束は、結像レンズ54を通過した後、略平行光束となり、レンチキュラープリズム56の一方のプリズム面に入射してから、立体撮影用CCD55の奇数番目の画素列に入射し、2孔絞り53の他方の開口を通過する光束は、結像レンズ54を通過した後、略平行光束となり、レンチキュラープリズム56の他方のプリズム面に入射してから、立体撮影用CCD55の偶数番目の画素列に入射する。この関係は、図3で、レンチキュラープリズム15をレンチキュラープリズム56に、撮影用CCD16を立体撮影用CCD55に置き換えたものに相当し、また、実施例1と同様に、立体撮影用CCD55の行方向の画素ピッチ(画素幅)P1は、レンチキュラープリズム56のプリズムのピッチ(プリズムの頂点間の距離)P2の略半分になっているので、立体撮影用CCD55の一つの画素列には、2孔絞り53の一方の開口を通過した光のみになり、他方の開口を通過した光が入射することはなく、また、2孔絞り53の両開口からの光が各画素列に交互に入射する。この関係も、実施例1と同様であり、実施例1と同様な効果が得られる。 The exit pupil position of the second optical system composed of the imaging lens 54 is set at or near infinity as in the optical system of the imaging lens 12 of the first embodiment. After passing through the imaging lens 54, the light beam passing through the aperture becomes a substantially parallel light beam, enters one prism surface of the lenticular prism 56, and then enters the odd-numbered pixel row of the stereoscopic CCD 55. The light beam passing through the other aperture of the two-hole aperture 53 passes through the imaging lens 54 and then becomes a substantially parallel light beam. After entering the other prism surface of the lenticular prism 56, the even-numbered CCD 55 for stereoscopic photography 55 Incident on the pixel column. This relationship corresponds to that shown in FIG. 3 in which the lenticular prism 15 is replaced with the lenticular prism 56, and the photographing CCD 16 is replaced with the stereoscopic photographing CCD 55. Similarly to the first embodiment, the stereoscopic photographing CCD 55 is arranged in the row direction. Since the pixel pitch (pixel width) P1 is substantially half of the prism pitch (distance between the apexes of the prism) P2 of the lenticular prism 56, the two-hole aperture 53 is included in one pixel row of the stereoscopic photographing CCD 55. Only the light that has passed through one of the apertures of the second aperture, and the light that has passed through the other aperture does not enter, and the light from both apertures of the two-hole aperture 53 alternately enters each pixel column. This relationship is also the same as that of the first embodiment, and the same effect as that of the first embodiment is obtained.
また、実施例2においても、実施例1と同様に、レンチキュラープリズム56に代えて、図5に示したようなレンチキュラーレンズ20を用いることもできる。 Also in the second embodiment, as in the first embodiment, the lenticular lens 20 as shown in FIG. 5 can be used instead of the lenticular prism 56.
また、立体撮影用CCD55で撮像された画像を、市販のレンチキュラー方式のモニタ、パララックスバリア方式のモニタなどの表示手段で立体表示でき、また偏光メガネを使用して立体視することができることも実施例1と同様である。 In addition, the image captured by the stereoscopic CCD 55 can be stereoscopically displayed on a display means such as a commercially available lenticular monitor or a parallax barrier monitor, or can be stereoscopically viewed using polarized glasses. Similar to Example 1.
10 2孔絞り
15 レンチキュラープリズム
16 撮影用CCD
20 レンチキュラーレンズ
40 撮影絞り
45 視野絞り
51 単眼撮影用CCD
53 2孔絞り
55 立体撮影用CCD
56 レンチキュラープリズム
10 Two-hole aperture 15 Lenticular prism 16 CCD for shooting
20 Lenticular lens 40 Shooting diaphragm 45 Field diaphragm 51 Monocular CCD
53 Two-hole aperture 55 Stereo CCD
56 Lenticular prism
Claims (4)
前記光学系内に、被検眼視度の個体差による結像位置のずれを補正するために光軸方向に移動可能なレンズを配置し、
被検眼の前眼部と略共役な位置に2つの開口を備えた絞りを配置し、
前記撮像手段の撮像面に近接して偏向光学素子を設け、
前記光学系の射出瞳位置が無限遠になるように設定して、偏向光学素子を介して撮像手段の一つの画素列に入射する光が前記絞りの2つの開口のうちいずれかの一方の開口を通過した光のみになり、かつ両開口からの光が撮像手段の各画素列に交互に入射するようにしたことを特徴とする眼科撮影装置。 In an ophthalmologic photographing apparatus comprising: an optical system that forms an image of the fundus of the eye to be examined; and an imaging unit having pixels in a matrix arrangement arranged at the image formation position of the fundus image by the optical system.
