[go: up one dir, main page]

JP2006086414A - Reverse blocking insulated gate semiconductor device and its manufacturing method - Google Patents

Reverse blocking insulated gate semiconductor device and its manufacturing method Download PDF

Info

Publication number
JP2006086414A
JP2006086414A JP2004271225A JP2004271225A JP2006086414A JP 2006086414 A JP2006086414 A JP 2006086414A JP 2004271225 A JP2004271225 A JP 2004271225A JP 2004271225 A JP2004271225 A JP 2004271225A JP 2006086414 A JP2006086414 A JP 2006086414A
Authority
JP
Japan
Prior art keywords
main surface
conductivity type
collector layer
region
reverse blocking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004271225A
Other languages
Japanese (ja)
Other versions
JP4882214B2 (en
Inventor
Manabu Takei
学 武井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2004271225A priority Critical patent/JP4882214B2/en
Publication of JP2006086414A publication Critical patent/JP2006086414A/en
Application granted granted Critical
Publication of JP4882214B2 publication Critical patent/JP4882214B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electrodes Of Semiconductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a reverse blocking insulated gate semiconductor device which can reduce influence of flaws and stress applied to a collector layer on a reverse breakdown voltage after formation of the rear collector layer of a reverse blocking insulated-gate semiconductor device. <P>SOLUTION: The reverse blocking insulated gate semiconductor device has a p-base region 3 which is selectively formed in a first major surface 9 of an n-type semiconductor substrate 1, an n-type emitter region 4 which is selectively formed in the surface layer of the p-base region 3, a gate insulating film 5 which is applied to the first major surface 9 side of the p-base region 3 held between the remaining n-type drift layer 1 and the n-type emitter region 4, a gate electrode 6 applied via the insulating film 5, an isolation diffusion region 2 which surrounds the p-base region 3 via the n-type drift layer 1 and is formed from the first major surface 9 to the second major surface 10 of the substrate 1, and a p-type low implantation collector layer 8 which is formed in the second major surface 10 of the semiconductor substrate 1 and is connected to an isolation diffusion region 2 exposed to the second major surface 10. The low implantation collector layer 8 is formed by thermal diffusion of impurity atom whose diffusion coefficient is larger than that of impurity atom used for formation of the p-type base region 3. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は電力変換装置などに使用されるパワー半導体装置に関する。詳しくは、分離拡散層を備え、双方向の耐圧特性を有する双方向デバイスまたは逆阻止型絶縁ゲート形バイポーラトランジスタ(以降、逆阻止IGBTと略す)などに関する。   The present invention relates to a power semiconductor device used for a power conversion device or the like. More specifically, the present invention relates to a bidirectional device or a reverse blocking insulated gate bipolar transistor (hereinafter, abbreviated as a reverse blocking IGBT) having a separation diffusion layer and having a bidirectional breakdown voltage characteristic.

最近、半導体電力変換装置において、AC(交流)/AC変換、AC/DC(直流)変換、DC/AC変換など、直接リンク形変換回路等のマトリクスコンバータ用途への双方向スイッチング素子の採用が、回路の小型化、軽量化、高効率化、高速応答化および低コスト化等の観点から着目されている。そのような双方向スイッチング用素子として、逆阻止IGBTを2個逆並列接続させたものが知られている。この逆阻止IGBTは、図10に示すように第一主面側112から、すなわち、片面側からの拡散によって形成した分離拡散層111を備え、この分離拡散層111の内側に形成されるMOSゲート構造からなる活性部Aと、この活性部Aと分離拡散層111との間に位置する耐圧接合終端構造113を第一主面(表面)側112に設け、第二主面(裏面)側には低注入に制御された不純物濃度を有するコレクタ層103を備える構造である。   Recently, in semiconductor power conversion devices, the adoption of bidirectional switching elements for matrix converter applications such as direct link conversion circuits such as AC (alternating current) / AC conversion, AC / DC (direct current) conversion, DC / AC conversion, etc. It has attracted attention from the viewpoints of circuit miniaturization, weight reduction, high efficiency, high speed response, and low cost. As such a bidirectional switching element, an element in which two reverse blocking IGBTs are connected in reverse parallel is known. As shown in FIG. 10, the reverse blocking IGBT includes a separation diffusion layer 111 formed by diffusion from the first main surface side 112, that is, from one side, and a MOS gate formed inside the separation diffusion layer 111. An active portion A having a structure, and a pressure-bonding termination structure 113 positioned between the active portion A and the isolation diffusion layer 111 are provided on the first main surface (front surface) side 112, and on the second main surface (back surface) side. Is a structure including a collector layer 103 having an impurity concentration controlled to low implantation.

前述の低注入逆阻止IGBTを製造する際に、裏面コレクタ層103の形成は、逆耐圧用の分離拡散領域111の形成と前記分離拡散領域111で囲まれるシリコン基板表面に形成されるMOSゲート構造の形成後、シリコン基板の裏面を研削して前記分離拡散領域111を裏面に露出させた状態で、裏面にボロンをドーズ量1.2×1012cm−2乃至1.0×1016cm−2でイオン注入し、380℃で1時間のアニール熱処理によりボロンを濃度5×1016cm−3乃至5×1019cm−3程度の範囲のアクセプタとして活性化させることにより行なわれる。このコレクタ層103の厚さは、熱拡散履歴を経ていないので、0.3μm〜1μm程度である。つまり、アニール熱処理は表面電極形成後に行なわれるため、表面のアルミニウム電極が溶融しない600℃以下の温度領域で行なう必要があり、シリコン中のボロン拡散係数が非常に小さく、イオン注入直後の位置からのボロン原子がほとんど移動しない。イオン注入時の加速エネルギを上げて1μm以上のコレクタ層103を形成しようとすると、高エネルギイオンがシリコンに与えるダメージが大きく、シリコン中の結晶欠陥が増加する。結晶欠陥は低温アニールでは回復しにくく、逆方向漏れ電流の増加を引き起こすので好ましくない。 When manufacturing the above-described low-injection reverse blocking IGBT, the back collector layer 103 is formed by forming a reverse breakdown voltage isolation diffusion region 111 and a MOS gate structure formed on the silicon substrate surface surrounded by the isolation diffusion region 111. After forming the silicon substrate, the back surface of the silicon substrate is ground and the separation diffusion region 111 is exposed on the back surface, and boron is dosed to the back surface at a dose of 1.2 × 10 12 cm −2 to 1.0 × 10 16 cm −. 2 is performed by activating boron as an acceptor having a concentration of about 5 × 10 16 cm −3 to 5 × 10 19 cm −3 by annealing at 380 ° C. for 1 hour. The collector layer 103 has a thickness of about 0.3 μm to 1 μm because it has not undergone a thermal diffusion history. That is, since the annealing heat treatment is performed after the surface electrode is formed, it must be performed in a temperature region of 600 ° C. or less where the aluminum electrode on the surface does not melt, and the boron diffusion coefficient in silicon is very small. Boron atoms hardly move. If the acceleration energy at the time of ion implantation is increased to form the collector layer 103 having a thickness of 1 μm or more, the high-energy ions are greatly damaged by the silicon, and crystal defects in the silicon increase. Crystal defects are not preferred because they are difficult to recover by low-temperature annealing and cause an increase in reverse leakage current.

前記図10に示す低注入逆阻止IGBTでは、FZシリコン基板を採用したNPT(Non Punch Through)ウェハ(IGBTを形成後の基板厚さは、たとえば600V耐圧用で100μm、1200V耐圧用で180μm程度)を用いることができるので、コレクタ層103厚を薄くし、その不純物濃度を低く適切に制御して、コレクタ層103からの少数キャリアの注入をコントロールして、従来問題となっていたオン電圧特性とターンオフ損失に関するトレードオフ関係を改善し、共に小さくすることができる(特許文献1)。
シリコン基板にドープした場合、n導電形を示す不純物であるセレン、硫黄を用いて分離拡散層を形成することを含む電力用半導体素子の製造方法について知られている(特許文献2)。さらに、分離拡散層を形成することにより逆阻止IGBTを製造することについても良く知られている(特許文献3)。
特開2002−319676号公報 特表2002−528913号公報 特開平7−307469号公報
In the low-injection reverse blocking IGBT shown in FIG. 10, an NPT (Non Punch Through) wafer employing an FZ silicon substrate (the thickness of the substrate after forming the IGBT is, for example, 100 μm for 600 V withstand voltage and about 180 μm for 1200 V withstand voltage) Therefore, the collector layer 103 is thinned, its impurity concentration is appropriately controlled to control the minority carrier injection from the collector layer 103, and the on-voltage characteristics, which has been a problem in the past, can be obtained. The trade-off relationship regarding the turn-off loss can be improved and both can be reduced (Patent Document 1).
When a silicon substrate is doped, a method for manufacturing a power semiconductor element including forming a separation diffusion layer using selenium and sulfur as impurities having n conductivity type is known (Patent Document 2). Furthermore, it is well known to manufacture reverse blocking IGBTs by forming a separation diffusion layer (Patent Document 3).
JP 2002-319676 A Special table 2002-528913 gazette JP-A-7-307469

しかしながら、前述した逆阻止IGBTを製造する際、シリコン基板の裏面コレクタ層の形成後またはチップおよび組み立て中において、基板またはチップの裏面側に図2に示すように、接触や擦過による傷が入る場合がある。コレクタ層の厚さが前述のように0.3μm〜1μm程度と極めて薄いので、傷の影響が裏面コレクタ層(p層)とドリフト層(n層)間のpn接合に及ぶ惧れが非常に大きい。傷Bの影響がpn接合に及ぶと逆耐圧が劣化して特性不良となる。
さらに、裏面コレクタ層上に金属電極膜を被覆した後は、前記接触傷や擦過傷に対する耐久性が増加するが、それでも、組み立て作業などの際には、コレクタ金属電極膜を介してコレクタ層中に傷が入る場合や熱膨張係数差に起因する応力などの影響によりpn接合に影響が及ぶ場合がある。この結果、低注入逆耐圧IGBTチップを用いてマトリックスコンバータ用モジュールの素子として採用する場合、18個の逆阻止IGBTが必要になるが、これらのチップを前記マトリックスコンバータ用モジュールにはんだ付けにより組み立てた後、一チップでも特性不良となったIGBTが混ざると、全体が不良になってしまうという問題がある。この問題の解決には、シリコン基板やチップの取り扱い中または組み立て中に、裏面コレクタ層に通常避けられない程度の接触などにより傷や応力が加わっても耐圧不良にならないデバイスにすることが求められる。
However, when manufacturing the above-described reverse blocking IGBT, after the formation of the back collector layer of the silicon substrate or during the chip and assembly, the substrate or the back surface of the chip may be damaged due to contact or abrasion as shown in FIG. There is. Since the thickness of the collector layer is as extremely thin as about 0.3 μm to 1 μm as described above, there is a possibility that the influence of scratches may extend to the pn junction between the back collector layer (p layer) and the drift layer (n layer). large. When the effect of the scratch B reaches the pn junction, the reverse breakdown voltage deteriorates and a characteristic failure occurs.
Furthermore, after the metal electrode film is coated on the back collector layer, the durability against the contact scratch and the scratch is increased. However, in the case of assembling work, the collector metal electrode film is interposed in the collector layer. There are cases where the pn junction is affected by scratches or the influence of stress due to the difference in thermal expansion coefficient. As a result, when the low injection reverse breakdown voltage IGBT chip is used as an element of the matrix converter module, 18 reverse blocking IGBTs are required. These chips are assembled to the matrix converter module by soldering. Later, when IGBTs having poor characteristics are mixed even with one chip, there is a problem that the whole becomes defective. In order to solve this problem, it is required to make a device that does not cause a breakdown voltage failure even if scratches or stress is applied to the back collector layer during handling or assembly of the silicon substrate or chip due to contact that is normally unavoidable. .

本発明は、以上述べた問題点に鑑みてなされたものであり、本発明の目的は、低注入逆阻止IGBTを含む逆阻止型絶縁ゲート形半導体装置の裏面コレクタ層形成後に、該コレクタ層に加えられる傷や応力の逆耐圧へ及ぼす影響を小さくできる逆阻止型絶縁ゲート形半導体装置およびその製造方法を提供することにある。   The present invention has been made in view of the above-described problems, and an object of the present invention is to form a back collector layer of a reverse blocking insulated gate semiconductor device including a low-injection reverse blocking IGBT after the back collector layer is formed. An object of the present invention is to provide a reverse blocking insulated gate semiconductor device and a method for manufacturing the same, which can reduce the influence of applied scratches and stress on the reverse breakdown voltage.

特許請求の範囲の請求項1記載の発明によれば、前記目的は、第一導電形半導体基板の第一主面に選択形成される第二導電形ベース領域と、該ベース領域表面層に選択形成される第一導電形エミッタ領域と、前記半導体基板の残り部分である第一導電形ドリフト層と前記エミッタ領域とに挟まれる前記ベース領域の第一主面側表面に被覆されるゲート絶縁膜と該ゲート絶縁膜を介して被覆されるゲート電極と、前記第二導電形ベース領域を、前記ドリフト層を介して取り囲みかつ前記基板の第一主面から第二主面に亘って形成される第二導電形分離拡散領域と、前記半導体基板の第二主面に形成され、該第二主面に露出する前記分離拡散領域に連結される第二導電形低注入コレクタ層とを備える逆阻止型絶縁ゲート形半導体装置において、前記第二導電形ベース領域の形成に用いられた不純物原子より拡散係数の大きい不純物原子の熱拡散により形成された低注入コレクタ層を備える逆阻止型絶縁ゲート形半導体装置とすることにより、達成される。   According to the first aspect of the present invention, the object is to select the second conductivity type base region selectively formed on the first main surface of the first conductivity type semiconductor substrate and the base region surface layer. A gate insulating film coated on the first main surface side surface of the base region sandwiched between the first conductivity type emitter region to be formed, the first conductivity type drift layer which is the remaining portion of the semiconductor substrate, and the emitter region And the gate electrode covered via the gate insulating film, and the second conductivity type base region are formed through the drift layer and formed from the first main surface to the second main surface of the substrate. Reverse blocking comprising a second conductivity type isolation diffusion region and a second conductivity type low injection collector layer formed on the second main surface of the semiconductor substrate and connected to the isolation diffusion region exposed to the second main surface Type insulated gate semiconductor device This is achieved by providing a reverse blocking insulated gate semiconductor device including a low injection collector layer formed by thermal diffusion of impurity atoms having a diffusion coefficient larger than that of the impurity atoms used for forming the second conductivity type base region. .

特許請求の範囲の請求項2記載の発明によれば、前記第二導電形ベース領域の形成に用いられる不純物原子がボロンであり、コレクタ層の形成に用いられる不純物原子がアルミニウムまたはガリウムである請求項1記載の逆阻止型絶縁ゲート形半導体装置とすることが好ましい。
特許請求の範囲の請求項3記載の発明によれば、前記第二導電形ベース領域の形成に用いられる不純物原子がリンであり、コレクタ層の形成に用いられる不純物原子がセレンまたはイオウである請求項1記載の逆阻止型絶縁ゲート形半導体装置とすることもよい。
特許請求の範囲の請求項4記載の発明によれば、少なくとも、半導体基板の第一主面からの熱拡散により第二導電形分離拡散領域を形成する工程、第二導電形分離拡散領域により囲まれる半導体基板の第一主面にアルミニウム電極を除くMOSゲート構造を形成する工程、第二主面側を研削して前記第二導電形分離拡散領域を第二主面側に露出させる工程、アルミニウムイオンを第二主面にイオン注入し、熱拡散させる工程、第一主面にエミッタ電極とゲート電極パッドを形成する工程、第二主面に金属電極を蒸着形成する工程をこの順に含む逆阻止型絶縁ゲート形半導体装置の製造方法とすることにより、前記目的は達成される。
According to a second aspect of the present invention, the impurity atom used for forming the second conductivity type base region is boron, and the impurity atom used for forming the collector layer is aluminum or gallium. The reverse blocking insulated gate semiconductor device according to item 1 is preferable.
According to a third aspect of the present invention, the impurity atom used for forming the second conductivity type base region is phosphorus, and the impurity atom used for forming the collector layer is selenium or sulfur. The reverse blocking insulated gate semiconductor device according to Item 1 may be used.
According to the invention of claim 4, at least the step of forming the second conductivity type isolation diffusion region by thermal diffusion from the first main surface of the semiconductor substrate, the second conductivity type isolation diffusion region is surrounded. Forming a MOS gate structure excluding an aluminum electrode on the first main surface of the semiconductor substrate to be formed, grinding the second main surface side to expose the second conductivity type separation diffusion region to the second main surface side, aluminum Reverse blocking that includes ion implantation into the second main surface and thermal diffusion, formation of the emitter electrode and gate electrode pad on the first main surface, and deposition of a metal electrode on the second main surface in this order. The object is achieved by a method for manufacturing a type insulated gate semiconductor device.

前述の本発明によれば、低注入逆阻止IGBTの裏面コレクタ層形成後に、該コレクタ層に加えられる傷や応力の逆耐圧へ及ぼす影響を小さくできる低注入逆阻止IGBTを含む逆阻止型絶縁ゲート形半導体装置およびその製造方法を提供することができる。   According to the present invention described above, the reverse blocking type insulated gate including the low injection reverse blocking IGBT that can reduce the influence of the scratches and stress applied to the collector layer on the reverse breakdown voltage after the back collector layer of the low injection reverse blocking IGBT is formed. A semiconductor device and a method for manufacturing the same can be provided.

図1は本発明にかかる逆阻止型絶縁ゲート形バイポーラトランジスタ(逆阻止IGBT)の断面図、図2は逆阻止IGBTの裏面コレクタ層に入る傷Bの説明図、図3から図9までの図は図1の逆阻止IGBTの製造方法を示す工程ごとの断面図である。なお、本発明の要旨を超えない限り、本発明は以下説明する実施例の記載に限定されるものではない。
以下、図1にかかる耐圧が1200Vの低注入逆阻止IGBTについて説明する。本発明にかかる低注入逆阻止IGBTは、第一主面(表面)9側からのボロンの選択拡散による分離拡散領域2と、この分離拡散領域2に取り囲まれた内部のシリコン基板1の表面層に形成されるpベース領域3、nエミッタ領域4、ゲート酸化膜5、ゲート電極6等からなるMOSゲート構造を備え、シリコン基板1の第二主面(裏面)側には、前記分離拡散領域2と導電接続されるアルミニウムの熱拡散による低注入コレクタ層8を備え、両面にそれぞれ形成されるアルミニウムエミッタ電極7とコレクタ金属電極8−1を備える。
FIG. 1 is a sectional view of a reverse blocking insulated gate bipolar transistor (reverse blocking IGBT) according to the present invention, FIG. 2 is an explanatory view of a scratch B entering the back collector layer of the reverse blocking IGBT, and FIGS. 3 to 9 FIG. 3 is a cross-sectional view for each process showing a method of manufacturing the reverse blocking IGBT of FIG. 1. It should be noted that the present invention is not limited to the description of the examples described below unless it exceeds the gist of the present invention.
The low injection reverse blocking IGBT having a breakdown voltage of 1200 V according to FIG. 1 will be described below. The low-injection reverse blocking IGBT according to the present invention includes a separation diffusion region 2 formed by selective diffusion of boron from the first main surface (surface) 9 side, and a surface layer of the silicon substrate 1 inside the separation diffusion region 2. And a p-type base region 3, an n-type emitter region 4, a gate oxide film 5, a gate electrode 6, and the like. 2 and a low injection collector layer 8 by thermal diffusion of aluminum which is conductively connected, and an aluminum emitter electrode 7 and a collector metal electrode 8-1 formed on both surfaces, respectively.

つぎに、前記図1の逆阻止IGBTの具体的な製造方法について説明する。
図3から図9は、この発明の実施例にかかる逆阻止IGBTの製造方法を工程順に示すIGBTの要部断面図である。この逆阻止IGBTは1200V耐圧の逆阻止型IGBTの例である。厚さ500μmで比抵抗80ΩcmのFZシリコン基板101の(第一主面(表面)9に、2.4μmの初期酸化膜11を形成し、後工程でpベース領域が形成される箇所を取り囲むパターンで、分離拡散用の開口部12を選択的にエッチングして形成する(図3)。
つぎに、表面にボロンソースを塗布して熱処理することで、ボロンのデポジションを行い、ボロンデポジション領域13を形成する(図4)。
つぎに、ボロンガラスエッチングを行い酸化膜中のボロンを除去した後、1300℃の温度において酸素雰囲気中で深さ180μmまでボロンをドライブ拡散してp+分離拡散領域2を形成する。このとき、酸化膜11上に酸化膜11−1も形成される(図5)。
Next, a specific method for manufacturing the reverse blocking IGBT of FIG. 1 will be described.
FIGS. 3 to 9 are cross-sectional views of the main part of the IGBT showing the reverse blocking IGBT manufacturing method according to the embodiment of the present invention in the order of steps. This reverse blocking IGBT is an example of a reverse blocking IGBT having a withstand voltage of 1200V. A pattern surrounding an area where a 2.4 μm initial oxide film 11 is formed on a first main surface (surface) 9 of a FZ silicon substrate 101 having a thickness of 500 μm and a specific resistance of 80 Ωcm, and a p base region is formed in a later process. Thus, the separation diffusion opening 12 is formed by selective etching (FIG. 3).
Next, a boron source is applied to the surface and heat-treated to perform boron deposition, thereby forming a boron deposition region 13 (FIG. 4).
Next, boron glass etching is performed to remove boron in the oxide film, and then boron is driven and diffused to a depth of 180 μm in an oxygen atmosphere at a temperature of 1300 ° C. to form ap + isolation diffusion region 2. At this time, an oxide film 11-1 is also formed on the oxide film 11 (FIG. 5).

つぎに、pベース領域3、n+ エミッタ領域4、ゲート酸化膜5、ゲート電極6等からなるMOSゲート構造を従来と同様の方法で形成する(図6)。さらに、高速化を図るために、ライフタイムキラーとして電子線照射やヘリウム照射を行うこともある。
つぎに、第二主面10側を削り、さらにエッチング等により研削歪を除去してFZシリコン基板101の厚さを180μm程度に(研削後のシリコン基板を符号1で表す)する。裏面10にp+分離拡散領域2を露出させる(図7)。
つぎに、裏面10に、コレクタ層8を形成するために、ドーズ量1×1013cm-2のアルミニウムをイオン注入して1000℃程度で6時間の熱拡散を行う。アルミニウムはボロンより拡散係数が1×10−11cm/秒とボロンなどに比べて大きいので、短時間で、深いコレクタ層を形成できる。この結果、コレクタ層8−1の厚さは11μmとなる(図8)。ボロンより拡散係数の大きい不純物原子としてはアルミニウムの他にガリウムを用いることもできる。アルミニウムの拡散時間は、前述では1000℃で6時間としたが、同じコレクタ層の厚さを得るには、1300℃の場合は、18分で良い。1000℃より温度を下げることもできるが、800℃では600時間となり、実際的ではない。ガリウムの拡散係数はアルミニウムより10倍小さいので、同等のコレクタ層を得るには、アルミニウムの場合よりそれぞれ同じ温度で、約10倍の時間を要する。
Next, a MOS gate structure including the p base region 3, the n + emitter region 4, the gate oxide film 5, the gate electrode 6 and the like is formed by a method similar to the conventional method (FIG. 6). Furthermore, in order to increase the speed, electron beam irradiation or helium irradiation may be performed as a lifetime killer.
Next, the second main surface 10 side is cut, and grinding distortion is removed by etching or the like, so that the thickness of the FZ silicon substrate 101 is about 180 μm (the silicon substrate after grinding is represented by reference numeral 1). The p + isolation diffusion region 2 is exposed on the back surface 10 (FIG. 7).
Next, in order to form the collector layer 8 on the back surface 10, aluminum with a dose of 1 × 10 13 cm −2 is ion-implanted and thermal diffusion is performed at about 1000 ° C. for 6 hours. Aluminum has a diffusion coefficient of 1 × 10 −11 cm 2 / sec, which is larger than that of boron, and therefore, a deep collector layer can be formed in a short time. As a result, the collector layer 8-1 has a thickness of 11 μm (FIG. 8). In addition to aluminum, gallium can also be used as an impurity atom having a diffusion coefficient larger than that of boron. The diffusion time of aluminum is 6 hours at 1000 ° C. as described above. However, in order to obtain the same collector layer thickness, 18 minutes may be used at 1300 ° C. Although the temperature can be lowered from 1000 ° C., it is 600 hours at 800 ° C., which is not practical. Since the diffusion coefficient of gallium is 10 times smaller than that of aluminum, it takes about 10 times as much time at the same temperature as in the case of aluminum to obtain an equivalent collector layer.

アルミニウムの拡散係数はボロンよりかなり大きいので、裏面側のコレクタ層の形成中に受ける表面側のMOSゲート構造の変動は大きくないが、コレクタ層の形成のための熱履歴を考慮に入れてMOSゲート構造を形成することがより好ましい。
以上の説明では、第一導電形をn形、第二導電形をp形としたが、導電形を逆にし、第二導電形ベース領域のn形不純物原子として、リンを用いた場合は、コレクタ層の不純物原子として、リンより拡散係数の大きいセレンまたはイオウを不純物原子とすることもできる。
次に、表面側にアルミニウム金属電極膜をスパッタにより形成し、パターニングしてエミッタ電極7、ゲート電極パッド(図示せず)を形成する。ライフタイム調整のための電子線照射を行なった後、裏面金属膜を蒸着により形成してコレクタ電極8−1とし、シリコン基板の分離拡散領域2の中央でダイシングすることにより、本発明にかかる低注入逆阻止IGBTのチップが完成する(図9)。
Since the diffusion coefficient of aluminum is considerably larger than that of boron, the fluctuation of the MOS gate structure on the front surface side received during the formation of the collector layer on the back surface side is not large, but the MOS gate is taken into account for the thermal history for forming the collector layer More preferably, the structure is formed.
In the above description, the first conductivity type is n-type and the second conductivity type is p-type. However, when the conductivity type is reversed and phosphorus is used as the n-type impurity atom of the second conductivity type base region, As the impurity atoms in the collector layer, selenium or sulfur having a diffusion coefficient larger than that of phosphorus can be used as the impurity atoms.
Next, an aluminum metal electrode film is formed on the surface side by sputtering and patterned to form an emitter electrode 7 and a gate electrode pad (not shown). After performing electron beam irradiation for lifetime adjustment, a back metal film is formed by vapor deposition to form a collector electrode 8-1, and dicing at the center of the separation diffusion region 2 of the silicon substrate. An injection reverse blocking IGBT chip is completed (FIG. 9).

この低注入逆阻止IGBTのチップは裏面コレクタ層の厚さが1μm以下である従来の低注入逆阻止IGBTに比べて、裏面コレクタ層8の厚さは11μmと厚いので、裏面コレクタ層8に対して、ウェハ工程やチップの組み立て工程において、通常、避けられない程度の傷または応力などが加えられても、耐圧特性に影響するほどのpn接合への悪影響は受けにくくなる。その結果、前述のマトリックスコンバータなどへの適用に際しても、組み立て後の良品率の低下を防ぐことができる。
前述の実施例1では、コレクタ層8の厚さは11μmとしたが、1μmから20μmの範囲とすることが好ましい。コレクタ層8の厚さが1μm未満の場合は、裏面コレクタ層8への傷や応力の影響がpn接合に及ぶ確率が相対的に大きくなり、逆耐圧不良が増加する。1μm以上であれば、耐圧不良の発生率はかなり小さくなる。また、コレクタ層8の厚さは20μmあれば、前記傷や応力の影響はほとんどなくなる。しかし、20μmを超える厚さのコレクタ層8としても、コレクタ層8による電圧降下が無視できなくなるばかりか、ターンオフ損失が増えることによるデメリット等も次第に大きくなるので、避けたほうが良い。
This low injection reverse blocking IGBT chip has a thickness of 11 μm for the back collector layer 8 compared to the conventional low injection reverse blocking IGBT having a back collector layer thickness of 1 μm or less. Thus, even if an inevitable scratch or stress is applied in the wafer process or chip assembling process, the pn junction is hardly affected as much as it affects the withstand voltage characteristics. As a result, even when applied to the matrix converter described above, it is possible to prevent a decrease in the yield rate after assembly.
In Example 1 described above, the collector layer 8 has a thickness of 11 μm, but is preferably in the range of 1 μm to 20 μm. When the thickness of the collector layer 8 is less than 1 μm, the probability that the influence of scratches and stress on the back collector layer 8 reaches the pn junction becomes relatively large, and the reverse breakdown voltage defect increases. If it is 1 μm or more, the occurrence rate of breakdown voltage failure is considerably reduced. Further, if the thickness of the collector layer 8 is 20 μm, the influence of the scratches and stress is almost eliminated. However, even if the collector layer 8 has a thickness exceeding 20 μm, the voltage drop due to the collector layer 8 is not negligible, and disadvantages due to an increase in turn-off loss gradually increase.

以上の説明では、裏面コレクタ層に加えられる傷の深さが逆耐圧に及ぼす影響について、便宜的にコレクタ層のpn接合に及ぶと、逆耐圧に影響すると記したが、詳しくは、逆バイアス時にコレクタ層のpn接合からドリフト層内およびコレクタ層内に拡がる空乏層に傷の影響が及ぶかどうかである。図2に示すように、コレクタ層の厚さY、逆バイアス時に、pn接合14からコレクタ層8側に伸びる空乏層の先端の電界強度がゼロになる距離をx(すなわち、空乏層の接合からの幅をx)、コレクタ層中で、空乏層幅xの平均不純物濃度をNとし、アバランシェ降伏を起こす臨界の電界強度を2×10V/cmとすると、2×10< xNq/εとなり(q:電荷素量、ε:シリコンの誘電率)、コレクタ層中の空乏層幅xにおける総不純物量xNは、xN>1.3×1012cm−2が得られる。すなわち、傷Bの先端が裏面から空乏層に届く距離(すなわち、(Y−x))未満であれば、傷Bは空乏層に接触しないので、耐圧に影響しないことになる。ちなみに、前記空乏層幅xの平均不純物濃度Nを2種類、それぞれ、5×1016cm−3、5×1017cm−3とすると、空乏層xは0.26μm、0.026μmとなる(すなわち、コレクタ層の厚さYを10μmとすると、(Y−x)はコレクタ層の裏面から、それぞれ9.74μm、9.97μm)。従って、傷Bの深さは裏面から9.74μm未満、9.97μm未満までは耐圧に影響しない。従来の傷の許容深さの1μm以下に比べると大幅に耐圧不良を減らすことができる。 In the above description, the effect of the depth of the scratch applied to the back collector layer on the reverse breakdown voltage has been described as having an influence on the reverse breakdown voltage when it reaches the pn junction of the collector layer for convenience. Whether or not the depletion layer extending from the pn junction of the collector layer to the drift layer and the collector layer affects the scratch. As shown in FIG. 2, the distance at which the electric field intensity at the tip of the depletion layer extending from the pn junction 14 toward the collector layer 8 at the time of reverse bias and the thickness Y of the collector layer is zero is x (that is, from the depletion layer junction). X), the average impurity concentration of the depletion layer width x in the collector layer is N, and the critical electric field intensity causing avalanche breakdown is 2 × 10 5 V / cm, 2 × 10 5 <xNq / ε (Q: elementary charge amount, ε: dielectric constant of silicon), the total impurity amount xN in the depletion layer width x in the collector layer is xN> 1.3 × 10 12 cm −2 . That is, if the tip of the scratch B is less than the distance (that is, (Y−x)) that reaches the depletion layer from the back surface, the scratch B does not contact the depletion layer, so that the breakdown voltage is not affected. Incidentally, when the average impurity concentration N of the depletion layer width x is 5 × 10 16 cm −3 and 5 × 10 17 cm −3 , respectively, the depletion layer x becomes 0.26 μm and 0.026 μm ( That is, when the thickness Y of the collector layer is 10 μm, (Y−x) is 9.74 μm and 9.97 μm from the back surface of the collector layer, respectively. Therefore, the depth of the scratch B is less than 9.74 μm and less than 9.97 μm from the back surface and does not affect the pressure resistance. Compared with the conventional permissible depth of scratches of 1 μm or less, it is possible to greatly reduce the breakdown voltage.

本発明の逆阻止IGBTの断面図Cross-sectional view of reverse blocking IGBT of the present invention 本発明にかかる逆阻止IGBTの裏面側コレクタ層に入る傷の説明図Explanatory drawing of the crack which enters into the back side collector layer of reverse blocking IGBT concerning the present invention 本発明の逆阻止IGBTの製造工程にかかる断面図(その1)Sectional drawing concerning the manufacturing process of reverse blocking IGBT of this invention (the 1) 本発明の逆阻止IGBTの製造工程にかかる断面図(その2)Sectional drawing concerning the manufacturing process of reverse blocking IGBT of this invention (the 2) 本発明の逆阻止IGBTの製造工程にかかる断面図(その3)Sectional drawing concerning the manufacturing process of reverse blocking IGBT of this invention (the 3) 本発明の逆阻止IGBTの製造工程にかかる断面図(その4)Sectional drawing concerning the manufacturing process of reverse blocking IGBT of this invention (the 4) 本発明の逆阻止IGBTの製造工程にかかる断面図(その5)Sectional drawing concerning the manufacturing process of reverse blocking IGBT of this invention (the 5) 本発明の逆阻止IGBTの製造工程にかかる断面図(その6)Sectional drawing concerning the manufacturing process of reverse blocking IGBT of this invention (the 6) 本発明の逆阻止IGBTの製造工程にかかる断面図(その7)Sectional drawing concerning the manufacturing process of reverse blocking IGBT of this invention (the 7) 従来の逆阻止IGBTの断面図Cross-sectional view of a conventional reverse blocking IGBT

符号の説明Explanation of symbols

1 nベース領域(シリコン基板)
2 分離拡散領域
3 pベース領域
4 nエミッタ領域
5 ゲート酸化膜
6 ゲート電極
7 エミッタ電極
8 コレクタ層
8−1 コレクタ電極
9 第一主面
10 第二主面。
1 n base region (silicon substrate)
2 separation diffusion region 3 p base region 4 n emitter region 5 gate oxide film 6 gate electrode
7 Emitter electrode 8 Collector layer 8-1 Collector electrode
9 First main surface 10 Second main surface.

Claims (4)

第一導電形半導体基板の第一主面に選択形成される第二導電形ベース領域と、該ベース領域表面層に選択形成される第一導電形エミッタ領域と、前記半導体基板の残り部分である第一導電形ドリフト層と前記エミッタ領域とに挟まれる前記ベース領域の第一主面側表面に被覆されるゲート絶縁膜と該ゲート絶縁膜を介して被覆されるゲート電極と、前記第二導電形ベース領域を、前記ドリフト層を介して取り囲みかつ前記基板の第一主面から第二主面に亘って形成される第二導電形分離拡散領域と、前記半導体基板の第二主面に形成され、該第二主面に露出する前記分離拡散領域に連結される第二導電形低注入コレクタ層とを備える逆阻止型絶縁ゲート形半導体装置において、前記第二導電形ベース領域の形成に用いられた不純物原子より拡散係数の大きい不純物原子の熱拡散により形成された低注入コレクタ層を備えることを特徴とする逆阻止型絶縁ゲート形半導体装置。 A second conductivity type base region selectively formed on a first main surface of the first conductivity type semiconductor substrate; a first conductivity type emitter region selectively formed on a surface layer of the base region; and a remaining portion of the semiconductor substrate. A gate insulating film coated on a first main surface side surface of the base region sandwiched between the first conductivity type drift layer and the emitter region, a gate electrode coated via the gate insulating film, and the second conductive A second base type separation diffusion region that surrounds the drift base layer and is formed from the first main surface to the second main surface of the substrate and the second main surface of the semiconductor substrate; And a second conductivity type low-injection collector layer connected to the isolation diffusion region exposed on the second main surface, and used for forming the second conductivity type base region. Than the impurity atoms Reverse blocking insulated gate semiconductor device, characterized in that it comprises a low injection collector layer formed by thermal diffusion of a large impurity atoms coefficients. 前記第二導電形ベース領域の形成に用いられる不純物原子がボロンであり、コレクタ層の形成に用いられる不純物原子がアルミニウムまたはガリウムであることを特徴とする請求項1記載の逆阻止型絶縁ゲート形半導体装置。 2. The reverse blocking insulated gate type according to claim 1, wherein the impurity atom used for forming the second conductivity type base region is boron, and the impurity atom used for forming the collector layer is aluminum or gallium. Semiconductor device. 前記第二導電形ベース領域の形成に用いられる不純物原子がリンであり、コレクタ層の形成に用いられる不純物原子がセレンまたはイオウであることを特徴とする請求項1記載の逆阻止型絶縁ゲート形半導体装置。 2. The reverse-blocking insulated gate type according to claim 1, wherein the impurity atom used for forming the second conductivity type base region is phosphorus, and the impurity atom used for forming the collector layer is selenium or sulfur. Semiconductor device. 少なくとも、半導体基板の第一主面からの熱拡散により第二導電形分離拡散領域を形成する工程、第二導電形分離拡散領域により囲まれる半導体基板の第一主面にアルミニウム電極を除くMOSゲート構造を形成する工程、第二主面側を研削して前記第二導電形分離拡散領域を第二主面側に露出させる工程、アルミニウムイオンを第二主面にイオン注入し、熱拡散させる工程、第一主面にエミッタ電極とゲート電極パッドを形成する工程、第二主面に金属電極を蒸着形成する工程をこの順に含むことを特徴とする逆阻止型絶縁ゲート形半導体装置の製造方法。 At least a step of forming a second conductivity type isolation diffusion region by thermal diffusion from the first main surface of the semiconductor substrate, a MOS gate excluding an aluminum electrode on the first main surface of the semiconductor substrate surrounded by the second conductivity type isolation diffusion region A step of forming a structure, a step of grinding the second main surface side to expose the second conductivity type separation diffusion region to the second main surface side, a step of ion-implanting aluminum ions into the second main surface and thermally diffusing A method of manufacturing a reverse blocking insulated gate semiconductor device comprising the steps of: forming an emitter electrode and a gate electrode pad on a first main surface; and depositing a metal electrode on a second main surface in this order.
JP2004271225A 2004-09-17 2004-09-17 Reverse blocking insulated gate semiconductor device and method for manufacturing the same Expired - Fee Related JP4882214B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004271225A JP4882214B2 (en) 2004-09-17 2004-09-17 Reverse blocking insulated gate semiconductor device and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004271225A JP4882214B2 (en) 2004-09-17 2004-09-17 Reverse blocking insulated gate semiconductor device and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2006086414A true JP2006086414A (en) 2006-03-30
JP4882214B2 JP4882214B2 (en) 2012-02-22

Family

ID=36164651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004271225A Expired - Fee Related JP4882214B2 (en) 2004-09-17 2004-09-17 Reverse blocking insulated gate semiconductor device and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP4882214B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008053611A (en) * 2006-08-28 2008-03-06 Fuji Electric Holdings Co Ltd Method of manufacturing semiconductor device
JP2013120883A (en) * 2011-12-08 2013-06-17 Fuji Electric Co Ltd Lateral diffusion width evaluation method of diffusion region formed in semiconductor device
US10026831B2 (en) 2015-08-18 2018-07-17 Fuji Electric Co., Ltd. Semiconductor device and method of manufacturing semiconductor device
CN110660667A (en) * 2018-06-29 2020-01-07 上海先进半导体制造股份有限公司 IGBT manufacturing method and IGBT
CN113764508A (en) * 2020-06-04 2021-12-07 三菱电机株式会社 semiconductor device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60236265A (en) * 1984-05-09 1985-11-25 Toshiba Corp Conductive modulation type mosfet
JPH0352266A (en) * 1989-07-03 1991-03-06 General Electric Co <Ge> FET, IGBT and MCT structures with improved operating characteristics and their manufacturing methods
JPH07307469A (en) * 1994-03-14 1995-11-21 Toshiba Corp Semiconductor device
JPH10150004A (en) * 1996-11-20 1998-06-02 Toshiba Corp Semiconductor device and its manufacture
JP2001015769A (en) * 1999-07-02 2001-01-19 Fuji Electric Co Ltd High voltage semiconductor device
JP2001196320A (en) * 1999-10-26 2001-07-19 Toshiba Corp Doping method, manufacturing method of semiconductor device, manufacturing method of semiconductor element and manufacturing apparatus thereof and doping equipment
JP2002520885A (en) * 1998-07-17 2002-07-09 インフィネオン テクノロジース アクチエンゲゼルシャフト Power semiconductor device for high reverse voltage
JP2002528913A (en) * 1998-10-23 2002-09-03 インフィネオン テクノロジース アクチエンゲゼルシャフト Power semiconductor and manufacturing method
JP2002319676A (en) * 2000-08-09 2002-10-31 Fuji Electric Co Ltd Semiconductor device, method of manufacturing the same, and method of controlling the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60236265A (en) * 1984-05-09 1985-11-25 Toshiba Corp Conductive modulation type mosfet
JPH0352266A (en) * 1989-07-03 1991-03-06 General Electric Co <Ge> FET, IGBT and MCT structures with improved operating characteristics and their manufacturing methods
JPH07307469A (en) * 1994-03-14 1995-11-21 Toshiba Corp Semiconductor device
JPH10150004A (en) * 1996-11-20 1998-06-02 Toshiba Corp Semiconductor device and its manufacture
JP2002520885A (en) * 1998-07-17 2002-07-09 インフィネオン テクノロジース アクチエンゲゼルシャフト Power semiconductor device for high reverse voltage
JP2002528913A (en) * 1998-10-23 2002-09-03 インフィネオン テクノロジース アクチエンゲゼルシャフト Power semiconductor and manufacturing method
JP2001015769A (en) * 1999-07-02 2001-01-19 Fuji Electric Co Ltd High voltage semiconductor device
JP2001196320A (en) * 1999-10-26 2001-07-19 Toshiba Corp Doping method, manufacturing method of semiconductor device, manufacturing method of semiconductor element and manufacturing apparatus thereof and doping equipment
JP2002319676A (en) * 2000-08-09 2002-10-31 Fuji Electric Co Ltd Semiconductor device, method of manufacturing the same, and method of controlling the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008053611A (en) * 2006-08-28 2008-03-06 Fuji Electric Holdings Co Ltd Method of manufacturing semiconductor device
JP2013120883A (en) * 2011-12-08 2013-06-17 Fuji Electric Co Ltd Lateral diffusion width evaluation method of diffusion region formed in semiconductor device
US10026831B2 (en) 2015-08-18 2018-07-17 Fuji Electric Co., Ltd. Semiconductor device and method of manufacturing semiconductor device
US10205010B2 (en) 2015-08-18 2019-02-12 Fuji Electric Co., Ltd. Semiconductor device and method of manufacturing semiconductor device
CN110660667A (en) * 2018-06-29 2020-01-07 上海先进半导体制造股份有限公司 IGBT manufacturing method and IGBT
CN110660667B (en) * 2018-06-29 2023-06-13 上海先进半导体制造有限公司 IGBT manufacturing method and IGBT
CN113764508A (en) * 2020-06-04 2021-12-07 三菱电机株式会社 semiconductor device

Also Published As

Publication number Publication date
JP4882214B2 (en) 2012-02-22

Similar Documents

Publication Publication Date Title
JP2893053B2 (en) Process for localized shortening of charge carrier lifetime in integrated electronic device, and integrated electronic device with localized shortening of charge carrier lifetime
US7897452B2 (en) Method of producing a semiconductor device with an aluminum or aluminum alloy rear electrode
US20080102576A1 (en) Semiconductor device and manufacturing method thereof
CN101256948A (en) Manufacturing method of semiconductor element
WO2014030457A1 (en) Semiconductor device and method for manufacturing semiconductor device
JP2004336008A (en) Reverse blocking insulated gate type bipolar transistor and its fabrication method
US6524894B1 (en) Semiconductor device for use in power-switching device and method of manufacturing the same
JP4746927B2 (en) Manufacturing method of semiconductor device
JP5600985B2 (en) Method for manufacturing power semiconductor device
JP6467882B2 (en) Semiconductor device and method for manufacturing semiconductor device
JP2002261281A (en) Manufacturing method of insulated gate bipolar transistor
JP6654189B2 (en) Method for manufacturing semiconductor device with thin semiconductor wafer
JP7479315B2 (en) Semiconductor device and method for manufacturing the same
JP2002203965A (en) Semiconductor device
CN103489776B (en) A kind of realize a processing method for cut-off type insulated gate bipolar transistor npn npn
JP4882214B2 (en) Reverse blocking insulated gate semiconductor device and method for manufacturing the same
US9385210B2 (en) Method for manufacturing semiconductor device using a gettering layer
JP5248741B2 (en) Reverse blocking insulated gate semiconductor device and method for manufacturing the same
JP4843923B2 (en) High voltage semiconductor device and manufacturing method thereof
JP2004186620A (en) Method for manufacturing semiconductor device
JP4892825B2 (en) Manufacturing method of semiconductor device
CN103489775A (en) Novel field cut-off type insulated gate bipolar transistor manufacturing method
JP4821088B2 (en) Method of manufacturing reverse blocking insulated gate bipolar transistor
JP2008053611A (en) Method of manufacturing semiconductor device
JP4951872B2 (en) Manufacturing method of semiconductor device

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060703

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060704

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070810

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080204

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081216

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090219

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20091112

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111108

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees