[go: up one dir, main page]

JP2006080006A - Internal cooling regenerating type honeycomb-shaped solid oxide fuel cell - Google Patents

Internal cooling regenerating type honeycomb-shaped solid oxide fuel cell Download PDF

Info

Publication number
JP2006080006A
JP2006080006A JP2004264414A JP2004264414A JP2006080006A JP 2006080006 A JP2006080006 A JP 2006080006A JP 2004264414 A JP2004264414 A JP 2004264414A JP 2004264414 A JP2004264414 A JP 2004264414A JP 2006080006 A JP2006080006 A JP 2006080006A
Authority
JP
Japan
Prior art keywords
cell
fuel
air
honeycomb
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004264414A
Other languages
Japanese (ja)
Inventor
Akira Toriyama
彰 鳥山
Tatsuki Ishihara
達己 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THINK TANK PHOENIX KK
Original Assignee
THINK TANK PHOENIX KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THINK TANK PHOENIX KK filed Critical THINK TANK PHOENIX KK
Priority to JP2004264414A priority Critical patent/JP2006080006A/en
Publication of JP2006080006A publication Critical patent/JP2006080006A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Conductive Materials (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid oxide fuel cell of which the efficiency is superior because it is small-sized while it has a large output, and which is also superior in starting characteristics and load variation characteristics. <P>SOLUTION: This is the fuel cell composed of a honeycomb structural body having a square cell cross-section, and this is the internal cooling regenerating type honeycomb-shaped solid oxide fuel cell, and because a cell adjacent to respective wall faces of a honeycomb cell constituting a fuel electrode cell 3 of the fuel cell is made to be an air electrode cell 5, and the cell adjacent to one wall face of respective air electrode cells which are adjacent to the corner part of a honeycomb cell wall face of the fuel electrode cell and which are positioned on both sides of the corner part is made to be a cooling air cell 6, the fuel electrode cell, the air electrode cell, and the cooling air cell are respectively arranged in skip by every one cell in a lattice form arrangement in a row in the longitudinal direction and the lateral direction, and the cell positioned at the corner part of the honeycomb structural body 1 becomes the fuel electrode cell 3. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、固体電解質材料、燃料極材料もしくは空気極材料の何れかをハニカム構造体に用いたハニカム型固体電解質燃料電池に関する。   The present invention relates to a honeycomb type solid electrolyte fuel cell using any one of a solid electrolyte material, a fuel electrode material and an air electrode material for a honeycomb structure.

燃料電池は、リン酸水溶液及び溶融炭酸塩等の液体基質を用いた第一世代の燃料電池から、固体高分子型燃料電池(以下、PEFCとする)及び固体電解質型燃料電池(以下、SOFCとする)等の第二世代に移行しつつある。これら第二世代の燃料電池の内、PEFCは、電解質にフッ素系又は炭化水素系高分子電解質膜を用いるものであるが、燃料が純水素(H)に限定されること、極めて狭い範囲の温度制御(65〜85℃)を要すること、電解質膜中の水分(HO)含有量の微妙なコントロールが必要なこと、高価な白金触媒を大量に使用すること、耐久性が2000〜3000時間程度に留まること、凍結不可であるため凍結の恐れのある寒冷地では使用できないことなど多くの欠点がある。 Fuel cells range from first-generation fuel cells using a liquid substrate such as an aqueous phosphoric acid solution and molten carbonate to solid polymer fuel cells (hereinafter referred to as PEFC) and solid electrolyte fuel cells (hereinafter referred to as SOFC). To the second generation. Among these second-generation fuel cells, PEFC uses a fluorine-based or hydrocarbon-based polymer electrolyte membrane as an electrolyte. However, the fuel is limited to pure hydrogen (H 2 ), and it has a very narrow range. Requires temperature control (65-85 ° C.), requires delicate control of moisture (H 2 O) content in the electrolyte membrane, uses a large amount of expensive platinum catalyst, and durability is 2000 to 3000 There are many drawbacks, such as staying for about hours and not being able to be used in cold regions where freezing is not possible.

更に、燃料が純水素に限定されるため、既存の社会インフラ(ガス、LPG、石油など)を全面的に水素システムに再構築する必要があり、膨大な社会インフラ投資を必要とする。これらの費用は水素製造コストに上乗せされ、単位発熱量当たり単価の増大を招く。   Furthermore, since the fuel is limited to pure hydrogen, it is necessary to completely rebuild the existing social infrastructure (gas, LPG, oil, etc.) into a hydrogen system, which requires enormous social infrastructure investment. These costs are added to the hydrogen production cost, resulting in an increase in unit price per unit calorific value.

加えて、作動温度が低く、従って排気温度も低いため、例えば熱電併給システム(コージェネレーヨン)では有効に廃熱回収することが難しく、熱需要が電力需要を上回る場合は高価な水素燃料による助燃を必要とし、熱バランスの観点から必ずしも最適な省エネルギーシステム構成とならない欠点がある。   In addition, since the operating temperature is low and therefore the exhaust temperature is also low, for example, it is difficult to effectively recover waste heat in a combined heat and power system (cogeneration system), and if the heat demand exceeds the power demand, supplementary combustion with expensive hydrogen fuel is required. There is a drawback that it is necessary and does not necessarily provide an optimum energy saving system configuration from the viewpoint of heat balance.

またPEFCは高価な純水素燃料に限定されるため、水素製造コストを含めた効率の観点からは、既存の熱機関及びハイブリッド車等に比べ必ずしも優位性があるとは云い難い。   In addition, since PEFC is limited to expensive pure hydrogen fuel, it cannot be said that it is necessarily superior to existing heat engines and hybrid vehicles from the viewpoint of efficiency including hydrogen production cost.

一方、SOFCは、純水素以外の多種多様な炭化水素系燃料が使用可能で、かつ全ての燃料電池の中で最も高い理論発電効率を持つ。しかし、従来のSOFCは電解質にイットリア安定化ジルコニア(YSZ)を用いていたため、1000℃程度の高温で作動させる必要があり、燃料電池本体のみならず、構造体の多くの部分に耐熱性のセラミックスが使用されていた。このため、温度分布の不均一によって発生する熱応力による破損を防ぐため、数時間から十数時間かけて起動する必要があった。また、急激な負荷変動にも追従できない欠点があった。   On the other hand, SOFC can use a wide variety of hydrocarbon fuels other than pure hydrogen, and has the highest theoretical power generation efficiency among all fuel cells. However, since conventional SOFCs use yttria-stabilized zirconia (YSZ) as the electrolyte, they must be operated at a high temperature of about 1000 ° C., and heat resistant ceramics are applied not only to the fuel cell body but also to many parts of the structure. Was used. For this reason, in order to prevent the damage by the thermal stress which generate | occur | produces by the nonuniformity of temperature distribution, it was necessary to start up from several hours to dozens of hours. In addition, there is a drawback that it cannot follow a sudden load fluctuation.

近年、スカンジウム安定化ジルコニア(ScSZ)及びランタンガレード系固体電解質(LSGM)など、650〜800℃で1000℃のYSZと同等の酸素イオン伝導度を有する固体電解質材料が開発され、構造体の多くの部分に金属材料が使えるようになり、構造設計の自由度は大幅に向上しつつある。しかしながら、SOFC本体の構造は、円筒形チューブ群もしくは平板型による構成が採用されているため、構造体各部に発生する熱応力を充分に低減することができず、起動時間を充分には短縮できない欠点があった。   In recent years, solid electrolyte materials having oxygen ion conductivity equivalent to YSZ at 1000 ° C. at 650 to 800 ° C., such as scandium-stabilized zirconia (ScSZ) and lanthanum galade solid electrolyte (LSGM), have been developed. The metal material can be used for this part, and the degree of freedom in structural design is greatly improved. However, since the structure of the SOFC main body adopts a cylindrical tube group or a flat plate configuration, the thermal stress generated in each part of the structure cannot be sufficiently reduced, and the start-up time cannot be shortened sufficiently. There were drawbacks.

更に従来のSOFCは、発電性能を維持し材料及び構造体に加わる熱応力による破損を防止するため、システム内部の温度を略1000℃の高温状態に均一に保持する必要があり、供給する燃料ガス及び空気ともベンチュリー等で排気ガスを吸引して混合し、強制循環しなければならなかった。このため、燃料濃度及び酸素濃度ともに希釈されて低濃度の状態で供給されることとなり、燃料電池の単位面積当りの出力密度を上げることができない欠点があった。   Furthermore, in order to maintain power generation performance and prevent damage due to thermal stress applied to materials and structures, conventional SOFCs must maintain the temperature inside the system uniformly at a high temperature of about 1000 ° C. In addition, the exhaust gas was sucked and mixed with a venturi or the like and forcedly circulated. For this reason, both the fuel concentration and the oxygen concentration are diluted and supplied in a low concentration state, and there is a drawback that the output density per unit area of the fuel cell cannot be increased.

これらをより詳細に説明するために、円筒型セルユニットを用いた従来の典型的なSOFC料電池のシステム構成と機能について図8を用いて説明する。   In order to describe these in more detail, the system configuration and function of a conventional typical SOFC battery using a cylindrical cell unit will be described with reference to FIG.

燃料は燃料入口61から供給され、円筒形の内部改質部器62を通る間にり、昇温され、端部で反転して燃料極に沿い矢印63の方向に流れる。未反応燃料を含む燃料排気ガスは戻りライン64を通った後り、燃料入口ベンチュリー65によりから吸引されて燃料供給ラインに戻される。、余剰の燃料排気ガスは、燃料排気管66を通り燃焼器74に供給される。   The fuel is supplied from the fuel inlet 61, heated while passing through the cylindrical internal reformer 62, reversed at the end, and flows in the direction of the arrow 63 along the fuel electrode. After passing through the return line 64, the fuel exhaust gas containing unreacted fuel is sucked from the fuel inlet venturi 65 and returned to the fuel supply line. The surplus fuel exhaust gas is supplied to the combustor 74 through the fuel exhaust pipe 66.

一方、酸化剤である空気は、空気入口77から供給され、空気ヘッダー68から矢印69の方向に流れる間にて予熱され、セルユニットの端部で反転して空気極70の方向に流れ、燃料電池に酸素を供給する。燃料電池に酸素を供給した後の空気は、空気排気管を矢印71の方向に流れ、空気入口ベンチュリー72によりから吸引されて空気供給ラインに戻される。、余剰の空気排気は排気管を矢印73の方向に流れ、燃焼器74で燃料排気ガスと混合し燃焼して排気管75を通って排気口76から排気される。   On the other hand, air, which is an oxidant, is supplied from the air inlet 77 and preheated while flowing from the air header 68 in the direction of the arrow 69, reverses at the end of the cell unit, flows in the direction of the air electrode 70, and fuel. Supply oxygen to the battery. The air after supplying oxygen to the fuel cell flows through the air exhaust pipe in the direction of arrow 71, is sucked from the air inlet venturi 72, and returned to the air supply line. Excess air exhaust flows through the exhaust pipe in the direction of the arrow 73, mixes with the fuel exhaust gas in the combustor 74, burns, and is exhausted from the exhaust port 76 through the exhaust pipe 75.

このような構成としているため、従来のSOFCは冷間状態から発電可能な高温状態まで、セルユニット全体の温度を均一にして熱応力による破損を回避しつつ、燃料ガス及び空気を強制循環させながら徐々に昇温する必要があり、このため装置を起動してフルパワーに至るまでのウオーミングアップに多くの時間を要し、利便性に欠ける欠点があった。   Because of this structure, the conventional SOFC makes the temperature of the entire cell unit uniform from the cold state to the high temperature state where power can be generated and avoids damage due to thermal stress while forcibly circulating fuel gas and air. It is necessary to gradually raise the temperature. For this reason, it takes a lot of time to warm up until the apparatus is started and reaches full power, which is not convenient.

更に、従来のSOFCは燃料側及び空気側の何れも、ベンチュリーを用いて排気を吸引し、供給ガスと混合して希釈された状態で強制循環しされ、併せて余剰となった排気燃料と排気空気とを混合して燃焼させ大気放出する構成としているため、排気中に多くの未反応燃料及び未反応酸素を含み、発電効率を十分には上げられない欠点があった。   Further, in the conventional SOFC, both the fuel side and the air side suck the exhaust gas using a venturi, mix it with the supply gas, and forcibly circulate it in a diluted state. Since it is configured such that it is mixed with air and combusted and released into the atmosphere, the exhaust gas contains a large amount of unreacted fuel and unreacted oxygen, which has the drawback that the power generation efficiency cannot be sufficiently increased.

一方、固体電解質を用いたハニカム構成の燃料電池の例として、特許文献1及び特許文献2などがある。   On the other hand, there are Patent Document 1 and Patent Document 2 as examples of a honeycomb-structured fuel cell using a solid electrolyte.

これら特許文献に開示されている燃料電池特許は、何れもイットリア安定化ジルコニア(YSZ)、スカンジウム安定化ジルコニア(ScSZ)を固体電解質として用いるハニカム構造体であるが、互いに隣接する燃料極セルと空気極セルを交互に配置する所謂市松模様を形成するハニカム型燃料電池であり、何れの場合もハニカムセル内部の発熱を効果的に除去する手段が設けられていない。このため従って、ハニカム内部に熱が蓄積されて内部温度が高くなる一方で、ハニカムの外周部分は放熱及び冷却により冷やされて、ハニカム中心部分と外周部分との間に大きな温度差が生じ、この温度差による熱応力でハニカムが破損する不具合があった。   The fuel cell patents disclosed in these patent documents are honeycomb structures using yttria-stabilized zirconia (YSZ) and scandium-stabilized zirconia (ScSZ) as solid electrolytes. This is a honeycomb type fuel cell forming a so-called checkered pattern in which polar cells are alternately arranged, and in any case, no means for effectively removing the heat generated inside the honeycomb cell is provided. Therefore, while heat is accumulated inside the honeycomb and the internal temperature is increased, the outer peripheral portion of the honeycomb is cooled by heat dissipation and cooling, and a large temperature difference occurs between the central portion of the honeycomb and the outer peripheral portion. There was a problem that the honeycomb was damaged by the thermal stress due to the temperature difference.

このため、該燃料電池は、図85に示す従来例と同様、燃料電池を構成するハニカムセルの内部に大きな熱応力が生じないように、燃料ガス及び空気ともベンチュリーを用いて排気を吸引して供給ガスと混合し、希釈されたガスを強制循環させる構成にするとともに、装置を起動して正常稼動フルパワーに至るまでのウオーミングアップに十分な時間をかけてゆっくり昇温する必要があり、利便性に欠ける欠点があった。   Therefore, as in the conventional example shown in FIG. 85, the fuel cell uses a venturi to suck the exhaust gas so that a large thermal stress does not occur inside the honeycomb cells constituting the fuel cell. It is necessary to mix with the supply gas and forcibly circulate the diluted gas, and it is necessary to warm up slowly enough time for warming up to start normal operation and full power. There was a drawback lacking.

また、燃料ガス及び空気ともベンチュリーを用いて排気を吸引し・混合して強制循環するため、循環燃料ガス中の燃料、循環空気中の酸素とも希釈されて濃度が低下し、更に排気ガス中に含まれる未反応燃料ガスの濃度、未反応酸素濃度も高くなり、結果として発電効率を十分に高めることができない欠点があった。また単位面積当りの出力密度も上げられない欠点があった。
特開平10−189023号公報 特開平11−297343号公報
In addition, the fuel gas and air are forced to circulate by sucking and mixing the exhaust gas using a venturi, so that the concentration of the fuel in the circulating fuel gas and the oxygen in the circulating air is diluted and the concentration decreases. The concentration of the unreacted fuel gas contained and the unreacted oxygen concentration also increased, and as a result, the power generation efficiency could not be sufficiently increased. In addition, there is a drawback that the output density per unit area cannot be increased.
Japanese Patent Laid-Open No. 10-189023 JP 11-297343 A

本発明は上記の欠点を克服するためになされたもので、ハニカム内部を均一に冷却することにより、燃料電池の内外部に発生する温度差を低減して熱応力の発生を防止し、燃料及び空気とも希釈することなく高濃度のまま燃料電池に供給し、併せて燃料電池出口の排気燃料ガス中の残留未反応燃料及び排気空気中の残留未反応酸素とも十分に低濃度になるまで発電に利用し、小型で大出力で効率がよく、かつ起動特性及び負荷変動特性に優れたSOFC型燃料電池を提供することを目的とする。   The present invention has been made to overcome the above-mentioned drawbacks. By uniformly cooling the inside of the honeycomb, the temperature difference generated inside and outside of the fuel cell is reduced to prevent the generation of thermal stress. Supply the fuel cell with high concentration without dilution with air, and also generate power until the remaining unreacted fuel in the exhaust fuel gas at the outlet of the fuel cell and the remaining unreacted oxygen in the exhaust air are sufficiently low in concentration. An object of the present invention is to provide a SOFC type fuel cell that is small in size, has a high output and is efficient, and has excellent start-up characteristics and load fluctuation characteristics.

本発明者は、上記の目的を達成するためのハニカム型固体電解質燃料電池として、四角形のセル断面を有するハニカム構造体から燃料電池を構成し、該燃料電池の燃料極セルを構成するハニカムセルの各々の壁面にと隣接するセルを空気極セル、該燃料極セルのハニカムセル壁面の角部に隣接しかつ該角部の両側に位置する空気極セルのそれぞれの一つの壁面に隣接するセルを冷却空気セルとすることにより、燃料極セル、空気極セル及び冷却空気セルがそれぞれ1セル飛びに縦方向及び横方向に1列に碁盤目配列した内部冷却式のハニカム型固体電解質燃料電池を提案した。(特願2003−70854号参照)   The present inventor, as a honeycomb type solid electrolyte fuel cell for achieving the above object, constituted a fuel cell from a honeycomb structure having a quadrangular cell cross section, and a honeycomb cell constituting a fuel electrode cell of the fuel cell. A cell adjacent to each wall surface is an air electrode cell, a cell adjacent to each corner of the honeycomb cell wall surface of the fuel electrode cell and one wall surface of each of the air electrode cells located on both sides of the corner portion Proposal of an internal cooling type solid electrolyte fuel cell in which the fuel cell, the air electrode cell, and the cooling air cell are arranged in a grid pattern in the vertical direction and the horizontal direction in a grid pattern by using the cooling air cell. did. (See Japanese Patent Application No. 2003-70854)

そして、上記ハニカム型固体電解質燃料電池を性能面および経済面から更に検討した結果、その好ましい実施形態として、前記ハニカム構造体のコーナー部に位置するセルを該燃料極セルとし、さらに好ましくは断面が矩形状の該ハニカム構造体の外周の各面にハニカム構造体の材質と異なる材料で形成したカバーを設け、該カバー内に空気極通路等を設ける構造にすることによって、ハニカム構造体の外周面も発電に寄与し出力密度の大きいハニカム型固体電解質燃料電池が得られることを見出し、本発明に至ったものである。   Further, as a result of further study of the honeycomb type solid electrolyte fuel cell from the viewpoint of performance and economy, as a preferred embodiment thereof, a cell located at a corner portion of the honeycomb structure is the fuel electrode cell, more preferably a cross section. An outer peripheral surface of the honeycomb structure is provided by providing a cover formed of a material different from the material of the honeycomb structure on each surface of the outer periphery of the rectangular honeycomb structure and providing an air electrode passage or the like in the cover. Has also found that a honeycomb solid electrolyte fuel cell having a high output density and contributing to power generation can be obtained, and the present invention has been achieved.

すなわち、本発明は、四角形のセル断面を有するハニカム構造体からなる燃料電池であって、該燃料電池の燃料極セルを構成するハニカムセルのそれぞれの壁面と隣接するセルを空気極セル、該燃料極セルの壁面の角部に隣接しかつ該角部の両側に位置する空気極セルのそれぞれの一つの壁面に隣接するセルを冷却空気セルとすることにより、燃料極セル、空気極セル及び冷却空気セルがそれぞれ1セル飛びに縦及び横に並んだ碁盤目配列となっており、前記ハニカム構造体のコーナー部に位置するセルが該燃料極セルになっていることを特徴とするハニカム型固体電解質燃料電池を提供する。   That is, the present invention is a fuel cell comprising a honeycomb structure having a square cell cross section, wherein the cells adjacent to the respective wall surfaces of the honeycomb cells constituting the fuel cell of the fuel cell are air electrode cells, and the fuel The cell adjacent to the corner of the wall surface of the electrode cell and adjacent to one wall surface of the air electrode cell located on both sides of the corner is a cooling air cell, whereby the fuel electrode cell, the air electrode cell, and the cooling Honeycomb-type solid, wherein air cells are arranged in a grid pattern in which one cell jumps vertically and horizontally, and the cells located at the corners of the honeycomb structure are the fuel electrode cells. An electrolyte fuel cell is provided.

本発明は、矩形状の断面を有する上記ハニカム構造体の外周面に、ハニカム構造体の材質と異なる材料で形成したカバーを設け、該カバー内に空気極通路や冷却空気通路を形成し、該空気極通路がハニカム構造体の外周部に位置する燃料極セルの壁面に隣接している上記ハニカム型固体電解質燃料電池を提供する。   In the present invention, a cover formed of a material different from the material of the honeycomb structure is provided on the outer peripheral surface of the honeycomb structure having a rectangular cross section, and an air electrode passage and a cooling air passage are formed in the cover. There is provided the above-described honeycomb type solid electrolyte fuel cell in which an air electrode passage is adjacent to a wall surface of a fuel electrode cell located on an outer peripheral portion of a honeycomb structure.

本発明は、前記ハニカム構造体が、固体電解質材料、燃料極材料又は空気極材料の何れかにより形成されており、ハニカム構造体が固体電解質材料から形成されているときには、燃料極セルハニカムの内面に燃料極を形成し、空気極セル各々のの内面に空気極を形成してなる上記内部冷却再生式ハニカム型固体電解質燃料電池を提供する。   In the present invention, when the honeycomb structure is formed of any one of a solid electrolyte material, a fuel electrode material, and an air electrode material, and the honeycomb structure is formed of a solid electrolyte material, the inner surface of the fuel electrode cell honeycomb The internal cooling regenerative honeycomb solid electrolyte fuel cell is provided by forming a fuel electrode on the inner surface of each of the air electrode cells.

また、本発明は、上記ハニカム型燃料電池を2以上積層して燃料電池セル群となし、相互に連結する該ハニカム型燃料電池の燃料極と空気極とをインターコネクターで接続して直列接続となし、該セル群の両端部に設けた集電体により電気を取り出すことを特徴とするハニカム型固体電解質燃料電池を提供する。   Further, the present invention provides a fuel cell group formed by stacking two or more of the above honeycomb type fuel cells, and connecting the fuel electrode and the air electrode of the honeycomb type fuel cells that are connected to each other with an interconnector. There is provided a honeycomb type solid electrolyte fuel cell characterized in that electricity is taken out by current collectors provided at both ends of the cell group.

さらに、本発明は、上記燃料電池セル群の一方の端部に位置するハニカム型燃料電池の端部に、燃料極セル閉止面を備えかつ空気極セルの流路及び冷却空気セル流路が貫通した第一集電体を接続し、該集電体に冷却用空気流路が貫通した排気集合室を接続して、該排気集合室に空気入口室もしくは空気入口管を接続し、前記セル群の他方の端部に位置するハニカム構造体の端部に、燃料極セル流路、空気極セル流路及び冷却空気セル流路が貫通した第二集電体を接続し、該集電体に空気反転室、及び燃料供給管が貫通した燃料排気集合室を順次に接続して、該燃料排気集合室に燃料供給室又は燃料供給管を接続し、該燃料排気集合室端面から、燃料排気集合室、空気反転室及び第二集電体をそれぞれ貫通して、燃料極セルの空気入出側端面近傍まで延出した燃料供給管を、燃料極セル内面と隙間を設けて挿入することを特徴とするハニカム型固体電解質燃料電池を提供する。   Furthermore, the present invention provides an anode cell closing surface at the end of the honeycomb type fuel cell located at one end of the fuel cell group, and the air electrode cell flow path and the cooling air cell flow path penetrate therethrough. Connecting the first current collector, connecting an exhaust collecting chamber having a cooling air flow path through the current collector, connecting an air inlet chamber or an air inlet pipe to the exhaust collecting chamber, and A second current collector through which the fuel electrode cell flow path, the air electrode cell flow path and the cooling air cell flow path penetrated is connected to the end of the honeycomb structure located at the other end of the An air reversing chamber and a fuel exhaust collecting chamber through which a fuel supply pipe penetrates are sequentially connected, and a fuel supply chamber or a fuel supply pipe is connected to the fuel exhaust collecting chamber. Near the air inlet / outlet side end face of the fuel cell. The fuel supply pipe extends to provide a honeycomb type solid electrolyte fuel cell, which comprises inserting provided fuel electrode cell inner surface and the gap.

本発明は、空気入口室もしくは空気入口管、排気集合室、一端部側集電体、ハニカム型燃料電池セル、他端部側集電体、空気反転室、反応生成物集合室、燃料供給管、及び燃料供給室もしくは燃料供給管の複数の機能部分を一体的に成形するか、もしくは接合して一体化し、複数の機能を併せ持つようになした上記ハニカム型固体電解質燃料電池を提供する。   The present invention includes an air inlet chamber or an air inlet pipe, an exhaust collecting chamber, one end side current collector, a honeycomb fuel cell, another end side current collector, an air reversing chamber, a reaction product collecting chamber, a fuel supply pipe And the above-mentioned honeycomb type solid electrolyte fuel cell in which a plurality of functional parts of a fuel supply chamber or a fuel supply pipe are integrally formed or joined together to have a plurality of functions.

また、本発明は、上記ハニカム型固体電解質燃料電池において、燃料供給管の内部に燃料改質触媒を充填し、燃料供給管内で燃料改質を行うことを特徴とする。   The present invention is also characterized in that, in the above-described honeycomb type solid electrolyte fuel cell, the fuel supply pipe is filled with a fuel reforming catalyst, and the fuel reforming is performed in the fuel supply pipe.

本発明は、上記ハニカム型固体電解質燃料電池のハニカム構造体を、イットリア安定化ジルコニア(YSZ)、スカンジウム安定化ジルコニア(ScSZ)、ランタン・ストロンチウム系固体電解質又はC12A7(12CaO・7Al23)などのO-、O2-、H+、H-等のイオン伝導を有する固体電解質で構成することを特徴とする。 In the present invention, the honeycomb structure of the above-described honeycomb type solid electrolyte fuel cell is made of yttria stabilized zirconia (YSZ), scandium stabilized zirconia (ScSZ), lanthanum / strontium solid electrolyte, C12A7 (12CaO · 7Al 2 O 3 ), or the like. It is characterized by comprising a solid electrolyte having ionic conduction such as O , O 2− , H + , H − and the like.

本発明によれば、従来技術のように燃料及び反応用空気とも、排空気及び排燃料ガスを吸引して希釈し循環使用することが無いので、濃度の高い燃料及び酸素濃度の高い空気を用いることができ、単位表面積当りの発電出力が向上し、小型化・軽量化に寄与する。   According to the present invention, as in the prior art, both fuel and reaction air are not used by sucking and diluting the exhausted air and exhausted fuel gas to circulate, so that high concentration fuel and high oxygen concentration air are used. This improves power generation output per unit surface area, contributing to downsizing and weight reduction.

また、燃料電池から排気される排燃料ガス中の未反応燃料濃度及び排気する空気中の酸素濃度とも大幅に低減でき、かつハニカム構造体の内部で発生する熱を奪い温度が上昇した冷却空気は方向を反転して空気極セルに送られ、燃料電池として機能するための反応用空気として用いられるため熱回収がなされ、発電効率が大幅に向上する。   In addition, the unreacted fuel concentration in the exhaust fuel gas exhausted from the fuel cell and the oxygen concentration in the exhausted air can be greatly reduced, and the cooling air that has taken away the heat generated inside the honeycomb structure and increased in temperature is The direction is reversed and sent to the air electrode cell and used as reaction air for functioning as a fuel cell, so that heat is recovered and the power generation efficiency is greatly improved.

さらに、ハニカム構造体の内部まで均一に冷却できるため、ハニカム構造体の内部と外周部との温度差が無くなり、熱応力を大幅に低減できるので、急速起動が可能となり、かつ急激な負荷変動に対しても迅速に追従できる。加えて、従来技術のようにベンチュリーを駆動するために燃料ガス及び空気とも高圧にする必要がなく、燃料電池を機能させる上で必要な動力を最小限に押さえることができる。併せて、燃料電池出口の排気燃料ガス中の残留未反応燃料及び排気空気中の残留未反応酸素とも十分に低濃度になるまで発電に利用できる。   In addition, since the inside of the honeycomb structure can be uniformly cooled, there is no temperature difference between the inside and the outer periphery of the honeycomb structure, and thermal stress can be greatly reduced, enabling rapid start-up and rapid load fluctuations. It can also follow quickly. In addition, it is not necessary to make the fuel gas and air high in order to drive the venturi as in the prior art, and the power required to make the fuel cell function can be minimized. In addition, the residual unreacted fuel in the exhaust fuel gas at the outlet of the fuel cell and the residual unreacted oxygen in the exhaust air can be used for power generation until the concentrations are sufficiently low.

さらに、本発明は、燃料電池を構成する断面が矩形状のハニカム構造体のコーナー部に位置するセルを燃料極セルにすることにより、ハニカム構造体の外周面も発電に寄与できるので、同じ大きさのハニカム構造体であっても発電出力を大幅に向上できる。   Further, according to the present invention, since the cell located at the corner portion of the honeycomb structure having a rectangular cross section constituting the fuel cell is a fuel electrode cell, the outer peripheral surface of the honeycomb structure can also contribute to power generation. Even with the honeycomb structure, the power generation output can be greatly improved.

また、ハニカム構造体の外周面にカバーを設け、該カバー内に空気極通路や冷却空気通路を形成することによりハニカム構造体の外周に配置されるセルの冷却が得られるので、ハニカム構造体の拡大化を抑えることができ、さらに該カバーはハニカム構造体の材質より廉価な材質で形成できるため、燃料電池のコストを低減できる。   Further, by providing a cover on the outer peripheral surface of the honeycomb structure and forming an air electrode passage and a cooling air passage in the cover, cooling of the cells arranged on the outer periphery of the honeycomb structure can be obtained. Since the enlargement can be suppressed and the cover can be formed of a material cheaper than the material of the honeycomb structure, the cost of the fuel cell can be reduced.

本発明に拘わるハニカム型固体電解質燃料電の構造及び機能について、図1乃至図3を参照して更に詳細に説明する。図面は、本発明の好ましい実施形態を例示したものであり、本発明はこれに限定されない。   The structure and function of the honeycomb type solid electrolyte fuel cell according to the present invention will be described in more detail with reference to FIGS. The drawings illustrate preferred embodiments of the present invention and the present invention is not limited thereto.

本発明において、ハニカム構造体は、固体電解材料、燃料極材料又は空気極材料の何れからも形成できるが、通常は固体電解材料が好ましい。燃料極材料又は空気極材料によりハニカム構造体を形成した場合も、燃料極又は空気極の何れか一方が電解質膜及び電極膜の2重膜構造となる点を除き全て同一であるので、以下の説明は全てハニカム構造体を固体電解質で形成した例により説明する。   In the present invention, the honeycomb structure can be formed from any of a solid electrolytic material, a fuel electrode material, and an air electrode material, but a solid electrolytic material is usually preferable. Even when the honeycomb structure is formed of the fuel electrode material or the air electrode material, all of them are the same except that either the fuel electrode or the air electrode has a double membrane structure of the electrolyte membrane and the electrode membrane. All explanations will be made with an example in which the honeycomb structure is formed of a solid electrolyte.

本発明に係る固体電解質型燃料電池は、四角形のセル断面を有する両端部が開口した固体電解質のハニカム構造体1の内面に、コーティングもしくは接合して一体化し焼成して成る燃料極2を形成して燃料極セル3(図中、記号(a)で示す)とし、該燃料極セル3を構成する壁面に隣接するセルの内面に、コーティングもしくは接合して一体化し焼成して成る空気極4を形成して空気極セル5(記号(b)で示す)とし、該燃料極セル3を構成する壁面の角部に隣接しかつ該角部の両側に位置する空気極セル5のそれぞれの一つの壁面に隣接するセルを冷却空気セル6(記号(c)で示す)としている。このような構成にすることにより、前記ハニカム構造体1には、燃料極セル3、空気極セル5及び冷却空気セル6が、それぞれ1セル飛びに縦方向及び横方向に規則的に並列した碁盤目配列が得られる。   A solid oxide fuel cell according to the present invention forms a fuel electrode 2 formed by coating or joining and firing on the inner surface of a honeycomb structure 1 of a solid electrolyte having a square cell cross section with both ends opened. A fuel electrode cell 3 (indicated by symbol (a) in the figure) is formed on the inner surface of the cell adjacent to the wall surface constituting the fuel electrode cell 3 by coating or joining and firing the air electrode 4 integrally. The air electrode cell 5 (indicated by the symbol (b)) is formed, and is adjacent to the corner portion of the wall surface constituting the fuel electrode cell 3, and each one of the air electrode cells 5 located on both sides of the corner portion. A cell adjacent to the wall surface is a cooling air cell 6 (indicated by symbol (c)). By adopting such a configuration, the honeycomb structure 1 has a fuel cell 3, an air electrode cell 5, and a cooling air cell 6, each of which is arranged in a regular manner in the vertical direction and the horizontal direction in a jump of one cell. An eye array is obtained.

図1において、ハニカム構造体1の燃料極セル3、空気極セル5、冷却空気セル6は通路、全て同一のセル断面形状を有する正方形としているが、セルのこれらのセルは本発明の目的が達成できる形状であれば、全てのセル断面を同一にする必要はない。また、形状も概して四角形であればよい。好ましい実施形態の一つのハニカム体において、セル断面はセルの種類a、b、cによって変えることができる。例えば、図4に示すようにセル断面はセルの種類a、b、cによって変えることができる。すなわち、燃料極セル3のセル断面を正方形とし、空気極セル5断面ののセル断面を燃料極セル3の壁面を長辺とするした長方形とし、冷却空気セル6のセル断面を長方形断面の該空気極セル5の短辺を一辺とする正方形もしくは該空気極セル5の短辺を直径とする円形にして長方形断面を有するもよい。ここでセル断面は、ハニカム構造体1の各セルの通路に直交する方向の断面である。   In FIG. 1, the fuel electrode cell 3, the air electrode cell 5, and the cooling air cell 6 of the honeycomb structure 1 are all passages and are squares having the same cell cross-sectional shape. All cell sections need not be the same as long as they can be achieved. Further, the shape may be generally rectangular. In one honeycomb body of a preferred embodiment, the cell cross section can be changed depending on the cell types a, b, and c. For example, as shown in FIG. 4, the cell cross section can be changed depending on the cell types a, b, and c. That is, the cell cross section of the anode cell 3 is a square, the cell cross section of the air electrode cell 5 is a rectangle with the wall surface of the anode cell 3 as the long side, and the cell cross section of the cooling air cell 6 is the rectangular cross section. The air electrode cell 5 may have a rectangular cross section with a square having the short side as one side or a circle with the short side of the air electrode cell 5 having a diameter. Here, the cell cross section is a cross section in a direction orthogonal to the passage of each cell of the honeycomb structure 1.

ハニカム体1のセル断面をこのようにセルの種類によって変え、燃料極セル3のセル断面もしくは容積を相対的に大きくすることにより、燃料電池の単位同一容積のハニカム体における容積当たり出力を大きくできる。燃料極セル3のセル断面を拡大する結果、空気極セル5及び冷却空気セル6の各セル断面は燃料極セル3より縮小し、特に冷却空気セル6のセル断面は縮小するが、これらの各セルの断面比率を適正化すれば差し支えしない。   Thus, by changing the cell cross section of the honeycomb body 1 depending on the cell type and relatively increasing the cell cross section or the volume of the fuel electrode cell 3, the output per volume in the honeycomb body of the same unit volume of the fuel cell can be increased. . As a result of enlarging the cell cross section of the anode cell 3, the cell sections of the air electrode cell 5 and the cooling air cell 6 are smaller than those of the anode cell 3, and in particular, the cell cross section of the cooling air cell 6 is reduced. There is no problem if the cell cross-sectional ratio is optimized.

さらに、図5に例示するようにセル断面が四角形のセルの各辺の一部又は全部を湾曲または波状にした変形四角形としてもよい。セルの各辺をこのように湾曲又は波状にすると、電極面積が増加するため燃料電池の単位容積当たり出力を更に大きくすることができる。   Furthermore, as illustrated in FIG. 5, a modified quadrangle in which a part or all of each side of a cell having a quadrangular cell cross section is curved or wavy may be used. When each side of the cell is curved or waved in this way, the electrode area increases, so that the output per unit volume of the fuel cell can be further increased.

上記ハニカム構造体1において、セル断面が四角形のセルを上記のように配置することにより、断面が矩形状のハニカム構造体1を容易に得ることができる。
この場合、ハニカム構造体1に配列するセルの配列数は限定されない。図1には、5行×5列に配列している例を示したが、セルの配列数は増減でき、また行、列の配列数を変えてもよい。この配列数としては、5〜13行(列)が好ましく、特に実用的には7〜11行(列)が好ましい。
In the honeycomb structure 1, by arranging the cells having a square cell cross section as described above, the honeycomb structure 1 having a rectangular cross section can be easily obtained.
In this case, the number of cells arranged in the honeycomb structure 1 is not limited. Although FIG. 1 shows an example in which the cells are arranged in 5 rows × 5 columns, the number of cells can be increased or decreased, and the number of rows and columns may be changed. The number of arrangements is preferably 5 to 13 rows (columns), and particularly practically 7 to 11 rows (columns).

本発明は、かかる燃料極セル3、空気極セル5及び冷却空気セル6の配列において、上記ハニカム構造体1のコーナー部に位置するセルを燃料極セル3にすることを特徴とする。通常は、ハニカム構造体1の単位面積当たりの出力密度を大きくするために、図1に示すようにハニカム構造体の4コーナー部に位置するセルを燃料極セルにするのが好ましい。   The present invention is characterized in that in the arrangement of the fuel electrode cell 3, the air electrode cell 5 and the cooling air cell 6, the cell located at the corner of the honeycomb structure 1 is the fuel electrode cell 3. Usually, in order to increase the power density per unit area of the honeycomb structure 1, it is preferable to use the cells located at the four corners of the honeycomb structure as fuel electrode cells as shown in FIG.

さらに、ハニカム構造体1の外周の各面には、ハニカム構造体1の材質と異なる材質からなるカバー78が接合または締結等により設けられている。このカバー78の内部には、空気極通路b’および冷却空気通路c’が仕切り壁によって交互に形成されており、該空気極通路b’および冷却空気通路c’は、ハニカム構造体1の外周面で形成される燃料極セル3および空気極セル5の一辺にそれぞれ隣接するように配置される。すなわち、空気極通路b’は該燃料極セル3の壁面に隣接し、冷却空気通路c’は前記空気極セル5の壁面に隣接している。そして、燃料極セル3の壁面に隣接する空気極通路b’の一辺を構成するハニカム構造体1の外周面には、空気極4’が形成される。   Furthermore, a cover 78 made of a material different from the material of the honeycomb structure 1 is provided on each surface of the outer periphery of the honeycomb structure 1 by bonding or fastening. Inside the cover 78, air electrode passages b ′ and cooling air passages c ′ are alternately formed by partition walls, and the air electrode passages b ′ and cooling air passages c ′ are formed on the outer periphery of the honeycomb structure 1. It arrange | positions so that it may each adjoin to one side of the fuel electrode cell 3 and the air electrode cell 5 which are formed in a surface. That is, the air electrode passage b ′ is adjacent to the wall surface of the fuel electrode cell 3, and the cooling air passage c ′ is adjacent to the wall surface of the air electrode cell 5. An air electrode 4 ′ is formed on the outer peripheral surface of the honeycomb structure 1 constituting one side of the air electrode passage b ′ adjacent to the wall surface of the fuel electrode cell 3.

カバー78の内部に形成される空気極通路b’および冷却空気通路c’は、それぞれハニカム構造体1に配置される燃焼極セル3および空気極セル5の一部の辺のみに隣接しているため、ハニカム構造体1の空気極セル5および冷却空気セル6ほど大きな空気量及び冷却性能を必要としない。したがって、これら両流路の断面積はハニカム構造体1内の空気極セル5および冷却空気セル6の断面積の約半分または半分以下にすることができる。例えば、ハニカム構造体1のセル断面が正方形のとき、空気極通路b’および冷却空気通路c’は、長辺を燃料極セル3または空気極セル5の一辺と同一長さ、短辺をその約半分の長さとする長方形断面にできる。これにより、カバー78を図1に示す如く全体的に薄い形体にでき、燃料電池の拡大化を防ぐと同時に材料の節減が図れる。   The air electrode passage b ′ and the cooling air passage c ′ formed inside the cover 78 are adjacent to only a part of the sides of the combustion electrode cell 3 and the air electrode cell 5 arranged in the honeycomb structure 1, respectively. Therefore, the air volume and the cooling performance which are as large as those of the air electrode cell 5 and the cooling air cell 6 of the honeycomb structure 1 are not required. Therefore, the cross-sectional areas of these two flow paths can be about half or less than the cross-sectional areas of the air electrode cell 5 and the cooling air cell 6 in the honeycomb structure 1. For example, when the cell cross section of the honeycomb structure 1 is square, the air electrode passage b ′ and the cooling air passage c ′ have the same long side as one side of the fuel electrode cell 3 or the air electrode cell 5 and the short side thereof. It can be a rectangular cross-section with about half the length. As a result, the cover 78 can be made thin as a whole as shown in FIG. 1, and the fuel cell can be prevented from being enlarged and the material can be saved.

図6はカバー78の他の実施形態を示す。図1のカバー78は、前記したように空気極通路b’および冷却空気通路c’を交互に配置し、空気極通路b’が隣接する燃料極の壁面に空気極4’を設けているが、本例のカバー78は図6のようにカバー内部に空気極通路b’のみを設け、ハニカム構造体1の外周面全体を空気極4’としている。これは、カバー78の外周面を冷却面にすることができるため、あえてカバーの内部に冷却空気通路を設けなくても、ハニカム構造体1の外周面や該外周面に隣接するセルの温度上昇を抑えることができることによる。   FIG. 6 shows another embodiment of the cover 78. The cover 78 of FIG. 1 has the air electrode passages b ′ and the cooling air passages c ′ alternately arranged as described above, and the air electrode 4 ′ is provided on the wall surface of the fuel electrode adjacent to the air electrode passage b ′. As shown in FIG. 6, the cover 78 of this example is provided with only the air electrode passage b ′ inside the cover, and the entire outer peripheral surface of the honeycomb structure 1 is used as the air electrode 4 ′. Since the outer peripheral surface of the cover 78 can be used as a cooling surface, the temperature of the outer peripheral surface of the honeycomb structure 1 and the cells adjacent to the outer peripheral surface can be increased without providing a cooling air passage inside the cover. By being able to suppress.

カバー78の材質としては、前記したようにハニカム構造体1の材質とは異なる、例えばアルミナ、ジルコニア、ムライト、コーディエライト、炭化ケイ素、窒化ケイ素などのセラミックス、又はステンレス鋼、インコネルなどの耐熱鋼が好ましく用いられる。これらの材料は、ハニカム構造体の高価な固体電解質材料に比べて廉価であり、さらに熱伝導性が良好であるので、カバーの外周面を冷却面として有効に利用できる。   The material of the cover 78 is different from the material of the honeycomb structure 1 as described above, for example, ceramics such as alumina, zirconia, mullite, cordierite, silicon carbide and silicon nitride, or heat resistant steel such as stainless steel and inconel. Is preferably used. Since these materials are cheaper than the expensive solid electrolyte material of the honeycomb structure and further have good thermal conductivity, the outer peripheral surface of the cover can be effectively used as a cooling surface.

このようなハニカム構造体1のセル配列とカバー78の冷却流路により、ハニカム構造体1の内部に位置する燃料極セル3は、セルを構成する壁面全てが空気極セル5と隣接し、また冷却空気セル6は壁面全てが空気極セル5と隣接し、一方、ハニカム構造体1の外周部に位置する燃料極セル3および空気極セル5は、ハニカム構造体1の外周面によって形成される壁面がカバー78の空気極通路b’等と隣接するため、ハニカム構造体1の内部まで均一に冷却するための冷却流路を確保できる。   Due to the cell arrangement of the honeycomb structure 1 and the cooling flow path of the cover 78, the fuel electrode cell 3 positioned inside the honeycomb structure 1 has all the wall surfaces constituting the cell adjacent to the air electrode cell 5. The cooling air cell 6 has all wall surfaces adjacent to the air electrode cell 5, while the fuel electrode cell 3 and the air electrode cell 5 located on the outer peripheral portion of the honeycomb structure 1 are formed by the outer peripheral surface of the honeycomb structure 1. Since the wall surface is adjacent to the air electrode passage b ′ and the like of the cover 78, a cooling flow path for uniformly cooling the inside of the honeycomb structure 1 can be secured.

そして、本発明は、ハニカム構造体1の前記セルの配列構造とカバー78による冷却構造の組み合わせにより、ハニカム構造体1の外周面を発電に有効利用できるため、ハニカム構造体1のコーナー部に位置するセルを燃料極セルにしない場合と比較すると、例えば同じ5列×5行のハニカム構造体1であるのにも拘わらず、燃料極セルの数を4個から9個に増やすことができ、発電出力を2.25倍にすることができる。   In the present invention, the outer peripheral surface of the honeycomb structure 1 can be effectively used for power generation by the combination of the cell arrangement structure of the honeycomb structure 1 and the cooling structure by the cover 78. Compared to the case where the cells to be made are not the anode cells, the number of anode cells can be increased from 4 to 9, despite the honeycomb structure 1 having the same 5 columns × 5 rows, for example, The power generation output can be increased 2.25 times.

図2は、図1のI―I断面である。燃料は、燃料極セル3を図2の矢印7から矢印8の方向に流れ、一方、反応空気は燃料の流れ方向とは逆に矢印9から矢印10の方向に流れる対向流とすることにより、燃料の入口側から出口側に至るまでの局所的な起電力を均一化することができる。   FIG. 2 is a cross-sectional view taken along the line II of FIG. The fuel flows through the anode cell 3 in the direction of the arrow 7 to the arrow 8 in FIG. 2, while the reaction air flows in the direction of the arrow 9 to the arrow 10 in the opposite direction to the flow direction of the fuel, The local electromotive force from the fuel inlet side to the outlet side can be made uniform.

また、冷却空気セル6を流れる空気は、内部発熱により温度が上昇する空気極セル5を効果的に冷却できるよう、反応空気とは逆に矢印11から矢印12の方向に流すことが望ましい。   Further, it is desirable that the air flowing through the cooling air cell 6 flows in the direction of the arrow 11 to the arrow 12 in the opposite direction to the reaction air so that the air electrode cell 5 whose temperature rises due to internal heat generation can be effectively cooled.

このようなセル構造において、燃料極2は、該燃料極のハニカム構造体1の一端面側(図2では右側)を燃料極セル3隔壁端に沿って延出する角フランジ型の燃料極インターコネクター部16を設け、ハニカム構造体1の他端面側をハニカム構造体1の全長より寸法Xだけ短くすると共に、空気極4は、ハニカム構造体1の他端面側を隔壁端に沿って延出する角フランジ型の空気極インターコネクター部15を設け、ハニカム構造体1の一端部側をハニカム構造体1の全長より寸法Yだけ短くすることによりハニカム燃料電池17を構成できる。   In such a cell structure, the fuel electrode 2 has a rectangular flange type fuel electrode interface extending from one end face side (right side in FIG. 2) of the honeycomb structure 1 along the fuel electrode cell 3 partition wall end. The connector part 16 is provided, and the other end surface side of the honeycomb structure 1 is made shorter than the entire length of the honeycomb structure 1 by the dimension X, and the air electrode 4 extends the other end surface side of the honeycomb structure 1 along the partition wall end. Thus, the honeycomb fuel cell 17 can be configured by providing the square flange type air electrode interconnector portion 15 and making one end of the honeycomb structure 1 shorter than the entire length of the honeycomb structure 1 by the dimension Y.

寸法X及び寸法Yは、ハニカム構造体1の材質、燃料の電気伝導度を考慮して最適な寸法が決められるが、概ね0.5〜5.0mmとするのが望ましい。燃料極セル3及び空気極セル5にこのようにそれぞれ燃料極2及び空気極4を形成しない領域(寸法X及び寸法Y)を、前記範囲で設けることにより、複数個のハニカム燃料電池17を後述するように積層したとき、隣接するハニカム燃料電池17の同極同志(燃料極と燃料極又は空気極と空気極)の間の電気的絶縁が保たれる。   The dimensions X and Y are determined in consideration of the material of the honeycomb structure 1 and the electric conductivity of the fuel, but are preferably about 0.5 to 5.0 mm. By providing regions (dimensions X and Y) in which the fuel electrode 2 and the air electrode 4 are not formed in the fuel electrode cell 3 and the air electrode cell 5 in the above ranges, a plurality of honeycomb fuel cells 17 are described later. When stacked in such a manner, electrical insulation between the same polarities of adjacent honeycomb fuel cells 17 (fuel electrode and fuel electrode or air electrode and air electrode) is maintained.

ハニカム燃料電池17の前記インターコネクター部16及び15は、それぞれ燃料極2及び空気極4の構成材料と同一としてもよい。しかし、燃料極セル3に接する面は強還元雰囲気であり、一方、空気極セル5に接する面は強酸化雰囲気であるため、酸化と還元の何れに対しても耐性のある材料が好ましい。この材料としては、例えばLaCrO3、La0.8Ca0.2CrO3、La0.7Sr0.3CrO3などの酸化物系材料、AuやAgなどの貴金属、及びインコネル、ステンレス鋼などの耐熱鋼が用いられる。 The interconnectors 16 and 15 of the honeycomb fuel cell 17 may be the same as the constituent materials of the fuel electrode 2 and the air electrode 4, respectively. However, since the surface in contact with the fuel electrode cell 3 is a strong reducing atmosphere, while the surface in contact with the air electrode cell 5 is a strong oxidizing atmosphere, a material that is resistant to both oxidation and reduction is preferable. As this material, for example, oxide materials such as LaCrO 3 , La 0.8 Ca 0.2 CrO 3 , La 0.7 Sr 0.3 CrO 3 , noble metals such as Au and Ag, and heat resistant steels such as Inconel and stainless steel are used.

図3は、本発明による固体電解質型燃料電池の応用例における構造と機能を示す。1段目ハニカム燃料電池17aの空気極インターコネクター部15aと2段目のハニカム燃料電池17bの燃料極インターコネクター部16bとが接続するように積層し、以下同様にn段積層し、ハニカム燃料電池17をn段直列接続した積層型ハニカム燃料電池18を得る。   FIG. 3 shows the structure and function of an application example of a solid oxide fuel cell according to the present invention. Stacking is performed so that the air electrode interconnector 15a of the first-stage honeycomb fuel cell 17a and the fuel electrode interconnector 16b of the second-stage honeycomb fuel cell 17b are connected to each other. A laminated honeycomb fuel cell 18 in which n stages of 17 are connected in series is obtained.

積層面での空気極インターコネクター15aと燃料極インターコネクター部16bとの接続は、圧着もしくは接合により一体化されてインターコネクター部13(図3参照)を形成する。   The connection between the air electrode interconnector 15a and the fuel electrode interconnector portion 16b on the laminated surface is integrated by pressure bonding or bonding to form the interconnector portion 13 (see FIG. 3).

なお、空気極インターコネクター部15と燃料極インターコネクター部16との積層方法は、図3に示す構成と左右勝手が反対となる構成、すなわち積層型ハニカム燃料電池18の左端面に燃料極インターコネクター部16nが露出し、右端面に空気極インターコネクター部15nが露出する構成としてもよい。   Note that the method of stacking the air electrode interconnector 15 and the fuel electrode interconnector 16 is the opposite of the configuration shown in FIG. The portion 16n may be exposed, and the air electrode interconnector portion 15n may be exposed on the right end surface.

この積層型ハニカム燃料電池18に供給される燃料は、図3に示すIIIa面側から燃料極セル(a)内に矢印19の方向から供給され、燃料極で電気化学反応により生成した水蒸気(H2O)と、未反応水素(H2)、二酸化炭素(CO2)及び窒素(N)との混合ガス、又は水蒸気と未反応水素及び二酸化炭素との混合ガスとなって矢印20から流出する。 The fuel supplied to the laminated honeycomb fuel cell 18 is supplied from the direction of the IIIa surface shown in FIG. 3 into the fuel electrode cell (a) from the direction of the arrow 19 and is generated by an electrochemical reaction at the fuel electrode (H 2 O) and a mixed gas of unreacted hydrogen (H 2 ), carbon dioxide (CO 2 ) and nitrogen (N 2 ), or a mixed gas of water vapor, unreacted hydrogen and carbon dioxide, and flows out from the arrow 20 To do.

一方、積層型ハニカム燃料電池18の内部を冷却するための冷却空気は、燃料の流入方向と同一のIIIa面側から冷却空気セル(c)内に矢印21の方向に供給され、冷却空気セルのセル壁面を冷却し自身の温度を上昇する。セル壁面を冷却した後の空気は、端面IIIbから矢印22の方向に流出する。矢印22から流出した高温空気は方向を反転し、反応空気セル(b)を端面IIIbから矢印23の向きに流入し、空気極4に酸素を供給し、酸素濃度を低減しつつ空気極セル(b)の端面IIIaから矢印24の方向に流出する。   On the other hand, the cooling air for cooling the inside of the laminated honeycomb fuel cell 18 is supplied in the direction of the arrow 21 into the cooling air cell (c) from the same IIIa surface side as the fuel inflow direction. The cell wall is cooled to raise its own temperature. The air after cooling the cell wall flows out from the end surface IIIb in the direction of the arrow 22. The hot air flowing out from the arrow 22 reverses direction, flows into the reaction air cell (b) from the end surface IIIb in the direction of the arrow 23, supplies oxygen to the air electrode 4, and reduces the oxygen concentration while reducing the oxygen concentration ( It flows out in the direction of the arrow 24 from the end surface IIIa of b).

なお、ハニカム燃料電池17を積層してなる積層型ハニカム燃料電池18の積層数は、構成する単セルの長さ、必要とする出力電圧、選定する電解質の材料、ハニカム構造体のセルサイズ、排気燃料中の未反応燃料の割合、系統全体のヒートバランス、更には系統全体の経済性をも考慮し最適な積層数が決められる。したがって、積層型ハニカム燃料電池18の積層数は特定されないが、通常は3〜10個である。   Note that the number of stacked honeycomb fuel cells 18 formed by stacking the honeycomb fuel cells 17 is the length of the single cell constituting the cell, the required output voltage, the electrolyte material to be selected, the cell size of the honeycomb structure, the exhaust The optimum number of layers is determined in consideration of the ratio of unreacted fuel in the fuel, the heat balance of the entire system, and the economic efficiency of the entire system. Therefore, the number of laminated layers of the laminated honeycomb fuel cell 18 is not specified, but is usually 3 to 10.

ハニカム構造体1に用いられる固体電解質材料として、イットリア安定化ジルコニア(YSZ)、スカンジウム安定化ジルコニア(ScSZ)、ランタンガレード系固体電解質材(LSGM、LSGMC)又はC12A7(12CaO・7Al23) 等を挙げることができるがある。更に、LSGMとしては、La0.8Sr0.2Ga0.8Mg0.2及びLa0.9Sr0.1Ga0.8Mg0.2、またLSGMCとしてはLa0.8Sr0.2Ga0.8Mg0.15Co0.05及びLa0.9Sr0.1Ga0.8Mg0.15Co0.05が例示される。そして、YSZとしては、例えばZrO2にYをドープした8モル%Y23・ZrO、ScSZとしては8モル%Sc23・3ZrO2などが好ましく使用できる。これらは何れもO-、O2-イオン伝導性を有する物質であるが、近年研究されつつあるH+、H-イオン伝導性を有する物質も本発明で定義する固体電解質材に含まれる。 As the solid electrolyte material used for the honeycomb structure 1, yttria stabilized zirconia (YSZ), scandium stabilized zirconia (ScSZ), lanthanum galade based solid electrolyte material (LSGM, LSGMC) or C12A7 (12CaO · 7Al 2 O 3 ) And so on. Furthermore, as LSGM, La 0.8 Sr 0.2 Ga 0.8 Mg 0.2 O x and La 0.9 Sr 0.1 Ga 0.8 Mg 0.2 O x , and as LSGMC, La 0 .8 Sr 0.2 Ga 0.8 Mg 0.15 Co 0.05 O x and La 0.9 Sr 0.1 Ga 0.8 Mg 0.1 5Co 0.05 O x are exemplified. Then, YSZ as, for example, as 8 mol% Y 2 O 3 · ZrO 2 , ScSZ that the ZrO 2 doped with Y 2 O 3 8 mol% Sc 2 O 3 · 3ZrO 2 etc. are preferably used. These are substances having O and O 2− ion conductivity, but substances having H + and H ion conductivity which are being studied in recent years are also included in the solid electrolyte material defined in the present invention.

また、電極膜材料としては、公知又は周知のものを使用することができ、例えばアノード(燃料極)にはNi及びNiサーメット、カソード(空気極)にはLaMnO3、La0.8Sr0.2MnO3、LaCoO3、La0.5Sr0.5CoO3などをそれぞれ好ましい材料として挙げることができる。 As the electrode film material, known or well-known materials can be used, for example, Ni and Ni cermet for the anode (fuel electrode), LaMnO 3 , La 0.8 Sr 0.2 MnO 3 for the cathode (air electrode), LaCoO 3 , La 0.5 Sr 0.5 CoO 3 and the like can be cited as preferable materials, respectively.

なお、図1乃至図3による説明は全てハニカム構造体1を構成する材料を固体電解質材料としているが、ハニカム構造体1を空気極材料で構成し、燃料極セルの内面に電解質材料をコーティングもしくは接合し、更に燃料極材料をコーティングもしくは接合して2層に形成してもよい。また、ハニカム構造体1を燃料極材料で構成し、空気極セルの内面に電解質材料をコーティングもしくは接合し、更に空気極材料をコーティングもしくは接合して2層に形成してもよい。   1 to 3, all the material constituting the honeycomb structure 1 is a solid electrolyte material. However, the honeycomb structure 1 is composed of an air electrode material, and the inner surface of the fuel electrode cell is coated with an electrolyte material. Further, the fuel electrode material may be coated or bonded to form two layers. Alternatively, the honeycomb structure 1 may be formed of a fuel electrode material, coated or joined with an electrolyte material on the inner surface of the air electrode cell, and further coated or joined with the air electrode material to form two layers.

本発明に係るハニカム型燃料電池の実施例を図7により更に詳細に説明する。なお、積層型ハニカム燃料電池18は、図1乃至図3では5行×5列のセルから成るハニカム構造体であるのに対し、図7ではより実機に近い7行×7列の構成としているが、この点以外の他の構造及び機能は全て図1乃至図3で説明した内容と実質的に同じである。また、ハニカム構造体の外周の各面にはカバーが設けられているが、図示は省略している。   An embodiment of the honeycomb type fuel cell according to the present invention will be described in more detail with reference to FIG. The laminated honeycomb fuel cell 18 is a honeycomb structure composed of 5 rows × 5 columns of cells in FIGS. 1 to 3, whereas in FIG. 7, it has a configuration of 7 rows × 7 columns, which is closer to the actual machine. However, all other structures and functions other than this point are substantially the same as those described in FIGS. Further, a cover is provided on each surface of the outer periphery of the honeycomb structure, but the illustration is omitted.

なお、図7は上下2段に分離した図となっているが、これは図の配置上便宜的に2段に分けたもので、実際は全ての部分が1中心線上に直列に接続されているものである。   Note that FIG. 7 is a diagram separated into two upper and lower stages, but this is divided into two stages for convenience of arrangement of the figure, and in fact, all the parts are connected in series on one center line. Is.

積層型ハニカム燃料電池18は、空気入出側端面25に、燃料流路部分のみ閉止したハニカム状の空気入出側集電絶縁ユニット26が矢印28に沿って接続され一体化される。   In the laminated honeycomb fuel cell 18, a honeycomb-shaped air inlet / outlet current collecting / insulating unit 26 closed only at the fuel flow path is connected to the air inlet / outlet side end face 25 along the arrow 28 and integrated.

第一集電体29及び絶縁体30を具備する空気入出側集電絶縁ユニット26は、更にその上流側に空気入出ユニット31が接続される。この空気入出ユニット31は、冷却空気セル6(図1参照)と連通する冷却空気導管32が貫通した空間33及び排気口34を有しており、燃料電池からの排空気は排気口34から矢印54の方向に排気される。   The air input / output side current collecting / insulating unit 26 including the first current collector 29 and the insulator 30 is further connected to the air input / output unit 31 on the upstream side thereof. This air inlet / outlet unit 31 has a space 33 and an exhaust port 34 through which a cooling air conduit 32 communicating with the cooling air cell 6 (see FIG. 1) passes, and exhaust air from the fuel cell is indicated by an arrow from the exhaust port 34. Exhaust in the direction of 54.

冷却空気はヘッダー部35に矢印36から供給され、ヘッダー部35に連通した冷却空気導管32に略均等に配分されて、集電絶縁ユニット26を通り、積層型ハニカム燃料電池18に供給される。   The cooling air is supplied to the header portion 35 from the arrow 36, is distributed substantially evenly to the cooling air conduit 32 communicating with the header portion 35, passes through the current collecting and insulating unit 26, and is supplied to the laminated honeycomb fuel cell 18.

一方、積層型ハニカム燃料電池18の燃料供給側端面37には、セルが貫通し積層型ハニカム燃料電池18と同一のセル断面形状を有する、第二集電体38及び絶縁体39を具備する燃料供給側集電絶縁ユニット40が接続される。集電絶縁ユニット40の燃料供給側端面41には、燃料極セルと連通する燃料極導管42が貫通した空気反転室43を有する空気反転ユニット44が接続され、冷却空気セルを通過した空気は、空気反転室43に集合した後、反転して、反応空気極セルに流入する。   On the other hand, the fuel provided on the fuel supply side end surface 37 of the laminated honeycomb fuel cell 18 includes a second current collector 38 and an insulator 39 that have cells penetrating therethrough and having the same cell cross-sectional shape as the laminated honeycomb fuel cell 18. A supply-side current collecting and insulating unit 40 is connected. An air reversing unit 44 having an air reversing chamber 43 through which a fuel electrode conduit 42 communicating with the fuel electrode cell passes is connected to the fuel supply side end face 41 of the current collecting and insulating unit 40, and the air passing through the cooling air cell is After gathering in the air reversing chamber 43, it is reversed and flows into the reaction air electrode cell.

更に、空気反転ユニット44の端面45には、燃料ガス排気ユニット49が接続される。この燃料ガス排気ユニット49は、燃料供給管46、燃料排気集合室47及び燃料排気ガス出口48を具備しており、前記燃料供給管46は空気反転ユニット44を貫通する燃料極導管42、集電絶縁ユニット40の燃料極に連通するセル及び積層型ハニカム燃料電池18の燃料極セルを貫通し、燃料極との間に適度の隙間を有して、積層型ハニカム燃料電池18の空気入出側端面25近傍まで延出している。   Further, a fuel gas exhaust unit 49 is connected to the end face 45 of the air reversing unit 44. The fuel gas exhaust unit 49 includes a fuel supply pipe 46, a fuel exhaust collecting chamber 47, and a fuel exhaust gas outlet 48. The fuel supply pipe 46 has a fuel electrode conduit 42 that passes through the air reversing unit 44, a current collector. An air inlet / outlet side end surface of the laminated honeycomb fuel cell 18 having a proper gap between the cell communicating with the fuel electrode of the insulating unit 40 and the fuel electrode cell of the laminated honeycomb fuel cell 18 and having a gap with the fuel electrode. It extends to the vicinity of 25.

燃料排氣ガスは、積層型ハニカム燃料電池18の空気入出側端面25において反転して燃料改質管燃料供給管46と燃料極2(図1参照)の隙間を通り、この間に反応空気と反応して発電を行う。発電を終えた燃料排氣ガスは、燃料排気集合室47で集合した後、燃料排気ガス出口48から矢印50の方向に排気される。また、燃料排気集合室47の燃料入口側端面51には燃料供給ヘッダー52が接続されており、矢印53から燃料供給ヘッダー52内に供給された燃料は、該燃料供給ヘッダー52で略均等に配分されて、燃料改質管燃料供給管46に供給される。更に、燃料供給管46の内部に燃料改質触媒、例えばニッケル(Ni)をセラミック基体に分散担持した触媒を充填し、燃料供給管内を通る燃料ガスを該触媒によってH及びCOの混合ガスに改質することにより、カーボン(C)を析出することなく、改質ガスを燃料極に供給できる。 The fuel exhaust gas is reversed at the air inlet / outlet side end face 25 of the laminated honeycomb fuel cell 18 and passes through the gap between the fuel reforming pipe fuel supply pipe 46 and the fuel electrode 2 (see FIG. 1), and during this time, it reacts with the reaction air. To generate electricity. After the power generation, the fuel exhaust gas collects in the fuel exhaust collecting chamber 47 and is then exhausted from the fuel exhaust gas outlet 48 in the direction of the arrow 50. Further, a fuel supply header 52 is connected to the fuel inlet side end face 51 of the fuel exhaust collecting chamber 47, and the fuel supplied into the fuel supply header 52 from the arrow 53 is distributed substantially evenly by the fuel supply header 52. Then, the fuel reforming pipe is supplied to the fuel supply pipe 46. Further, the fuel supply pipe 46 is filled with a fuel reforming catalyst, for example, a catalyst in which nickel (Ni) is dispersedly supported on a ceramic substrate, and the fuel gas passing through the fuel supply pipe is converted into a mixed gas of H 2 and CO by the catalyst. By reforming, the reformed gas can be supplied to the fuel electrode without depositing carbon (C).

矢印54から排気された排空気及び矢印50から排気された燃料排ガスは、図示しない配管もしくは構造空間を通り図示しない燃焼器で混合・燃焼し、大気に放出される。   The exhaust air exhausted from the arrow 54 and the fuel exhaust gas exhausted from the arrow 50 are mixed and burned by a combustor (not shown) through a pipe or a structural space (not shown), and released to the atmosphere.

なお、燃焼器で混合・燃焼した排ガスは図示しない熱交換器により冷却空気を予熱して熱回収を図ってもよい。更に、燃焼器で混合・燃焼した排ガスは、空気圧縮機とタービンから成る図示しないガスタービンにより冷却空気を加圧して系統全体を加圧状態に保ち、発電効率の向上及びコンパクト化を図ってもよい。
また、図7に例示する固体電解質燃料電池では、ハニカム型燃料電池セル、第一集電体、第二集電体、空気反転室、排気燃料反応生成物集合室、燃料供給管などの、固体電解質燃料電池を構成する機能部分を別部材として製作しているが、複数の機能部分を一体的に成形するか、又は接合して一体化することができるものについては、別部材として製作しないで適宜一体化してもよい。
The exhaust gas mixed and burned in the combustor may be preheated with cooling air by a heat exchanger (not shown) to recover the heat. Furthermore, the exhaust gas mixed and burned in the combustor may be pressurized with cooling air by a gas turbine (not shown) consisting of an air compressor and a turbine to keep the entire system in a pressurized state, thereby improving power generation efficiency and downsizing. Good.
Further, in the solid electrolyte fuel cell illustrated in FIG. 7, solid fuel cells such as a honeycomb type fuel cell, a first current collector, a second current collector, an air reversing chamber, an exhaust fuel reaction product collecting chamber, and a fuel supply pipe. Although the functional parts constituting the electrolyte fuel cell are manufactured as separate members, those that can be molded integrally or joined together can not be manufactured as separate members. You may integrate suitably.

本発明は、ハニカム内部を均一に冷却することにより、燃料電池の内外部に発生する温度差を低減して熱応力の発生を防止し、燃料及び空気とも希釈することなく高濃度のまま燃料電池に供給し、併せて燃料電池出口の排気燃料ガス中の残留未反応燃料及び排気空気中の残留未反応酸素とも十分に低濃度になるまで発電に利用し、小型で大出力で効率がよく、かつ起動特性及び負荷変動特性に優れたSOFC型燃料電池に適用できる。   The present invention uniformly cools the inside of the honeycomb to reduce the temperature difference generated inside and outside of the fuel cell to prevent the generation of thermal stress, and the fuel cell remains at a high concentration without diluting both fuel and air. In addition, the remaining unreacted fuel in the exhaust gas at the outlet of the fuel cell and the remaining unreacted oxygen in the exhaust air are used for power generation until the concentration is sufficiently low. In addition, the present invention can be applied to SOFC type fuel cells having excellent start-up characteristics and load fluctuation characteristics.

本発明の実施例に係る燃料電池の簡略化した断面図。1 is a simplified cross-sectional view of a fuel cell according to an embodiment of the present invention. 本発明の実施例に係る燃料電池単セルの図1及び図6のI−Iにおける断面図。Sectional drawing in II of FIG. 1 and FIG. 6 of the fuel cell single cell which concerns on the Example of this invention. 本発明による積層された燃料電池セルの図1のI−I断面と同様な断面図。Sectional drawing similar to the II cross section of FIG. 1 of the laminated fuel battery cell by this invention. 本発明の他の実施例に係る燃料電池セルのハニカム構造体の断面図。Sectional drawing of the honeycomb structure of the fuel cell which concerns on the other Example of this invention. 本発明の他の別の実施例に係る燃料電池セルのハニカム構造体の部分断面図。The fragmentary sectional view of the honeycomb structure of the fuel cell concerning other another example of the present invention. 本発明の他の実施例に係る燃料電池の簡略化した断面図。FIG. 4 is a simplified cross-sectional view of a fuel cell according to another embodiment of the present invention. 本発明による積層された燃料電池セルを用いて燃料電池ユニットを構成した一例を示す鳥瞰図。The bird's-eye view which shows an example which comprised the fuel cell unit using the laminated fuel battery cell by this invention. 従来技術による固体電解質型燃料電池の系統図。The system diagram of the solid oxide fuel cell by a prior art.

符号の説明Explanation of symbols

1 ハニカム構造体 2 燃料極
3 燃料極セル 4 空気極
5 空気極セル 6 冷却空気セル
13 インターコネクター部 15 空気極インターコネクター部
16 燃料極インターコネクター部 17 ハニカム燃料電池
17a 1段目ハニカム燃料電池 17b 2段目ハニカム燃料電池
17n n段目ハニカム燃料電池 18 積層型ハニカム燃料電池
25 空気入出側端面 26 空気入出側集電絶縁ユニット
29 第一集電体 30 絶縁体
31 空気入出ユニット 32 冷却空気導管
33 空間 34 排気口
35 ヘッダー部 37 燃料供給側端面
38 第二集電体 39 絶縁体
40 集電絶縁ユニット 41 燃料供給側端面
42 燃料極導管 43 空気反転室
44 空気反転ユニット 45 端面
46 燃料改質管 47 排気燃料集合室
48 排気燃料排気口 49 排気ユニット
51 燃料入口側端面 52 燃料供給ヘッダー
61 燃料入口 62 内部改質部器
64 戻りライン 65 燃料入口ベンチュリー
66 燃料排気管 67 空気入口
68 空気ヘッダー 70 空気極
71 空気排気管 72 空気入口ベンチュリー
74 燃焼器 75 排気管
76 排気口 77 空気入口
78 カバー
DESCRIPTION OF SYMBOLS 1 Honeycomb structure 2 Fuel electrode 3 Fuel electrode cell 4 Air electrode 5 Air electrode cell 6 Cooling air cell 13 Interconnector part 15 Air electrode interconnector part 16 Fuel electrode interconnector part 17 Honeycomb fuel cell 17a First stage honeycomb fuel cell 17b Second-stage honeycomb fuel cell 17n n-th stage honeycomb fuel cell 18 stacked honeycomb fuel cell 25 air inlet / outlet side end face 26 air inlet / outlet current collecting / insulating unit 29 first current collector 30 insulator 31 air inlet / outlet unit 32 cooling air conduit 33 Space 34 Exhaust port 35 Header portion 37 Fuel supply side end face 38 Second current collector 39 Insulator 40 Current collecting insulation unit 41 Fuel supply side end face 42 Fuel electrode conduit 43 Air reversing chamber 44 Air reversing unit 45 End face 46 Fuel reforming pipe 47 Exhaust fuel collecting chamber 48 Exhaust fuel exhaust port 49 Exhaust unit 51 End face of fuel inlet 52 Fuel supply header 61 Fuel inlet 62 Internal reformer 64 Return line 65 Fuel inlet venturi 66 Fuel exhaust pipe 67 Air inlet 68 Air header 70 Air electrode 71 Air exhaust pipe 72 Air inlet venturi 74 Combustor 75 Exhaust Pipe 76 Exhaust port 77 Air inlet 78 Cover

Claims (14)

四角形のセル断面を有するハニカム構造体からなる燃料電池であって、該燃料電池の燃料極セルを構成するハニカムセルの各々の壁面にと隣接するセルを空気極セル、該燃料極セルのハニカムセル壁面の角部に隣接しかつ該角部の両側に位置する空気極セルのそれぞれの一つの壁面に隣接するセルを冷却空気セルとすることにより、燃料極セル、空気極セル及び冷却空気セルがそれぞれ1セル飛びに縦方向及び横方向に1列に碁盤目配列されており、かつ前記ハニカム構造体のコーナー部に位置するセルが該燃料極セルになっていることを特徴とする内部冷却再生式ハニカム型固体電解質燃料電池。   A fuel cell comprising a honeycomb structure having a quadrangular cell cross section, the cell adjacent to each wall surface of the honeycomb cell constituting the anode cell of the fuel cell being an air electrode cell, and the honeycomb cell of the anode cell By making a cell adjacent to one wall surface of each of the air electrode cells adjacent to the corner of the wall surface and located on both sides of the corner into a cooling air cell, the fuel electrode cell, the air electrode cell, and the cooling air cell are Internal cooling regeneration, wherein each cell is arranged in a grid pattern in the vertical direction and the horizontal direction in one cell jump, and the cells located at the corners of the honeycomb structure are the fuel electrode cells. Honeycomb type solid electrolyte fuel cell. 前記ハニカム構造体が矩形状の断面を有し、その外周の各面にハニカム構造体の材質と異なる材料で形成したカバーが設けられており、該カバーは内部に空気極通路及び冷却空気通路を有し、該空気極通路が、燃料極セルの壁面を形成している、ハニカム構造体の外周面に隣接するように配置されている請求項1に記載のハニカム型固体電解質燃料電池。   The honeycomb structure has a rectangular cross section, and a cover formed of a material different from the material of the honeycomb structure is provided on each surface of the outer periphery of the honeycomb structure, and the cover includes an air electrode passage and a cooling air passage. 2. The honeycomb type solid electrolyte fuel cell according to claim 1, wherein the air electrode passage is disposed adjacent to an outer peripheral surface of the honeycomb structure forming a wall surface of the fuel electrode cell. 前記ハニカム構造体が矩形状の断面を有し、その外周の各面にハニカム構造体の材質と異なる材料で形成したカバーが設けられており、該カバーは内部に空気極通路を有し、該空気極通路が前記ハニカム構造体の外周面に接している請求項1に記載のハニカム型固体電解質燃料電池。   The honeycomb structure has a rectangular cross section, and a cover formed of a material different from the material of the honeycomb structure is provided on each outer surface of the honeycomb structure, and the cover has an air electrode passage inside, The honeycomb type solid electrolyte fuel cell according to claim 1, wherein an air electrode passage is in contact with an outer peripheral surface of the honeycomb structure. 前記空気極通路に隣接するハニカム構造体の外周面に、空気極が設けられている請求項2又は3に記載のハニカム型固体電解質燃料電池。   The honeycomb solid electrolyte fuel cell according to claim 2 or 3, wherein an air electrode is provided on an outer peripheral surface of the honeycomb structure adjacent to the air electrode passage. 前記カバーがアルミナ、ジルコニア、ムライト、コーディエライト、炭化ケイ素、窒化ケイ素などのセラミックス、又はステンレス鋼、インコネルなどの耐熱鋼から形成されている請求項2、3又は4に記載のハニカム型固体電解質燃料電池。   The honeycomb type solid electrolyte according to claim 2, 3 or 4, wherein the cover is made of ceramics such as alumina, zirconia, mullite, cordierite, silicon carbide, silicon nitride, or heat resistant steel such as stainless steel or inconel. Fuel cell. 前記ハニカム構造体は、固体電解質材料、燃料極材料又は空気極材料の何れかにより形成されており、ハニカム構造体が固体電解質材料から形成されているときには、燃料極セルハニカムの内面に燃料極を形成し、空気極セル各々のの内面に空気極を形成してなる請求項1〜5のいずれかに記載の内部冷却再生式ハニカム型固体電解質燃料電池。   The honeycomb structure is formed of any one of a solid electrolyte material, a fuel electrode material, and an air electrode material. When the honeycomb structure is formed of a solid electrolyte material, the fuel electrode is disposed on the inner surface of the fuel electrode cell honeycomb. The internally cooled regenerative honeycomb type solid electrolyte fuel cell according to any one of claims 1 to 5, wherein an air electrode is formed on an inner surface of each air electrode cell. セル断面が同一形状の正方形である請求項1〜6のいずれかに記載のハニカム型固体電解質燃料電池。   The honeycomb solid electrolyte fuel cell according to any one of claims 1 to 6, wherein the cell cross sections are squares having the same shape. 燃料極セルのセル断面が正方形であり、各々の空気極セルのセル断面が燃料極セルの各々の壁面を長辺とする長方形であり、該冷却空気セルのセル断面が空気極セルの短辺を一辺とする正方形もしくは短辺を直径とする円形である請求項1〜7のいずれかに記載のハニカム型固体電解質燃料電池。   The cell cross section of the anode cell is a square, the cell cross section of each air electrode cell is a rectangle having the long side of each wall surface of the anode cell, and the cell cross section of the cooling air cell is the short side of the air electrode cell. A honeycomb type solid electrolyte fuel cell according to any one of claims 1 to 7, which is a square having one side as a square or a circle having a short side as a diameter. 四角形のセル断面を有する燃料極セル、空気極セル及び冷却空気セルのそれぞれの壁面の一部もしくは全部が湾曲又は波状である請求項1〜8のいずれかに記載のハニカム型固体電解質燃料電池。   The honeycomb type solid electrolyte fuel cell according to any one of claims 1 to 8, wherein a part or all of the wall surfaces of the fuel electrode cell, the air electrode cell, and the cooling air cell each having a square cell cross section are curved or wavy. 請求項1〜9のいずれかのハニカム型固体電解質燃料電池を、2以上積層して燃料電池セル群となし、相互に連接結する該燃料電池の燃料極と空気極とをインターコネクターで接続して直列接続となし、前記セル群の両端部に設けた集電体より電気を取り出すようにしたことを特徴とする内部冷却再生式ハニカム型固体電解質燃料電池。   Two or more honeycomb type solid electrolyte fuel cells according to any one of claims 1 to 9 are laminated to form a fuel cell group, and the fuel electrode and air electrode of the fuel cells connected to each other are connected by an interconnector. The internal cooling regenerative honeycomb solid electrolyte fuel cell is characterized in that electricity is taken out from current collectors provided at both ends of the cell group. 燃料電池セル群の一方の端部に位置するハニカム型燃料電池の端部に、燃料極セル閉止面を備えかつ空気極セルの流路及び冷却空気セルの流路が貫通した第一集電体を接続して、該第一集電体に冷却空気導管が貫通した空気入出ユニットを接続し該集電体に冷却用空気流路が貫通した排気集合室を接続して、該排気集合室に空気入口室もしくは空気入口管を接続し、
前記セル群の他方の端部に位置するハニカム型燃料電池構造体の端部に、燃料極セルの流路、空気極セルの流路及び冷却空気セルの流路が貫通した第二集電体を接続し、該第二集電体に空気反転室、及び燃料供給管が貫通した排気燃料排気集合室を順次に接続して、該燃料排気集合室に燃料を供給するための燃料供給ヘッダーを接続し、
該排気燃料排気集合室の端面から空気反転室及び第二集電体をそれぞれ貫通して、燃料極セルの空気入出側端面近傍まで延出した燃料供給管を、燃料極セル内にセル内面との間に隙間を設けて挿入してなる請求項10に記載の内部冷却再生式ハニカム型固体電解質燃料電池。
A first current collector provided with an anode cell closing surface at the end of a honeycomb type fuel cell located at one end of a fuel cell group, and through which a flow path of an air electrode cell and a flow path of a cooling air cell pass An air inlet / outlet unit through which a cooling air conduit penetrates is connected to the first current collector, and an exhaust collecting chamber through which a cooling air flow path passes is connected to the current collector, to the exhaust collecting chamber. Connect the air inlet chamber or air inlet pipe,
A second current collector in which the flow path of the fuel electrode cell, the flow path of the air electrode cell, and the flow path of the cooling air cell pass through the end of the honeycomb type fuel cell structure located at the other end of the cell group A fuel supply header for supplying fuel to the fuel exhaust assembly chamber by sequentially connecting an air reversing chamber and an exhaust fuel exhaust assembly chamber through which the fuel supply pipe penetrates to the second current collector. connection,
A fuel supply pipe extending from the end face of the exhaust fuel exhaust collecting chamber through the air reversing chamber and the second current collector to the vicinity of the air inlet / outlet end face of the fuel electrode cell is connected to the cell inner surface in the fuel electrode cell. The internal cooling regenerative honeycomb type solid electrolyte fuel cell according to claim 10, wherein a gap is provided between the internal cooling and regenerative honeycomb type solid electrolyte fuel cells.
冷却空気セルを流れる空気と空気極セルを流れる反応空気の向きを逆にして対向流とする請求項1〜11のいずれかに記載の内部冷却再生式ハニカム型固体電解質燃料電池。   The internal cooling regenerative honeycomb type solid electrolyte fuel cell according to any one of claims 1 to 11, wherein the air flowing through the cooling air cell and the reaction air flowing through the air electrode cell are reversed in the direction of opposing flow. 固体電解質がイットリア安定化ジルコニア(YSZ)、スカンジウム安定化ジルコニア(ScSZ)、ランタンガレート系固体電解質又はC12A7(12CaO・7Al23)などのO-、O2-等のイオン電導性を有する固体電解質又はH+、H-イオンを伝導する固体電解質である請求項1〜12のいずれかに記載のハニカム型固体電解質燃料電池。 Solid electrolyte yttria stabilized zirconia (YSZ), scandium-stabilized zirconia (ScSZ), O, such as lanthanum gallate-based solid electrolyte or C12A7 (12CaO · 7Al 2 O 3 ) -, solids having ionic conductivity of O 2-, etc. The honeycomb type solid electrolyte fuel cell according to any one of claims 1 to 12, which is an electrolyte or a solid electrolyte that conducts H + and H - ions. ランタンガレート系固体電解質がLa0.8Sr0.2Ga0.8Mg0.2
、La0.9Sr0.1Ga0.8Mg0.2
、La0.8Sr0.2Ga0.8Mg0.15Co0.05又はLa0.9Sr0.1Ga0.8Mg0.15Co0.05)である請求項13に記載の内部冷却再生式ハニカム型固体電解質燃料電池。
Lanthanum gallate solid electrolyte is La 0.8 Sr 0.2 Ga 0.8 Mg 0.2 O x
La 0.9 Sr 0.1 Ga 0.8 Mg 0.2 O x
, La 0.8 Sr 0.2 Ga 0.8 Mg 0.15 Co 0.05 O x or La 0.9 Sr 0.1 Ga 0.8 Mg 0.1 5Co 0.05 O x) a is claimed Item 14. The internal cooling regenerative honeycomb solid electrolyte fuel cell according to Item 13.
JP2004264414A 2004-09-10 2004-09-10 Internal cooling regenerating type honeycomb-shaped solid oxide fuel cell Pending JP2006080006A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004264414A JP2006080006A (en) 2004-09-10 2004-09-10 Internal cooling regenerating type honeycomb-shaped solid oxide fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004264414A JP2006080006A (en) 2004-09-10 2004-09-10 Internal cooling regenerating type honeycomb-shaped solid oxide fuel cell

Publications (1)

Publication Number Publication Date
JP2006080006A true JP2006080006A (en) 2006-03-23

Family

ID=36159273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004264414A Pending JP2006080006A (en) 2004-09-10 2004-09-10 Internal cooling regenerating type honeycomb-shaped solid oxide fuel cell

Country Status (1)

Country Link
JP (1) JP2006080006A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007012293A (en) * 2005-06-28 2007-01-18 Think Tank Phoenix:Kk Electrode structure for solid electrolyte fuel cell
KR100814527B1 (en) 2006-09-13 2008-03-17 현대자동차주식회사 Fuel cell stack with improved fastening structure
KR100835239B1 (en) 2006-12-22 2008-06-09 주식회사 포스코 Structure for fuel cell, fuel cell using same and manufacturing method thereof
JP2014112474A (en) * 2012-12-05 2014-06-19 Toyota Central R&D Labs Inc Solid electrolyte
JP2015122287A (en) * 2013-12-25 2015-07-02 株式会社ノリタケカンパニーリミテド Electrode material and its use
CN113381050A (en) * 2021-06-09 2021-09-10 广东石油化工学院 Electrode support type tubular SOFC (solid oxide Fuel cell) applied to surrounding chessboard cell stack with high electrochemical reaction area and manufacturing method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004082050A1 (en) * 2003-03-14 2004-09-23 Thinktank Phoenix Ltd. Honeycomb type solid electrolytic fuel cell

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004082050A1 (en) * 2003-03-14 2004-09-23 Thinktank Phoenix Ltd. Honeycomb type solid electrolytic fuel cell

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007012293A (en) * 2005-06-28 2007-01-18 Think Tank Phoenix:Kk Electrode structure for solid electrolyte fuel cell
KR100814527B1 (en) 2006-09-13 2008-03-17 현대자동차주식회사 Fuel cell stack with improved fastening structure
KR100835239B1 (en) 2006-12-22 2008-06-09 주식회사 포스코 Structure for fuel cell, fuel cell using same and manufacturing method thereof
JP2014112474A (en) * 2012-12-05 2014-06-19 Toyota Central R&D Labs Inc Solid electrolyte
JP2015122287A (en) * 2013-12-25 2015-07-02 株式会社ノリタケカンパニーリミテド Electrode material and its use
CN113381050A (en) * 2021-06-09 2021-09-10 广东石油化工学院 Electrode support type tubular SOFC (solid oxide Fuel cell) applied to surrounding chessboard cell stack with high electrochemical reaction area and manufacturing method
CN113381050B (en) * 2021-06-09 2022-06-07 广东石油化工学院 Electrode support type columnar SOFC surrounding chessboard cell stack and manufacturing method

Similar Documents

Publication Publication Date Title
JP3902217B2 (en) Honeycomb type solid electrolyte fuel cell
US10468695B2 (en) Gas distribution element for a fuel cell
US9118052B2 (en) Integrated natural gas powered SOFC systems
US8313874B2 (en) Structure of solid oxide fuel cell
EP2675007A1 (en) A gas flow dividing element
EP2675006A1 (en) Gas distribution element with a supporting layer
CN111868983B (en) Fuel cell unit, fuel cell module and fuel cell device
US12119526B2 (en) Metal support for electrochemical element, electrochemical element, electrochemical module, electrochemical device, energy system, solid oxide fuel cell, solid oxide electrolytic cell, and method for manufacturing metal support
CN112713295B (en) A Serpentine Airway Flat Solid Oxide Fuel Cell Stack
KR20200138159A (en) Metal Supported Fuel Cell and Fuel Cell Module
CN116349040A (en) Fuel Cell Power Generation System
JP2006080006A (en) Internal cooling regenerating type honeycomb-shaped solid oxide fuel cell
KR20140082300A (en) Solid oxide fuel cell
JP4228895B2 (en) Solid oxide fuel cell
KR20150010156A (en) Flat-type solid oxide fuel cell with multi-cell structure and manufacturing method thereof
KR20150010165A (en) Flat-type solid oxide fuel cell with multi-cell structure and manufacturing method thereof
JP2009245631A (en) Fuel cell stack and solid oxide fuel cell using the same
JP2013077485A (en) Fuel battery device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070830

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100817

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110105