In the optical system, a lens movable in the direction of the optical axis is arranged to correct a shift in the imaging position due to individual differences in the eye diopter,
A diaphragm having two openings is arranged at a position substantially conjugate with the anterior segment of the eye to be examined,
Providing a deflection optical element close to the imaging surface of the imaging means,
The exit pupil position of the optical system is set to be infinite, and light incident on one pixel column of the imaging means via the deflection optical element is one of the two apertures of the diaphragm. The ophthalmologic photographing apparatus is characterized in that only the light that has passed through the aperture and light from both apertures alternately enter each pixel row of the imaging means.
前記第1の光学系内に、被検眼視度の個体差による結像位置のずれを補正するために光軸方向に移動可能なレンズを配置し、
前記第2の光学系内またはその近傍で、2つの開口を備えた絞りを被検眼の前眼部と略共役な位置に配置し、
前記撮像手段の撮像面に近接して偏向光学素子を配置し、
前記第2の光学系の射出瞳位置が無限遠になるように設定して、偏向光学素子を介して撮像手段の一つの画素列に入射する光が前記絞りの2つの開口のうちいずれかの一方の開口を通過した光のみになり、かつ両開口からの光が撮像手段の各画素列に交互に入射するようにしたことを特徴とする眼科撮影装置。 A first optical system that forms an image of the fundus of the eye to be examined; a field stop disposed at a fundus conjugate position of the first optical system; and a second image that re-forms a fundus image formed in the vicinity of the field stop. An ophthalmologic photographing apparatus having an optical system and an imaging unit having pixels in a matrix arrangement arranged at a re-imaging position of a fundus image by the second optical system,
In the first optical system, a lens that is movable in the direction of the optical axis in order to correct a shift in the imaging position due to individual differences in the eye diopter to be examined is disposed,
In or near the second optical system, a diaphragm having two apertures is arranged at a position substantially conjugate with the anterior segment of the eye to be examined,
A deflecting optical element is disposed adjacent to the imaging surface of the imaging means;
The exit pupil position of the second optical system is set to be infinite, and light incident on one pixel row of the imaging means via the deflection optical element is one of the two apertures of the diaphragm. An ophthalmologic photographing apparatus characterized in that only light that has passed through one opening is provided, and light from both openings is alternately incident on each pixel row of the imaging means.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004279554A JP4585824B2 (en) | 2004-09-27 | 2004-09-27 | Ophthalmic imaging equipment |
US11/230,900 US7287854B2 (en) | 2004-09-27 | 2005-09-20 | Ophthalmic photography apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004279554A JP4585824B2 (en) | 2004-09-27 | 2004-09-27 | Ophthalmic imaging equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006087793A true JP2006087793A (en) | 2006-04-06 |
JP4585824B2 JP4585824B2 (en) | 2010-11-24 |
Family
ID=36229296
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004279554A Expired - Fee Related JP4585824B2 (en) | 2004-09-27 | 2004-09-27 | Ophthalmic imaging equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4585824B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006314650A (en) * | 2005-05-16 | 2006-11-24 | Kowa Co | Ophthalmic imaging equipment |
US7290880B1 (en) * | 2005-07-27 | 2007-11-06 | Visionsense Ltd. | System and method for producing a stereoscopic image of an eye fundus |
JP2008076609A (en) * | 2006-09-20 | 2008-04-03 | Fujitsu Ltd | 3D video recording device |
WO2010087046A1 (en) * | 2009-01-30 | 2010-08-05 | 興和株式会社 | Ophthalmologic photographing device |
WO2012039349A1 (en) * | 2010-09-22 | 2012-03-29 | 富士フイルム株式会社 | Image capture device |
WO2013057352A1 (en) * | 2011-10-20 | 2013-04-25 | Asociación Industrial De Óptica, Color E Imagen - Aido | Multi-view fundus camera |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5784038A (en) * | 1980-11-03 | 1982-05-26 | Zeiss Jena Veb Carl | Retina photographing apparatus |
JPH0360634A (en) * | 1989-07-28 | 1991-03-15 | Canon Inc | Stereoscopic measuring eye ground camera |
JPH05161607A (en) * | 1991-12-11 | 1993-06-29 | Canon Inc | Stereoscopic measuring retinal camera |
