[go: up one dir, main page]

JP2006083370A - Ethylene-based polymer and application for blow-molded article - Google Patents

Ethylene-based polymer and application for blow-molded article Download PDF

Info

Publication number
JP2006083370A
JP2006083370A JP2005233961A JP2005233961A JP2006083370A JP 2006083370 A JP2006083370 A JP 2006083370A JP 2005233961 A JP2005233961 A JP 2005233961A JP 2005233961 A JP2005233961 A JP 2005233961A JP 2006083370 A JP2006083370 A JP 2006083370A
Authority
JP
Japan
Prior art keywords
ethylene
polymerization
molecular weight
ethylene polymer
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005233961A
Other languages
Japanese (ja)
Other versions
JP5288682B2 (en
Inventor
Katsuhiko Okamoto
勝彦 岡本
Tetsushi Kasai
徹志 笠井
Yasushi Doi
靖 土肥
Koji Endo
浩司 遠藤
Shirou Otsuzuki
士郎 緒續
Takahiro Akashi
崇弘 明石
Kenji Iwamasa
健司 岩政
Keiko Fukushi
景子 福士
Shinichi Nagano
伸一 永野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2005233961A priority Critical patent/JP5288682B2/en
Publication of JP2006083370A publication Critical patent/JP2006083370A/en
Application granted granted Critical
Publication of JP5288682B2 publication Critical patent/JP5288682B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ethylene-based polymer excellent in moldability, and mechanical strength and environmental breaking stress resistance, and capable of giving a molded article excellent in appearance, especially a blow-molded article. <P>SOLUTION: This ethylene-based polymer containing 0.02-0.50 mol% constituting unit introduced from a 6-10C α-olefin is provided by satisfying any one or more of the following (1) and (2) in its cross fractionation chromatography (CFC). (1) The amount of eluted components at ≤80°C is ≤5% based on the total eluted amount in the CFC. (2) A relational formula (Eq-1) [wherein, S<SB>x</SB>is the total value of areas of total peaks based on the components eluted between 70-85°C; S<SB>total</SB>is the total value of areas of total peaks based on the components eluted between 0-145°C] is satisfied. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、成形性に優れ、機械的強度および耐環境応力破壊性(ESCR)に特に優れた成形体を与えるエチレン系重合体、およびこれから得られる成形体に関する。   The present invention relates to an ethylene polymer that provides a molded article having excellent moldability and particularly excellent mechanical strength and environmental stress fracture resistance (ESCR), and a molded article obtained therefrom.

フィルム、パイプ、ボトル容器など幅広い用途に使用されている高密度ポリエチレンは従来チーグラー・ナッタ触媒やクロム触媒を用いて製造されてきた。しかし、これらの触媒の性質上、重合体の分子量分布や組成分布の制御には限界があった。   High-density polyethylene used in a wide range of applications such as films, pipes and bottle containers has been conventionally produced using Ziegler-Natta catalysts and chromium catalysts. However, due to the properties of these catalysts, there is a limit to the control of the molecular weight distribution and composition distribution of the polymer.

近年、組成分布を制御しやすいシングルサイト触媒またはシングルサイト触媒を担体に担持した触媒を用いて、分子量が相対的に小さいエチレン単独重合体またはエチレン・α-オレフィン共重合体と、分子量が相対的に大きいエチレン単独重合体またはエチレン・α-オレフィン共重合体を含む、成形性および機械的強度に優れるエチレン系重合体を連続重合法によって製造する方法がいくつか開示されている。   In recent years, ethylene homopolymers or ethylene / α-olefin copolymers with a relatively low molecular weight have been used with a single-site catalyst or a catalyst with a single-site catalyst supported on a carrier that can easily control the composition distribution. Have disclosed several methods for producing an ethylene polymer having excellent moldability and mechanical strength, including a large ethylene homopolymer or ethylene / α-olefin copolymer, by a continuous polymerization method.

特開平11-106432号公報には担持型幾何拘束型シングルサイト触媒(CGC/Borate系触媒)を用いて重合することにより得られた、低分子量ポリエチレンと高分子量エチレン・α-オレフィン共重合体とを溶融ブレンドすることで調製された組成物が開示されている。しかし、前記公報の特許請求範囲においては、エチレンと共重合させるα-オレフィンの好ましい炭素数範囲が開示されていないが、炭素数が6未満の場合では、機械強度が十分には発現しないことが予想される。更に、単段重合品の分子量分布(Mw/Mn)が広いために、衝撃強度などの機械物性において、単段品の分子量分布が狭いものと比較して十分でないことも予想される。なお、単段重合品の組成分布が広いと上記の強度に劣るという予想は、(株)シーエムシー出版、「機能材料」、2001年3月号50頁記載のクロス分別(CFC)データ、特開平11-106432号公報の図2に記載のクロス分別(CFC)データからも明らかである。   JP-A-11-106432 discloses a low molecular weight polyethylene and a high molecular weight ethylene / α-olefin copolymer obtained by polymerization using a supported geometrically constrained single site catalyst (CGC / Borate catalyst). A composition prepared by melt blending is disclosed. However, in the claims of the above publication, the preferred carbon number range of the α-olefin copolymerized with ethylene is not disclosed, but when the carbon number is less than 6, the mechanical strength may not be sufficiently developed. is expected. Furthermore, since the molecular weight distribution (Mw / Mn) of the single-stage polymer is wide, it is expected that the mechanical properties such as impact strength are not sufficient as compared with the narrow molecular weight distribution of the single-stage product. The forecast that the above-mentioned strength is inferior when the composition distribution of the single-stage polymer is wide is that of CMC Publishing Co., Ltd., “Functional Materials”, Cross Separation (CFC) data described on page 50 of the March 2001 issue. This is also clear from the cross fractionation (CFC) data described in FIG. 2 of the Kaihei 11-106432 publication.

WO01/25328号公報には、CpTiNP(tBu)3Cl2とボレートまたはアルモキサンからなる触媒系を用いた溶液重合により得られるエチレン系重合体が開示されている。このエチレン系重合体においては、分子量が低い成分に分岐があるために結晶構造が弱く、従って機械強度に劣ることが予想される。また該公報の特許請求範囲においては、エチレンと共重合させるα-オレフィンの好ましい炭素数範囲が開示されていないが、炭素数が6未満の場合は機械強度が十分には発現しないことも考えられる。   WO01 / 25328 discloses an ethylene polymer obtained by solution polymerization using a catalyst system composed of CpTiNP (tBu) 3Cl2 and borate or alumoxane. In this ethylene-based polymer, since the component having a low molecular weight is branched, the crystal structure is weak, and therefore, it is expected that the mechanical strength is inferior. Further, in the claims of this publication, the preferred carbon number range of the α-olefin copolymerized with ethylene is not disclosed, but if the carbon number is less than 6, the mechanical strength may not be sufficiently developed. .

EP1201711A1号公報には、シリカに担持したエチレン・ビス(4,5,6,7-テトラヒドロ-1-インデニル)ジルコニウムジクロライドとメチルアルモキサンからなる触媒系の存在下で、スラリー重合により得られたエチレン系重合体が開示されている。このエチレン系重合体のうち単段重合品は、分子量分布(Mw/Mn)が広いため、単段品の分子量分布が狭いものに比較して衝撃強度などが劣ることが予想される。また、分子量分布が広いということは活性種が不均一であると推測され、その結果として組成分布が広がり耐環境応力破壊性(ESCR)などの長期物性が低下することが懸念される。   EP1201711A1 discloses ethylene obtained by slurry polymerization in the presence of a catalyst system consisting of ethylene bis (4,5,6,7-tetrahydro-1-indenyl) zirconium dichloride and methylalumoxane supported on silica. System polymers are disclosed. Among these ethylene polymers, the single-stage polymer has a wide molecular weight distribution (Mw / Mn), and therefore, it is expected that the impact strength and the like are inferior to those of the single-stage product having a narrow molecular weight distribution. In addition, the broad molecular weight distribution is presumed that the active species are non-uniform, and as a result, there is a concern that the composition distribution is widened and long-term physical properties such as environmental stress fracture resistance (ESCR) are lowered.

特開2002-53615号公報では、シリカに担持された特定のサリチルアルジミン配位子を有するジルコニウム化合物およびメチルアルモキサンからなる触媒系を用いて、スラリー重合して得られるエチレン系重合体が開示されている。該公報の特許請求範囲においては、エチレンと共重合するα-オレフィンの好ましい炭素数範囲が開示されていないが、該公報の実施例でα-オレフィンとして用いられている1-ブテン(炭素原子数=4)で得られる
エチレン系重合体では、機械強度が十分には発現しないことが想定される。
JP 2002-53615 discloses an ethylene polymer obtained by slurry polymerization using a catalyst system comprising a zirconium compound having a specific salicylaldimine ligand supported on silica and methylalumoxane. ing. Although the preferred carbon number range of the α-olefin copolymerized with ethylene is not disclosed in the claims of the publication, 1-butene (the number of carbon atoms) used as the α-olefin in the examples of the publication = 4) It is assumed that the ethylene polymer obtained in 4) does not exhibit sufficient mechanical strength.

特許第821037号公報などに記載された、チーグラー触媒を用いたエチレン(共)重合体は、重合中にメチル分岐が副生するために分子鎖中にメチル分岐が存在する。メチル分岐は結晶中に取り込まれて結晶を弱くすることが知られており(例えば、Polymer,Vol.31,1999頁,1990年参照)、それが原因でエチレン(共)重合体の機械的強度を低下させていた。また、エチレンとα-オレフィンとの共重合においては、α-オレフィンをほとんど含まない場合は硬くて脆い成分が生成する、一方、α-オレフィンが過剰に共重合する場合は、柔らかくて弱い成分が生成することに加えて、組成分布が広いためべたつきの原因になる成分を生成する場合があった。また、分子量分布が広いために、低分子量体が成形物表面に粉状物質として付着する現象を呈するなどの問題があった。   The ethylene (co) polymer using a Ziegler catalyst described in Japanese Patent No. 821037 and the like has methyl branches in the molecular chain because methyl branches are by-produced during the polymerization. Methyl branching is known to be incorporated into crystals and weaken the crystals (see, for example, Polymer, Vol. 31, page 1999, 1990), which causes the mechanical strength of ethylene (co) polymers. Was lowering. In addition, in the copolymerization of ethylene and α-olefin, a hard and brittle component is formed when almost no α-olefin is contained, while a soft and weak component is formed when α-olefin is excessively copolymerized. In addition to the generation, there are cases where components that cause stickiness are generated due to the wide composition distribution. In addition, since the molecular weight distribution is wide, there has been a problem that a low molecular weight body exhibits a phenomenon of adhering to the surface of the molded product as a powdery substance.

特開平9-183816号公報などに記載されたメタロセン触媒を用いる重合により得られるエチレン系重合体は、重合中にメチル分岐が副生する結果、分子鎖中にメチル分岐が存在する。メチル分岐は結晶中に取り込まれて結晶構造を弱くする。そのことが、機械的強度を低下させる原因となっていた。また、分子量が極めて大きいエチレン系重合体は、これまで開示されていない。   In an ethylene polymer obtained by polymerization using a metallocene catalyst described in JP-A-9-183816 or the like, methyl branching is present in the molecular chain as a result of by-production of methyl branching during the polymerization. The methyl branch is incorporated into the crystal and weakens the crystal structure. This has been a cause of lowering the mechanical strength. Further, an ethylene polymer having an extremely large molecular weight has not been disclosed so far.

クロム系触媒を用いた重合により得られるエチレン系重合体は、長鎖分岐を含有するために分子の拡がりが小さく、そのために機械的強度ならびに耐環境応力破壊性(ESCR)が劣っていた。また、重合中にメチル分岐が副生するために、分子鎖中にメチル分岐が存在していた。メチル分岐は結晶中に取り込まれて結晶構造を弱める。そのことが、機械的強度を低下させる原因になっていた。   The ethylene-based polymer obtained by polymerization using a chromium-based catalyst has long chain branching and thus has a small molecular expansion, and therefore has poor mechanical strength and environmental stress fracture resistance (ESCR). Further, methyl branching was present in the molecular chain because methyl branching was by-produced during the polymerization. The methyl branch is incorporated into the crystal and weakens the crystal structure. This has been a cause of lowering the mechanical strength.

WO93/08221号公報などに記載された拘束幾何触媒(CGC)を用いた重合により得られるエチレン系重合体は、重合中にメチル分岐が副生するため、分子鎖中にメチル分岐が存在していた。メチル分岐は結晶中に取り込まれて結晶構造を弱める。それが機械的強度低下の原因になっていた。また、長鎖分岐を含有するために分子の拡がりが小さく、そのために機械的強度ならびに耐環境応力破壊性(ESCR)が不十分であった。   The ethylene polymer obtained by polymerization using a constrained geometric catalyst (CGC) described in WO 93/08221 and the like has a methyl branch as a by-product during the polymerization, and therefore has a methyl branch in the molecular chain. It was. The methyl branch is incorporated into the crystal and weakens the crystal structure. This has caused a decrease in mechanical strength. In addition, since it contains long chain branches, the molecular spread is small, and therefore mechanical strength and environmental stress fracture resistance (ESCR) are insufficient.

高圧ラジカル重合法により得られるエチレン系重合体は、重合中にメチル分岐や長鎖分岐が副生するため、分子鎖中にメチル分岐や長鎖分岐が存在していた。メチル分岐は結晶中に取り込まれて結晶強度を弱くする。そのことが、機械的強度を低下させる原因となっていた。また、長鎖分岐を含有するために分子の拡がりが小さく、分子量分布が広く、そのために耐環境応力破壊性(ESCR)に劣っていた。
特開平11-106432号公報 WO01/25328号公報 EP1201711A1号公報 特開2002-53615号公報 特許第821037号公報 特開平9-183816号公報 WO93/08221号公報 (株)シーエムシー出版、「機能材料」、2001年3月号50頁 Polymer,Vol.31,1999頁,1990年
The ethylene polymer obtained by the high-pressure radical polymerization method has methyl branches and long chain branches in the molecular chain because methyl branches and long chain branches are by-produced during the polymerization. The methyl branch is incorporated into the crystal and weakens the crystal strength. This has been a cause of lowering the mechanical strength. In addition, since it contains long-chain branches, the molecular spread is small and the molecular weight distribution is wide, and therefore it is inferior in environmental stress fracture resistance (ESCR).
Japanese Patent Laid-Open No. 11-106432 WO01 / 25328 EP1201711A1 Publication JP 2002-53615 A Japanese Patent No. 821037 JP-A-9-183816 WO93 / 08221 Publication CMC Publishing Co., Ltd., “Functional Materials”, March 2001, page 50 Polymer, Vol. 31, 1999, 1990

成形性に優れ、且つ機械的強度と耐環境応力破壊性(ESCR)に特に優れた成形体、とりわけブロー成形体を与えるエチレン系重合体を提供すること。   Disclosed is an ethylene polymer that provides a molded article having excellent moldability and particularly excellent mechanical strength and environmental stress fracture resistance (ESCR), particularly a blow molded article.

本発明者らは前記の従来技術に鑑みて、成形性に優れ、且つ機械的強度、耐環境応力破壊性に優れた成形体が得られるようなエチレン系重合体について鋭意研究したところ、炭素原子数6〜10のα-オレフィンから導かれる構成単位を0.02〜0.50mol%含むエチレン系重合体であって、クロス分別(CFC)において、下記の(1)または(2)のいずれか一つ以上を満たすエチレン系重合体(E)が成形性に優れ、且つ機械的強度、耐環境応力破壊性(ESCR)に優れた成形体、とりわけブロー成形体を与えることを見出し本発明を完成するに至った。
(1)CFCの全溶出量に対する80℃以下の溶出成分が5%以下である。
(2)下記の関係式(Eq-1)を満たす。
In view of the above prior art, the present inventors have conducted intensive research on an ethylene-based polymer capable of obtaining a molded article having excellent moldability and excellent mechanical strength and environmental stress fracture resistance. An ethylene-based polymer containing 0.02 to 0.50 mol% of structural units derived from α-olefin of several 6 to 10, and in cross fractionation (CFC), at least one of the following (1) or (2) The present invention has been completed by finding that an ethylene polymer (E) satisfying the requirements provides a molded product having excellent moldability and excellent mechanical strength and environmental stress fracture resistance (ESCR), particularly a blow molded product. It was.
(1) The elution component at 80 ° C. or less is 5% or less with respect to the total elution amount of CFC.
(2) The following relational expression (Eq-1) is satisfied.

Figure 2006083370
Figure 2006083370

(Eq-1中、Sxは70〜85℃で溶出する成分に基づく全ピークの面積合計値であり、Stotalは0〜145℃で溶出する成分に基づく全ピークの面積合計値である。)
本発明に係わるエチレン系重合体(E)は、上記要件に加えて、下記(1’)〜(5’)の要件を全て満たすことが好ましい。
(1‘) 密度(d)が945〜975kg/m3の範囲にある。
(2’) 135℃、デカリン中で測定した極限粘度([η])が1.6〜2.8(dL/g)の範囲にある。
(3‘) GPCで測定した重量平均分子量(Mw)と数平均分子量(Mn)の比(Mw/Mn)が5〜30の範囲にある。
(4‘) GPC曲線を2つの対数正規分布曲線に分離した時に、各々の曲線の重量平均分子量(Mw)と数平均分子量(Mn)の比(Mw/Mn)が1.5〜3.5、高分子量側に分離された曲線の重量平均分子量(Mw2)が200,000〜800,000である。
(5‘) クロス分別(CFC)において分子量が100,000以上で最も強いピークの頂点の溶出温度をTh(℃)とした場合、[(Th-1)〜Th](℃)で溶出した画分のGPC曲線の中で、分子量が100,000以上で最も強いピークの頂点の分子量が200,000〜800,000の範囲にある。
(In Eq-1, Sx is the total area value of all peaks based on components eluting at 70 to 85 ° C., and Stotal is the total area value of all peaks based on components eluting at 0 to 145 ° C.)
The ethylene polymer (E) according to the present invention preferably satisfies all the following requirements (1 ′) to (5 ′) in addition to the above requirements.
(1 ') Density (d) is in the range of 945-975kg / m3.
(2 ′) The intrinsic viscosity ([η]) measured in decalin at 135 ° C. is in the range of 1.6 to 2.8 (dL / g).
(3 ′) The ratio (Mw / Mn) of the weight average molecular weight (Mw) and the number average molecular weight (Mn) measured by GPC is in the range of 5-30.
(4 ') When the GPC curve is separated into two lognormal distribution curves, the ratio (Mw / Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) of each curve is 1.5 to 3.5, high molecular weight side The weight-average molecular weight (Mw2) of the curve separated into two is 200,000 to 800,000.
(5 ') When the elution temperature at the peak of the strongest peak with a molecular weight of 100,000 or more in cross fractionation (CFC) is Th (° C), the fraction eluted with [(Th-1) to Th] (° C) In the GPC curve, the molecular weight of the strongest peak at a molecular weight of 100,000 or more is in the range of 200,000 to 800,000.

このエチレン系重合体を以下の説明では、エチレン系重合体(E’)と呼ぶ場合がある。   In the following description, this ethylene polymer may be referred to as an ethylene polymer (E ′).

本発明のエチレン重合体(E)をブロー成形体用に応用する場合、エチレン系重合体(E)が満たすべき前述要件に加えて、下記要件(1B)を満たすことが好ましく〔このエチレン重合体を、以下の説明ではエチレン系重合体(EB)と呼ぶ場合がある〕、特に好ましくは下記要件(1B‘)を満たすことが好ましい〔このエチレン重合体を、以下の説明ではエチレン系重合体(EB’)と呼ぶ場合がある〕。 (1B) ASTM-D-790に準拠して、23℃で測定した曲げ弾性率をMとした場合、またASTM-D-1693に準拠して測定した50℃における耐環境応力破壊性ESCR(hr)をTとした場合、
1,500≦M≦1,800(MPa)のとき、T≧10(hr)でありかつ、
600≦M<1500(MPa)のとき、MとTとの関係が下記の式(Eq-2)を満たす。
When the ethylene polymer (E) of the present invention is applied to a blow molded article, it is preferable to satisfy the following requirement (1B) in addition to the above-mentioned requirement that the ethylene polymer (E) should satisfy [the ethylene polymer May be referred to as an ethylene polymer (EB) in the following description], particularly preferably satisfying the following requirement (1B ′) [this ethylene polymer is referred to as an ethylene polymer in the following description ( EB '). (1B) Environmental stress fracture resistance ESCR (hr at 50 ° C measured in accordance with ASTM-D-790, measured at 23 ° C as M, and measured in accordance with ASTM-D-1693 ) Is T
When 1,500 ≦ M ≦ 1,800 (MPa), T ≧ 10 (hr) and
When 600 ≦ M <1500 (MPa), the relationship between M and T satisfies the following formula (Eq-2).

Figure 2006083370
Figure 2006083370

(1B‘) 動的粘弾性装置を用いて測定した190℃、角周波数100 rad/secにおけるtanδ
(=損失弾性率G’’/貯蔵弾性率G’)が0.6〜0.9である。
(1B ') tanδ measured at 190 ° C and angular frequency 100 rad / sec measured using a dynamic viscoelastic device
(= Loss elastic modulus G ″ / storage elastic modulus G ′) is 0.6 to 0.9.

また、ブロー成形体用のエチレン系重合体(EB)および(EB’)においては、エチレン系重合体(E)が、前記要件(1’)〜(5’)をも満たすエチレン系重合体(E’)であることが好ましい。   In the ethylene polymers (EB) and (EB ′) for blow molded products, the ethylene polymer (E) satisfies the requirements (1 ′) to (5 ′) ( E ′) is preferred.

本発明に係るエチレン系重合体は、ブロー成形体、インフレーション成形体、キャスト成形体、押出ラミ成形体、パイプや異形などの押出成形体、発泡成形体、射出成形体などに成形することができる。さらに繊維、モノフィラメント、不織布などに使用することができる。これらの成形体には、エチレン系重合体からなる部分と、他の樹脂からなる部分とを含む成形体(積層体等)が含まれる。なお、該エチレン系重合体は成形過程で架橋されたものを用いてもよい。本発明に係るエチレン系重合体を、上記の成形体の中で、ブロー成形体などの押出成形体に用いると優れた特性を与える。   The ethylene polymer according to the present invention can be molded into blow molded products, inflation molded products, cast molded products, extruded laminated molded products, extruded molded products such as pipes and irregular shapes, foam molded products, injection molded products, and the like. . Furthermore, it can be used for fibers, monofilaments, nonwoven fabrics and the like. These molded products include molded products (laminates and the like) including a part made of an ethylene polymer and a part made of another resin. The ethylene polymer may be one that has been crosslinked in the molding process. When the ethylene-based polymer according to the present invention is used in an extrusion-molded product such as a blow-molded product among the above-mentioned molded products, excellent characteristics are given.

本発明のエチレン系重合体は、成形性に優れ、且つ機械的強度と耐環境応力破壊性(ESCR)に特に優れたブロー成形体を与える。   The ethylene-based polymer of the present invention provides a blow molded article having excellent moldability and particularly excellent mechanical strength and environmental stress fracture resistance (ESCR).

以下、本発明に係るエチレン系重合体(E)、ブロー成形体に好適に使用されるエチレン系重合体(EB)およびこれからなるブロー成形体について、発明を実施するための最良の形態を順次説明し、次いで本発明に係わるエチレン系重合体の代表的な製造方法および本発明に係わる各種の測定法を説明し、そして最後に実施例について説明する。   BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the best mode for carrying out the invention will be sequentially described for an ethylene polymer (E) according to the present invention, an ethylene polymer (EB) suitably used for a blow molded product, and a blow molded product comprising the same. Then, a typical method for producing an ethylene polymer according to the present invention and various measuring methods according to the present invention will be described, and finally examples will be described.

エチレン系重合体(E)
本発明に係わるエチレン系重合体(E)は、炭素原子数6〜10のα-オレフィンから導かれる構成単位を0.02〜0.50mol%含むエチレン系重合体であり、通常はエチレンの単独重合体とエチレン/炭素原子数6〜10のα-オレフィンとの共重合体からなる。
Ethylene polymer (E)
The ethylene polymer (E) according to the present invention is an ethylene polymer containing 0.02 to 0.50 mol% of a structural unit derived from an α-olefin having 6 to 10 carbon atoms, and usually an ethylene homopolymer and It consists of a copolymer of ethylene / α-olefin having 6 to 10 carbon atoms.

ここで炭素原子数が6〜10のα-オレフィン(以下単に「α-オレフィン」と略称する場合がある。)としては、例えば、1-ヘキセン、4-メチル-1-ペンテン、3-メチル-1-ペンテン、1-オクテン、1-デセンなどが挙げられる。本発明においては、これらのα-オレフィンの中で、1-ヘキセン、4-メチル-1-ペンテン、1-オクテンから選ばれる少なくても1種を用いることが好ましい。   Here, examples of the α-olefin having 6 to 10 carbon atoms (hereinafter sometimes simply referred to as “α-olefin”) include 1-hexene, 4-methyl-1-pentene, 3-methyl- Examples include 1-pentene, 1-octene, 1-decene and the like. In the present invention, among these α-olefins, it is preferable to use at least one selected from 1-hexene, 4-methyl-1-pentene, and 1-octene.

エチレン系重合体(E)は、α-オレフィンから導かれる構成単位を通常0.02〜0.50mol%含む。エチレン系重合体(E)が、エチレン単独重合体を含まない場合、即ちエチレンと炭素原子数6〜10のα-オレフィンとの共重合体のみである場合は、エチレンから導かれる構成単位は、通常99.50〜99.98mol%、好ましくは99.80〜99.98 mol%の割合で存在し、α-オレフィンから導かれる繰り返し単位は通常0.02〜0.50mol%、好ましくは0.02〜0.20 mol%の割合で存在する。また、エチレン系重合体(E)はエチレン単独重合体を含有していることがあり、その場合エチレン・α-オレフィン共重合体部分のエチレンから導かれる構成単位は、通常97.50〜99.96 mol%、好ましくは99〜99.96 mol%の割合で存在し、α-オレフィンから導かれる繰り返し単位は0.04〜2.50mol%、好ましくは0.04〜1.00 mol%の割合で存在する。なお、エチレン単独重合体を含む場合であっても、全重合体に占めるα-オレフィンから導かれる繰り返し単位は、通常0.02〜0.50mol%、好ましくは0.02〜0.20 mol%である。α-オレフィンの炭素数が5個以下の場合、α-オレフィンが結晶中にとり込まれる確率が高くなり(Polymer,Vol.31,1999頁,1990年参照)、その結果強度が弱くなるので好ましくない。α-オレフィンの炭素数が10個を超えると、流動の活性化エネルギーが大きくなって、成形時の粘度変化が大きく好ましくない。また、α-オレフィンの炭素数が1
0個を超えると、側鎖(エチレンと共重合したα-オレフィンに起因する分岐)が結晶化する場合があり、そうすると非晶部が弱くなるので、好ましくない。
The ethylene polymer (E) usually contains 0.02 to 0.50 mol% of structural units derived from α-olefin. When the ethylene polymer (E) does not contain an ethylene homopolymer, that is, when it is only a copolymer of ethylene and an α-olefin having 6 to 10 carbon atoms, the structural unit derived from ethylene is: Usually, it is present in a proportion of 99.50 to 99.98 mol%, preferably 99.80 to 99.98 mol%, and the repeating unit derived from α-olefin is usually present in a proportion of 0.02 to 0.50 mol%, preferably 0.02 to 0.20 mol%. In addition, the ethylene polymer (E) may contain an ethylene homopolymer, in which case the structural unit derived from ethylene in the ethylene / α-olefin copolymer portion is usually 97.50 to 99.96 mol%, Preferably it exists in the ratio of 99-99.96 mol%, and the repeating unit derived | led-out from an alpha olefin exists in the ratio of 0.04-2.50 mol%, Preferably it is 0.04-1.00 mol%. Even when the ethylene homopolymer is included, the repeating unit derived from the α-olefin in the entire polymer is usually 0.02 to 0.50 mol%, preferably 0.02 to 0.20 mol%. If the number of carbon atoms of the α-olefin is 5 or less, the probability that the α-olefin will be incorporated into the crystal increases (see Polymer, Vol.31, 1999, 1999), and as a result, the strength decreases, which is not preferable. . If the α-olefin has more than 10 carbon atoms, the activation energy of the flow increases, and the viscosity change during molding is large, which is not preferable. The α-olefin has 1 carbon atom
If the number exceeds 0, the side chain (branch caused by the α-olefin copolymerized with ethylene) may crystallize, which is not preferable because the amorphous part becomes weak.

本発明に係わるエチレン系重合体(E)は、クロス分別(CFC)において、下記要件(1)または(2)のいずれか1つ以上を満たすことを特徴としている。
(1) CFCの全溶出量に対する80℃以下の溶出成分が5%以下である。
(2)下記関係式(Eq-1)を満たす。
The ethylene-based polymer (E) according to the present invention is characterized by satisfying at least one of the following requirements (1) and (2) in cross fractionation (CFC).
(1) The elution component at 80 ° C. or less is 5% or less with respect to the total elution amount of CFC.
(2) The following relational expression (Eq-1) is satisfied.

Figure 2006083370
Figure 2006083370

(Eq-1中、SxはCFCにおいて70〜85℃で溶出する成分に基づく全ピークの面積合計値であり、Stotalは0〜145℃で溶出する成分に基づく全ピークの面積合計値である。)
このようなエチレン系重合体(E)は、成形体に応用した場合、機械的強度と耐環境応力破壊性(ESCR)などの長期物性に優れる。以下、要件(1)および(2)について具体的に説明する。
(In Eq-1, Sx is the total area value of all peaks based on components eluted at 70 to 85 ° C in CFC, and Stotal is the total area value of all peaks based on components eluted at 0 to 145 ° C. )
Such an ethylene-based polymer (E) is excellent in long-term physical properties such as mechanical strength and environmental stress fracture resistance (ESCR) when applied to a molded body. The requirements (1) and (2) will be specifically described below.

[要件(1)]
本発明のエチレン系重合体(E)は、CFCの全溶出量に対する80℃以下の溶出成分が5%以下であるという特徴を持つ。(なお、”%”とは、全溶出成分のピーク総面積に占める、80℃以下の溶出成分に起因するピーク総面積の百分率である。) 実施例に記載した結果を例として要件[2]を具体的に述べる。後述する実施例2において用いたエチレン系重合体のCFC分析において、80℃以下の溶出成分が占める割合は1.9%であり要件[1]を充足する。このエチレン系重合体からなるブロー成形体は表5に示したように良好な剛性(座屈強度)と耐環境応力破壊性(ESCR)のバランスを示す。一方で比較例1において用いたエチレン系重合体は、CFC分析において、80℃以下の溶出成分が占める割合は7.1%であり、要件[1]を満たさない。このエチレン系重合体からなるブロー成形体は表5から容易に理解されるように剛性(座屈強度)と耐環境応力破壊性(ESCR)のバランスが、実施例2のエチレン系重合体に比べて劣る。
[Requirement (1)]
The ethylene-based polymer (E) of the present invention is characterized in that an elution component at 80 ° C. or less with respect to the total elution amount of CFC is 5% or less. ("%" Is the percentage of the total peak area attributed to the elution component of 80 ° C or less in the total peak area of all the elution components.) Requirement [2] taking the results described in the examples as an example [2] Is described in detail. In the CFC analysis of the ethylene polymer used in Example 2, which will be described later, the proportion of the elution component at 80 ° C. or lower is 1.9%, which satisfies the requirement [1]. As shown in Table 5, the blow molded product made of this ethylene polymer exhibits a good balance between stiffness (buckling strength) and environmental stress fracture resistance (ESCR). On the other hand, the proportion of the elution component of 80 ° C. or lower is 7.1% in the ethylene-based polymer used in Comparative Example 1, and does not satisfy the requirement [1]. As can be easily understood from Table 5, the blow molded body made of this ethylene polymer has a balance of rigidity (buckling strength) and environmental stress fracture resistance (ESCR) compared to the ethylene polymer of Example 2. Inferior.

このようなエチレン系重合体は、α-オレフィンが共重合した高分子量成分のα-オレフィン含有量が少なく且つα-オレフィンの組成が均一なこと、または比較的分子量が低くかつ短鎖分岐を有するような成分を含有しないことを意味し、その場合成形体としての機械的強度と耐環境応力破壊性(ESCR)などの長期物性に優れる。特開平11-106432号公報記載のエチレン・α-オレフィン共重合体は組成分布が広いために該範囲を満たさず、WO01/25328号公報記載のエチレン系重合体は比較的分子量が小さい成分にもα-オレフィンが共重合したことによる短鎖分岐が存在するために該範囲を満たさない。従来のチーグラー触媒やクロム触媒などからなるエチレン系重合体も組成分布が広いので該範囲を満たさない。   Such an ethylene polymer has a low α-olefin content of a high molecular weight component copolymerized with α-olefin and a uniform α-olefin composition, or a relatively low molecular weight and short chain branching. It means that such a component is not contained, and in that case, it is excellent in long-term physical properties such as mechanical strength and environmental stress fracture resistance (ESCR) as a molded body. The ethylene / α-olefin copolymer described in JP-A-11-106432 does not satisfy this range because of the wide composition distribution, and the ethylene-based polymer described in WO01 / 25328 also has a relatively low molecular weight. This range is not satisfied due to the presence of short chain branching due to the copolymerization of α-olefin. Conventional ethylene polymers such as Ziegler catalysts and chromium catalysts also do not satisfy this range because of the wide composition distribution.

後述するような触媒系を用い、後述するような重合条件を設定することで、この範囲にあるエチレン系重合体を製造出来る。具体的に述べると、本願実施例5に記載の条件で重合すると、CFCの全溶出量に対する80℃以下の溶出成分が3.2%であり、触媒や重合温度を変更しない限り、また第一重合器にα-オレフィンを供給しない限り、更に第二重合器に供給するα-オレフィンを過剰に増大しない限り、5.0%以下になる。   An ethylene polymer in this range can be produced by setting a polymerization condition as described later using a catalyst system as described later. Specifically, when polymerized under the conditions described in Example 5 of the present application, the elution component of 80 ° C. or less with respect to the total elution amount of CFC is 3.2%, and unless the catalyst and polymerization temperature are changed, the first polymerizer Unless the α-olefin is supplied to the second polymerizer, the amount is 5.0% or less unless the α-olefin supplied to the second polymerization vessel is excessively increased.

[要件(2)]
本発明に係わるエチレン系重合体(E)は、クロス分別CFCにおいて、70〜85℃で溶出する成分に基づく全ピークの面積合計値をSx、0〜145℃で溶出する成分に基づく全ピークの
面積合計値をStotalとした場合、下記式(Eq-1)で示される関係を満たす。
[Requirement (2)]
The ethylene-based polymer (E) according to the present invention is a cross-fractionated CFC. The total area of all peaks based on components eluting at 70 to 85 ° C. is Sx, and all peaks based on components eluting at 0 to 145 ° C. When the total area value is Stotal, the relationship represented by the following formula (Eq-1) is satisfied.

Figure 2006083370
Figure 2006083370

要件(2)を満たすこのようなエチレン系重合体は、要件(1)の項で述べた内容と同じく、α-オレフィンが共重合した高分子量成分のα-オレフィン含有量が少なく且つα-オレフィンの組成が均一なこと、または比較的分子量が低くかつ短鎖分岐を有するような成分を含有しないことを意味し、その場合成形体としての機械的強度と耐環境応力破壊性(ESCR)などの長期物性に優れる。特開平11-106432号公報記載のエチレン・α-オレフィン共重合体は組成分布が広いために上記式(Eq-1)の関係を満たさず、WO01/25328号公報記載のエチレン系重合体は比較的分子量が小さい成分にもα-オレフィンが共重合したことによる短鎖分岐が存在するために上記式(Eq-1)の関係を満たさない。従来のチーグラー触媒やクロム触媒などからなるエチレン系重合体も組成分布が広いので上記式(Eq-1)の関係を満たさない。なお、上記式(Eq-1)におけるSxおよびStotalはC-H結合の伸縮振動の赤外分析に基づく値であることから、Sx/Stotalの値は、原則として70〜85℃で溶出する成分の0〜145℃で溶出する成分量に占める重量%に等しい。通常、本発明のエチレン系重合体については0〜145℃の領域のスキャンで全成分が溶出してしまうため、Sx/Stotalの値は、エチレン系重合体の単位重量に占める70〜85℃での溶出成分量の重量%と言い換えることもできる。   Such an ethylene polymer satisfying the requirement (2) is the same as the content described in the requirement (1), and the α-olefin content of the high molecular weight component copolymerized with the α-olefin is small and the α-olefin Means that the composition is uniform or does not contain a component having a relatively low molecular weight and short chain branching, in which case the mechanical strength and environmental stress fracture resistance (ESCR) etc. Excellent long-term physical properties. The ethylene / α-olefin copolymer described in JP-A-11-106432 does not satisfy the relationship of the above formula (Eq-1) because the composition distribution is wide, and the ethylene-based polymer described in WO01 / 25328 is a comparison. Since the short chain branching due to the copolymerization of α-olefin is present even in a component having a low molecular weight, the relationship of the above formula (Eq-1) is not satisfied. Conventional ethylene polymers such as Ziegler catalysts and chromium catalysts also do not satisfy the relationship of the above formula (Eq-1) because of the wide composition distribution. In addition, since Sx and Stotal in the above formula (Eq-1) are values based on infrared analysis of the stretching vibration of CH bond, the value of Sx / Stotal is 0 of the component eluted in principle at 70 to 85 ° C. It is equal to the weight% of the amount of components eluted at ˜145 ° C. Usually, for the ethylene polymer of the present invention, all components are eluted by scanning in the region of 0 to 145 ° C, so the value of Sx / Stotal is 70 to 85 ° C occupying the unit weight of the ethylene polymer. In other words, it can be paraphrased as% by weight of the amount of the eluted component.

後述するような触媒系を用い、後述するような重合条件を設定することで、この範囲にあるエチレン系重合体を製造出来る。具体的に述べると、本願実施例5に記載の条件で重合すると、得られたエチレン系重合体のクロス分別(CFC)において上記式(Eq-1)の左辺、すなわち (Sx/Stotal)の値は0.051であり、触媒や重合温度を変更しない限り、また第一重合器にα-オレフィンを供給しない限り、更に第二重合器に供給するα-オレフィンを過剰に増大しない限り、(Sx/Stotal)の値は上記関係式(Eq-1)を満たす。   An ethylene polymer in this range can be produced by setting a polymerization condition as described later using a catalyst system as described later. Specifically, when polymerized under the conditions described in Example 5 of the present application, the left side of the above formula (Eq-1) in the cross fractionation (CFC) of the obtained ethylene polymer, that is, the value of (Sx / Stotal) Unless the catalyst and polymerization temperature are changed, α-olefin is not supplied to the first polymerization vessel, and α-olefin supplied to the second polymerization vessel is not excessively increased (Sx / Stotal ) Satisfies the above relational expression (Eq-1).

上記のエチレン系重合体(E)の中で更に好ましい形態は、下記要件(1’)〜(5’)を満たすエチレン系共重合体(E’)である。
(1‘) 密度(d)が945〜975kg/m3の範囲にある。
(2’) 135℃、デカリン中で測定した極限粘度([η])が1.6〜2.8(dL/g)の範囲にある。
(3‘) GPCで測定した重量平均分子量(Mw)と数平均分子量(Mn)の比(Mw/Mn)が5〜30の範囲にある。
(4‘) GPC曲線を2つの対数正規分布曲線に分離した時に、各々の曲線の重量平均分子量(Mw)と数平均分子量(Mn)の比(Mw/Mn)が1.5〜3.5、高分子量側に分離された曲線の重量平均分子量(Mw2)が200,000〜800,000である。
(5‘) クロス分別(CFC)において分子量が100,000以上で最も強いピークの頂点の溶出温度をTh(℃)とした場合、[(Th-1)〜Th](℃)で溶出した画分のGPC曲線の中で、分子量が100,000以上で最も強いピークの頂点の分子量が200,000〜800,000の範囲にある。
Among the ethylene polymers (E), a more preferable form is an ethylene copolymer (E ′) that satisfies the following requirements (1 ′) to (5 ′).
(1 ') Density (d) is in the range of 945-975kg / m3.
(2 ′) The intrinsic viscosity ([η]) measured in decalin at 135 ° C. is in the range of 1.6 to 2.8 (dL / g).
(3 ′) The ratio (Mw / Mn) of the weight average molecular weight (Mw) and the number average molecular weight (Mn) measured by GPC is in the range of 5-30.
(4 ') When the GPC curve is separated into two lognormal distribution curves, the ratio (Mw / Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) of each curve is 1.5 to 3.5, high molecular weight side The weight-average molecular weight (Mw2) of the curve separated into two is 200,000 to 800,000.
(5 ') When the elution temperature at the peak of the strongest peak with a molecular weight of 100,000 or more in cross fractionation (CFC) is Th (° C), the fraction eluted with [(Th-1) to Th] (° C) In the GPC curve, the molecular weight of the strongest peak at a molecular weight of 100,000 or more is in the range of 200,000 to 800,000.

[要件(1’)および要件(2’)]
本発明に係わるエチレン系重合体(E’)の密度(d)は945〜975kg/m3、好ましくは950〜970 kg/m3、135℃デカリン中で測定した極限粘度([η])が1.6〜2.8dl/g、好ましくは1.8〜2.5 dl/gの範囲にある。密度および極限粘度がこれら範囲にあるエチレン系重合体は、機械的強度と成形性、耐環境応力破壊性に優れる。例えば重合器への水素、エチレン、α-オレフィンの供給量比、エチレン単独重合体とエチレン・α-オレフィン共重
合体との重合量比などを変更することで、上記の数値範囲内で値を増減させることが出来る。具体的には溶媒をヘキサンとした実施例2のスラリー重合において、系内を均一になるように攪拌しながら重合を行うと、密度が962 kg/m3、[η]が2.15 dl/gとなり、第二重合槽に供給するエチレンを4.3kg/hr、水素を3.0N-リットル/hr、1-ヘキセンを26g/hrとすると密度が967 kg/m3、[η]が2.10 dl/gとなり、第一重合槽に供給するエチレンを7.0 kg/hr、水素は40N-リットル/hr、第二重合槽に供給するエチレンを3.8kg/hr、水素を4.5N-リットル/hr、1-ヘキセンを180g/hrとすると密度が954 kg/m3、[η]が2.43 dl/gとなる。
[Requirement (1 ') and Requirement (2')]
The density (d) of the ethylene polymer (E ′) according to the present invention is 945 to 975 kg / m 3, preferably 950 to 970 kg / m 3, and the intrinsic viscosity ([η]) measured in decalin at 135 ° C. is 1.6 to It is in the range of 2.8 dl / g, preferably 1.8 to 2.5 dl / g. An ethylene polymer having a density and an intrinsic viscosity within these ranges is excellent in mechanical strength, moldability, and resistance to environmental stress destruction. For example, by changing the supply amount ratio of hydrogen, ethylene, α-olefin to the polymerization vessel, the polymerization amount ratio of ethylene homopolymer and ethylene / α-olefin copolymer, etc., the value falls within the above numerical range. It can be increased or decreased. Specifically, in the slurry polymerization of Example 2 in which the solvent was hexane, the polymerization was performed while stirring so that the inside of the system was uniform, and the density was 962 kg / m3 and [η] was 2.15 dl / g. When ethylene supplied to the second polymerization tank is 4.3 kg / hr, hydrogen is 3.0 N-liter / hr and 1-hexene is 26 g / hr, the density is 967 kg / m3 and [η] is 2.10 dl / g. Ethylene supplied to one polymerization tank is 7.0 kg / hr, hydrogen is 40 N-liter / hr, ethylene supplied to the second polymerization tank is 3.8 kg / hr, hydrogen is 4.5 N-liter / hr, 1-hexene is 180 g / hr If hr, the density is 954 kg / m3 and [η] is 2.43 dl / g.

[要件(3’)]
本発明に係わるエチレン系重合体(E’)は、ゲルパーミエーションクロマトグラフィ
ー(GPC)で測定したMw/Mn(Mw:重量平均分子量、Mn:数平均分子量)が通常5〜30、好ましくは5〜20の範囲にある。後述する触媒系を用い、後述する多段重合を実施する際に、各成分の分子量および重合量比を制御することで、この範囲にあるエチレン系重合体を製造出来る。
[Requirement (3 ')]
The ethylene-based polymer (E ′) according to the present invention has an Mw / Mn (Mw: weight average molecular weight, Mn: number average molecular weight) measured by gel permeation chromatography (GPC) of usually 5 to 30, preferably 5 It is in the range of ~ 20. An ethylene polymer in this range can be produced by controlling the molecular weight and the polymerization amount ratio of each component when performing a multistage polymerization described later using a catalyst system described later.

例えば、各成分の分子量差を広げることによりMw/Mnは大きくすることができる。Mw/Mnが上記の範囲にある重合体は、成形性と機械的強度と耐環境応力破壊性に優れる。具体的には、本願実施例1に記載の条件で重合すると、Mw/Mnは6.6となる。ここで、第一重合槽に供給する水素を40N-リットル/hrから70N-リットル/hr、第二重合槽に供給する水素を5.5N-リットル/hrから2.0N-リットル/hrに変更すると、第一重合槽で生成するエチレン系重合体の分子量が小さく、第二重合槽で生成するエチレン系重合体の分子量が大きくなることによりMw/Mnは11.5程度になる。また本願実施例2に記載の条件で重合すると、Mw/Mnは8.6となる。   For example, Mw / Mn can be increased by widening the molecular weight difference between the components. A polymer having Mw / Mn in the above range is excellent in moldability, mechanical strength, and environmental stress fracture resistance. Specifically, when polymerized under the conditions described in Example 1, Mw / Mn is 6.6. Here, when hydrogen supplied to the first polymerization tank is changed from 40 N-liter / hr to 70 N-liter / hr, and hydrogen supplied to the second polymerization tank is changed from 5.5 N-liter / hr to 2.0 N-liter / hr, The molecular weight of the ethylene polymer produced in the first polymerization tank is small, and the molecular weight of the ethylene polymer produced in the second polymerization tank is increased, so that Mw / Mn is about 11.5. When polymerized under the conditions described in Example 2 of the present application, Mw / Mn is 8.6.

[要件(4’)]
本発明に係わるエチレン系重合体(E’)は、ゲルパーミエーションクロマトグラフィー(GPC)で測定した分子量曲線(GPC曲線)を2つの対数正規分布曲線に分離した時に、各々の曲線の重量平均分子量(Mw)と数平均分子量(Mn)の比(Mw/Mn)が1.5〜3.5、好ましくは1.5〜3.2の範囲であり、高分子量側に分離された曲線の重量平均分子量(Mw2)が200,000〜800,000の範囲にある。
[Requirement (4 ')]
When the molecular weight curve (GPC curve) measured by gel permeation chromatography (GPC) is separated into two lognormal distribution curves, the ethylene polymer (E ′) according to the present invention has a weight average molecular weight of each curve. (Mw) and number average molecular weight (Mn) ratio (Mw / Mn) is in the range of 1.5 to 3.5, preferably 1.5 to 3.2, and the weight average molecular weight (Mw2) of the curve separated on the high molecular weight side is 200,000 to It is in the range of 800,000.

後述するような触媒系を用いて、後述するような多段重合を実施し、その際に選択する触媒化合物の種類や、多段重合する際の段数、および各成分の分子量を制御することで、この範囲にあるエチレン系重合体を製造出来る。触媒成分を担体に担持せずに用いると、均一系に近づくためにMw/Mnは小さくなる。特開平11-106432号公報に記載の担持型幾何拘束型シングルサイト触媒(CGC/Borate)を用いてスラリー重合した場合や、EP1201711A1号公報に記載のシリカに担持したエチレン・ビス(4,5,6,7-テトラヒドロ-1-インデニル)ジルコニウムジクロライドとメチルアルモキサンからなる触媒系を用いてスラリー重合した場合には、単段重合のMw/Mnが4以上となり、本願請求範囲を満たさない。なお、本願実施例1に記載の触媒を用いて80℃スラリー単段重合して得られるエチレン系重合体のMw/Mnは2.2程度である。   By using a catalyst system as described later, multistage polymerization as described later is performed, and by controlling the type of catalyst compound selected at that time, the number of stages when performing multistage polymerization, and the molecular weight of each component, An ethylene polymer in the range can be produced. When the catalyst component is used without being supported on the carrier, the Mw / Mn becomes small in order to approach a homogeneous system. In the case of slurry polymerization using a supported geometrically constrained single site catalyst (CGC / Borate) described in JP-A-11-106432, or ethylene bis (4,5,4) supported on silica described in EP1201711A1 When slurry polymerization is carried out using a catalyst system comprising 6,7-tetrahydro-1-indenyl) zirconium dichloride and methylalumoxane, the Mw / Mn of single-stage polymerization is 4 or more, which does not satisfy the claims of this application. The Mw / Mn of the ethylene polymer obtained by single-stage polymerization at 80 ° C. using the catalyst described in Example 1 of this application is about 2.2.

また、本発明に係わるエチレン系重合体(E’)のGPC曲線を2つの対数正規分布曲線に分離した時に、高分子量側に分離された曲線の重量平均分子量(Mw2)が200,000〜800,000の範囲にある。エチレン系重合体を製造する際の水素、エチレン、α-オレフィン量比を選択することでMw2がこの範囲のエチレン系重合体を製造することが出来る。具体的に述べると、実施例2に記載の条件で重合すると、GPC曲線を2つの対数正規分布曲線に分離した時に、高分子量側に分離された曲線の重量平均分子量(Mw2)は319,000となる。ここで、第二重合槽に供給する水素を3.4N-リットル/hr、1-ヘキセンを66g/hrとすると、Mw2
は359,000となり、第二重合槽に供給するエチレンを4.3kg/hr、水素を3.0N-リットル/hr、第二重合槽に供給する1-ヘキセンを26g/hrとすると、Mw2は411,000となる。Mw2がこの範囲にあるエチレン系重合体は機械的強度と成形性、耐環境応力破壊性に優れる。
When the GPC curve of the ethylene polymer (E ′) according to the present invention is separated into two logarithmic normal distribution curves, the weight average molecular weight (Mw2) of the curve separated on the high molecular weight side is in the range of 200,000 to 800,000. It is in. By selecting the amount ratio of hydrogen, ethylene, and α-olefin when the ethylene polymer is produced, an ethylene polymer having an Mw2 in this range can be produced. Specifically, when polymerized under the conditions described in Example 2, when the GPC curve was separated into two lognormal distribution curves, the weight average molecular weight (Mw2) of the curve separated on the high molecular weight side was 319,000. . Here, when the hydrogen supplied to the second polymerization tank is 3.4 N-liter / hr and 1-hexene is 66 g / hr, Mw2
When the ethylene supplied to the second polymerization tank is 4.3 kg / hr, hydrogen is 3.0 N-liter / hr, and 1-hexene supplied to the second polymerization tank is 26 g / hr, the Mw2 is 411,000. An ethylene polymer having Mw2 in this range is excellent in mechanical strength, moldability, and environmental stress fracture resistance.

[要件(5’)]
本発明に関わるエチレン系重合体(E‘)は、クロス分別(CFC)装置を用いた昇温溶出分別において、分子量が100,000以上で、最も強いピークの頂点の溶出温度をTh(℃)とした場合、ここで、最も強いピークの頂点とは、微分値がゼロ(すなわち山の頂点)、山の頂点が存在しない場合には、微分値がゼロに最も近い点(すなわちショルダー)部分を指す。上記Th(℃)で溶出した画分のGPC曲線のうち、分子量が100,000以上で最も強いピークの頂点の分子量が200,000〜800,000の範囲にある。なお、Th(℃)で溶出した画分とは、〔(Th-1)〜Th〕(℃)で溶出した成分のことをさす。このようなエチレン系重合体は、耐環境応力破壊性などの長期物性と成形性に優れる。
[Requirement (5 ')]
The ethylene polymer (E ') according to the present invention has a molecular weight of 100,000 or more and a peak elution temperature of Th (° C) as the highest peak in temperature rising elution fractionation using a cross fractionation (CFC) apparatus. In this case, the peak of the strongest peak means a point (ie, shoulder) where the differential value is zero (that is, the peak of the mountain), and when the peak of the peak does not exist, the differential value is closest to zero. Among the GPC curves of the fraction eluted at Th (° C.), the molecular weight of the peak of the strongest peak with a molecular weight of 100,000 or more is in the range of 200,000 to 800,000. The fraction eluted at Th (° C.) refers to the component eluted at [(Th-1) to Th] (° C.). Such an ethylene polymer is excellent in long-term physical properties such as environmental stress fracture resistance and moldability.

後述するような触媒系を用い、後述するような重合条件を設定することで、この範囲にあるエチレン系重合体を製造出来る。α-オレフィン共重合体を製造するような重合環境に供給するα-オレフィン量、水素量、エチレン量などを増減させることでTh(℃)で溶出した画分のGPC曲線のうち、最も分子量が高いピークの頂点の分子量を特定範囲で増減させることが出来る。   An ethylene polymer in this range can be produced by setting a polymerization condition as described later using a catalyst system as described later. Among the GPC curves of fractions eluted at Th (° C) by increasing or decreasing the amount of α-olefin, hydrogen, ethylene, etc. supplied to the polymerization environment for producing α-olefin copolymer, the molecular weight is the most. The molecular weight at the peak of a high peak can be increased or decreased within a specific range.

具体的に述べると、実施例5に記載の条件で重合すると、クロス分別(CFC)装置を用いた昇温溶出分別において上記〔(Th-1)〜Th〕(℃)で溶出した画分のGPC曲線のうち、分子量が100,000以上で最も強いピークの頂点の分子量が250,000となり、実施例2記載の条件で重合すると、クロス分別(CFC)装置を用いた昇温溶出分別において上記〔(Th-1)〜Th〕(℃)で溶出した画分のGPC曲線のうち、分子量が100,000以上で最も強いピークの頂点の分子量は264,000となる。従来知られているメタロセン触媒では、分子量分布が狭く、かつこのように分子量が高いエチレン系共重合体は得られなかった。   Specifically, when polymerized under the conditions described in Example 5, the fraction eluted at [(Th-1) to Th] (° C.) in the temperature rising elution fractionation using a cross fractionation (CFC) apparatus. Among the GPC curves, the molecular weight at the peak of the strongest peak with a molecular weight of 100,000 or more is 250,000, and when polymerized under the conditions described in Example 2, the above [(Th- Among the GPC curves of fractions eluted at 1) to Th] (° C.), the molecular weight at the peak of the strongest peak is 264,000 when the molecular weight is 100,000 or more. In the conventionally known metallocene catalysts, an ethylene copolymer having a narrow molecular weight distribution and such a high molecular weight could not be obtained.

ブロー成形体に好適に使用されるエチレン系重合体(EB) 本発明に係わるエチレン系重合体(E)、好ましくは(E‘)の中で、ブロー成形体に好
適に使用されるエチレン系重合体(EB)は、下記要件(1B)を満たすことが好ましく、更に好ましくは下記要件(1B’)を満たす〔このエチレン重合体を、以下の説明ではエチレン系重合体(EB’)と呼ぶ場合がある〕。
(1B) ASTM-D-790に準拠して、23℃で測定した曲げ弾性率をMとした場合、またASTM-D-1693に準拠して測定した50℃における耐環境応力破壊性ESCR(hr)をTとした場合、
1,500≦M≦1,800(MPa)のとき、T≧10(hr)でありかつ、
600≦M<1500(MPa)のとき、MとTとの関係が下記の式(Eq-2)を満たす。
Ethylene-based polymer (EB) suitably used for blow molded article Among the ethylene-based polymer (E), preferably (E ') according to the present invention, ethylene-based polymer suitably used for blow molded article The union (EB) preferably satisfies the following requirement (1B), and more preferably satisfies the following requirement (1B ′) [when this ethylene polymer is referred to as an ethylene-based polymer (EB ′) in the following description] There are].
(1B) Environmental stress fracture resistance ESCR (hr at 50 ° C measured in accordance with ASTM-D-790, measured at 23 ° C as M, and measured in accordance with ASTM-D-1693 ) Is T
When 1,500 ≦ M ≦ 1,800 (MPa), T ≧ 10 (hr) and
When 600 ≦ M <1500 (MPa), the relationship between M and T satisfies the following formula (Eq-2).

Figure 2006083370
Figure 2006083370

[要件(1B)]
本発明に係わるエチレン系重合体(EB)は、ASTM-D-790に準拠して、23℃で測定した曲げ弾性率Mとした場合、またASTM-D-1693に準拠して測定した50℃における耐環境応力破壊性ESCR(hr)をTとした場合、1,500≦M≦1,800(MPa)のとき、T≧10(hr)でありかつ、600≦M<1500(MPa)のとき、MとTとの関係が下記の式(Eq-2)を満たす。曲げ弾性率とESCRがこの範囲にあるエチレン系重合体は硬くて強いために、従来よりも成形品を薄くして使うことが出来る。後述するような触媒系を用い、後述するような多段重合を実施する際に、重合器への水素、エチレン、α-オレフィンの供給量比などを変更して各成分の分子量お
よび重合量比を制御することで、この範囲にあるエチレン系重合体を製造出来る。
[Requirement (1B)]
The ethylene-based polymer (EB) according to the present invention has a flexural modulus M measured at 23 ° C. according to ASTM-D-790 and 50 ° C. measured according to ASTM-D-1693. Assuming that the environmental stress fracture resistance ESCR (hr) in T is 1,500 ≦ M ≦ 1,800 (MPa), T ≧ 10 (hr) and 600 ≦ M <1500 (MPa) The relationship with T satisfies the following formula (Eq-2). Ethylene polymers with a flexural modulus and ESCR in this range are hard and strong, so the molded product can be made thinner than before. When performing multistage polymerization as described later using a catalyst system as described later, the ratio of the amount of hydrogen, ethylene, α-olefin supplied to the polymerization vessel is changed, and the molecular weight and polymerization ratio of each component are changed. By controlling, an ethylene polymer in this range can be produced.

具体的に述べると、実施例5に記載の条件で重合すると曲げ弾性率が1,500MPa、ESCRが14時間で50%破壊となる。また実施例4に記載の条件で重合すると曲げ弾性率が1,490MPa、ESCRが177時間で50%破壊となり、さらに実施例4の条件において第一重合槽に供給する水素を75N-リットル/hrから70N-リットル/hrに、第二重合槽に供給する水素を3.0N-リットル/hrから4.0N-リットル/hrに、第二重合槽に供給する1-ヘキセンを52g/hrから65g/hrに変更すると、曲げ弾性率が1,410MPa、ESCRが188時間で50%破壊となる。   More specifically, when polymerized under the conditions described in Example 5, the flexural modulus is 1,500 MPa, and ESCR breaks 50% in 14 hours. Further, when polymerized under the conditions described in Example 4, the flexural modulus was 1,490 MPa, ESCR broke 50% in 177 hours, and the hydrogen supplied to the first polymerization tank under the conditions of Example 4 was increased from 75 N-liter / hr. 70N-liter / hr, hydrogen supplied to the second polymerization tank from 3.0N-liter / hr to 4.0N-liter / hr, 1-hexene supplied to the second polymerization tank from 52g / hr to 65g / hr When changed, the flexural modulus is 1,410 MPa and the ESCR is 50% fractured in 188 hours.

[要件(1B‘)]
本発明に係わる、上記エチレン系重合体(EB’)は、動的粘弾性装置を用いて測定した190℃、角周波数100 rad/secにおけるtanδ(損失弾性率G’’/貯蔵弾性率G’)が0.6〜0.9であることが好ましい。tanδがこの範囲にあると、ブロー成形したときのピンチ融着性に優れる。低分子量エチレン重合体の分子量を大きく、高分子量エチレン・α-オレフィン共重合体の分子量を小さくするかまたは全体の分子量を小さくするほど、tanδが大きくなる傾向にある。なお、ピンチ融着性とは、押出機から押し出された筒状の溶融樹脂を金型ではさんで融着させる際の、融着部に樹脂が盛り上がって良くくっ付いていることを示す。tanδが大きいほど粘性が強いことを意味し、その場合に樹脂が盛り上がりやすいと考えられる。
[Requirements (1B ')]
The ethylene polymer (EB ′) according to the present invention is tan δ (loss elastic modulus G ″ / storage elastic modulus G ′) measured at 190 ° C. and angular frequency of 100 rad / sec using a dynamic viscoelastic device. ) Is preferably 0.6 to 0.9. When tan δ is within this range, the pinch fusion property when blow molding is excellent. As the molecular weight of the low molecular weight ethylene polymer is increased and the molecular weight of the high molecular weight ethylene / α-olefin copolymer is decreased or the total molecular weight is decreased, tan δ tends to increase. The pinch fusion property indicates that the resin is raised and well adhered to the fusion part when the cylindrical molten resin extruded from the extruder is fused with a mold. It means that the larger tan δ is, the stronger the viscosity is, and in this case, the resin is likely to rise.

また、ブロー成形体用のエチレン系重合体(EB)および(EB’)においては、エチレン系重合体(E)が、前述の要件(1’)〜(5’)を満たすエチレン系重合体(E’)であることが好ましい。換言すれば、本発明のブロー成形体用のエチレン系重合体としては、エチレン系重合体(E’)が前記要件(1B) および(1B’)を共に満たすものが最も好適に使用される。   In the ethylene polymers (EB) and (EB ′) for blow molded products, the ethylene polymer (E) satisfies the above-mentioned requirements (1 ′) to (5 ′) ( E ′) is preferred. In other words, as the ethylene polymer for the blow molded article of the present invention, one in which the ethylene polymer (E ′) satisfies both the above requirements (1B) and (1B ′) is most preferably used.

エチレン系重合体の製造方法
以下、本発明のエチレン系重合体の好ましい製造方法について述べるが、前記した本発明のエチレン系重合体の要件を具備する限りは、この好ましい製造方法に何ら束縛されるものではなくその他の製造方法を任意に用いることが可能である。
Production method of ethylene polymer Hereinafter, a preferred production method of the ethylene polymer of the present invention will be described. However, as long as the above-described requirements for the ethylene polymer of the present invention are satisfied, the production method is not limited. Other manufacturing methods can be arbitrarily used instead of those.

本発明に係るエチレン系重合体は、好ましくは、
(A)シクロペンタジエニル基とフルオレニル基が第14族原子を含む共有結合架橋によって結合されている遷移金属化合物と、
(B)(B-1) 有機金属化合物、
(B-2) 有機アルミニウムオキシ化合物、および
(B-3) 遷移金属化合物と反応してイオン対を形成する化合物
から選ばれる少なくとも1種の化合物と、担体(C)から形成されるオレフィン重合用触媒を用いて、エチレンを単独重合させるかまたはエチレンと炭素原子数6〜10のα-オレフィンとを共重合させることによって得ることができる。以下、各成分(A)、(B)、(C)の好ましい態様について述べる。
The ethylene polymer according to the present invention is preferably
(A) a transition metal compound in which a cyclopentadienyl group and a fluorenyl group are bonded by a covalent bridge containing a Group 14 atom;
(B) (B-1) Organometallic compound,
(B-2) an organoaluminum oxy compound, and
(B-3) Is ethylene homopolymerized using an olefin polymerization catalyst formed from a carrier (C) and at least one compound selected from compounds that react with transition metal compounds to form ion pairs? Alternatively, it can be obtained by copolymerizing ethylene and an α-olefin having 6 to 10 carbon atoms. Hereinafter, preferred embodiments of the components (A), (B), and (C) will be described.

(A)遷移金属化合物
遷移金属化合物(A)は、以下に記載する一般式(1)および(2)で表される化合物である。
(A) Transition metal compound The transition metal compound (A) is a compound represented by the following general formulas (1) and (2).

Figure 2006083370
Figure 2006083370

Figure 2006083370
Figure 2006083370

上記一般式(1)および(2)において、R7、R8、R9、R10、R11、R12、R13、R14、R15、R16、R17、R18、R19およびR20は水素原子、炭化水素基、ハロゲン含有炭化水素基、ケイ素含有炭化水素基から選ばれ、それぞれ同一でも異なっていてもよく、R7〜R18までの隣接した置換基は互いに結合して環を形成してもよく、Aは一部不飽和結合および/または芳香族環を含んでいてもよい炭素原子数2〜20の2価の炭化水素基であり、Yとともに環構造を形成しており、AはYと共に形成する環を含めて2つ以上の環構造を含んでいてもよく、Yは炭素またはケイ素であり、Mは周期律表第4族から選ばれた金属であり、Qはハロゲン、炭化水素基、アニオン配位子または孤立電子対で配位可能な中性配位子から同一または異なる組合せで選んでもよく、jは1〜4の整数である。 In the above general formulas (1) and (2), R 7 , R 8 , R 9 , R 10 , R 11 , R 12 , R 13 , R 14 , R 15 , R 16 , R 17 , R 18 , R 19 And R 20 is selected from a hydrogen atom, a hydrocarbon group, a halogen-containing hydrocarbon group, and a silicon-containing hydrocarbon group, and may be the same or different, and adjacent substituents from R 7 to R 18 are bonded to each other. A is a divalent hydrocarbon group having 2 to 20 carbon atoms which may partially contain an unsaturated bond and / or an aromatic ring, and forms a ring structure with Y A may include two or more ring structures including a ring formed with Y, Y is carbon or silicon, and M is a metal selected from group 4 of the periodic table. , Q may be selected from the same or different combinations from halogens, hydrocarbon groups, anionic ligands, or neutral ligands capable of coordinating with lone pairs, and j is 1 to 4 It is an integer.

上記一般式(1)または(2)で表される遷移金属化合物(A)の中で、好んで用いられる化合物は、R7〜R10が水素であり、Yが炭素であり、MがZrであり、jが2の化合物である。 Among the transition metal compounds (A) represented by the above general formula (1) or (2), the compound preferably used is that R 7 to R 10 are hydrogen, Y is carbon, and M is Zr And j is a compound of 2.

上記一般式(1)で表される遷移金属化合物(A)の中で、R12、R13、R16、R17が総て炭
化水素基である化合物が好んで用いられる。
Among the transition metal compounds (A) represented by the general formula (1), compounds in which R 12 , R 13 , R 16 and R 17 are all hydrocarbon groups are preferably used.

また、上記一般式(1) で表される遷移金属化合物(A)の中で、共有結合架橋部の架橋
原子Yが、相互に同一でも異なっていてもよいアリール基を有する化合物(すなわち、R19とR20が相互に同一でも異なっていてもよいアリール基である化合物)が好んで用いられる。アリール基としては、フェニル基、ナフチル基、アントラセニル基および、これらの芳香族水素(sp2型水素)の一つ以上が置換基で置換された基を例示することができる。なお置換基としては、総炭素数1から20の炭化水素基(f1)、総炭素数1から20のケイ素含有基(f2) 、ハロゲン原子が挙げられる。総炭素数1から20の炭化水素基(f1)は、炭素および水素のみから構成されるアルキル、アルケニル、アルキニル、アリール基以外に、これらの炭素に直結した水素原子の一部がハロゲン原子、酸素含有基、窒素含有基、ケイ素含有基で置換されたヘテロ原子含有炭化水素基や、隣接する任意の二つの水素原子が脂環族を形成しているものも含む。このような基(f1)としては、メチル基、エチル基、n-プロピル基、アリル(allyl)基、n-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デカニル基などの直鎖状炭化水素基;イソプロピル基、t-ブチル基、アミル基、3-メチルペンチル基、1,1-ジエチルプロピル基、1,1-ジメチルブチル基、1-メチル-1-プロピルブチル基、1,1-プロピルブチル基、1,1-ジメチル-2-メチルプロピル基、1-メチル-1-イソプロピル-2-メチルプロピル基などの分岐状炭化水素基;シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、ノルボルニル基、アダマンチル基などの環状飽和炭化水素基;フェニル基、ナフチル基、ビフェニル基、フェナントリル基、アントラセニル基などの環状不飽和炭化水素基およびこれらの核アルキル置換体;ベンジル基、クミル基などのアリール基の置換した飽和炭化水素基; メトキシ基、エトキシ基、フェノキシ基N-メチルアミノ基、トリフルオロメチル基、トリブロモメチル基、ペンタフルオロエチル基、ペンタフルオロフェニル基などのヘテロ原子含有炭化水素基を挙げることができる。
Among the transition metal compounds (A) represented by the general formula (1), compounds having an aryl group in which the bridging atoms Y of the covalent bond bridging portions may be the same or different from each other (that is, R A compound in which 19 and R 20 are aryl groups which may be the same or different from each other is preferably used. Examples of the aryl group include a phenyl group, a naphthyl group, anthracenyl group and can be one or more of these aromatic hydrogen (sp 2 type hydrogen) illustrate been substituted with a substituent. Examples of the substituent include a hydrocarbon group having 1 to 20 carbon atoms (f1), a silicon-containing group having 1 to 20 carbon atoms (f2), and a halogen atom. In addition to alkyl, alkenyl, alkynyl, and aryl groups composed only of carbon and hydrogen, a hydrocarbon group having 1 to 20 carbon atoms in total (f1) includes a part of hydrogen atoms directly connected to these carbon atoms as halogen atoms, oxygen A hetero atom-containing hydrocarbon group substituted with a containing group, a nitrogen-containing group, or a silicon-containing group, or a group in which any two adjacent hydrogen atoms form an alicyclic group are also included. Examples of such a group (f1) include methyl, ethyl, n-propyl, allyl, n-butyl, n-pentyl, n-hexyl, n-heptyl, and n-octyl. Group, n-nonyl group, linear hydrocarbon group such as n-decanyl group; isopropyl group, t-butyl group, amyl group, 3-methylpentyl group, 1,1-diethylpropyl group, 1,1-dimethyl group Branched butyl, 1-methyl-1-propylbutyl, 1,1-propylbutyl, 1,1-dimethyl-2-methylpropyl, 1-methyl-1-isopropyl-2-methylpropyl, etc. Hydrocarbon group: Cyclic saturated hydrocarbon group such as cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group, norbornyl group, adamantyl group; cyclic unsaturated group such as phenyl group, naphthyl group, biphenyl group, phenanthryl group, anthracenyl group Hydrocarbon groups and these Alkyl-substituted product; saturated hydrocarbon group substituted with aryl group such as benzyl group, cumyl group; methoxy group, ethoxy group, phenoxy group N-methylamino group, trifluoromethyl group, tribromomethyl group, pentafluoroethyl group, A hetero atom-containing hydrocarbon group such as a pentafluorophenyl group can be exemplified.

ケイ素含有基(f2)とは、例えば、シクロペンタジエニル基の環炭素がケイ素原子と直接共有結合している基であり、具体的にはアルキルシリル基やアリールシリル基である。総炭素数1から20のケイ素含有基(f2)としては、トリメチルシリル基、トリフェニルシリル基等を例示することができる。   The silicon-containing group (f2) is, for example, a group in which a ring carbon of a cyclopentadienyl group is directly covalently bonded to a silicon atom, and specifically an alkylsilyl group or an arylsilyl group. Examples of the silicon-containing group (f2) having a total carbon number of 1 to 20 include a trimethylsilyl group and a triphenylsilyl group.

一般式(1)における共有結合架橋部の架橋原子Yに結合した、相互に同一でも異なっていてもよいアリール基として、具体的にはフェニル基、トリル基、t-ブチルフェニル基、ジメチルフェニル基、ビフェニル基、シクロヘキシルフェニル基、(トリフルオロメチル)フェニル基、ビス(トリフルオロメチル)フェニル基、クロロフェニル基、ジクロロフェニル基を例示することができる。   Specific examples of the aryl group that may be the same as or different from each other and bonded to the bridging atom Y of the covalent bridging moiety in the general formula (1) include a phenyl group, tolyl group, t-butylphenyl group, and dimethylphenyl group , Biphenyl group, cyclohexylphenyl group, (trifluoromethyl) phenyl group, bis (trifluoromethyl) phenyl group, chlorophenyl group, and dichlorophenyl group.

後述する本出願実施例で使用した遷移金属化合物(A)は具体的には下記式(3)および(4)で表される化合物あるが、本発明においてはこの遷移金属化合物に何ら限定されるものではない。   The transition metal compound (A) used in Examples of the present application described later is specifically a compound represented by the following formulas (3) and (4), but in the present invention, it is not limited to this transition metal compound. It is not a thing.

Figure 2006083370
Figure 2006083370

Figure 2006083370
Figure 2006083370

なお、上記式(3)および(4)で表わされる遷移金属化合物は、270MHz1H-NMR(日本電子 GSH-270)およびFD-質量分析(日本電子 SX-102A)を用いて構造決定した。 The structure of the transition metal compound represented by the above formulas (3) and (4) was determined using 270 MHz 1 H-NMR (JEOL GSH-270) and FD-mass spectrometry (JEOL SX-102A).

(B-1) 有機金属化合物
本発明で必要に応じて用いられる(B-1)有機金属化合物として、具体的には下記のような周期律表第1、2族および第12、13族の有機金属化合物が挙げられる。
(B-1) Organometallic compound (B-1) Organometallic compound used as necessary in the present invention, specifically, the following periodic table group 1, 2 and group 12, 13 An organometallic compound is mentioned.

一般式 Ra mAl(ORb)nHpXq
(式中、RaおよびRbは、互いに同一でも異なっていてもよく、炭素原子数が1〜15、好ましくは1〜4の炭化水素基を示し、Xはハロゲン原子を示し、mは0<m≦3、nは0≦n<3、pは0≦p<3、qは0≦q<3の数であり、かつm+n+p+q=3である。)で表される有機アルミニウム化合物である。
General formula R a m Al (OR b ) n H p X q
(In the formula, R a and R b may be the same or different from each other, each represents a hydrocarbon group having 1 to 15 carbon atoms, preferably 1 to 4 carbon atoms, X represents a halogen atom, and m represents 0. <M ≦ 3, n is 0 ≦ n <3, p is 0 ≦ p <3, q is a number of 0 ≦ q <3, and m + n + p + q = 3). .

後述する本願実施例において用いたアルミニウム化合物はトリイソブチルアルミニウム、またはトリエチルアルミニウムである。   The aluminum compound used in the Examples described later is triisobutylaluminum or triethylaluminum.

(B-2) 有機アルミニウムオキシ化合物
本発明で必要に応じて用いられる(B-2)有機アルミニウムオキシ化合物は、従来公知のアルミノキサンであってもよく、また特開平2-78687号公報に例示されているようなベンゼン不溶性の有機アルミニウムオキシ化合物であってもよい。
(B-2) Organoaluminum Oxy Compound The organoaluminum oxy compound used as necessary in the present invention may be a conventionally known aluminoxane, and is exemplified in JP-A-2-78687. It may be a benzene-insoluble organoaluminum oxy compound.

後述する本願実施例において使用した有機アルミニウムオキシ化合物は市販されている日本アルキルアルミ株式会社製のMAO(=メチルアルモキサン)/トルエン溶液である。   The organoaluminum oxy compound used in Examples described later is a commercially available MAO (= methylalumoxane) / toluene solution manufactured by Nippon Alkyl Aluminum Co., Ltd.

(B-3) 遷移金属化合物と反応してイオン対を形成する化合物
本発明の架橋メタロセン化合物(A)と反応してイオン対を形成する化合物(B-3) (以下、「イオン化イオン性化合物」という。)としては、特開平1-501950号公報、特開平1-502036号公報、特開平3-179005号公報、特開平3-179006号公報、特開平3-207703号公報、特開平3-207704号公報、US5321106号公報などに記載されたルイス酸、イオン性化合物、ボラン化合物およびカルボラン化合物などを挙げることができる。さらに、ヘテロポリ化合物およびイソポリ化合物も挙げることができる。このようなイオン化イオン性化合物(B-3)は、1種単独でまたは2種以上組み合せて用いられる。なお、後述する本願実施例において使用した(B)成分としては、今回上記に示した(B-1)および(B-2)の2つを用いている。
(B-3) Compound that reacts with transition metal compound to form ion pair Compound (B-3) that reacts with bridged metallocene compound (A) of the present invention to form ion pair (hereinafter referred to as “ionized ionic compound”) Are referred to as JP-A-1-501950, JP-A-1-502036, JP-A-3-17905, JP-A-3-179006, JP-A-3-207703, JP-A-3. And Lewis acids, ionic compounds, borane compounds, and carborane compounds described in Japanese Patent No. -207704 and US5321106. Furthermore, heteropoly compounds and isopoly compounds can also be mentioned. Such ionized ionic compounds (B-3) are used singly or in combination of two or more. In addition, as (B) component used in this-application Example mentioned later, the above-mentioned (B-1) and (B-2) shown above are used.

(C)微粒子状担体
本発明で必要に応じて用いられる(C)微粒子状担体は、無機または有機の化合物であ
って、顆粒状ないしは微粒子状の固体である。このうち無機化合物としては、多孔質酸化物、無機ハロゲン化物、粘土、粘土鉱物またはイオン交換性層状化合物が好ましい。このような多孔質酸化物は、種類および製法によりその性状は異なるが、本発明に好ましく用いられる担体は、粒径が1〜300μm、好ましくは3〜200μmであって、比表面積が50〜1000(m2/g)、好ましくは100〜800(m2/g)の範囲にあり、細孔容積が0.3〜3.0(cm3/g)の範囲にあることが望ましい。このような担体は、必要に応じて80〜1000℃、好ましくは100〜800℃で焼成して使用される。なお、後述する本願実施例において用いた担体は、特にことわらない限り平均粒径が12μm、比表面積が800(m2/g)であり、細孔容積が1.0(cm3/g)である旭硝子株式会社製のSiO2を用いた。
(C) Particulate carrier The (C) particulate carrier used as necessary in the present invention is an inorganic or organic compound, and is a granular or particulate solid. Among these, as the inorganic compound, a porous oxide, an inorganic halide, clay, clay mineral, or an ion-exchange layered compound is preferable. Such porous oxides have different properties depending on the type and production method, but the carrier preferably used in the present invention has a particle size of 1 to 300 μm, preferably 3 to 200 μm, and a specific surface area of 50 to 1000. (m 2 / g), preferably in the range of 100 to 800 (m 2 / g), and the pore volume is in the range of 0.3 to 3.0 (cm 3 / g). Such a carrier is used after being calcined at 80 to 1000 ° C., preferably 100 to 800 ° C., if necessary. The carrier used in the examples of the present invention described later has an average particle diameter of 12 μm, a specific surface area of 800 (m 2 / g), and a pore volume of 1.0 (cm 3 / g) unless otherwise specified. Asahi Glass Co., Ltd. SiO 2 was used.

本発明に係るオレフィン重合用触媒は、本発明の架橋メタロセン化合物(A)、(B-1) 有機金属化合物、(B-2) 有機アルミニウムオキシ化合物、および(B-3) イオン化イオン性化合物から選ばれる少なくとも1種の化合物(B)、必要に応じて微粒子状担体(C)と共に、必要に応じて後述するような特定の有機化合物成分(D)を含むこともできる。   The olefin polymerization catalyst according to the present invention comprises the bridged metallocene compound (A), (B-1) an organometallic compound, (B-2) an organoaluminum oxy compound, and (B-3) an ionized ionic compound according to the present invention. A specific organic compound component (D) as described later may be included as necessary together with at least one selected compound (B) and, if necessary, the particulate carrier (C).

(D)有機化合物成分
本発明において、(D)有機化合物成分は、必要に応じて、重合性能および生成ポリマーの物性を向上させる目的で使用される。このような有機化合物としては、アルコール類、フェノール性化合物、カルボン酸、リン化合物およびスルホン酸塩等が挙げられるが、この限りではない。
(D) Organic Compound Component In the present invention, the (D) organic compound component is used for the purpose of improving the polymerization performance and the physical properties of the produced polymer, if necessary. Such organic compounds include, but are not limited to, alcohols, phenolic compounds, carboxylic acids, phosphorus compounds, sulfonates, and the like.

本発明に係るエチレン系重合体は、上記のようなオレフィン重合用触媒を用いて、既述のようにエチレンを単独重合させるかまたはエチレンと炭素原子数6〜10のα-オレフィンとを共重合させることにより得られる。   The ethylene polymer according to the present invention is obtained by homopolymerizing ethylene as described above or copolymerizing ethylene and an α-olefin having 6 to 10 carbon atoms using the olefin polymerization catalyst as described above. Is obtained.

重合の際には、各成分の使用法、添加順序は任意に選ばれるが、以下のような方法、(P1)〜(P10)が例示される。
(P1) 成分(A)と、(B-1)有機金属化合物、(B-2)有機アルミニウムオキシ化合物および(B-3) イオン化イオン性化合物から選ばれる少なくとも1種の成分(B)(以下単に「成分(B)」という。)とを任意の順序で重合器に添加する方法。
In the polymerization, the method of using each component and the order of addition are arbitrarily selected, and the following methods (P1) to (P10) are exemplified.
(P1) Component (A) and at least one component (B) selected from (B-1) an organometallic compound, (B-2) an organoaluminum oxy compound, and (B-3) an ionized ionic compound (hereinafter referred to as “P1”) And simply adding “component (B)”) to the polymerization vessel in any order.

(P2) 成分(A)と成分(B)を予め接触させた触媒を重合器に添加する方法。
(P3) 成分(A)と成分(B)を予め接触させた触媒成分、および成分(B)を任意の順序で重合器に添加する方法。この場合各々の成分(B)は、同一でも異なっていてもよい。
(P4) 成分(A)を微粒子状担体(C)に担持した触媒成分、および成分(B)を任意の順序で重合器に添加する方法。
(P5) 成分(A)と成分(B)とを微粒子状担体(C)に担持した触媒を、重合器に添加する方法。
(P6) 成分(A)と成分(B)とを微粒子状担体(C)に担持した触媒成分、および成分(B)を任意の順序で重合器に添加する方法。この場合各々の成分(B)は、同一でも異なっていてもよい。
(P7) 成分(B)を微粒子状担体(C)に担持した触媒成分、および成分(A)を任意の順序で重合器に添加する方法。
(P8) 成分(B)を微粒子状担体(C)に担持した触媒成分、成分(A)、および成分(B)を任意の順序で重合器に添加する方法。この場合各々の成分(B)は、同一でも異なっていてもよい。
(P9) 成分(A)と成分(B)とを微粒子状担体(C)に担持した触媒を、成分(B)と予め接触させた触媒成分を、重合器に添加する方法。この場合各々の成分(B)は、同一でも異なっていてもよい。
(P10) 成分(A)と成分(B)とを微粒子状担体(C)に担持した触媒を、成分(B)と予め接触させた触媒成分、および成分(B)を任意の順序で重合器に添加する方法。この場合各々の成分(B)は、同一でも異なっていてもよい。
(P2) A method in which a catalyst in which the component (A) and the component (B) are contacted in advance is added to the polymerization reactor.
(P3) A method in which component (A) and component (B) are contacted in advance, and component (B) is added to the polymerization vessel in any order. In this case, each component (B) may be the same or different.
(P4) A method in which the catalyst component having the component (A) supported on the particulate carrier (C) and the component (B) are added to the polymerization vessel in an arbitrary order.
(P5) A method in which a catalyst in which component (A) and component (B) are supported on a particulate carrier (C) is added to a polymerization vessel.
(P6) A method in which the catalyst component in which the component (A) and the component (B) are supported on the particulate carrier (C), and the component (B) are added to the polymerization vessel in an arbitrary order. In this case, each component (B) may be the same or different.
(P7) A method in which the component (B) is supported on the particulate carrier (C) and the component (A) is added to the polymerization vessel in any order.
(P8) A method of adding the catalyst component having component (B) supported on fine particle carrier (C), component (A), and component (B) to the polymerization vessel in any order. In this case, each component (B) may be the same or different.
(P9) A method in which a catalyst in which a component (A) and a component (B) are supported on a particulate carrier (C) and a catalyst component that has been brought into contact with the component (B) in advance are added to a polymerization vessel. In this case, each component (B) may be the same or different.
(P10) A catalyst in which the component (A) and the component (B) are supported on the fine particle carrier (C), the catalyst component previously contacted with the component (B), and the component (B) in any order How to add to. In this case, each component (B) may be the same or different.

上記の(P1)〜(P10)の各方法においては、各触媒成分の少なくとも2つ以上は予め接触されていてもよい。   In each of the above methods (P1) to (P10), at least two of the catalyst components may be contacted in advance.

上記の微粒子状担体(C)に成分(A)および成分(B)が担持された固体触媒成分はオレフィンが予備重合されていてもよい。この予備重合された固体触媒成分は、通常固体触媒成分1g当たり、ポリオレフィンが0.1〜1000g、好ましくは0.3〜500g、特に好ましくは1〜200gの割合で予備重合されて構成されている。   The solid catalyst component in which the component (A) and the component (B) are supported on the particulate carrier (C) may be prepolymerized with olefin. This prepolymerized solid catalyst component is usually prepolymerized at a ratio of 0.1 to 1000 g, preferably 0.3 to 500 g, particularly preferably 1 to 200 g of polyolefin per 1 g of the solid catalyst component.

また、重合を円滑に進行させる目的で、帯電防止剤やアンチファウリング剤などを併用したり、担体上に担持しても良い。   Further, for the purpose of allowing the polymerization to proceed smoothly, an antistatic agent, an anti-fouling agent, or the like may be used in combination or supported on a carrier.

重合は溶解重合、懸濁重合などの液相重合法または気相重合法のいずれにおいても実施でき、特に懸濁重合および気相重合法が好んで採用される。   The polymerization can be carried out by any of liquid phase polymerization methods such as solution polymerization and suspension polymerization, and gas phase polymerization methods, and suspension polymerization and gas phase polymerization methods are particularly preferred.

液相重合法において用いられる不活性炭化水素媒体として具体的には、プロパン、ブタン、ペンタン、ヘキサン、ヘプタン、オクタン、デカン、ドデカン、灯油などの脂肪族炭化水素;シクロペンタン、シクロヘキサン、メチルシクロペンタンなどの脂環族炭化水素;ベンゼン、トルエン、キシレンなどの芳香族炭化水素;エチレンクロリド、クロルベンゼン、ジクロロメタンなどのハロゲン化炭化水素またはこれらの混合物などを挙げることができ、又オレフィン自身を溶媒として用いることもできる。   Specific examples of the inert hydrocarbon medium used in the liquid phase polymerization method include aliphatic hydrocarbons such as propane, butane, pentane, hexane, heptane, octane, decane, dodecane, and kerosene; cyclopentane, cyclohexane, and methylcyclopentane. Alicyclic hydrocarbons such as benzene, toluene, xylene, etc., aromatic hydrocarbons, halogenated hydrocarbons such as ethylene chloride, chlorobenzene, dichloromethane or mixtures thereof, and the olefin itself as a solvent. It can also be used.

上記のようなオレフィン重合用触媒を用いて、(共)重合を行うに際して、成分(A)は、反応容積1リットル当り、通常10-12〜10-2モル、好ましくは10-10〜10-3モルになるような量で用いられる。 When (co) polymerization is performed using the above olefin polymerization catalyst, the component (A) is usually 10 −12 to 10 −2 mol, preferably 10 −10 to 10 , per liter of reaction volume. It is used in such an amount that it becomes 3 mol.

必要に応じて用いられる成分(B-1)は、成分(B-1)と、成分(A)中の遷移金属原子(M)とのモル比[(B-1)/M]が、通常0.01〜100,000、好ましくは0.05〜50,000となるような量で用いられる。   The component (B-1) used as necessary has a molar ratio [(B-1) / M] of the component (B-1) and the transition metal atom (M) in the component (A) is usually It is used in an amount of 0.01 to 100,000, preferably 0.05 to 50,000.

必要に応じて用いられる成分(B-2)は、成分(B-2)中のアルミニウム原子と、成分(A)中の遷移金属原子(M)とのモル比[(B-2)/M]が、通常10〜500,000、好ましくは20〜100,000となるような量で用いられる。   Component (B-2) used as necessary is a molar ratio of the aluminum atom in component (B-2) to the transition metal atom (M) in component (A) [(B-2) / M Is usually used in an amount of 10 to 500,000, preferably 20 to 100,000.

必要に応じて用いられる成分(B-3)は、成分(B-3)と、成分(A)中の遷移金属原子(M)とのモル比[(B-3)/M]が、通常1〜100、好ましくは2〜80となるような量で用いられる。   The component (B-3) used as necessary has a molar ratio [(B-3) / M] of the component (B-3) and the transition metal atom (M) in the component (A) is usually The amount used is 1 to 100, preferably 2 to 80.

必要に応じて用いられる成分(D)は、成分(B)が成分(B-1)の場合には、モル比[(D)/(B-1)]が通常0.01〜10、好ましくは0.1〜5となるような量で、成分(B)が成分(B-2)の場合には、モル比[(D)/(B-2)]が通常0.001〜2、好ましくは0.005〜1となるような量で、成分(B)が成分(B-3)の場合には、モル比[(D)/(B-3)]が通常0.01〜10、好ましくは0.1〜5となるような量で用いられる。   When the component (B) is the component (B-1), the molar ratio [(D) / (B-1)] is usually 0.01 to 10, preferably 0.1. When the component (B) is the component (B-2) in such an amount that it becomes ˜5, the molar ratio [(D) / (B-2)] is usually 0.001 to 2, preferably 0.005 to 1. When the component (B) is the component (B-3), the molar ratio [(D) / (B-3)] is usually 0.01 to 10, preferably 0.1 to 5. Used in quantity.

また、このようなオレフィン重合用触媒を用いた重合温度は、通常-50〜+250℃、好ましくは0〜200℃、特に好ましくは60〜170℃の範囲である。重合圧力は、通常常圧〜100(kg/cm2) 、好ましくは常圧〜50(kg/cm2)の条件下であり、重合反応は、回分式(バッチ式)、半連続式、連続式のいずれの方法においても行うことができる。重合は、通常気相ま
たは重合粒子が溶媒中に析出しているスラリー相で行う。さらに重合を反応条件の異なる2段以上に分けて行う。このうち、バッチ式で行うことが好ましい。また、スラリー重合または気相重合の場合、重合温度は好ましくは60〜90℃、より好ましくは65〜85℃である。この温度範囲で重合することで、より組成分布が狭いエチレン系重合体が得られる。得られた重合体は数十〜数千μmφ程度の粒子状である。重合器が二つ以上からなる連続式で重合した場合には、良溶媒に溶解後に貧溶媒に析出させる、特定の混練機で十分に溶融混練するなどの操作が必要となる。
The polymerization temperature using such an olefin polymerization catalyst is usually in the range of -50 to + 250 ° C, preferably 0 to 200 ° C, particularly preferably 60 to 170 ° C. The polymerization pressure is usually from normal pressure to 100 (kg / cm 2 ), preferably from normal pressure to 50 (kg / cm 2 ), and the polymerization reaction is batch type (batch type), semi-continuous type, continuous. This can be done in any way of the formula. The polymerization is usually performed in a gas phase or a slurry phase in which polymer particles are precipitated in a solvent. Furthermore, the polymerization is carried out in two or more stages with different reaction conditions. Among these, it is preferable to carry out by a batch type. In the case of slurry polymerization or gas phase polymerization, the polymerization temperature is preferably 60 to 90 ° C, more preferably 65 to 85 ° C. By polymerizing in this temperature range, an ethylene polymer having a narrower composition distribution can be obtained. The obtained polymer is in the form of particles of about several tens to several thousand μmφ. When the polymerization is carried out in a continuous system comprising two or more polymerization vessels, it is necessary to perform operations such as dissolution in a good solvent and precipitation in a poor solvent, or sufficient melting and kneading with a specific kneader.

本発明に係るエチレン系重合体を例えば二段階で製造する場合、前段階で極限粘度が0.3〜1.8(dl/g)のエチレン単独重合体を製造し、後段階で極限粘度が3.0〜10.0(dl/g)の(共)重合体を製造する。この順番は逆でもよい。   For example, when the ethylene polymer according to the present invention is produced in two stages, an ethylene homopolymer having an intrinsic viscosity of 0.3 to 1.8 (dl / g) is produced in the previous stage, and the intrinsic viscosity is 3.0 to 10.0 in the latter stage. (dl / g) (co) polymer is produced. This order may be reversed.

このようなオレフィン重合用触媒はエチレンと共重合させるα-オレフィン(例えば1-ヘキセン)に対しても極めて高い重合性能を有するため、所定の重合が終了した後で、高すぎるα-オレフィン含量の共重合体が生成しないような工夫が必要である。例えば、重合槽内容物を重合槽から抜き出すと同時あるいは可及的速やかに、[1]溶媒分離装置で重合体と溶媒、未反応α-オレフィンとを分離する方法、[2]該内容物に窒素などの不活性ガスを加えて溶媒、未反応α-オレフィンを強制的に系外へ排出する方法、[3]該内容物にかかる圧力を制御して溶媒、未反応α-オレフィンを強制的に系外へ排出する方法、[4]該内容物に多量の溶媒を添加して実質的に重合が起こらないと考えられる濃度まで未反応α-オレフィンを希釈する方法、[5]メタノールなどの重合用触媒を失活させる物質を添加する方法、[6]実質的に重合が起こらないと考えられる温度まで該内容物を冷却する方法などを挙げることができる。 これらの方法は単独で実施してもよいし、いくつかを組み合わせて実施してもよい。   Since such an olefin polymerization catalyst has extremely high polymerization performance for α-olefins (for example, 1-hexene) copolymerized with ethylene, an α-olefin content that is too high after a predetermined polymerization is completed. It is necessary to devise such that no copolymer is formed. For example, [1] a method of separating a polymer, a solvent, and unreacted α-olefin with a solvent separation device simultaneously or as soon as possible after the contents of the polymerization vessel are extracted from the polymerization vessel; [2] A method of forcibly discharging the solvent and unreacted α-olefin out of the system by adding an inert gas such as nitrogen, [3] Forcing the solvent and unreacted α-olefin to be controlled by controlling the pressure applied to the contents [4] A method of diluting unreacted α-olefin to a concentration at which it is considered that substantially no polymerization occurs by adding a large amount of solvent to the contents, [5] Methanol, etc. Examples include a method of adding a substance that deactivates the polymerization catalyst, and [6] a method of cooling the contents to a temperature at which polymerization is considered not to occur. These methods may be carried out singly or in combination.

得られるエチレン系重合体の分子量は、重合系に水素を存在させるか、または重合温度を変化させることによって調節することができる。さらに、使用する成分(B)の違いにより調節することもできる。   The molecular weight of the resulting ethylene polymer can be adjusted by allowing hydrogen to be present in the polymerization system or changing the polymerization temperature. Furthermore, it can also adjust by the difference in the component (B) to be used.

重合反応により得られた重合体粒子は、以下の方法によりペレット化してもよい。   The polymer particles obtained by the polymerization reaction may be pelletized by the following method.

(1)エチレン系重合体粒子および所望により添加される他の成分を、押出機、ニーダー等を用いて機械的にブレンドして、所定の大きさにカットする方法。   (1) A method of mechanically blending ethylene-based polymer particles and other components added as required using an extruder, a kneader, etc., and cutting them into a predetermined size.

(2)エチレン系重合体および所望により添加される他の成分を適当な良溶媒(例えば、ヘキサン、ヘプタン、デカン、シクロヘキサン、ベンゼン、トルエンおよびキシレン等の炭化水素溶媒)に溶解し、次いで溶媒を除去、しかる後に押出機、ニーダー等を用いて機械的にブレンドして、所定の大きさにカットする方法。   (2) Dissolve the ethylene polymer and other components added as required in a suitable good solvent (for example, a hydrocarbon solvent such as hexane, heptane, decane, cyclohexane, benzene, toluene and xylene), and then remove the solvent. Removal and then mechanically blending using an extruder, kneader, etc., and cutting to a predetermined size.

本発明に係わるエチレン系重合体には、本発明の目的を損なわない範囲で、耐候性安定剤、耐熱安定剤、帯電防止剤、スリップ防止剤、アンチブロッキング剤、防曇剤、滑剤、染料、核剤、可塑剤、老化防止剤、塩酸吸収剤、酸化防止剤などの添加剤やカーボンブラック、酸化チタン、チタンイエロー、フタロシアニン、イソインドリノン、キナクリドン化合物、縮合アゾ化合物、群青、コバルトブルー等の顔料が必要に応じて配合されていてもよい。   The ethylene polymer according to the present invention includes a weather resistance stabilizer, a heat resistance stabilizer, an antistatic agent, an anti-slip agent, an anti-blocking agent, an anti-fogging agent, a lubricant, a dye, as long as the object of the present invention is not impaired. Additives such as nucleating agents, plasticizers, anti-aging agents, hydrochloric acid absorbents, antioxidants, carbon black, titanium oxide, titanium yellow, phthalocyanine, isoindolinone, quinacridone compounds, condensed azo compounds, ultramarine, cobalt blue, etc. A pigment may be blended as necessary.

エチレン系重合体からなる成形体
本発明のエチレン系重合体は、ブロー成形体、インフレーション成形体、キャスト成形体、押出ラミ成形体、パイプや異形などの押出成形体、発泡成形体、射出成形体、真空成形体などに成形することができる。さらに繊維、モノフィラメント、不織布などに使用す
ることができる。これらの成形体には、エチレン系重合体からなる部分と、他の樹脂からなる部分とを含む成形体(積層体等)が含まれる。なお、該エチレン系重合体は成形過程で架橋されたものを用いてもよい。上記の成形体の中でも、ブロー成形体、押出成形体および射出成形体は優れた特性を与えるので好ましい。
Molded body made of an ethylene polymer The ethylene polymer of the present invention is a blow molded body, an inflation molded body, a cast molded body, an extruded laminated body, an extruded molded body such as a pipe or a deformed body, a foam molded body, an injection molded body. It can be formed into a vacuum formed body or the like. Furthermore, it can be used for fibers, monofilaments, nonwoven fabrics and the like. These molded products include molded products (laminates and the like) including a part made of an ethylene polymer and a part made of another resin. The ethylene polymer may be one that has been crosslinked in the molding process. Among the above molded products, blow molded products, extrusion molded products, and injection molded products are preferable because they give excellent characteristics.

本発明のブロー成形体の好ましい態様は、ボトル容器、工業薬品缶およびボトル容器である。上記のようにして調整される中空成形体は、漂白剤容器、洗剤容器、柔軟剤容器などの用途に適しており、たとえば化粧品、衣料用洗剤、住居用洗剤、柔軟仕上げ剤、シャンプー、リンス、コンディショナー等の容器に用いられる。   Preferred embodiments of the blow molded article of the present invention are a bottle container, an industrial chemical can and a bottle container. The hollow molded body prepared as described above is suitable for use in bleach containers, detergent containers, softener containers, etc., for example, cosmetics, clothing detergents, residential detergents, softeners, shampoos, rinses, Used for containers such as conditioners.

また、灯油缶、発電機や、芝刈り機、二輪車、自動車等のガソリンタンクや、農薬や、薬品保存用の工薬缶、ドラム缶等にも用いる事ができる。また、マヨネーズや、食用油を保管する食品用途や、医療品を保管する中空成形体としても用いられる。   It can also be used for kerosene cans, generators, lawn mowers, motorcycles, gasoline tanks for automobiles, agricultural chemicals, chemical canisters for storing chemicals, drum cans, and the like. It is also used as a hollow molded article for storing mayonnaise, food applications for storing edible oil, and medical products.

また、これらの用途では食品を酸化から保護する目的や、ガソリンなどの内容物の透過を抑制する事を目的とした多層成形体としても好適に用いられる。   Moreover, in these uses, it is used suitably also as a multilayer molded object for the purpose of protecting the foodstuff from oxidation, and suppressing the permeation | transmission of the contents, such as gasoline.

本発明の押出成形体の好ましい態様は、パイプ、電線被覆材または鋼管・鋼線被覆材である。上記のようにして調整される押出成形体は、ガス用のパイプ、上下水道管、農業用水・工業用水等の輸送に用いられるパイプ、光ファイバー等の情報通信設備を保存する用途を含めた雑多な内容物を保護する為のパイプにも用いられる。また、鋳鉄管の内部を腐食する鋼管被覆材や、建築物を支えるワイヤー等の保護に用いられる鋼線被覆材としても好適に用いられる。これらの押出成形体や短期・長期破壊しない事が求められており、本発明の樹脂を用いる事は製品寿命を長くするためにも有効である。   A preferred embodiment of the extruded product of the present invention is a pipe, a wire coating material, or a steel pipe / steel wire coating material. Extrudates prepared as described above are miscellaneous including gas pipes, water and sewage pipes, pipes used for transportation of agricultural water, industrial water, etc., and applications for storing information communication equipment such as optical fibers. Also used for pipes to protect the contents. Moreover, it is used suitably also as a steel pipe coating | covering material used for protection of the steel pipe coating | coated material which corrodes the inside of a cast iron pipe, and the wire which supports a building. It is demanded that these extruded molded products and the short-term and long-term destruction do not occur, and the use of the resin of the present invention is effective for extending the product life.

本発明の射出成形体の好ましい態様は、パイプ継手または自動車用部品である。パイプ継手や自動車用部品は中空成形体や、押出成形体に融着して用いるためにも好んで用いられる。パイプ継手にはエレクトロンフュージョン継手、ヒートフュージョン継手等の由着方法、また、目的に応じた配管の連結・分岐法により様々な形態が存在するが、いずれの形態にも成形性と物性特に、製品が長期破壊しない事から好適に用いることができる。特にウエルド部の破壊および押出成形により作成されたパイプ本体との融着部の信頼性を長期間高める点において、本発明の製品を用いる事は有効である。   A preferred embodiment of the injection molded article of the present invention is a pipe joint or an automotive part. Pipe joints and automotive parts are also preferably used because they are fused to hollow molded bodies or extruded molded bodies. There are various types of pipe joints depending on the attachment method such as electron fusion joint, heat fusion joint, etc., and pipe connection / branch method depending on the purpose. Can be suitably used because it does not break for a long time. In particular, it is effective to use the product of the present invention in terms of enhancing the reliability of the welded portion with the pipe body produced by fracture of the weld portion and extrusion molding for a long period of time.

自動車用部品の多くは中空成形体であるガソリンタンクの機能性を高める為の融着部品として用いられる事が多い。本発明の製品を用いる事で、ウエルド部および融着部の長期信頼性を高めることが可能である。
以下、本発明の実施例を述べるが、本発明はこれら実施例に何ら限定されるものではない。なお、本発明に記載された各種物性の測定方法、測定用試料の調製方法は次の通りである。
Many automotive parts are often used as fusion parts for enhancing the functionality of gasoline tanks, which are hollow molded articles. By using the product of the present invention, it is possible to improve the long-term reliability of the welded portion and the fused portion.
Examples of the present invention will be described below, but the present invention is not limited to these examples. In addition, the measurement method of various physical properties described in the present invention and the preparation method of the measurement sample are as follows.

本発明に係るブロー成形体用のエチレン系重合体(EB)は、ブロー成形により、ボトル容器、工業薬品缶、ガソリンタンクなどに成形することができる。これらの成形体には、エチレン系重合体(EB)からなる部分と、他の樹脂からなる部分とを含む成形体(積層体等)が含まれる。また、エチレン系重合体(EB)が顔料を含む場合、その濃度は通常0.01〜3.00重量%である。   The ethylene-based polymer (EB) for blow molded products according to the present invention can be formed into a bottle container, an industrial chemical can, a gasoline tank, or the like by blow molding. These molded bodies include molded bodies (laminates and the like) including a portion made of an ethylene polymer (EB) and a portion made of another resin. When the ethylene polymer (EB) contains a pigment, the concentration is usually 0.01 to 3.00% by weight.

各種物性の測定方法
★測定用試料の調製
粒子状のエチレン系重合体100重量部に対して、二次抗酸化剤としてのトリ(2,4-ジ-t-ブチルフェニル)フォスフェートを0.20重量部、耐熱安定剤としてのn-オクタデシル-3-
(4'-ヒドロキシ-3',5'-ジ-t-ブチルフェニル)プロピネートを0.20重量部、塩酸吸収剤としてのステアリン酸カルシウムを0.15重量部配合した。しかる後にプラコー社製単軸押出機(スクリュー径65mm、L/D=28、スクリーンメッシュ#40/#60/#300×4/#60/#40)を用い、設定温度200℃、樹脂押出量25kg/hrで造粒して測定用試料とした。
Measurement method of various physical properties ★ Preparation of sample for measurement 0.20 weight of tri (2,4-di-t-butylphenyl) phosphate as a secondary antioxidant for 100 parts by weight of particulate ethylene polymer N-octadecyl-3- as a heat-resistant stabilizer
0.24 parts by weight of (4′-hydroxy-3 ′, 5′-di-t-butylphenyl) propinate and 0.15 parts by weight of calcium stearate as a hydrochloric acid absorbent were blended. After that, using a Placo single screw extruder (screw diameter 65mm, L / D = 28, screen mesh # 40 / # 60 / # 300 × 4 / # 60 / # 40), set temperature 200 ° C, resin extrusion rate The sample was granulated at 25 kg / hr to obtain a measurement sample.

★エチレン含量、α-オレフィン含量の測定
13C-NMRによりエチレン重合体の分子鎖中におけるエチレン含量、α-オレフィン含量を測定した。測定は日本電子(株)社製Lambda 500型核磁気共鳴装置(1H:500MHz)を用いた。積算回数1万〜3万回にて測定した。直径10mm市販のNMR測定石英ガラス管中に、サンプル250〜400mgと和光純薬工業(株)社製特級ヘキサクロロブタジエン2mlを入れ、120℃にて加熱、均一分散させた溶液についてNMR測定を行った。NMRスペクトルにおける各吸収の帰属は、化学の領域増刊141号 NMR-総説と実験ガイド[I]、132頁〜133頁に準じて行った。なお、測定温度120℃、測定周波数125.7MHz、スペクトル幅250,000Hz 、パルス繰返し時間4.5秒、45°パルスの測定条件下で測定を行った。
★ Measurement of ethylene content and α-olefin content
The ethylene content and α-olefin content in the molecular chain of the ethylene polymer were measured by 13C-NMR. Measurement was performed using a Lambda 500 type nuclear magnetic resonance apparatus (1H: 500 MHz) manufactured by JEOL Ltd. Measurement was performed at 10,000 to 30,000 integrations. In a commercially available quartz glass tube having a diameter of 10 mm, 250 to 400 mg of sample and 2 ml of special grade hexachlorobutadiene manufactured by Wako Pure Chemical Industries, Ltd. were placed, heated at 120 ° C., and uniformly dispersed. . Assignment of each absorption in the NMR spectrum was carried out according to Chemistry Special Issue 141 NMR-Review and Experiment Guide [I], pages 132-133. The measurement was performed under the measurement conditions of a measurement temperature of 120 ° C., a measurement frequency of 125.7 MHz, a spectrum width of 250,000 Hz, a pulse repetition time of 4.5 seconds, and a 45 ° pulse.

★クロス分別(CFC)
三菱油化社製CFC T-150A型を用い以下のようにして測定した。分離カラムはShodex AT-806MSが3本であり、溶離液はo-ジクロロベンゼンであり、試料濃度は0.1〜0.3wt/vol%であり、注入量は0.5mlであり、流速は1.0ml/minである。試料は145℃、2時間加熱後、0℃まで10℃/hrで降温、更に0℃で60min保持して試料をコーティングさせた。昇温溶出カラム容量は0.86ml、配管容量は0.06mlである。検出器はFOXBORO社製赤外分光器MIRAN 1A CVF型(CaF2セル)を用い、応答時間10秒の吸光度モードの設定で、3.42μm(2924cm-1)の赤外光を検知した。溶出温度は0℃〜145℃までを35〜55フラクションに分け、特に溶出ピーク付近では1℃きざみのフラクションに分けた。温度表示は全て整数であり、例えば90℃の溶出画分とは、89℃〜90℃で溶出した成分のことを示す。0℃でもコーティングされなかった成分および各温度で溶出したフラクションの分子量を測定し、汎用較正曲線を使用して、PE換算分子量を求めた。SEC温度は145℃であり、内標注入量は0.5mlであり、注入位置は3.0mlであり、データサンプリング時間は0.50秒である。なお、狭い温度範囲で溶出する成分が多すぎて、圧力異常が生じる場合には、試料濃度を0.1wt/vol%未満とする場合もある。データ処理は、装置付属の解析プログラム「CFCデータ処理(バージョン1.50)」で実施した。なお、クロス分別(CFC)それ自身は、測定条件を厳密に同一にすれば高い分析精度でもって結果を再現する分析法であると言われているが、測定を複数回行いその平均をとることがより好ましい。
★ Cross separation (CFC)
Measurement was carried out as follows using a Mitsubishi CFC T-150A model. The separation column is three Shodex AT-806MS, the eluent is o-dichlorobenzene, the sample concentration is 0.1-0.3wt / vol%, the injection volume is 0.5ml, the flow rate is 1.0ml / min. It is. The sample was heated at 145 ° C. for 2 hours, then cooled to 0 ° C. at 10 ° C./hr, and further maintained at 0 ° C. for 60 minutes to coat the sample. The temperature elution column capacity is 0.86 ml and the pipe capacity is 0.06 ml. The detector used an infrared spectrometer MIRAN 1A CVF type (CaF2 cell) manufactured by FOXBORO, and infrared light of 3.42 μm (2924 cm −1 ) was detected with an absorbance mode setting of 10 seconds response time. The elution temperature was divided into 35 to 55 fractions from 0 ° C. to 145 ° C., particularly in the vicinity of the elution peak. All temperature indications are integers. For example, the elution fraction at 90 ° C. indicates a component eluted at 89 ° C. to 90 ° C. The molecular weight of the components that were not coated even at 0 ° C. and the molecular weight of the fraction eluted at each temperature were measured, and the molecular weight in terms of PE was determined using a general-purpose calibration curve. The SEC temperature is 145 ° C., the internal standard injection volume is 0.5 ml, the injection position is 3.0 ml, and the data sampling time is 0.50 seconds. In addition, when there are too many components to elute in a narrow temperature range and a pressure abnormality occurs, the sample concentration may be less than 0.1 wt / vol%. Data processing was performed using the analysis program “CFC data processing (version 1.50)” included with the device. Cross-fractionation (CFC) itself is said to be an analytical method that reproduces the results with high analytical accuracy if the measurement conditions are exactly the same. Is more preferable.

★重量平均分子量(Mw)、数平均分子量(Mn)および分子量曲線
ウォーターズ社製GPC-150Cを用い以下のようにして測定した。分離カラムは、TSKgel GMH6-HT及びTSKgel GMH6-HTLであり、カラムサイズはそれぞれ内径7.5mm、長さ600mmであり、カラム温度は140℃とし、移動相にはo-ジクロロベンゼン(和光純薬工業)および酸化防止剤としてBHT(武田薬品)0.025重量%を用い、1.0ml/minで移動させ、試料濃度は0.
1重量%とし、試料注入量は500μlとし、検出器として示差屈折計を用いた。標準ポリスチレンは、分子量がMw<1,000およびMw>4×106については東ソー社製を用い、1,000≦Mw≦4×106についてはプレッシャーケミカル社製を用いた。分子量計算は、ユニバーサル校正して、ポリエチレンに換算して求めた値である。
* Weight average molecular weight (Mw), number average molecular weight (Mn), and molecular weight curve It measured as follows using GPC-150C by Waters. The separation columns are TSKgel GMH6-HT and TSKgel GMH6-HTL, the column size is 7.5 mm in inner diameter and 600 mm in length, the column temperature is 140 ° C., the mobile phase is o-dichlorobenzene (Wako Pure Chemical Industries, Ltd.) ) And 0.025% by weight of BHT (Takeda Pharmaceutical) as an antioxidant, moved at 1.0 ml / min, and the sample concentration was 0.
The amount of sample injection was 500 μl, and a differential refractometer was used as a detector. Standard polystyrene for molecular weight Mw <1,000 and Mw> 4 × 10 6 Using Tosoh Corp., for 1,000 ≦ Mw ≦ 4 × 10 6 was used Pressure Chemical Corporation. The molecular weight calculation is a value obtained by universal calibration and conversion into polyethylene.

★分子量曲線の分離
マイクロソフト社製エクセル(登録商標)97のビジュアル・ベーシックを用いてプログラムを作成した。分離する2つの曲線は対数正規分布として、収束計算により分子量分布
曲線を分子量が異なる2つの曲線に分離した。分離した2つの曲線を再合成した曲線とGPCで実測した分子量曲線とを比較して、両者がほぼ一致するように初期値を変更しながら計算を実行する。計算はLog(分子量)を0.02間隔に分割して行う。実測した分子量曲線の
面積と分離した2つの曲線を再合成した曲線の面積とが1になるように強度を規格化し、各分子量における実測の強度(高さ)と再合成した曲線の強度(高さ)との差の絶対値を実測の強度(高さ)で割った値が、分子量が10,000〜1,000,000の範囲で0.4以下、好ましくは0.2以下、より好ましくは0.1以下であり、2つに分離したピークの最大位置では0.2以下、好ましくは0.1以下となるまで曲線の分離計算を繰り返す。この際、低分子量側に分離されたピークのMw/Mnと高分子量側に分離されたピークのMw/Mnとの差が1.5以下とな
るようにする。計算例を図4に示した。
* Separation of molecular weight curve A program was created using Visual Basic of Excel (registered trademark) 97 manufactured by Microsoft Corporation. The two curves to be separated were log-normal distributions, and the molecular weight distribution curve was separated into two curves with different molecular weights by convergence calculation. The curve obtained by re-synthesizing the two separated curves and the molecular weight curve measured by GPC are compared, and the calculation is executed while changing the initial values so that the two are almost the same. Calculation is performed by dividing Log (molecular weight) into 0.02 intervals. Normalize the intensity so that the area of the measured molecular weight curve and the area of the curve obtained by recombining the two separated curves are 1, and the measured intensity (height) at each molecular weight and the strength of the recombined curve (high The value obtained by dividing the absolute value of the difference by the measured strength (height) is 0.4 or less, preferably 0.2 or less, more preferably 0.1 or less in the molecular weight range of 10,000 to 1,000,000. The curve separation calculation is repeated until the maximum peak position is 0.2 or less, preferably 0.1 or less. At this time, the difference between the Mw / Mn of the peak separated on the low molecular weight side and the Mw / Mn of the peak separated on the high molecular weight side is set to 1.5 or less. An example of calculation is shown in FIG.

★極限粘度([η])
デカリン溶媒を用いて、135℃で測定した値である。すなわち造粒ペレット約20mgをデカリン15mlに溶解し、135℃のオイルバス中で比粘度ηspを測定する。このデカリン溶液にデカリン溶媒を5ml追加して希釈後、同様にして比粘度ηspを測定する。この希釈操作をさらに2回繰り返し、濃度(C)を0に外挿した時のηsp/Cの値を極限粘度として求める(下式参照)。
★ Intrinsic viscosity ([η])
It is a value measured at 135 ° C. using a decalin solvent. That is, about 20 mg of granulated pellets are dissolved in 15 ml of decalin, and the specific viscosity ηsp is measured in an oil bath at 135 ° C. After adding 5 ml of decalin solvent to the decalin solution for dilution, the specific viscosity ηsp is measured in the same manner. This dilution operation is further repeated twice, and the value of ηsp / C when the concentration (C) is extrapolated to 0 is obtained as the intrinsic viscosity (see the following formula).

Figure 2006083370
Figure 2006083370

★密度(d)
190℃に設定した神藤金属工業社製油圧式熱プレス機を用い、100kg/cm2の圧力で0.5mm厚のシートを成形し(スペーサー形状; 240×240×0.5mm厚の板に45×45×0.5mm、9個取り)、20℃に設定した別の神藤金属工業社製油圧式熱プレス機を用い、100kg/cm2の圧力で圧縮することで冷却して測定用試料を作成した。熱板は5mm厚のSUS板を用いた。このプレスシートを120℃で1時間熱処理し、1時間かけて直線的に室温まで徐冷したのち、密度勾配管で測定した。
★ Density (d)
Using a hydraulic heat press manufactured by Shinfuji Metal Industry Co., Ltd. set at 190 ° C, a 0.5 mm thick sheet was formed at a pressure of 100 kg / cm2 (spacer shape; 45 x 45 x 0.5 on a 240 x 240 x 0.5 mm thick plate) A sample for measurement was prepared by cooling by compressing at a pressure of 100 kg / cm 2 using another hydraulic heat press machine manufactured by Shinfuji Metal Industry Co., Ltd., set at 20 ° C., 9 mm). The hot plate was a 5 mm thick SUS plate. The press sheet was heat-treated at 120 ° C. for 1 hour, linearly cooled to room temperature over 1 hour, and then measured with a density gradient tube.

★プレスシートの耐環境応力亀裂試験: ESCR(hr)
190℃に設定した神藤金属工業社製油圧式熱プレス機を用い、100kg/cm2の圧力で2mm厚のシートを成形し(スペーサー形状; 240×240×2mm厚の板に80×80×2mm、4個取り)、20℃に設定した別の神藤金属工業社製油圧式熱プレス機を用い、100kg/cm2の圧力で圧縮することで冷却して測定用試料を作成した。熱板は5mm厚のSUS板を用いた。上記の80×80×2mm厚プレスシートより、13mm×38mmの試験片オーダーンベルにより打ち抜き、評価試
料に供した。
★ Environmental stress crack resistance test of press sheet: ESCR (hr)
Using a hydraulic heat press manufactured by Shinfuji Metal Industry Co., Ltd. set at 190 ° C, a 2mm thick sheet was formed at a pressure of 100kg / cm 2 (spacer shape; 80x80x2mm on a 240x240x2mm thick plate, A sample for measurement was prepared by cooling by compressing at a pressure of 100 kg / cm 2 using another hydraulic hot press machine manufactured by Shinfuji Metal Industry Co., Ltd. set at 20 ° C. The hot plate was a 5 mm thick SUS plate. From the above 80 × 80 × 2 mm thick press sheet, a 13 mm × 38 mm test piece was punched out using an ordered bell and used as an evaluation sample.

耐環境応力破壊(ESCR)性は、ASTM D1693に準じて実施した。評価条件(ベントストリップ法)の概略を以下に示した。
サンプル形状:プレス成形 C法
スペシメン 38x13mm 厚さ2mm(HDPE)
ノッチ長さ 19mm、深さ 0.35mm
試験温度:50℃ 恒温水槽 50.0±0.5℃に制御できるもの
サンプルの保持:内寸11.75mm長さ165mmのスペシメンホルダーに専用の折り曲げ冶具を用いてセットする
界面活性剤:ノニルフェニルポリオキシエチレンエタノール(AntaroxCO-630の商品名で市販)を水で希釈して10%濃度で使用する。
評価法:F50破壊時間(50%破壊時間)は対数確率紙を用いて求める。
Environmental stress fracture resistance (ESCR) resistance was measured according to ASTM D1693. The outline of the evaluation conditions (vent strip method) is shown below.
Sample shape: Press molding C method Specimen 38x13mm Thickness 2mm (HDPE)
Notch length 19mm, depth 0.35mm
Test temperature: 50 ° C Constant temperature water bath Controllable to 50.0 ± 0.5 ° C Sample holding: Set to a specimen holder with an inner dimension of 11.75mm and a length of 165mm using a special bending jig Surfactant: Nonylphenyl polyoxyethylene ethanol ( AntaroxCO-630 (commercially available) is diluted with water and used at a concentration of 10%.
Evaluation method: F50 destruction time (50% destruction time) is obtained using logarithmic probability paper.

★プレスシートの曲げ弾性率試験
JIS K6922-2 表3 一般的性質及びその試験条件 の 曲げ弾性率 の項の記載に従い、JIS K7171に記載の曲げ特性の試験方法に準じて評価を行った。すなわち、成形温度
180℃、平均冷却速度 15℃/min、40℃にて取り出した4mm厚のプレスシートから、長さ80mm、幅 10mm、厚さ 4mm の 試験片を打ち抜き、23℃にて、支持間距離 64mm、試験速度 2.0mm/minにて曲げ弾性率を測定した。
★ Bending elastic modulus test of press sheet
In accordance with the description of the flexural modulus section of JIS K6922-2 Table 3 General properties and test conditions, the evaluation was performed according to the test method for bending properties described in JIS K7171. That is, a test piece having a length of 80 mm, a width of 10 mm, and a thickness of 4 mm was punched from a 4 mm-thick press sheet taken out at a molding temperature of 180 ° C., an average cooling rate of 15 ° C./min, and 40 ° C., and supported at 23 ° C. The flexural modulus was measured at a distance of 64 mm and a test speed of 2.0 mm / min.

★tanδ(=損失弾性率G’’/貯蔵弾性率G’)
tanδの詳細は、例えば高分子刊行会、「講座・レオロジー」日本レオロジー学会編20〜23ページに記載されている。測定は、レオメトリックス社製レオメーターRDS-II用い、貯蔵弾性率G’(Pa)と損失弾性率G’’(Pa)の角周波数(ω(rad/sec))分散を測定した。サンプルホルダーは25mmφのパラレルプレートを用い、サンプル厚みは約2mmとした。測定温度は190℃とし、0.04≦ω≦400の範囲でG’、G’’を測定した。測定点はω一桁当たり5点とした。歪み量は、測定範囲でのトルクが検出可能で、かつトルクオーバーにならないよう、2〜25%の範囲で適宜選択した。
★ tanδ (= loss modulus G '' / storage modulus G ')
Details of tan δ are described in, for example, Polymer publications, “Lectures / Rheology”, pages 20-23 of the Japanese Society of Rheology. The rheometer RDS-II manufactured by Rheometrics was used to measure the angular frequency (ω (rad / sec)) dispersion of the storage elastic modulus G ′ (Pa) and loss elastic modulus G ″ (Pa). The sample holder was a 25 mmφ parallel plate, and the sample thickness was about 2 mm. The measurement temperature was 190 ° C., and G ′ and G ″ were measured in the range of 0.04 ≦ ω ≦ 400. The number of measurement points was 5 per ω digit. The amount of strain was appropriately selected in the range of 2 to 25% so that the torque in the measurement range could be detected and the torque was not exceeded.

★ボトルの座屈強度、耐環境応力破壊(ESCR)性測定およびピンチオフ性を見るためのボトルの作成プラコー社製押出ブロー成形機(機種名:3B 50-40-40)を用いて、設定温度180℃、ダイ径23mmφ、コア径21mmφ、押出量12kg/hr、金型温度25℃、型締速度1.4秒、型締め圧 5.5t、吹き込み空気圧 5kg/cm2の条件でブロー成形を行い、内容量1,000cc、目付50gの円筒瓶を得た。   ★ Bottle buckling strength, environmental stress fracture resistance (ESCR) measurement, and bottle creation to check pinch-off property Using Plako's extrusion blow molding machine (model name: 3B 50-40-40), set temperature 180 ° C, die diameter 23mmφ, core diameter 21mmφ, extrusion rate 12kg / hr, mold temperature 25 ° C, clamping speed 1.4 seconds, clamping pressure 5.5t, blowing air pressure 5kg / cm2 A cylindrical bottle with 1,000 cc and a weight of 50 g was obtained.

★ボトルの耐環境応力破壊(ESCR)性
上記のように作成したボトル中に花王製キッチンハイターを100cc充填した後、口部を樹脂でシールし、65℃のオーブン中に保持して破壊時間を観察し、対数確率紙を用いてF50破壊時間を求めた。
★ Environmental stress fracture resistance (ESCR) of bottles After filling 100 cc of Kao's kitchen hitter into the bottle created as above, the mouth is sealed with resin and held in an oven at 65 ° C to reduce the breakage time. Observed and determined F50 destruction time using logarithmic probability paper.

★ボトルのピンチオフ性(ピンチ部肉厚比の測定)
上記のようにブロー成形して得られたボトルの底部を金型の合わせ面と直角をなす方向に切った時、ボトル中心部の厚さをa、最も肉厚の部分の厚さをbとすると、ピンチ部肉厚比は(a/b)で表される。この値が大きいほどピンチ形状は良好である(図5参照)。
★ Pinch-off property of bottle (measurement of pinch thickness ratio)
When the bottom of the bottle obtained by blow molding as described above is cut in a direction perpendicular to the mating surface of the mold, the thickness of the center of the bottle is a, and the thickness of the thickest part is b. Then, the pinch thickness ratio is represented by (a / b). The larger the value, the better the pinch shape (see Fig. 5).

★ボトルの座屈強度測定
上記のようにブロー成形して得られたボトルを正立させ、23℃にて試験速度20mm/minにてボトル天面部から底方向に荷重を加え、圧縮した際に生じた最大荷重を座屈強度として記録した。
★ Measurement of buckling strength of bottle When the bottle obtained by blow molding as described above is erected, when a load is applied from the top of the bottle to the bottom at 23 ° C and a test speed of 20 mm / min, it is compressed. The maximum load produced was recorded as the buckling strength.

以下、実施例に基づいて本発明をさらに具体的に説明するが、本発明はこれら実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated further more concretely based on an Example, this invention is not limited to these Examples.

〔合成例1〕
[固体触媒成分(α)の調製]
200℃で3時間乾燥したシリカ8.5kgを33リットルのトルエンで懸濁状にした後、メチルアルミノキサン溶液(Al=1.42モル/リットル)82.7リットルを30分かけて滴下した。次いで1.5時間かけて115℃まで昇温し、その温度で4時間反応させた。その後60℃まで降温し、上澄み液をデカンテーション法によって除去した。得られた固体触媒成分をトルエンで3回洗浄した後、トルエンで再懸濁化して固体触媒成分(α)を得た(全容積150リットル)。
[Synthesis Example 1]
[Preparation of solid catalyst component (α)]
After 8.5 kg of silica dried at 200 ° C. for 3 hours was suspended in 33 liters of toluene, 82.7 liters of methylaluminoxane solution (Al = 1.42 mol / liter) was added dropwise over 30 minutes. Next, the temperature was raised to 115 ° C. over 1.5 hours, and the reaction was carried out at that temperature for 4 hours. Thereafter, the temperature was lowered to 60 ° C., and the supernatant was removed by a decantation method. The obtained solid catalyst component was washed with toluene three times and then resuspended with toluene to obtain a solid catalyst component (α) (total volume 150 liters).

〔合成例2〕
[担持触媒の調製]
充分に窒素置換した反応器中に、トルエンに懸濁させた合成例1にて合成した固体触媒成分(α)をアルミニウム換算で19.60molを入れ、その懸濁液を攪拌しながら、室温下(20〜25℃)でジ(p-トリル)メチレン(シクロペンタジエニル)(オクタメチルオクタヒドロジベンゾフルオレニル)ジルコニウムジクロライド31.06mmol/リットル溶液を2リットル(61.12mmol)加えた後、60分攪拌した。攪拌を停止後、上澄み液をデカンテーションで取り除き、n-ヘキサン40リットルを用いて洗浄を2回行い、得られた担持触媒をn-ヘキサンにリスラリーし25リットルの触媒懸濁液として、固体触媒成分(γ)を得た。
[Synthesis Example 2]
[Preparation of supported catalyst]
In a fully nitrogen-substituted reactor, 19.60 mol of the solid catalyst component (α) synthesized in Synthesis Example 1 suspended in toluene was added in terms of aluminum, and the suspension was stirred at room temperature ( 20 ~ 25 ℃) di (p-tolyl) methylene (cyclopentadienyl) (octamethyloctahydrodibenzofluorenyl) zirconium dichloride 31.06mmol / L solution was added 2L (61.12mmol) and stirred for 60 minutes did. After the stirring is stopped, the supernatant liquid is removed by decantation, washing is performed twice with 40 liters of n-hexane, and the obtained supported catalyst is reslurried in n-hexane to form a 25 liter catalyst suspension as a solid catalyst. Component (γ) was obtained.

[固体触媒成分(γ)の予備重合による固体触媒成分(δ)の調製]
攪拌機つき反応器に窒素雰囲気下、精製n-ヘキサン15.8リットル、および上記固体触媒成分(γ)を投入した後、トリイソブチルアルミニウム5molを加え、攪拌しながら、固体成分1g当たり4時間で3gのポリエチレンを生成相当量のエチレンで予備重合を行った。重合温度は20〜25℃に保った。重合終了後、攪拌を停止後、上澄み液をデカンテーションで取り除き、n-ヘキサン35リットルを用いて洗浄を4回行い、得られた担持触媒をn-ヘキサン20リットルにて触媒懸濁液として、固体触媒成分(δ)を得た。
[Preparation of Solid Catalyst Component (δ) by Prepolymerization of Solid Catalyst Component (γ)]
Into a reactor equipped with a stirrer, 15.8 liters of purified n-hexane and the above solid catalyst component (γ) were added in a nitrogen atmosphere, then 5 mol of triisobutylaluminum was added and 3 g of polyethylene per 1 g of the solid component was added while stirring. Was pre-polymerized with an equivalent amount of ethylene. The polymerization temperature was kept at 20-25 ° C. After completion of the polymerization, the stirring was stopped, the supernatant was removed by decantation, washing was performed 4 times with 35 liters of n-hexane, and the obtained supported catalyst was made into a catalyst suspension with 20 liters of n-hexane. A solid catalyst component (δ) was obtained.

[重合]
第1重合槽に、ヘキサンを45リットル/hr、合成例2で得た固体触媒成分(δ)をZr原子に換算して0.07mmol/hr、トリエチルアルミニウムを20mmol/hr、エチレンを7.0kg/hr、水素を40N-リットル/hrで連続的に供給し、更に、B型粘度計を用いて25℃で測定した粘度が500mPa・sである(ポリエチレングリゴール)(ポリプロピレングリコール)ブロックコポリマー(第一工業製薬(株)製、商品名EPAN720)を0.5g/hrで連続的に供給し、かつ重合槽内の液レベルが一定になるように重合槽内容物を連続的に抜出しながら、重合温度80℃、反応圧7.6kg/cm2G、平均滞留時間2.6hrという条件で重合を行った。
[polymerization]
In the first polymerization tank, hexane is 45 liters / hr, the solid catalyst component (δ) obtained in Synthesis Example 2 is converted to Zr atoms, 0.07 mmol / hr, triethylaluminum is 20 mmol / hr, and ethylene is 7.0 kg / hr. Hydrogen is continuously supplied at 40 N-liter / hr, and the viscosity measured at 25 ° C. using a B-type viscometer is 500 mPa · s (polyethylene glycol) (polypropylene glycol) block copolymer (first Kogyo Seiyaku Co., Ltd., trade name EPAN720) is continuously supplied at 0.5 g / hr, and the polymerization tank contents are continuously withdrawn so that the liquid level in the polymerization tank is constant, and the polymerization temperature is 80. Polymerization was carried out under the conditions of ° C, reaction pressure of 7.6 kg / cm 2 G, and average residence time of 2.6 hours.

第1重合槽から連続的に抜出された内容物は、内圧0.30kg/cm2G、60℃に保たれたフラッシュドラムで未反応エチレンおよび水素が実質的に除去された。 The contents continuously extracted from the first polymerization tank were substantially free from unreacted ethylene and hydrogen by a flash drum maintained at 60 ° C. with an internal pressure of 0.30 kg / cm 2 G.

その後、該内容物は、ヘキサン43リットル/hr、エチレン3.0kg/hr、水素5.5N-リットル/hr、1-ヘキセン110g/hrとともに第2重合槽へ連続的に供給され、重合温度75℃、反応圧3.3kg/cm2G、平均滞留時間1.4hrという条件で引き続き重合を行った。   Thereafter, the content was continuously fed to the second polymerization tank together with hexane 43 liter / hr, ethylene 3.0 kg / hr, hydrogen 5.5 N-liter / hr, 1-hexene 110 g / hr, polymerization temperature 75 ° C., Polymerization was continued under the conditions of a reaction pressure of 3.3 kg / cm 2 G and an average residence time of 1.4 hours.

第2重合槽においても重合槽内の液レベルが一定になるように重合槽内容物を連続的に抜出した。1-ヘキセンを多量に含む重合体の生成など、意図しない重合を防止するために、第2重合槽から抜き出した内容物へメタノールを2リットル/hrで供給し重合用触媒を失活させた。その後、該内容物中のヘキサン及び未反応モノマーを溶媒分離装置で除去、乾燥し重合体を得た。   In the second polymerization tank, the contents of the polymerization tank were continuously withdrawn so that the liquid level in the polymerization tank was constant. In order to prevent unintended polymerization such as the production of a polymer containing a large amount of 1-hexene, methanol was supplied to the contents extracted from the second polymerization tank at 2 liter / hr to deactivate the polymerization catalyst. Thereafter, hexane and unreacted monomers in the contents were removed with a solvent separator and dried to obtain a polymer.

該重合粒子100重量部に対して、二次抗酸化剤としてのトリ(2,4-ジ-t-ブチルフェニル)フォスフェートを0.20重量部、耐熱安定剤としてのn-オクタデシル-3-(4'-ヒドロキシ-3',5'-ジ-t-ブチルフェニル)プロピネートを0.20重量部、塩酸吸収剤としてのステアリン酸カルシウムを0.15重量部配合した。しかる後にプラコー社製単軸押出機(スクリュー径65mm、L/D=28、スクリーンメッシュ40/60/300×4/60/40)を用い、設定温度200℃、樹脂押出量25kg/hrで造粒して測定用試料とした。該試料を用いてプレスシートを作成して、物性を測定した。結果を表1〜4に示す。比較例と比べて剛性とESCRとのバランスに優れる。また、該試料を用いてボトル成形をして、物性を測定した結果を表4、5に示す。ボトル成形体は比較例と比べて剛性とESCRに優れる。   0.20 parts by weight of tri (2,4-di-t-butylphenyl) phosphate as a secondary antioxidant and 100 parts by weight of n-octadecyl-3- (4 0.20 parts by weight of '-hydroxy-3', 5'-di-t-butylphenyl) propinate was mixed with 0.15 parts by weight of calcium stearate as a hydrochloric acid absorbent. After that, using a Placo single screw extruder (screw diameter: 65 mm, L / D = 28, screen mesh 40/60/300 × 4/60/40), making at a set temperature of 200 ° C and a resin extrusion rate of 25 kg / hr. A granulated sample was obtained. A press sheet was prepared using the sample, and the physical properties were measured. The results are shown in Tables 1-4. Compared to the comparative example, the balance between rigidity and ESCR is excellent. In addition, Tables 4 and 5 show the results of measuring the physical properties of bottles formed using the samples. The bottle molding has better rigidity and ESCR than the comparative example.

[重合]
第1重合槽に、ヘキサンを45リットル/hr、合成例2で得た固体触媒成分(δ)をZr原子に換算して0.2mmol/hr、トリエチルアルミニウムを20mmol/hr、エチレンを11.0kg/hr、水素を75N-リットル/hrで連続的に供給し、更に、B型粘度計を用いて25℃で測定した粘度が370mPa・sである(ポリエチレングリゴール)(ポリプロピレングリコール)ブロックコポリマー(旭電化(株)製、商品名アデカプルロニックL-71)を0.8g/hrで連続的に供給し、かつ重合槽内の液レベルが一定になるように重合槽内容物を連続的に抜出しながら、重合温度85℃、反応圧7.5kg/cm2G、平均滞留時間2.4hrという条件で重合を行った。
[polymerization]
In the first polymerization tank, hexane is 45 liters / hr, the solid catalyst component (δ) obtained in Synthesis Example 2 is converted to Zr atoms, 0.2 mmol / hr, triethylaluminum is 20 mmol / hr, and ethylene is 11.0 kg / hr. Hydrogen is continuously supplied at 75 N-liter / hr, and the viscosity measured at 25 ° C. using a B-type viscometer is 370 mPa · s (polyethylene glycol) (polypropylene glycol) block copolymer (Asahi Denka) The product name, Adeka Pluronic L-71, manufactured by Co., Ltd. is continuously supplied at 0.8 g / hr, and the polymerization tank contents are continuously withdrawn so that the liquid level in the polymerization tank is constant, and polymerization is performed. Polymerization was carried out under the conditions of a temperature of 85 ° C., a reaction pressure of 7.5 kg / cm 2 G, and an average residence time of 2.4 hours.

第1重合槽から連続的に抜出された内容物は、内圧0.30kg/cm2G、60℃に保たれたフラッシュドラムで未反応エチレンおよび水素が実質的に除去された。 The contents continuously extracted from the first polymerization tank were substantially free from unreacted ethylene and hydrogen by a flash drum maintained at 60 ° C. with an internal pressure of 0.30 kg / cm 2 G.

その後、該内容物は、ヘキサン43リットル/hr、エチレン5.5kg/hr、水素4.0N-リットル/hr、1-ヘキセン98g/hrとともに第2重合槽へ連続的に供給され、重合温度75℃、反応圧2.9kg/cm2G、平均滞留時間1.3hrという条件で引き続き重合を行った。 Thereafter, the content was continuously fed to the second polymerization tank together with hexane 43 liter / hr, ethylene 5.5 kg / hr, hydrogen 4.0 N-liter / hr, 1-hexene 98 g / hr, polymerization temperature 75 ° C., Polymerization was continued under the conditions of a reaction pressure of 2.9 kg / cm 2 G and an average residence time of 1.3 hours.

第2重合槽においても重合槽内の液レベルが一定になるように重合槽内容物を連続的に抜出した。1-ヘキセンを多量に含む重合体の生成など、意図しない重合を防止するために、第2重合槽から抜き出した内容物へメタノールを2リットル/hrで供給し重合用触媒を失活させた。その後、該内容物中のヘキサン及び未反応モノマーを溶媒分離装置で除去、乾燥し重合体を得た。   In the second polymerization tank, the contents of the polymerization tank were continuously withdrawn so that the liquid level in the polymerization tank was constant. In order to prevent unintended polymerization such as the production of a polymer containing a large amount of 1-hexene, methanol was supplied to the contents extracted from the second polymerization tank at 2 liter / hr to deactivate the polymerization catalyst. Thereafter, hexane and unreacted monomers in the contents were removed with a solvent separator and dried to obtain a polymer.

該重合粒子100重量部に対して、実施例1で用いたのと同様の二次抗酸化剤、耐熱安定剤および塩酸吸収剤を同量部配合した。しかる後にプラコー社製単軸押出機を用い、実施例1で用いたのと同様の設定温度、樹脂押出量で造粒して測定用試料とした。該試料を用いてプレスシートを作成して、物性を測定した。結果を表1〜4に示す。比較例と比べて剛性とESCRとのバランスに優れる。また、該試料を用いてボトル成形をして、物性を測定した結果を表4、5に示す。ボトル成形体は比較例と比べて剛性とESCRに優れる。   The same amount of secondary antioxidant, heat stabilizer and hydrochloric acid absorbent as those used in Example 1 were added to 100 parts by weight of the polymer particles. Thereafter, a single screw extruder manufactured by Plako Co., Ltd. was used and granulated at the same set temperature and resin extrusion amount as used in Example 1 to obtain a measurement sample. A press sheet was prepared using the sample, and the physical properties were measured. The results are shown in Tables 1-4. Compared to the comparative example, the balance between rigidity and ESCR is excellent. In addition, Tables 4 and 5 show the results of measuring the physical properties of bottles formed using the samples. The bottle molding has better rigidity and ESCR than the comparative example.

[重合]
第1重合槽に、ヘキサンを45リットル/hr、合成例2で得た固体触媒成分(δ)をZr原子に換算して0.2mmol/hr、トリエチルアルミニウムを20mmol/hr、エチレンを11.0kg/hr、水素を80N-リットル/hrで連続的に供給し、更に、B型粘度計を用いて25℃で測定した粘度が370mPa・sである(ポリエチレングリゴール)(ポリプロピレングリコール)ブロックコポリマー(旭電化(株)製、商品名アデカプルロニックL-71)を0.8g/hrで連続的に供給し、かつ重合槽内の液レベルが一定になるように重合槽内容物を連続的に抜出しながら、重合温度85℃、反応圧7.6kg/cm2G、平均滞留時間2.4hrという条件で重合を行った。
[polymerization]
In the first polymerization tank, hexane is 45 liters / hr, the solid catalyst component (δ) obtained in Synthesis Example 2 is converted to Zr atoms, 0.2 mmol / hr, triethylaluminum is 20 mmol / hr, and ethylene is 11.0 kg / hr. Hydrogen is continuously supplied at 80 N-liter / hr, and the viscosity measured at 25 ° C. using a B-type viscometer is 370 mPa · s (polyethylene glycol) (polypropylene glycol) block copolymer (Asahi Denka) The product name, Adeka Pluronic L-71, manufactured by Co., Ltd. is continuously supplied at 0.8 g / hr, and the polymerization tank contents are continuously withdrawn so that the liquid level in the polymerization tank is constant, and polymerization is performed. Polymerization was carried out under the conditions of a temperature of 85 ° C., a reaction pressure of 7.6 kg / cm 2 G, and an average residence time of 2.4 hours.

第1重合槽から連続的に抜出された内容物は、内圧0.30kg/cm2G、60℃に保たれたフラッシュドラムで未反応エチレンおよび水素が実質的に除去された。 The contents continuously extracted from the first polymerization tank were substantially free from unreacted ethylene and hydrogen by a flash drum maintained at 60 ° C. with an internal pressure of 0.30 kg / cm 2 G.

その後、該内容物は、ヘキサン43リットル/hr、エチレン5.5kg/hr、水素3.4N-リットル/hr、1-ヘキセン66g/hrとともに第2重合槽へ連続的に供給され、重合温度75℃、反応圧3.0kg/cm2G、平均滞留時間1.3hrという条件で引き続き重合を行った。 Thereafter, the contents were continuously fed to the second polymerization tank together with hexane 43 liter / hr, ethylene 5.5 kg / hr, hydrogen 3.4 N-liter / hr, 1-hexene 66 g / hr, polymerization temperature 75 ° C., Polymerization was continued under the conditions of a reaction pressure of 3.0 kg / cm 2 G and an average residence time of 1.3 hours.

第2重合槽においても重合槽内の液レベルが一定になるように重合槽内容物を連続的に
抜出した。1-ヘキセンを多量に含む重合体の生成など、意図しない重合を防止するために、第2重合槽から抜き出した内容物へメタノールを2リットル/hrで供給し重合用触媒を失活させた。その後、該内容物中のヘキサン及び未反応モノマーを溶媒分離装置で除去、乾燥し重合体を得た。
In the second polymerization tank, the contents of the polymerization tank were continuously withdrawn so that the liquid level in the polymerization tank was constant. In order to prevent unintended polymerization such as the production of a polymer containing a large amount of 1-hexene, methanol was supplied to the contents extracted from the second polymerization tank at 2 liter / hr to deactivate the polymerization catalyst. Thereafter, hexane and unreacted monomers in the contents were removed with a solvent separator and dried to obtain a polymer.

該重合粒子100重量部に対して、実施例1で用いたのと同様の二次抗酸化剤、耐熱安定剤および塩酸吸収剤を同量部配合した。しかる後にプラコー社製単軸押出機を用い、実施例1で用いたのと同様の設定温度、樹脂押出量で造粒して測定用試料とした。該試料を用いてプレスシートを作成して、物性を測定した。結果を表1〜4に示す。比較例と比べて剛性とESCRとのバランスに優れる。また、該試料を用いてボトル成形をして、物性を測定した結果を表4、5に示す。ボトル成形体は比較例と比べて剛性とESCRに優れる。   The same amount of secondary antioxidant, heat stabilizer and hydrochloric acid absorbent as those used in Example 1 were added to 100 parts by weight of the polymer particles. Thereafter, a single screw extruder manufactured by Plako Co., Ltd. was used and granulated at the same set temperature and resin extrusion amount as used in Example 1 to obtain a measurement sample. A press sheet was prepared using the sample, and the physical properties were measured. The results are shown in Tables 1-4. Compared to the comparative example, the balance between rigidity and ESCR is excellent. In addition, Tables 4 and 5 show the results of measuring the physical properties of bottles formed using the samples. The bottle molding has better rigidity and ESCR than the comparative example.

[重合]
第1重合槽に、ヘキサンを45リットル/hr、合成例2で得た固体触媒成分(δ)をZr原子に換算して0.1mmol/hr、トリエチルアルミニウムを20mmol/hr、エチレンを7.0kg/hr、水素を75N-リットル/hrで連続的に供給し、更に、B型粘度計を用いて25℃で測定した粘度が370mPa・sである(ポリエチレングリゴール)(ポリプロピレングリコール)ブロックコポリマー(旭電化(株)製、商品名アデカプルロニックL-71)を0.8g/hrで連続的に供給し、かつ重合槽内の液レベルが一定になるように重合槽内容物を連続的に抜出しながら、重合温度85℃、反応圧7.5kg/cm2G、平均滞留時間2.6hrという条件で重合を行った。
[polymerization]
In the first polymerization tank, hexane is 45 liters / hr, the solid catalyst component (δ) obtained in Synthesis Example 2 is 0.1 mmol / hr in terms of Zr atoms, triethylaluminum is 20 mmol / hr, and ethylene is 7.0 kg / hr. Hydrogen is continuously supplied at 75 N-liter / hr, and the viscosity measured at 25 ° C. using a B-type viscometer is 370 mPa · s (polyethylene glycol) (polypropylene glycol) block copolymer (Asahi Denka) The product name, Adeka Pluronic L-71, manufactured by Co., Ltd. is continuously supplied at 0.8 g / hr, and the polymerization tank contents are continuously withdrawn so that the liquid level in the polymerization tank is constant, and polymerization is performed. Polymerization was carried out under the conditions of a temperature of 85 ° C., a reaction pressure of 7.5 kg / cm 2 G, and an average residence time of 2.6 hours.

第1重合槽から連続的に抜出された内容物は、内圧0.30kg/cm2G、60℃に保たれたフラッシュドラムで未反応エチレンおよび水素が実質的に除去された。   The contents continuously extracted from the first polymerization tank were substantially free from unreacted ethylene and hydrogen by a flash drum maintained at 60 ° C. with an internal pressure of 0.30 kg / cm 2 G.

その後、該内容物は、ヘキサン43リットル/hr、エチレン3.5kg/hr、水素3.0N-リットル/hr、1-ヘキセン52g/hrとともに第2重合槽へ連続的に供給され、重合温度75℃、反応圧3.2kg/cm2G、平均滞留時間1.3hrという条件で引き続き重合を行った。   Thereafter, the contents were continuously fed to the second polymerization tank together with hexane 43 liter / hr, ethylene 3.5 kg / hr, hydrogen 3.0 N-liter / hr, 1-hexene 52 g / hr, polymerization temperature 75 ° C., Polymerization was continued under the conditions of a reaction pressure of 3.2 kg / cm 2 G and an average residence time of 1.3 hours.

第2重合槽においても重合槽内の液レベルが一定になるように重合槽内容物を連続的に抜出した。1-ヘキセンを多量に含む重合体の生成など、意図しない重合を防止するために、第2重合槽から抜き出した内容物へメタノールを2リットル/hrで供給し重合用触媒を失活させた。その後、該内容物中のヘキサン及び未反応モノマーを溶媒分離装置で除去、乾燥し重合体を得た。   In the second polymerization tank, the contents of the polymerization tank were continuously withdrawn so that the liquid level in the polymerization tank was constant. In order to prevent unintended polymerization such as the production of a polymer containing a large amount of 1-hexene, methanol was supplied to the contents extracted from the second polymerization tank at 2 liter / hr to deactivate the polymerization catalyst. Thereafter, hexane and unreacted monomers in the contents were removed with a solvent separator and dried to obtain a polymer.

該重合粒子100重量部に対して、実施例1で用いたのと同様の二次抗酸化剤、耐熱安定剤および塩酸吸収剤を同量部配合した。しかる後にプラコー社製単軸押出機を用い、実施例1で用いたのと同様の設定温度、樹脂押出量で造粒して測定用試料とした。該試料を用いてプレスシートを作成して、物性を測定した。結果を表1〜4に示す。比較例と比べて剛性とESCRとのバランスに優れる。また、該試料を用いてボトル成形をして、物性を測定した結果を表4、5に示す。ボトル成形体は比較例と比べて剛性とESCRに優れる。   The same amount of secondary antioxidant, heat stabilizer and hydrochloric acid absorbent as those used in Example 1 were added to 100 parts by weight of the polymer particles. Thereafter, a single screw extruder manufactured by Plako Co., Ltd. was used and granulated at the same set temperature and resin extrusion amount as used in Example 1 to obtain a measurement sample. A press sheet was prepared using the sample, and the physical properties were measured. The results are shown in Tables 1-4. Compared to the comparative example, the balance between rigidity and ESCR is excellent. In addition, Tables 4 and 5 show the results of measuring the physical properties of bottles formed using the samples. The bottle molding has better rigidity and ESCR than the comparative example.

[重合]
第1重合槽に、ヘキサンを45リットル/hr、合成例2で得た固体触媒成分(δ)をZr原子に換算して0.08mmol/hr、トリエチルアルミニウムを20mmol/hr、エチレンを7.0kg/hr、水素を52N-リットル/hrで連続的に供給し、更に、B型粘度計を用いて25℃で測定した粘度が370mPa・sである(ポリエチレングリゴール)(ポリプロピレングリコール)ブロックコポリマー(旭電化(株)製、商品名アデカプルロニックL-71)を0.8g/hrで連続
的に供給し、かつ重合槽内の液レベルが一定になるように重合槽内容物を連続的に抜出しながら、重合温度85℃、反応圧7.3kg/cm2G、平均滞留時間2.6hrという条件で重合を行った。
[polymerization]
In the first polymerization tank, hexane was 45 liters / hr, the solid catalyst component (δ) obtained in Synthesis Example 2 was converted to Zr atoms, 0.08 mmol / hr, triethylaluminum 20 mmol / hr, and ethylene 7.0 kg / hr. Hydrogen was continuously supplied at 52 N-liter / hr, and the viscosity measured at 25 ° C. using a B-type viscometer was 370 mPa · s (polyethylene glycol) (polypropylene glycol) block copolymer (Asahi Denka) The product name, Adeka Pluronic L-71, manufactured by Co., Ltd. is continuously supplied at 0.8 g / hr, and the polymerization tank contents are continuously withdrawn so that the liquid level in the polymerization tank is constant, and polymerization is performed. Polymerization was carried out under the conditions of a temperature of 85 ° C., a reaction pressure of 7.3 kg / cm 2 G, and an average residence time of 2.6 hours.

第1重合槽から連続的に抜出された内容物は、内圧0.30kg/cm2G、60℃に保たれたフラッシュドラムで未反応エチレンおよび水素が実質的に除去された。 The contents continuously extracted from the first polymerization tank were substantially free from unreacted ethylene and hydrogen by a flash drum maintained at 60 ° C. with an internal pressure of 0.30 kg / cm 2 G.

その後、該内容物は、ヘキサン43リットル/hr、エチレン3.8kg/hr、水素14.0N-リットル/hr、1-ヘキセン20g/hrとともに第2重合槽へ連続的に供給され、重合温度75℃、反応圧4.2kg/cm2G、平均滞留時間1.0hrという条件で引き続き重合を行った。 Thereafter, the contents were continuously fed to the second polymerization tank together with hexane 43 liter / hr, ethylene 3.8 kg / hr, hydrogen 14.0 N-liter / hr, 1-hexene 20 g / hr, polymerization temperature 75 ° C., Polymerization was continued under the conditions of a reaction pressure of 4.2 kg / cm 2 G and an average residence time of 1.0 hr.

第2重合槽においても重合槽内の液レベルが一定になるように重合槽内容物を連続的に抜出した。1-ヘキセンを多量に含む重合体の生成など、意図しない重合を防止するために、第2重合槽から抜き出した内容物へメタノールを2リットル/hrで供給し重合用触媒を失活させた。その後、該内容物中のヘキサン及び未反応モノマーを溶媒分離装置で除去、乾燥し重合体を得た。   In the second polymerization tank, the contents of the polymerization tank were continuously withdrawn so that the liquid level in the polymerization tank was constant. In order to prevent unintended polymerization such as the production of a polymer containing a large amount of 1-hexene, methanol was supplied to the contents extracted from the second polymerization tank at 2 liter / hr to deactivate the polymerization catalyst. Thereafter, hexane and unreacted monomers in the contents were removed with a solvent separator and dried to obtain a polymer.

該重合粒子100重量部に対して、実施例1で用いたのと同様の二次抗酸化剤、耐熱安定剤および塩酸吸収剤を同量部配合した。しかる後にプラコー社製単軸押出機を用い、実施例1で用いたのと同様の設定温度、樹脂押出量で造粒して測定用試料とした。該試料を用いてプレスシートを作成して、物性を測定した。結果を表1〜4に示す。比較例と比べて剛性とESCRとのバランスに優れる。また、該試料を用いてボトル成形をして、物性を測定した結果を表4、5に示す。ボトル成形体は比較例と比べて剛性とESCRに優れる。   The same amount of secondary antioxidant, heat stabilizer and hydrochloric acid absorbent as those used in Example 1 were added to 100 parts by weight of the polymer particles. Thereafter, a single screw extruder manufactured by Plako Co., Ltd. was used and granulated at the same set temperature and resin extrusion amount as used in Example 1 to obtain a measurement sample. A press sheet was prepared using the sample, and the physical properties were measured. The results are shown in Tables 1-4. Compared to the comparative example, the balance between rigidity and ESCR is excellent. In addition, Tables 4 and 5 show the results of measuring the physical properties of bottles formed using the samples. The bottle molding has better rigidity and ESCR than the comparative example.

[重合]
第1重合槽に、ヘキサンを45(リットル/hr)、合成例2で得た固体触媒成分(δ)をZr原子に換算して0.13(mmol/hr)、トリエチルアルミニウムを20(mmol/hr)、エチレンを11.0(kg/hr)、水素を50(N-リットル/hr)で連続的に供給し、更に、B型粘度計を用いて25℃で測定した粘度が370(mPa・s)である(ポリエチレングリゴール)(ポリプロピレングリコール)ブロックコポリマー(旭電化(株)製、商品名アデカプルロニックL-71)を0.8(g/hr)で連続的に供給し、かつ重合槽内の液レベルが一定になるように重合槽内容物を連続的に抜出しながら、重合温度75℃、反応圧7.5(kg/cm2G)、平均滞留時間2.6hrという条件で重合を行った。
[polymerization]
In the first polymerization tank, hexane was 45 (liter / hr), the solid catalyst component (δ) obtained in Synthesis Example 2 was converted to Zr atom, 0.13 (mmol / hr), and triethylaluminum was 20 (mmol / hr) The ethylene was continuously supplied at 11.0 (kg / hr) and hydrogen at 50 (N-liter / hr), and the viscosity measured at 25 ° C. using a B-type viscometer was 370 (mPa · s). A (polyethylene glycol) (polypropylene glycol) block copolymer (trade name Adeka Pluronic L-71, manufactured by Asahi Denka Co., Ltd.) is continuously supplied at 0.8 (g / hr), and the liquid level in the polymerization tank is The polymerization was carried out under the conditions of a polymerization temperature of 75 ° C., a reaction pressure of 7.5 (kg / cm 2 G), and an average residence time of 2.6 hours while continuously extracting the contents of the polymerization tank so as to be constant.

第1重合槽から連続的に抜出された内容物は、内圧0.30(kg/cm2G)、60℃に保たれたフラッシュドラムで未反応エチレンおよび水素が実質的に除去された。 In the contents continuously extracted from the first polymerization tank, unreacted ethylene and hydrogen were substantially removed by a flash drum maintained at 60 ° C. with an internal pressure of 0.30 (kg / cm 2 G).

その後、該内容物は、ヘキサン43(リットル/hr)、エチレン4.7(kg/hr)、水素3.0(N-リットル/hr)、1-ヘキセン97(g/hr)とともに第2重合槽へ連続的に供給され、重合温度75℃、反応圧3.2(kg/cm2G)、平均滞留時間1.3hrという条件で引き続き重合を行った。 Thereafter, the content was continuously added to the second polymerization tank together with hexane 43 (liter / hr), ethylene 4.7 (kg / hr), hydrogen 3.0 (N-liter / hr), 1-hexene 97 (g / hr). The polymerization was continued under the conditions of a polymerization temperature of 75 ° C., a reaction pressure of 3.2 (kg / cm 2 G), and an average residence time of 1.3 hours.

第2重合槽においても重合槽内の液レベルが一定になるように重合槽内容物を連続的に抜出した。1-ヘキセンを多量に含む重合体の生成など、意図しない重合を防止するために、第2重合槽から抜き出した内容物へメタノールを2(リットル/hr)で供給し重合用触媒を失活させた。その後、該内容物中のヘキサン及び未反応モノマーを溶媒分離装置で除去、乾燥し重合体を得た。   In the second polymerization tank, the contents of the polymerization tank were continuously withdrawn so that the liquid level in the polymerization tank was constant. In order to prevent unintended polymerization, such as the production of a polymer containing a large amount of 1-hexene, methanol was supplied to the contents extracted from the second polymerization tank at 2 (liter / hr) to deactivate the polymerization catalyst. It was. Thereafter, hexane and unreacted monomers in the contents were removed with a solvent separator and dried to obtain a polymer.

該重合粒子100重量部に対して、実施例1で用いたのと同様の二次抗酸化剤、耐熱安定剤および塩酸吸収剤を同量部配合した。しかる後にプラコー社製単軸押出機を用い、実施例
1で用いたのと同様の設定温度、樹脂押出量で造粒して測定用試料とした。該試料を用いてプレスシートを作成して、物性を測定した。結果を表1〜4に示す。比較例と比べて剛性とESCRとのバランスに優れる。また、該試料を用いてボトル成形をして、物性を測定した結果を表4、5に示す。ボトル成形体は比較例と比べて剛性とESCRに優れる。
The same amount of secondary antioxidant, heat stabilizer and hydrochloric acid absorbent as those used in Example 1 were added to 100 parts by weight of the polymer particles. After that, an example using a single screw extruder manufactured by Plako
The sample was granulated at the same set temperature and resin extrusion rate as used in 1 to prepare a measurement sample. A press sheet was prepared using the sample, and the physical properties were measured. The results are shown in Tables 1-4. Compared to the comparative example, the balance between rigidity and ESCR is excellent. In addition, Tables 4 and 5 show the results of measuring the physical properties of bottles formed using the samples. The bottle molding has better rigidity and ESCR than the comparative example.

[重合]
第1重合槽に、ヘキサンを45(リットル/hr)、合成例2で得た固体触媒成分(δ)をZr原子に換算して0.1(mmol/hr)、トリエチルアルミニウムを20(mmol/hr)、エチレンを9.1(kg/hr)、水素を50(N-リットル/hr)で連続的に供給し、更に、B型粘度計を用いて25℃で測定した粘度が370(mPa・s)である(ポリエチレングリゴール)(ポリプロピレングリコール)ブロックコポリマー(旭電化(株)製、商品名アデカプルロニックL-71)を0.8(g/hr)で連続的に供給し、かつ重合槽内の液レベルが一定になるように重合槽内容物を連続的に抜出しながら、重合温度75℃、反応圧7.5(kg/cm2G)、平均滞留時間2.6hrという条件で重合を行った。
[polymerization]
In the first polymerization tank, hexane is 45 (liter / hr), the solid catalyst component (δ) obtained in Synthesis Example 2 is 0.1 (mmol / hr) converted to Zr atom, and triethylaluminum is 20 (mmol / hr) The ethylene was continuously supplied at 9.1 (kg / hr) and hydrogen at 50 (N-liter / hr), and the viscosity measured at 25 ° C. using a B-type viscometer was 370 (mPa · s). A (polyethylene glycol) (polypropylene glycol) block copolymer (trade name Adeka Pluronic L-71, manufactured by Asahi Denka Co., Ltd.) is continuously supplied at 0.8 (g / hr), and the liquid level in the polymerization tank is The polymerization was carried out under the conditions of a polymerization temperature of 75 ° C., a reaction pressure of 7.5 (kg / cm 2 G), and an average residence time of 2.6 hours while continuously extracting the contents of the polymerization tank so as to be constant.

第1重合槽から連続的に抜出された内容物は、内圧0.30(kg/cm2G)、60℃に保たれたフラッシュドラムで未反応エチレンおよび水素が実質的に除去された。 In the contents continuously extracted from the first polymerization tank, unreacted ethylene and hydrogen were substantially removed by a flash drum maintained at 60 ° C. with an internal pressure of 0.30 (kg / cm 2 G).

その後、該内容物は、ヘキサン43(リットル/hr)、エチレン3.9(kg/hr)、水素1.0(N-リットル/hr)、1-ヘキセン100(g/hr)とともに第2重合槽へ連続的に供給され、重合温度75℃、反応圧3.2(kg/cm2G)、平均滞留時間1.3hrという条件で引き続き重合を行った。 Thereafter, the content was continuously added to the second polymerization tank together with hexane 43 (liter / hr), ethylene 3.9 (kg / hr), hydrogen 1.0 (N-liter / hr), 1-hexene 100 (g / hr). The polymerization was continued under the conditions of a polymerization temperature of 75 ° C., a reaction pressure of 3.2 (kg / cm 2 G), and an average residence time of 1.3 hours.

第2重合槽においても重合槽内の液レベルが一定になるように重合槽内容物を連続的に抜出した。1-ヘキセンを多量に含む重合体の生成など、意図しない重合を防止するために、第2重合槽から抜き出した内容物へメタノールを2(リットル/hr)で供給し重合用触媒を失活させた。その後、該内容物中のヘキサン及び未反応モノマーを溶媒分離装置で除去、乾燥し重合体を得た。   In the second polymerization tank, the contents of the polymerization tank were continuously withdrawn so that the liquid level in the polymerization tank was constant. In order to prevent unintended polymerization, such as the production of a polymer containing a large amount of 1-hexene, methanol was supplied to the contents extracted from the second polymerization tank at 2 (liter / hr) to deactivate the polymerization catalyst. It was. Thereafter, hexane and unreacted monomers in the contents were removed with a solvent separator and dried to obtain a polymer.

該重合粒子100重量部に対して、実施例1で用いたのと同様の二次抗酸化剤、耐熱安定剤および塩酸吸収剤を同量部配合した。しかる後にプラコー社製単軸押出機を用い、実施例1で用いたのと同様の設定温度、樹脂押出量で造粒して測定用試料とした。該試料を用いてプレスシートを作成して、物性を測定した。結果を表1〜4に示す。比較例と比べて剛性とESCRとのバランスに優れる。また、該試料を用いてボトル成形をして、物性を測定した結果を表4、5示す。ボトル成形体は比較例と比べて剛性とESCRに優れる。   The same amount of secondary antioxidant, heat stabilizer and hydrochloric acid absorbent as those used in Example 1 were added to 100 parts by weight of the polymer particles. Thereafter, a single screw extruder manufactured by Plako Co., Ltd. was used and granulated at the same set temperature and resin extrusion amount as used in Example 1 to obtain a measurement sample. A press sheet was prepared using the sample, and the physical properties were measured. The results are shown in Tables 1-4. Compared to the comparative example, the balance between rigidity and ESCR is excellent. In addition, Tables 4 and 5 show the results of measuring the physical properties of bottles formed using the samples. The bottle molding has better rigidity and ESCR than the comparative example.

[重合]
第1重合槽に、ヘキサンを45(リットル/hr)、合成例2で得た固体触媒成分(δ)をZr原子に換算して0.1(mmol/hr)、トリエチルアルミニウムを20(mmol/hr)、エチレンを7.0(kg/hr)、水素を75(N-リットル/hr)で連続的に供給し、更に、B型粘度計を用いて25℃で測定した粘度が370(mPa・s)である(ポリエチレングリゴール)(ポリプロピレングリコール)ブロックコポリマー(旭電化(株)製、商品名アデカプルロニックL-71)を0.8(g/hr)で連続的に供給し、かつ重合槽内の液レベルが一定になるように重合槽内容物を連続的に抜出しながら、重合温度85℃、反応圧7.5(kg/cm2G)、平均滞留時間2.6hrという条件で重合を行った。
[polymerization]
In the first polymerization tank, hexane is 45 (liter / hr), the solid catalyst component (δ) obtained in Synthesis Example 2 is 0.1 (mmol / hr) converted to Zr atom, and triethylaluminum is 20 (mmol / hr) The ethylene was continuously supplied at 7.0 (kg / hr) and hydrogen at 75 (N-liter / hr), and the viscosity measured at 25 ° C. using a B-type viscometer was 370 (mPa · s). A (polyethylene glycol) (polypropylene glycol) block copolymer (trade name Adeka Pluronic L-71, manufactured by Asahi Denka Co., Ltd.) is continuously supplied at 0.8 (g / hr), and the liquid level in the polymerization tank is Polymerization was carried out under the conditions of a polymerization temperature of 85 ° C., a reaction pressure of 7.5 (kg / cm 2 G), and an average residence time of 2.6 hours while continuously extracting the contents of the polymerization tank so as to be constant.

第1重合槽から連続的に抜出された内容物は、内圧0.30(kg/cm2G)、60℃に保たれたフラッシュドラムで未反応エチレンおよび水素が実質的に除去された。 In the contents continuously extracted from the first polymerization tank, unreacted ethylene and hydrogen were substantially removed by a flash drum maintained at 60 ° C. with an internal pressure of 0.30 (kg / cm 2 G).

その後、該内容物は、ヘキサン43(リットル/hr)、エチレン3.5(kg/hr)、水素3.0(N-リットル/hr)、1-ヘキセン150(g/hr)とともに第2重合槽へ連続的に供給され、重合温度75℃、反応圧3.2(kg/cm2G)、平均滞留時間1.3hrという条件で引き続き重合を行った。 Thereafter, the contents are continuously added to the second polymerization tank together with hexane 43 (liter / hr), ethylene 3.5 (kg / hr), hydrogen 3.0 (N-liter / hr), 1-hexene 150 (g / hr). The polymerization was continued under the conditions of a polymerization temperature of 75 ° C., a reaction pressure of 3.2 (kg / cm 2 G), and an average residence time of 1.3 hours.

第2重合槽においても重合槽内の液レベルが一定になるように重合槽内容物を連続的に抜出した。1-ヘキセンを多量に含む重合体の生成など、意図しない重合を防止するために、第2重合槽から抜き出した内容物へメタノールを2(リットル/hr)で供給し重合用触媒を失活させた。その後、該内容物中のヘキサン及び未反応モノマーを溶媒分離装置で除去、乾燥し重合体を得た。   In the second polymerization tank, the contents of the polymerization tank were continuously withdrawn so that the liquid level in the polymerization tank was constant. In order to prevent unintended polymerization, such as the production of a polymer containing a large amount of 1-hexene, methanol was supplied to the contents extracted from the second polymerization tank at 2 (liter / hr) to deactivate the polymerization catalyst. It was. Thereafter, hexane and unreacted monomers in the contents were removed with a solvent separator and dried to obtain a polymer.

該重合粒子100重量部に対して、実施例1で用いたのと同様の二次抗酸化剤、耐熱安定剤および塩酸吸収剤を同量部配合した。しかる後にプラコー社製単軸押出機を用い、実施例1で用いたのと同様の設定温度、樹脂押出量で造粒して測定用試料とした。該試料を用いてプレスシートを作成して、物性を測定した。結果を表1〜4示す。比較例と比べて剛性とESCRとのバランスに優れる。また、該試料を用いてボトル成形をして、物性を測定した結果を表4、5に示す。ボトル成形体は比較例と比べて剛性とESCRに優れる。   The same amount of secondary antioxidant, heat stabilizer and hydrochloric acid absorbent as those used in Example 1 were added to 100 parts by weight of the polymer particles. Thereafter, a single screw extruder manufactured by Plako Co., Ltd. was used and granulated at the same set temperature and resin extrusion amount as used in Example 1 to obtain a measurement sample. A press sheet was prepared using the sample, and the physical properties were measured. The results are shown in Tables 1-4. Compared to the comparative example, the balance between rigidity and ESCR is excellent. In addition, Tables 4 and 5 show the results of measuring the physical properties of bottles formed using the samples. The bottle molding has better rigidity and ESCR than the comparative example.

[比較例1]
三井化学社製ハイゼックス6008B製品ペレットを測定用試料とした。コモノマーは1-ブテンである。また、該試料を用いてプレスシートを作成して、物性を測定した。結果を表1〜4に示す。実施例と比較すると、剛性とESCR性とのバランスに劣ることが分った。また、該試料を用いてボトル成形をして、物性を測定した結果を表4、5に示す。ボトル成形体は実施例と比べて劣る。
[Comparative Example 1]
A sample for measurement was a pellet made by Hi-Zex 6008B manufactured by Mitsui Chemicals. The comonomer is 1-butene. Further, a press sheet was prepared using the sample, and the physical properties were measured. The results are shown in Tables 1 to 4. It was found that the balance between the rigidity and the ESCR property was inferior to that of the example. In addition, Tables 4 and 5 show the results of measuring the physical properties of bottles formed using the samples. The bottle molded body is inferior to the examples.

[比較例2]
三井化学社製ハイゼックス6700B製品ペレットを用いてプレスシートを作成して、物性を測定した。結果を表1〜4に示す。実施例に比べて剛性に劣り、ESCR性もさほど良くない。また、該試料を用いてボトル成形をして、物性を測定した結果を表4、5に示す。ボトル成形体は実施例と比べて劣る。
[Comparative Example 2]
A press sheet was prepared using Hi-Zex 6700B product pellets manufactured by Mitsui Chemicals, and the physical properties were measured. The results are shown in Tables 1-4. Compared to the examples, the rigidity is inferior and the ESCR property is not so good. In addition, Tables 4 and 5 show the results of measuring the physical properties of bottles formed using the samples. The bottle molded body is inferior to the examples.

[比較例3]
日本ポリエチレン社製ノバテックHD HB332R製品ペレットを用いてプレスシートを作成して、物性を測定した。結果を表1〜4に示す。実施例に比べて、剛性とESCR性ともに劣る。また、該試料を用いてボトル成形をして、物性を測定した結果を表4、5に示す。ボトル成形体は実施例と比べて劣る。
[Comparative Example 3]
A press sheet was prepared using Novatec HD HB332R product pellets manufactured by Nippon Polyethylene Co., Ltd., and the physical properties were measured. The results are shown in Tables 1-4. Compared to the examples, both rigidity and ESCR properties are inferior. In addition, Tables 4 and 5 show the results of measuring the physical properties of bottles formed using the samples. The bottle molded body is inferior to the examples.

Figure 2006083370
Figure 2006083370

Figure 2006083370
Figure 2006083370

Figure 2006083370
Figure 2006083370

Figure 2006083370
Figure 2006083370

Figure 2006083370
Figure 2006083370

本発明のエチレン系重合体は成形性と機械的強度と耐環境応力破壊性に優れ、さらに外観に優れた成形体を提供する。本発明に係るエチレン系重合体ブロー成形体などの押出成形体に用いると優れた特性を与える。   The ethylene-based polymer of the present invention is excellent in moldability, mechanical strength, and environmental stress fracture resistance, and further provides a molded body excellent in appearance. When used in an extrusion molded article such as an ethylene polymer blow molded article according to the present invention, excellent characteristics are given.

実施例2で得られたエチレン系重合体のCFC等高線図である。2 is a CFC contour diagram of the ethylene polymer obtained in Example 2. FIG. 実施例2で得られたエチレン系重合体の低温側から見た3次元GPCチャート(鳥瞰図)とThである。3 is a three-dimensional GPC chart (bird's eye view) and Th viewed from the low temperature side of the ethylene polymer obtained in Example 2. 比較例1で得られたエチレン系重合体のCFC等高線図である。2 is a CFC contour diagram of the ethylene polymer obtained in Comparative Example 1. FIG. GPC分離解析の一例を示したGPCチャートである。It is a GPC chart which showed an example of GPC separation analysis. ピンチオフ部の模式図である。It is a schematic diagram of a pinch-off part. 比較例と実施例について曲げ弾性率(M)と耐環境応力破壊性ESCR(T)との関係を示した図である。It is the figure which showed the relationship between a bending elastic modulus (M) and environmental stress fracture resistance ESCR (T) about a comparative example and an Example.

Claims (6)

炭素原子数6〜10のα-オレフィンから導かれる構成単位を0.02〜0.50mol%含むエチレン系重合体であって、クロス分別(CFC)において、下記の(1)または(2)のいずれか一つ以上を満たすエチレン系重合体。
(1)CFCの全溶出量に対する80℃以下の溶出成分が5%以下である。
(2)下記の関係式(Eq-1)を満たす。
Figure 2006083370
(Eq-1中、Sxは70〜85℃で溶出する成分に基づく全ピークの面積合計値であり、Stotalは0〜145℃で溶出する成分に基づく全ピークの面積合計値である。)
An ethylene-based polymer containing 0.02 to 0.50 mol% of a structural unit derived from an α-olefin having 6 to 10 carbon atoms, and in cross fractionation (CFC), either of the following (1) or (2) An ethylene polymer satisfying at least one.
(1) The elution component at 80 ° C. or less is 5% or less with respect to the total elution amount of CFC.
(2) The following relational expression (Eq-1) is satisfied.
Figure 2006083370
(In Eq-1, Sx is the total area value of all peaks based on components eluting at 70 to 85 ° C., and Stotal is the total area value of all peaks based on components eluting at 0 to 145 ° C.)
下記要件(1’)〜(5’)を同時に満たす請求項1に記載のエチレン系重合体。
(1‘) 密度(d)が945〜975kg/m3の範囲にある。
(2’) 135℃、デカリン中で測定した極限粘度([η])が1.6〜2.8(dL/g)の範囲にある。
(3‘) GPCで測定した重量平均分子量(Mw)と数平均分子量(Mn)の比(Mw/Mn)が5〜30の範囲にある。
(4‘) GPC曲線を2つの対数正規分布曲線に分離した時に、各々の曲線の重量平均分子量(Mw)と数平均分子量(Mn)の比(Mw/Mn)が1.5〜3.5、高分子量側に分離された曲線の重量平均分子量(Mw2)が200,000〜800,000である。
(5‘) クロス分別(CFC)において分子量が100,000以上で最も強いピークの頂点の溶出温度をTh(℃)とした場合、[(Th-1)〜Th](℃)で溶出した画分のGPC曲線の中で、分子量が100,000以上で最も強いピークの頂点の分子量が200,000〜800,000の範囲にある。
The ethylene polymer according to claim 1, which simultaneously satisfies the following requirements (1 ') to (5').
(1 ') The density (d) is in the range of 945 to 975 kg / m 3 .
(2 ′) The intrinsic viscosity ([η]) measured in decalin at 135 ° C. is in the range of 1.6 to 2.8 (dL / g).
(3 ′) The ratio (Mw / Mn) of the weight average molecular weight (Mw) and the number average molecular weight (Mn) measured by GPC is in the range of 5-30.
(4 ') When the GPC curve is separated into two lognormal distribution curves, the ratio (Mw / Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) of each curve is 1.5 to 3.5, high molecular weight side The weight-average molecular weight (Mw2) of the curve separated into two is 200,000 to 800,000.
(5 ') When the elution temperature at the peak of the strongest peak with a molecular weight of 100,000 or more in cross fractionation (CFC) is Th (° C), the fraction eluted with [(Th-1) to Th] (° C) In the GPC curve, the molecular weight of the strongest peak at a molecular weight of 100,000 or more is in the range of 200,000 to 800,000.
ASTM-D-790に準拠して、23℃で測定した曲げ弾性率をMとした場合、またASTM-D-1693に準拠して測定した50℃における耐環境応力破壊性ESCR(hr)をTとした場合、1,500≦M≦1,800(MPa)のとき、T≧10(hr)でありかつ、600≦M<1500(MPa)のとき、MとTとの関係が下記の式(Eq-2)を満たすこを特徴とするブロー成形体に好適に用いられる請求項2に記載のエチレン系重合体。
Figure 2006083370
In accordance with ASTM-D-790, when the flexural modulus measured at 23 ° C is M, the environmental stress fracture resistance ESCR (hr) at 50 ° C measured according to ASTM-D-1693 is T When 1,500 ≦ M ≦ 1,800 (MPa), T ≧ 10 (hr), and 600 ≦ M <1500 (MPa), the relationship between M and T is expressed by the following equation (Eq-2 3. The ethylene polymer according to claim 2, which is suitably used for a blow molded article characterized by satisfying
Figure 2006083370
動的粘弾性装置を用いて測定した190℃、角周波数100 rad/secにおけるtanδ(=損失弾性率G’’/貯蔵弾性率G’)が0.6〜0.9である、請求項3に記載のブロー成形体に好適に用いられるエチレン系重合体。   4. The blow according to claim 3, wherein tan δ (= loss elastic modulus G ″ / storage elastic modulus G ′) at 190 ° C. and an angular frequency of 100 rad / sec measured using a dynamic viscoelastic device is 0.6 to 0.9. An ethylene polymer suitably used for a molded article. 請求項4に記載のエチレン系重合体からなるブロー成形体。 5. A blow molded article comprising the ethylene polymer according to claim 4. 成形体が、ガソリンタンク、工業薬品缶またはボトル容器であることを特徴とする請求項4に記載のブロー成形体。   The blow molded article according to claim 4, wherein the molded article is a gasoline tank, an industrial chemical can or a bottle container.
JP2005233961A 2004-08-16 2005-08-12 Application to ethylene polymer and blow molding Active JP5288682B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005233961A JP5288682B2 (en) 2004-08-16 2005-08-12 Application to ethylene polymer and blow molding

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004236806 2004-08-16
JP2004236806 2004-08-16
JP2005233961A JP5288682B2 (en) 2004-08-16 2005-08-12 Application to ethylene polymer and blow molding

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011097200A Division JP2011157562A (en) 2004-08-16 2011-04-25 Ethylene-based polymer and application for blow-molded article

Publications (2)

Publication Number Publication Date
JP2006083370A true JP2006083370A (en) 2006-03-30
JP5288682B2 JP5288682B2 (en) 2013-09-11

Family

ID=36162137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005233961A Active JP5288682B2 (en) 2004-08-16 2005-08-12 Application to ethylene polymer and blow molding

Country Status (1)

Country Link
JP (1) JP5288682B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006083371A (en) * 2004-08-16 2006-03-30 Mitsui Chemicals Inc Ethylene-based polymer and application of the same for pipe form-molded article
WO2011040557A1 (en) * 2009-09-30 2011-04-07 住友化学株式会社 Ethylenic polymer
JP2011157562A (en) * 2004-08-16 2011-08-18 Mitsui Chemicals Inc Ethylene-based polymer and application for blow-molded article
US8129489B2 (en) 2004-08-16 2012-03-06 Mitsui Chemicals, Inc. Ethylene polymer and use thereof
JP2013103759A (en) * 2011-11-16 2013-05-30 Toyo Seikan Kaisha Ltd Blow molding container
US8937195B2 (en) 2011-03-29 2015-01-20 Sumitomo Chemical Company, Limited Method for producing the transition metal complex, catalyst for trimerization, method for producing 1-hexene, method for producing the substituted cyclopentadiene compound (1)
US9090527B2 (en) 2011-03-29 2015-07-28 Sumitomo Chemical Company, Limited Method for producing transition metal complex, catalyst for trimerization, method for producing 1-hexene, method for producing substituted cyclopentadiene compound (2)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03234717A (en) * 1990-02-13 1991-10-18 Mitsui Petrochem Ind Ltd Method for producing ethylene polymer composition
JPH11147919A (en) * 1997-08-20 1999-06-02 Solvay Polyolefins Europe Belgium Production of composition containing ethylene polymer
JP2001526731A (en) * 1997-05-26 2001-12-18 フイナ・リサーチ・ソシエテ・アノニム Method for producing double-peaked polyolefin using metallocene catalyst using two reaction zones
JP2004269864A (en) * 2003-02-17 2004-09-30 Mitsui Chemicals Inc Ethylenic polymer and application thereof to molded product
JP2006083371A (en) * 2004-08-16 2006-03-30 Mitsui Chemicals Inc Ethylene-based polymer and application of the same for pipe form-molded article

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03234717A (en) * 1990-02-13 1991-10-18 Mitsui Petrochem Ind Ltd Method for producing ethylene polymer composition
JP2001526731A (en) * 1997-05-26 2001-12-18 フイナ・リサーチ・ソシエテ・アノニム Method for producing double-peaked polyolefin using metallocene catalyst using two reaction zones
JPH11147919A (en) * 1997-08-20 1999-06-02 Solvay Polyolefins Europe Belgium Production of composition containing ethylene polymer
JP2004269864A (en) * 2003-02-17 2004-09-30 Mitsui Chemicals Inc Ethylenic polymer and application thereof to molded product
JP2006083371A (en) * 2004-08-16 2006-03-30 Mitsui Chemicals Inc Ethylene-based polymer and application of the same for pipe form-molded article

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006083371A (en) * 2004-08-16 2006-03-30 Mitsui Chemicals Inc Ethylene-based polymer and application of the same for pipe form-molded article
JP2011157562A (en) * 2004-08-16 2011-08-18 Mitsui Chemicals Inc Ethylene-based polymer and application for blow-molded article
US8129489B2 (en) 2004-08-16 2012-03-06 Mitsui Chemicals, Inc. Ethylene polymer and use thereof
WO2011040557A1 (en) * 2009-09-30 2011-04-07 住友化学株式会社 Ethylenic polymer
CN102666607A (en) * 2009-09-30 2012-09-12 住友化学株式会社 Ethylenic polymer
US8470947B2 (en) 2009-09-30 2013-06-25 Sumitomo Chemical Company, Limited Ethylenic polymer
US9919300B2 (en) 2009-09-30 2018-03-20 Sumitomo Chemical Company, Limited 1-hexene production process
US8937195B2 (en) 2011-03-29 2015-01-20 Sumitomo Chemical Company, Limited Method for producing the transition metal complex, catalyst for trimerization, method for producing 1-hexene, method for producing the substituted cyclopentadiene compound (1)
US9090527B2 (en) 2011-03-29 2015-07-28 Sumitomo Chemical Company, Limited Method for producing transition metal complex, catalyst for trimerization, method for producing 1-hexene, method for producing substituted cyclopentadiene compound (2)
JP2013103759A (en) * 2011-11-16 2013-05-30 Toyo Seikan Kaisha Ltd Blow molding container

Also Published As

Publication number Publication date
JP5288682B2 (en) 2013-09-11

Similar Documents

Publication Publication Date Title
KR100833561B1 (en) Ethylene polymer and use thereof
US7700708B2 (en) Ethylene polymer and application thereof to moldings
JPWO2007094378A1 (en) Ethylene polymer and molded product obtained therefrom
JP5419464B2 (en) Ethylene resin composition for hollow molded body and hollow molded body comprising the same
JP2011157562A (en) Ethylene-based polymer and application for blow-molded article
JP2007218324A (en) Polyethylene pipe
JP5288682B2 (en) Application to ethylene polymer and blow molding
JP2006083371A (en) Ethylene-based polymer and application of the same for pipe form-molded article
JP2004269864A (en) Ethylenic polymer and application thereof to molded product
JP6680480B2 (en) Ethylene polymer and hollow molded article
JP6661386B2 (en) Ethylene polymer
JPH0853509A (en) Production of polyolefin
JP5843918B2 (en) Application to ethylene polymers and molded products
JP2005239750A (en) Ethylene polymer for pipe and pipe made of ethylene polymer
JP2007177020A (en) Ethylenic polymer composition and molded article obtained from the same
JP2004244573A (en) Ethylene polymer for pipe, and pipe made of the ethylene polymer
JPH0859741A (en) High-density polyethylene
JP2005239749A (en) Ethylene polymer
JP2019178237A (en) Ethylene copolymer composition
JP2004244571A (en) Ethylene polymer
JP2016194050A (en) Polyethylene for pipes and molded products thereof
JPH08333419A (en) High-density ethylene polymer
JP2004217917A (en) Method for producing olefin copolymer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080804

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080804

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101019

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101220

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110513

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130604

R150 Certificate of patent or registration of utility model

Ref document number: 5288682

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250