JPH07323012A (en) * | 1994-05-31 | 1995-12-12 | Nidek Co Ltd | Simultaneous stereoscopic eyeground camera |
JPH10165372A (en) * | 1996-12-10 | 1998-06-23 | Canon Inc | Steroscopic image device |
JPH11299739A (en) * | 1998-04-23 | 1999-11-02 | Canon Inc | Eye photographing device and eye observing device |
JP2001340301A (en) * | 2000-05-30 | 2001-12-11 | Canon Inc | Ophthalmography |
-
2004
- 2004-09-27 JP JP2004279554A patent/JP4585824B2/en not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5784038A (en) * | 1980-11-03 | 1982-05-26 | Zeiss Jena Veb Carl | Retina photographing apparatus |
JPH0360634A (en) * | 1989-07-28 | 1991-03-15 | Canon Inc | Stereoscopic measuring eye ground camera |
JPH05161607A (en) * | 1991-12-11 | 1993-06-29 | Canon Inc | Stereoscopic measuring retinal camera |
JPH07323012A (en) * | 1994-05-31 | 1995-12-12 | Nidek Co Ltd | Simultaneous stereoscopic eyeground camera |
JPH10165372A (en) * | 1996-12-10 | 1998-06-23 | Canon Inc | Steroscopic image device |
JPH11299739A (en) * | 1998-04-23 | 1999-11-02 | Canon Inc | Eye photographing device and eye observing device |
JP2001340301A (en) * | 2000-05-30 | 2001-12-11 | Canon Inc | Ophthalmography |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006314650A (en) * | 2005-05-16 | 2006-11-24 | Kowa Co | Ophthalmic imaging equipment |
US7290880B1 (en) * | 2005-07-27 | 2007-11-06 | Visionsense Ltd. | System and method for producing a stereoscopic image of an eye fundus |
JP2008076609A (en) * | 2006-09-20 | 2008-04-03 | Fujitsu Ltd | 3D video recording device |
WO2010087046A1 (en) * | 2009-01-30 | 2010-08-05 | 興和株式会社 | Ophthalmologic photographing device |
JP5386512B2 (en) * | 2009-01-30 | 2014-01-15 | 興和株式会社 | Ophthalmic imaging equipment |
US9072467B2 (en) | 2009-01-30 | 2015-07-07 | Kowa Company Ltd. | Ophthalmologic photography apparatus |
WO2012039349A1 (en) * | 2010-09-22 | 2012-03-29 | 富士フイルム株式会社 | Image capture device |
WO2013057352A1 (en) * | 2011-10-20 | 2013-04-25 | Asociación Industrial De Óptica, Color E Imagen - Aido | Multi-view fundus camera |
EP2769666A4 (en) * | 2011-10-20 | 2015-05-13 | Asociación Ind De Óptica Color E Imagen Aido | FUNDUS CAMERA WITH SEVERAL VIEWS |
Also Published As
Publication number | Publication date |
---|---|
JP4585824B2 (en) | 2010-11-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5386512B2 (en) | Ophthalmic imaging equipment | |
JP4852546B2 (en) | Ophthalmic imaging equipment | |
US5995759A (en) | Stereoscopic image apparatus | |
US7287854B2 (en) | Ophthalmic photography apparatus | |
JP5038626B2 (en) | Fundus photographing device | |
US8113656B2 (en) | Ophthalmic photography apparatus | |
JP2927445B2 (en) | Stereoscopic fundus camera | |
JP4585824B2 (en) | Ophthalmic imaging equipment | |
JP4769017B2 (en) | Ophthalmic imaging equipment | |
JPS60207636A (en) | Eyeground camera | |
JP6592249B2 (en) | Fundus photographing device | |
JP2642416B2 (en) | Simultaneous stereoscopic fundus camera | |
JP4612371B2 (en) | Ophthalmic imaging equipment | |
JP3816589B2 (en) | Stereoscopic endoscope | |
JP3609874B2 (en) | Stereoscopic endoscope | |
JPH11299739A (en) | Eye photographing device and eye observing device | |
JP4609844B2 (en) | Stereoscopic fundus camera | |
JP4302199B2 (en) | Stereo microscope that can be observed by multiple people | |
JP3199125B2 (en) | Stereoscopic fundus camera | |
JPH02172437A (en) | Photographing device for ophthalmology | |
JP3340826B2 (en) | Stereoscopic fundus camera | |
JPH07194554A (en) | Stereoscopic fundus camera | |
HK1164086B (en) | Ophthalmologic photographing device | |
JPS60253431A (en) | Apparatus for detecting eye examination position | |
HK1121018A (en) | Ophthalmologic photographing device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070809 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100419 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100427 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100621 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100831 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100906 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130910 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |