[go: up one dir, main page]

JP2006078087A - Refrigeration equipment - Google Patents

Refrigeration equipment Download PDF

Info

Publication number
JP2006078087A
JP2006078087A JP2004262176A JP2004262176A JP2006078087A JP 2006078087 A JP2006078087 A JP 2006078087A JP 2004262176 A JP2004262176 A JP 2004262176A JP 2004262176 A JP2004262176 A JP 2004262176A JP 2006078087 A JP2006078087 A JP 2006078087A
Authority
JP
Japan
Prior art keywords
refrigerant
compressor
sucked
valve
dryness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004262176A
Other languages
Japanese (ja)
Inventor
Katsumi Hokotani
克己 鉾谷
Michio Moriwaki
道雄 森脇
Yume Inokuchi
優芽 井ノ口
Tetsuya Okamoto
哲也 岡本
Yoshinari Sasaki
能成 佐々木
Eiji Kumakura
英二 熊倉
Masakazu Okamoto
昌和 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2004262176A priority Critical patent/JP2006078087A/en
Priority to AU2005280900A priority patent/AU2005280900B2/en
Priority to CNB2005800301205A priority patent/CN100501270C/en
Priority to US11/662,206 priority patent/US20090113907A1/en
Priority to KR1020077007764A priority patent/KR20070067121A/en
Priority to EP05782353.6A priority patent/EP1795833A4/en
Priority to PCT/JP2005/016643 priority patent/WO2006028218A1/en
Publication of JP2006078087A publication Critical patent/JP2006078087A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B11/00Compression machines, plants or systems, using turbines, e.g. gas turbines
    • F25B11/02Compression machines, plants or systems, using turbines, e.g. gas turbines as expanders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/06Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using expanders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/04Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/0272Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using bridge circuits of one-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/17Control issues by controlling the pressure of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Air Conditioning Control Device (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To perform an energy-saving operation by sucking a refrigerant in a proper wet state that provides a highest performance coefficient or a coefficient close thereto to a compressor. <P>SOLUTION: This refrigeration unit comprises a refrigerant circuit 20 performing a vapor compression type refrigeration cycle. The refrigerant is sucked to the compressor 31 in a wet state which provides an optimum performance coefficient according to an operation condition. When the operation condition is changed, the refrigerant to be sucked to the compressor 31 is adjusted to a wet state which provides the optimum performance coefficient according to a new operation condition by adjusting the opening of an expansion valve 23. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、冷凍装置に関し、特に、最適なCOP(成績係数)で運転可能な冷凍装置に係るものである。   The present invention relates to a refrigeration apparatus, and particularly relates to a refrigeration apparatus that can be operated with an optimum COP (coefficient of performance).

従来より、冷媒が循環して蒸気圧縮式冷凍サイクルを行う冷媒回路を備えた冷凍装置が知られている(例えば、特許文献1参照)。この冷凍装置には、圧縮機と凝縮器と膨張弁と蒸発器とが接続されてなる冷媒回路が形成されている。そして、上記膨張弁は、圧縮機へ所定の過熱度のついたガス冷媒を吸入させるように開度調整される。これにより、圧縮機が湿り圧縮して損傷するのを防止している。
特開2003−106609号公報
2. Description of the Related Art Conventionally, a refrigeration apparatus including a refrigerant circuit that performs a vapor compression refrigeration cycle by circulating a refrigerant is known (see, for example, Patent Document 1). In this refrigeration apparatus, a refrigerant circuit is formed by connecting a compressor, a condenser, an expansion valve, and an evaporator. The opening of the expansion valve is adjusted so that a gas refrigerant with a predetermined degree of superheat is sucked into the compressor. This prevents the compressor from being wet compressed and damaged.
JP 2003-106609 A

しかしながら、従来の冷凍装置では、過熱状態の高温のガス冷媒が圧縮機へ吸入されるため、吐出温度が高温となって圧縮機の効率が低下してしまい、冷凍装置の成績係数(COP)を考慮すると最適とはいえなかった。   However, in the conventional refrigeration system, since the high-temperature gas refrigerant in the overheated state is sucked into the compressor, the discharge temperature becomes high and the efficiency of the compressor decreases, and the coefficient of performance (COP) of the refrigeration system is reduced. It was not optimal when considered.

一方、圧縮機は、本来、損傷しない限り湿り状態の冷媒を吸入させても問題はないものであり、従来では安全を見越して過剰に乾き状態とした冷媒を吸入させるようにしている。   On the other hand, as long as the compressor is originally not damaged, there is no problem even if the refrigerant in the wet state is sucked. Conventionally, the refrigerant is excessively dried in anticipation of safety.

そこで、本発明者らは、圧縮機へ吸入させる冷媒の乾き度(湿り状態)と成績係数との関係について調べたところ、成績係数が最高となる冷媒の乾き度(湿り状態)を見出した。したがって、本発明は、最高またはそれに近い成績係数となる適正な湿り状態の冷媒を圧縮機へ吸入させ、省エネ運転を図ることである。   Therefore, the present inventors examined the relationship between the dryness (wet state) of the refrigerant to be sucked into the compressor and the coefficient of performance, and found the dryness (wet state) of the refrigerant having the highest coefficient of performance. Therefore, the present invention is intended to achieve energy saving operation by sucking into the compressor a refrigerant in an appropriate wet state that achieves the best or close coefficient of performance.

具体的に、第1の発明は、圧縮機(31)を有して冷凍サイクルを行う冷媒回路(20)を備えた冷凍装置を前提としている。そして、本発明は、冷媒をその時の運転状態において最適な成績係数(COP)となる湿り状態で上記圧縮機(31)へ吸入させる。   Specifically, the 1st invention presupposes the refrigerating device provided with the refrigerant circuit (20) which has a compressor (31) and performs a refrigerating cycle. In the present invention, the refrigerant is sucked into the compressor (31) in a wet state where an optimum coefficient of performance (COP) is obtained in the operation state at that time.

上記の発明では、冷媒回路(20)において冷媒が循環して蒸気圧縮式冷凍サイクルが行われる。そして、例えば図3および図4に示すように、冷凍サイクルの高圧圧力および低圧圧力、また圧縮機(31)の圧縮効率などが運転条件として設定された運転状態ごとに最適な成績係数(COP)となる冷媒の乾き度(湿り状態)が設定される。上記圧縮機(31)へは、設定された乾き度の冷媒が吸入されるので、確実に最高の成績係数で運転が行われる。   In the above invention, the refrigerant circulates in the refrigerant circuit (20) to perform the vapor compression refrigeration cycle. For example, as shown in FIGS. 3 and 4, the optimum coefficient of performance (COP) for each operating state in which the high and low pressures of the refrigeration cycle and the compression efficiency of the compressor (31) are set as operating conditions. The degree of dryness (wetness) of the refrigerant is set. Since the refrigerant having the set dryness is sucked into the compressor (31), the operation is surely performed with the highest coefficient of performance.

また、第2の発明は、圧縮機(31)を有して冷凍サイクルを行う冷媒回路(20)を備えた冷凍装置を前提としている。そして、本発明は、冷房運転時は冷媒を過熱状態で上記圧縮機(31)へ吸入させ、暖房運転時は冷媒を湿り状態で上記圧縮機(31)へ吸入させる。   The second invention is premised on a refrigeration apparatus including a refrigerant circuit (20) having a compressor (31) and performing a refrigeration cycle. In the present invention, the refrigerant is sucked into the compressor (31) in an overheated state during the cooling operation, and the refrigerant is sucked into the compressor (31) in a wet state during the heating operation.

上記の発明では、冷媒回路(20)において冷媒が循環して蒸気圧縮式冷凍サイクルが行われる。そして、少なくとも通常の暖房運転時において、常時圧縮機(31)へ湿り状態、すなわち乾き度が1.00未満の冷媒が吸入されるので、図3および図4に示すシミュレーションの結果から分かるように、乾き度が1.00以上の過熱状態の冷媒を吸入させる場合と比べて明らかに成績係数(COP)が向上する。この結果、装置の省エネが図られる。また、運転条件ごとに成績係数が最高となる最適な乾き度の冷媒を圧縮機(31)へ吸入させれば、一層の省エネが図られる。   In the above invention, the refrigerant circulates in the refrigerant circuit (20) to perform the vapor compression refrigeration cycle. And, at least during normal heating operation, the compressor (31) is always in a wet state, that is, the refrigerant having a dryness of less than 1.00 is sucked, and as can be seen from the simulation results shown in FIGS. The coefficient of performance (COP) is clearly improved as compared with the case where a superheated refrigerant having a dryness of 1.00 or more is sucked. As a result, energy saving of the apparatus is achieved. Further, if the refrigerant having the optimum dryness that gives the highest coefficient of performance for each operating condition is sucked into the compressor (31), further energy saving can be achieved.

また、第3の発明は、圧縮機(31)を有して冷凍サイクルを行う冷媒回路(20)を備えた冷凍装置を前提としている。そして、本発明は、その時の運転状態において成績係数(COP)が最適となる上記圧縮機(31)の目標吐出温度を設定し、冷媒を上記圧縮機(31)の吐出温度が目標吐出温度となる湿り状態で上記圧縮機(31)へ吸入させる。   The third invention is premised on a refrigeration apparatus including a refrigerant circuit (20) having a compressor (31) and performing a refrigeration cycle. And this invention sets the target discharge temperature of the said compressor (31) from which the coefficient of performance (COP) becomes optimal in the driving | running state at that time, and sets the discharge temperature of the said compressor (31) as the target discharge temperature. Inhaled into the compressor (31) in a wet state.

上記の発明では、冷媒回路(20)において冷媒が循環して蒸気圧縮式冷凍サイクルが行われる。そして、冷凍サイクルの高圧圧力および低圧圧力、また圧縮機(31)の圧縮効率などの運転条件に応じて成績係数が最適となる圧縮機(31)の目標吐出温度が設定される。つまり、冷媒の乾き度が低いと、圧縮機(31)の吐出温度が低くなり、逆に冷媒の乾き度が高くなると、圧縮機(31)の吐出温度が高くなるので、各運転条件の下で冷媒の乾き度に対応する圧縮機(31)の吐出温度が定められる。このことから、図3および図4に示すように、各運転条件において成績係数が最適となる冷媒の乾き度(湿り状態)が定められ、その冷媒の乾き度に対応する圧縮機(31)の目標吐出温度が設定されることになる。したがって、上記圧縮機(31)の吐出温度が目標吐出温度となる湿り状態で冷媒を圧縮機(31)へ吸入させれば、確実に最適な成績係数で運転が行われる。   In the above invention, the refrigerant circulates in the refrigerant circuit (20) to perform the vapor compression refrigeration cycle. Then, the target discharge temperature of the compressor (31) with the optimum coefficient of performance is set according to the operating conditions such as the high and low pressures of the refrigeration cycle and the compression efficiency of the compressor (31). In other words, if the dryness of the refrigerant is low, the discharge temperature of the compressor (31) is low, and conversely, if the dryness of the refrigerant is high, the discharge temperature of the compressor (31) is high. The discharge temperature of the compressor (31) corresponding to the dryness of the refrigerant is determined. Therefore, as shown in FIG. 3 and FIG. 4, the dryness (wet state) of the refrigerant with the optimum coefficient of performance under each operating condition is determined, and the compressor (31) corresponding to the dryness of the refrigerant is determined. The target discharge temperature is set. Therefore, if the refrigerant is sucked into the compressor (31) in a wet state where the discharge temperature of the compressor (31) becomes the target discharge temperature, the operation is surely performed with an optimum coefficient of performance.

さらに、上記第1〜第3の発明では、圧縮機(31)へ湿り状態の冷媒が吸入されるので、過熱状態の冷媒が吸入される場合に比べて、圧縮機(31)の吐出温度が低下する。したがって、上記圧縮機(31)のモータが異常に加熱されるのを防止でき、また冷凍機油の高温による劣化が抑制される。この結果、圧縮機(31)への信頼性が向上する。   Furthermore, in the first to third aspects of the invention, since the wet refrigerant is sucked into the compressor (31), the discharge temperature of the compressor (31) is higher than that when the superheated refrigerant is sucked. descend. Therefore, the motor of the compressor (31) can be prevented from being abnormally heated, and deterioration of the refrigerating machine oil due to high temperature is suppressed. As a result, the reliability of the compressor (31) is improved.

また、第4の発明は、上記第1〜3の何れか1の発明において、上記冷媒回路(20)に膨張弁(23)が設けられている。そして、本発明は、上記膨張弁(23)の開度を調節することによって圧縮機(31)の吸入冷媒の湿り状態を調節する。   Moreover, 4th invention is provided with the expansion valve (23) in the said refrigerant circuit (20) in any one of said 1st-3rd invention. In the present invention, the wet state of the suction refrigerant of the compressor (31) is adjusted by adjusting the opening degree of the expansion valve (23).

上記の発明では、例えば、圧縮機(31)の吸入冷媒の湿り加減を増大させる場合、すなわち吸入冷媒の乾き度を低くする場合、膨張弁(23)の開度を大きくして蒸発器へ流す冷媒流量を増大させる。これにより、蒸発器において蒸発しきれない冷媒量が増大し、圧縮機(31)へより湿った状態の冷媒が吸入される。逆に、上記圧縮機(31)の吸入冷媒の湿り加減を減少させる場合、すなわち吸入冷媒の乾き度を高くする場合には、膨張弁(23)の開度を小さくして蒸発器へ流す冷媒流量を低減する。これにより、蒸発器において蒸発しきれない冷媒量が減少し、圧縮機(31)へ湿り加減の少ない冷媒が吸入される。したがって、各運転条件に応じて成績係数が最高となる冷媒の乾き度を設定し、その乾き度に基づいて膨張弁(23)を開度調整すれば、各運転条件において成績係数が最高となる省エネ運転が行われる。   In the above invention, for example, when increasing or decreasing the wetness of the suction refrigerant of the compressor (31), that is, when reducing the dryness of the suction refrigerant, the opening degree of the expansion valve (23) is increased to flow to the evaporator. Increase refrigerant flow. As a result, the amount of refrigerant that cannot be evaporated in the evaporator increases, and the refrigerant in a damp state is sucked into the compressor (31). On the other hand, when the wetness of the suction refrigerant of the compressor (31) is decreased, that is, when the dryness of the suction refrigerant is increased, the refrigerant flowing through the evaporator with the opening of the expansion valve (23) being reduced. Reduce the flow rate. As a result, the amount of the refrigerant that cannot be evaporated in the evaporator is reduced, and the refrigerant with low wetness is sucked into the compressor (31). Therefore, if the dryness of the refrigerant with the highest coefficient of performance is set according to each operating condition, and the opening degree of the expansion valve (23) is adjusted based on the dryness, the coefficient of performance becomes the highest under each operating condition. Energy saving operation is performed.

また、第5の発明は、上記第1〜3の何れか1の発明において、上記冷媒回路(20)は、蒸発器(22,24)と圧縮機(31)の吸入側との間に気液分離器(25)が設けられている。そして、上記気液分離器(25)は、流量調整弁(27)を有して気液分離器(25)の液冷媒を圧縮機(31)の吸入側へ導く液インジェクション管(26)を備えている。さらに、本発明は、上記流量調整弁(27)を調節することによって圧縮機(31)の吸入冷媒の湿り状態を調節する。   In a fifth aspect based on any one of the first to third aspects, the refrigerant circuit (20) is provided between the evaporator (22, 24) and the suction side of the compressor (31). A liquid separator (25) is provided. The gas-liquid separator (25) has a flow rate adjusting valve (27) and a liquid injection pipe (26) for guiding the liquid refrigerant of the gas-liquid separator (25) to the suction side of the compressor (31). I have. Furthermore, the present invention adjusts the wet state of the refrigerant sucked in the compressor (31) by adjusting the flow rate adjusting valve (27).

上記の発明では、例えば、圧縮機(31)の吸入冷媒の湿り加減を増大させる場合、すなわち吸入冷媒の乾き度を低くする場合、流量調整弁(27)の開度を大きくして圧縮機(31)へ吸入させる液冷媒の流量を増大させる。逆に、上記圧縮機(31)の吸入冷媒の湿り加減を減少させる場合、すなわち吸入冷媒の乾き度を高くする場合には、流量調整弁(27)の開度を小さくして圧縮機(31)へ吸入させる液冷媒の流量を低減する。したがって、各運転条件に応じて成績係数が最高となる冷媒の乾き度を設定し、その乾き度に基づいて流量調整弁(27)を開度調整すれば、各運転条件において成績係数が最高となる省エネな運転が行われる。   In the above invention, for example, when increasing or decreasing the wetness of the suction refrigerant of the compressor (31), that is, when reducing the dryness of the suction refrigerant, the degree of opening of the flow rate adjustment valve (27) is increased and the compressor ( 31) Increase the flow rate of the liquid refrigerant to be sucked into. On the other hand, when the wetness of the suction refrigerant of the compressor (31) is decreased, that is, when the dryness of the suction refrigerant is increased, the opening of the flow rate adjustment valve (27) is reduced and the compressor (31 ) Reduce the flow rate of the liquid refrigerant to be sucked into. Therefore, if the dryness of the refrigerant with the highest coefficient of performance is set according to each operating condition, and the opening of the flow rate adjustment valve (27) is adjusted based on the dryness, the highest coefficient of performance is achieved under each operating condition. An energy-saving operation is performed.

また、第6の発明は、上記第1〜3の何れか1の発明において、上記冷媒回路(20)は、圧縮機(31)に該圧縮機(31)のモータ(32)を介して機械的に接続された膨張機(33)が設けられている。また、上記冷媒回路(20)は、膨張機(33)へ向かう冷媒の一部が膨張機(33)をバイパスして流れるバイパス管(44)と、該バイパス管(44)に設けられる流量調整弁(45)とを備えている。そして、本発明は、上記流量調整弁(45)を調節することによって圧縮機(31)の吸入冷媒の湿り状態を調節する。   Moreover, the sixth invention is the invention according to any one of the first to third inventions, wherein the refrigerant circuit (20) is connected to the compressor (31) via a motor (32) of the compressor (31). Connected expander (33). Further, the refrigerant circuit (20) includes a bypass pipe (44) in which a part of the refrigerant directed to the expander (33) flows bypassing the expander (33), and a flow rate adjustment provided in the bypass pipe (44). And a valve (45). And this invention adjusts the wet state of the suction | inhalation refrigerant | coolant of a compressor (31) by adjusting the said flow regulating valve (45).

上記の発明では、例えば、圧縮機(31)の吸入冷媒の湿り加減を増大させる場合、すなわち吸入冷媒の乾き度を低くする場合、流量調整弁(45)の開度を大きくし、つまり膨張機(33)をバイパスして流れる冷媒量を増大させて蒸発器へ流す冷媒流量を増大させる。これにより、蒸発器において蒸発しきれない冷媒量が増大し、圧縮機(31)へより湿った状態の冷媒が吸入される。逆に、上記圧縮機(31)の吸入冷媒の湿り加減を減少させる場合、すなわち吸入冷媒の乾き度を高くする場合には、流量調整弁(45)の開度を小さくし、つまり膨張機(33)をバイパスして流れる冷媒量を減少させて蒸発器へ流す冷媒流量を低減する。これにより、蒸発器において蒸発しきれない冷媒量が減少し、圧縮機(31)へ湿り加減の少ない冷媒が吸入される。したがって、各運転条件に応じて成績係数が最高となる冷媒の乾き度を設定し、その乾き度に基づいて流量調整弁(45)を開度調整すれば、各運転条件において成績係数が最高となる省エネ運転が行われる。   In the above invention, for example, when increasing or decreasing the wetness of the suction refrigerant of the compressor (31), that is, when decreasing the dryness of the suction refrigerant, the opening of the flow rate adjustment valve (45) is increased, that is, the expander By increasing the amount of refrigerant flowing by bypassing (33), the flow rate of refrigerant flowing to the evaporator is increased. As a result, the amount of refrigerant that cannot be evaporated in the evaporator increases, and the refrigerant in a damp state is sucked into the compressor (31). On the other hand, when reducing the humidity of the refrigerant sucked by the compressor (31), that is, when increasing the dryness of the refrigerant, the opening of the flow rate adjustment valve (45) is reduced, that is, the expander ( Reduce the amount of refrigerant flowing to the evaporator by reducing the amount of refrigerant flowing bypassing 33). As a result, the amount of the refrigerant that cannot be evaporated in the evaporator is reduced, and the refrigerant with low wetness is sucked into the compressor (31). Therefore, if the dryness of the refrigerant with the highest coefficient of performance is set according to each operating condition and the opening of the flow rate adjustment valve (45) is adjusted based on the dryness, the highest coefficient of performance is achieved under each operating condition. Energy saving operation is performed.

また、上記の発明では、膨張機(33)で冷媒が膨張することによって発生したエネルギが回転動力に変換され、モータ(32)を介して圧縮機(31)の動力として回収される。この種の圧縮機(31)および膨張機(33)は、容積型のものが用いられることが通例であるため、運転条件の変化によって圧縮機(31)と膨張機(33)における冷媒流通量のバランスが崩れることがある。その場合でも、上述したように、圧縮機(31)へ吸入される冷媒の乾き度を最適とすることを前提として流量調整弁(27)を開度調整を行うことによって膨張機(33)へ流す冷媒流量を調整することにより、圧縮機(31)と膨張機(33)とにおける冷媒流量がバランスする。したがって、一層効率の高い運転が行われる。   Moreover, in said invention, the energy generated when a refrigerant expand | swells with an expander (33) is converted into rotational power, and is collect | recovered as power of a compressor (31) via a motor (32). Since this type of compressor (31) and expander (33) is typically a positive displacement type, the refrigerant flow rate in the compressor (31) and the expander (33) varies depending on operating conditions. May be out of balance. Even in that case, as described above, the opening degree of the flow rate adjustment valve (27) is adjusted to the expander (33) on the assumption that the dryness of the refrigerant sucked into the compressor (31) is optimized. By adjusting the flow rate of the flowing refrigerant, the refrigerant flow rates in the compressor (31) and the expander (33) are balanced. Therefore, more efficient operation is performed.

また、第7の発明は、上記第1〜3の何れか1の発明において、上記冷媒回路(20)が、冷凍サイクルの高圧圧力が冷媒の臨界圧力より高くなるように構成されている。   In addition, according to a seventh aspect, in any one of the first to third aspects, the refrigerant circuit (20) is configured such that the high pressure of the refrigeration cycle is higher than the critical pressure of the refrigerant.

上記の発明では、圧縮機(31)によって冷媒がその臨界圧力より高い圧力まで圧縮される。すなわち、上記圧縮機(31)の吐出冷媒は、超臨界状態となっている。これにより、圧縮機(31)へ湿り状態の冷媒が吸入されても、少なくとも吐出部では液冷媒が存在しなくなり、いわゆる液圧縮が確実に回避される。   In the above invention, the refrigerant is compressed to a pressure higher than the critical pressure by the compressor (31). That is, the refrigerant discharged from the compressor (31) is in a supercritical state. As a result, even when the wet refrigerant is sucked into the compressor (31), liquid refrigerant does not exist at least in the discharge section, and so-called liquid compression is reliably avoided.

また、第8の発明は、上記第7の発明において、上記冷媒が二酸化炭素である。   In an eighth aspect based on the seventh aspect, the refrigerant is carbon dioxide.

上記の発明では、冷媒が二酸化炭素(CO2)であるので、地球環境に優しい装置が提供される。 In the above invention, since the refrigerant is carbon dioxide (CO 2 ), an apparatus that is friendly to the global environment is provided.

したがって、本発明によれば、圧縮機(31)へ湿り状態の冷媒を吸入させるようにしたので、過熱状態の冷媒を吸入させる場合に比べて、成績係数(COP)を向上させることができる。さらに、圧縮機(31)の吸入冷媒を成績係数が最高となる湿り状態にすれば、運転の省エネを最大限に図ることができる。また、圧縮機(31)へ湿り状態の冷媒を吸入させることから、圧縮機(31)の吐出温度を過熱状態の冷媒を吸入させる場合に比べて低下させることができると共に、圧縮機(31)における冷凍機油の高温による劣化を抑制することができる。したがって、機器の信頼性を向上させることができる。   Therefore, according to the present invention, since the wet refrigerant is sucked into the compressor (31), the coefficient of performance (COP) can be improved as compared with the case where the superheated refrigerant is sucked. Furthermore, if the refrigerant sucked in the compressor (31) is brought into a wet state where the coefficient of performance is maximized, the energy saving of operation can be maximized. Further, since the refrigerant in the wet state is sucked into the compressor (31), the discharge temperature of the compressor (31) can be lowered as compared with the case of sucking in the refrigerant in the overheated state, and the compressor (31) It is possible to suppress deterioration due to the high temperature of the refrigerating machine oil. Therefore, the reliability of the device can be improved.

特に、第2の発明によれば、暖房運転時において、圧縮機(31)へ湿り状態の冷媒を吸入させるようにしたので、少なくとも暖房運転を最適な成績係数で行うことができる。また、第3の発明によれば、各運転条件において、圧縮機(31)の吐出温度が最適な成績係数となる所定温度になるように冷媒を湿り状態で圧縮機(31)へ吸入させるようにしたので、確実に最適な成績係数で運転を行うことができる。また、圧縮機(31)の吐出温度に基づいて冷媒の湿り状態を調節すればよいので、容易に冷凍サイクルの成績係数を制御することができる。   In particular, according to the second invention, during the heating operation, the wet refrigerant is sucked into the compressor (31), so that at least the heating operation can be performed with an optimum coefficient of performance. Further, according to the third aspect of the invention, the refrigerant is sucked into the compressor (31) in a wet state so that the discharge temperature of the compressor (31) becomes a predetermined temperature that is an optimum coefficient of performance under each operating condition. Therefore, it is possible to reliably operate with the optimum coefficient of performance. In addition, the coefficient of performance of the refrigeration cycle can be easily controlled because the wet state of the refrigerant may be adjusted based on the discharge temperature of the compressor (31).

また、第4〜第6の発明によれば、膨張弁(23)、各流量調整弁(27,45)の開度調整によって圧縮機(31)の吸入冷媒の湿り状態を調整するようにしたので、各種運転条件に応じて最適な成績係数に対応する冷媒の乾き度を設定すれば、幅広い運転条件において確実に成績係数が最高となる運転を行うことができる。   Further, according to the fourth to sixth inventions, the wet state of the suction refrigerant of the compressor (31) is adjusted by adjusting the opening degree of the expansion valve (23) and each flow rate adjusting valve (27, 45). Therefore, if the degree of dryness of the refrigerant corresponding to the optimum coefficient of performance is set according to various operating conditions, it is possible to reliably perform the operation with the highest coefficient of performance under a wide range of operating conditions.

特に、第6の発明によれば、運転条件の変化によって膨張機(33)を流通する冷媒量と圧縮機(31)を流通する冷媒量とのバランスが崩れた場合でも、圧縮機(31)の吸入冷媒が最適な乾き度となることを前提として、流量調整弁(45)の開度調整によって膨張機(33)へ流す冷媒流量を調整できるので、膨張機(33)と圧縮機(31)の流通冷媒量をバランスさせることができる。これにより、一層の効率改善を図ることができる。   In particular, according to the sixth aspect of the invention, even when the balance between the refrigerant amount flowing through the expander (33) and the refrigerant amount flowing through the compressor (31) is lost due to a change in operating conditions, the compressor (31) The refrigerant flow rate to the expander (33) can be adjusted by adjusting the opening of the flow rate adjustment valve (45) on the assumption that the intake refrigerant of this type has an optimal dryness. Therefore, the expander (33) and the compressor (31 ) Can be balanced. Thereby, further efficiency improvement can be aimed at.

また、第7の発明によれば、冷媒回路(20)を冷凍サイクルの高圧圧力が冷媒の臨界圧力より高い超臨界サイクルを行うように構成したので、圧縮機(31)の吐出冷媒が確実に過熱状態となる。したがって、圧縮機(31)へ湿り状態の冷媒を吸入させても、圧縮機(31)の吐出部では既に冷媒が過熱状態となるので、圧縮機(31)における液圧縮を確実に防止することができる。この結果、信頼性の高い装置を提供することができる。   According to the seventh invention, the refrigerant circuit (20) is configured to perform a supercritical cycle in which the high pressure of the refrigeration cycle is higher than the critical pressure of the refrigerant. It becomes overheated. Therefore, even if the refrigerant in the wet state is sucked into the compressor (31), the refrigerant is already overheated at the discharge part of the compressor (31), so that liquid compression in the compressor (31) is surely prevented. Can do. As a result, a highly reliable device can be provided.

また、第8の発明によれば、冷媒に二酸化炭素を用いるようにしたので、地球環境に優しい装置を提供することができる。   According to the eighth aspect of the invention, since carbon dioxide is used as the refrigerant, a device that is friendly to the global environment can be provided.

以下、本発明の実施形態を図面に基づいて詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

《発明の実施形態1》
本実施形態の空調機(10)は、本発明に係る冷凍装置を構成している。図1に示すように、上記空調機(10)は、いわゆるセパレート型のものであって、室外機(11)と室内機(12)とを備えている。上記室外機(11)には、圧縮機(31)、四路切換弁(21)、室外熱交換器(24)、膨張弁(23)および気液分離器(25)が収納されている。上記室内機(12)には、室内熱交換器(22)が収納されている。上記室外機(11)は屋外に設置され、室内機(12)は屋内に設置されている。また、この室外機(11)と室内機(12)とは、一対の連絡配管(13,14)で接続されている。
Embodiment 1 of the Invention
The air conditioner (10) of the present embodiment constitutes a refrigeration apparatus according to the present invention. As shown in FIG. 1, the air conditioner (10) is a so-called separate type, and includes an outdoor unit (11) and an indoor unit (12). The outdoor unit (11) houses a compressor (31), a four-way switching valve (21), an outdoor heat exchanger (24), an expansion valve (23), and a gas-liquid separator (25). The indoor unit (12) houses an indoor heat exchanger (22). The outdoor unit (11) is installed outdoors, and the indoor unit (12) is installed indoors. The outdoor unit (11) and the indoor unit (12) are connected by a pair of connecting pipes (13, 14).

上記空調機(10)には、冷媒回路(20)が設けられている。この冷媒回路(20)は、圧縮機(31)や室内熱交換器(22)などが接続されて閉回路に構成されている。また、この冷媒回路(20)は、冷媒として二酸化炭素(CO2)が充填され、冷媒が循環して蒸気圧縮式冷凍サイクルを行うように構成されている。 The air conditioner (10) is provided with a refrigerant circuit (20). The refrigerant circuit (20) is configured as a closed circuit to which a compressor (31), an indoor heat exchanger (22), and the like are connected. The refrigerant circuit (20) is configured so as to perform a vapor compression refrigeration cycle by filling carbon dioxide (CO 2 ) as a refrigerant and circulating the refrigerant.

上記圧縮機(31)は、機械的に接続されたモータ(32)によって駆動し、例えば全密閉型で高圧ドーム型のスクロール圧縮機により構成されている。そして、この圧縮機(31)は、冷媒をその臨界圧力より高い圧力まで圧縮するように構成されている。すなわち、上記冷媒回路(20)では、蒸気圧縮式冷凍サイクルの高圧圧力が二酸化炭素の臨界圧力より高くなる。上記室外熱交換器(24)および室内熱交換器(22)は、何れもクロスフィン型のフィン・アンド・チューブ熱交換器で構成されている。上記室外熱交換器(24)では、冷媒回路(20)を循環する冷媒が室外空気と熱交換する。一方、上記室内熱交換器(22)では、冷媒回路(20)を循環する冷媒が室内空気と熱交換する。   The compressor (31) is driven by a mechanically connected motor (32), and is composed of, for example, a hermetic type high-pressure dome type scroll compressor. The compressor (31) is configured to compress the refrigerant to a pressure higher than the critical pressure. That is, in the refrigerant circuit (20), the high pressure of the vapor compression refrigeration cycle is higher than the critical pressure of carbon dioxide. Both the outdoor heat exchanger (24) and the indoor heat exchanger (22) are cross fin type fin-and-tube heat exchangers. In the outdoor heat exchanger (24), the refrigerant circulating in the refrigerant circuit (20) exchanges heat with outdoor air. On the other hand, in the indoor heat exchanger (22), the refrigerant circulating in the refrigerant circuit (20) exchanges heat with room air.

上記四路切換弁(21)は、4つのポートを備えている。この四路切換弁(21)は、その第1のポートが圧縮機(31)の吐出管(3a)に、第2のポートが気液分離器(25)を介して圧縮機(31)の吸入管(3b)に、第3のポートが室外熱交換器(24)の一端に、第4のポートが連絡配管(13)を介して室内熱交換器(22)の一端にそれぞれ接続されている。上記室内熱交換器(22)の他端は、連絡配管(14)および膨張弁(23)を介して室外熱交換器(24)の他端に接続されている。この四路切換弁(21)は、第1のポートと第3のポートとが連通し且つ第2のポートと第4のポートとが連通する状態(図1に示す破線側の状態)と、第1のポートと第4のポートとが連通し且つ第2のポートと第3のポートとが連通する状態(図1に示す実線側の状態)とに切り換わるように構成されている。   The four-way selector valve (21) has four ports. The four-way switching valve (21) has a first port connected to the discharge pipe (3a) of the compressor (31) and a second port connected to the compressor (31) via a gas-liquid separator (25). The suction port (3b) has a third port connected to one end of the outdoor heat exchanger (24), and a fourth port connected to one end of the indoor heat exchanger (22) via the connecting pipe (13). Yes. The other end of the indoor heat exchanger (22) is connected to the other end of the outdoor heat exchanger (24) via a communication pipe (14) and an expansion valve (23). The four-way switching valve (21) has a state in which the first port and the third port communicate with each other, and a state in which the second port and the fourth port communicate with each other (state on the broken line side shown in FIG. 1); The first port and the fourth port are in communication with each other and the second port and the third port are in communication with each other (solid line side shown in FIG. 1).

上記冷媒回路(20)は、四路切換弁(21)の切換によって冷房運転と暖房運転とに切り換わるように構成されている。つまり、上記四路切換弁(23)が図1の破線側の状態に切り換わると、冷媒回路(20)は、室外熱交換器(24)で冷媒が放熱し、室内熱交換器(22)で冷媒が蒸発する冷房運転で冷媒が循環する。また、上記四路切換弁(23)が図1の実線側の状態に切り換わると、冷媒回路(20)は、室内熱交換器(22)で冷媒が放熱し、室外熱交換器(24)で冷媒が蒸発する暖房運転で冷媒が循環する。すなわち、冷房運転時には室内熱交換器(22)が蒸発器として、室外熱交換器(24)が放熱器としてそれぞれ機能し、一方暖房運転時には室外熱交換器(24)が蒸発器として、室内熱交換器(22)が放熱器としてそれぞれ機能するように構成されている。   The refrigerant circuit (20) is configured to switch between a cooling operation and a heating operation by switching the four-way switching valve (21). That is, when the four-way switching valve (23) is switched to the broken line side in FIG. 1, the refrigerant circuit (20) radiates heat from the outdoor heat exchanger (24), and the indoor heat exchanger (22). The refrigerant circulates in the cooling operation in which the refrigerant evaporates. When the four-way switching valve (23) is switched to the solid line side in FIG. 1, the refrigerant circuit (20) releases heat from the indoor heat exchanger (22), and the outdoor heat exchanger (24). The refrigerant circulates in the heating operation in which the refrigerant evaporates. That is, during the cooling operation, the indoor heat exchanger (22) functions as an evaporator and the outdoor heat exchanger (24) functions as a radiator, while during the heating operation, the outdoor heat exchanger (24) functions as an evaporator. The exchanger (22) is configured to function as a radiator.

上記気液分離器(25)には、液インジェクション管(26)が設けられている。具体的に、この液インジェクション管(26)は、一端が気液分離器(25)の液貯留部に接続され、他端が圧縮機(31)の吸入管(3b)に接続されている。そして、この液インジェクション管(26)は、気液分離器(25)に貯留された液冷媒を圧縮機(31)の吸入側へ導くように構成されている。この液インジェクション管(26)には、該液インジェクション管(26)を流れる液冷媒の流量を調整するための電動弁により構成された流量調整弁(27)が設けられている。   The gas-liquid separator (25) is provided with a liquid injection pipe (26). Specifically, the liquid injection pipe (26) has one end connected to the liquid storage part of the gas-liquid separator (25) and the other end connected to the suction pipe (3b) of the compressor (31). The liquid injection pipe (26) is configured to guide the liquid refrigerant stored in the gas-liquid separator (25) to the suction side of the compressor (31). The liquid injection pipe (26) is provided with a flow rate adjustment valve (27) constituted by an electric valve for adjusting the flow rate of the liquid refrigerant flowing through the liquid injection pipe (26).

上記空調機(10)は、本発明の特徴として、通常の冷房運転時には圧縮機(31)へ所定の過熱状態のガス冷媒を吸入させ、通常の暖房運転時には圧縮機(31)へ所定の乾き度(湿り状態)の冷媒を吸入させるように構成されている。すなわち、本発明は、デフロスト運転や、冷凍サイクルにおける高圧圧力が異常高圧となった場合や、圧縮機(31)の吐出温度が異常高温になった場合などの特別な運転および条件を除いた通常運転時を対象としている。   As a feature of the present invention, the air conditioner (10) has a predetermined superheated gas refrigerant sucked into the compressor (31) during normal cooling operation, and a predetermined dryness to the compressor (31) during normal heating operation. It is configured to suck in the refrigerant of the degree (wet state). That is, the present invention is a normal operation excluding special operations and conditions such as defrost operation, when the high pressure in the refrigeration cycle becomes abnormally high, or when the discharge temperature of the compressor (31) becomes abnormally high. Intended for driving.

具体的に、冷房運転の場合、室内熱交換器(22)において冷媒が蒸発して所定の過熱状態(例えば、過熱度0〜5℃)のガス冷媒となるように、膨張弁(23)の開度が設定される。一方、暖房運転の場合、室外熱交換器(24)において冷媒が蒸発して所定の乾き度(例えば、0.83〜0.89)となるように、膨張弁(23)の開度が設定される。   Specifically, in the case of cooling operation, the expansion valve (23) is configured so that the refrigerant evaporates in the indoor heat exchanger (22) and becomes a gas refrigerant in a predetermined superheated state (for example, a superheat degree of 0 to 5 ° C.). The opening is set. On the other hand, in the heating operation, the opening degree of the expansion valve (23) is set so that the refrigerant evaporates in the outdoor heat exchanger (24) to a predetermined dryness (for example, 0.83 to 0.89). Is done.

この所定の乾き度は、シミュレーションによって見出されたものであり、暖房運転時における空調機(10)の成績係数(COP)が最適となる数値に設定されている。つまり、このシミュレーションでは、図3の上段の表および図4のF線のグラフに示すように、圧縮機(31)へ吸入させる冷媒の乾き度が0.83〜0.89をピークとして、その領域から低くなるに従っても、逆に高くなるに従っても成績係数が低下し、さらに乾き度が1.00を越えて過熱度が高くなるに従っても、同様に成績係数が一層低下していることが分かる。このことから、少なくとも乾き度が1.00未満、すなわち湿り状態の冷媒を圧縮機(31)へ吸入させることで成績係数が最適点に近づくことが分かる。   This predetermined dryness is found by simulation, and is set to a numerical value that optimizes the coefficient of performance (COP) of the air conditioner (10) during the heating operation. That is, in this simulation, as shown in the upper table of FIG. 3 and the graph of the F line in FIG. 4, the dryness of the refrigerant sucked into the compressor (31) peaks at 0.83 to 0.89. It can be seen that the coefficient of performance decreases as the temperature decreases from the region and conversely increases, and the coefficient of performance decreases as the degree of dryness exceeds 1.00 and the degree of superheat increases. . From this, it can be seen that the coefficient of performance approaches the optimum point when at least the dryness is less than 1.00, that is, the wet refrigerant is sucked into the compressor (31).

上記シミュレーションは、冷凍サイクルの高圧圧力が10MPaに、低圧圧力が3.5MPaに設定され、室内熱交換器(22)の出口温度が25℃に設定され、圧縮機(31)の圧縮効率が70%に設定された運転条件の下で行ったものである。また、このシミュレーションは、冷媒に二酸化炭素(CO2)を用いて行った。したがって、上述した各種運転条件を変えながら、成績係数が最適となる乾き度を見つけ出すことによって運転条件に応じた最適な乾き度が設定される。これにより、外気温度等が変化した場合、それに基づく運転条件が設定され、その運転条件に応じた冷媒の乾き度(湿り状態)を設定すればよいことになる。 In the simulation, the high pressure of the refrigeration cycle is set to 10 MPa, the low pressure is set to 3.5 MPa, the outlet temperature of the indoor heat exchanger (22) is set to 25 ° C., and the compression efficiency of the compressor (31) is 70. This was performed under the operating conditions set to%. The simulation was performed using carbon dioxide (CO 2 ) as a refrigerant. Therefore, the optimum dryness corresponding to the operating condition is set by finding the dryness at which the coefficient of performance is optimal while changing the various operating conditions described above. As a result, when the outside air temperature or the like changes, an operating condition based on the operating temperature is set, and the dryness (wet state) of the refrigerant according to the operating condition may be set.

上記空調機(10)では、主として膨張弁(23)の開度調整によって室外熱交換器(24)における蒸発能力を調整することにより、冷媒の乾き度を調整するように構成されている。つまり、冷媒の乾き度を高くする場合には、膨張弁(23)の開度を小さくし、冷媒の乾き度を低くする場合には、膨張弁(23)の開度を大きくする。また、上記空調機(10)では、液インジェクション管(26)の流量調整弁(27)の開度を調整することによっても冷媒の乾き度を調整するように構成されている。つまり、上記流量調整弁(27)の開度調整によって気液分離器(25)から圧縮機(31)へ導く液冷媒の流量を調整し、冷媒の湿り状態を調整している。   The air conditioner (10) is configured to adjust the dryness of the refrigerant by adjusting the evaporation capacity in the outdoor heat exchanger (24) mainly by adjusting the opening of the expansion valve (23). That is, when the degree of dryness of the refrigerant is increased, the opening degree of the expansion valve (23) is decreased, and when the degree of dryness of the refrigerant is decreased, the opening degree of the expansion valve (23) is increased. The air conditioner (10) is also configured to adjust the dryness of the refrigerant by adjusting the opening degree of the flow rate adjustment valve (27) of the liquid injection pipe (26). That is, the flow rate of the liquid refrigerant led from the gas-liquid separator (25) to the compressor (31) is adjusted by adjusting the opening degree of the flow rate adjusting valve (27), thereby adjusting the wet state of the refrigerant.

また、上記圧縮機(31)へ吸入させる冷媒の乾き度は、圧縮機(31)の吐出温度に基づいて判定される。すなわち、上記空調機(10)では、圧縮機(31)の吐出温度が目標吐出温度となるように膨張弁(23)や流量調整弁(27)の開度を調節して冷媒の乾き度を調節するように構成されている。上記目標吐出温度は、成績係数が最適となる温度に設定されている。これは、圧縮機(31)へ吸入される冷媒の乾き度が低くなると、圧縮機(31)の吐出温度も低くなり、逆に冷媒の乾き度が高くなると、圧縮機(31)の吐出温度が高くなり、運転条件ごとに冷媒の乾き度に対応する圧縮機(31)の吐出温度が定められる。したがって、運転条件ごとに最適な成績係数となる冷媒の乾き度が設定され、その冷媒の乾き度に対応する圧縮機(31)の吐出温度を目標吐出温度として設定する。これにより、運転条件が変化しても、その運転条件に応じた圧縮機(31)の目標吐出温度が設定されるので、その時の運転状態で得られる最適な成績係数で運転を行うことができる。   Further, the dryness of the refrigerant sucked into the compressor (31) is determined based on the discharge temperature of the compressor (31). That is, in the air conditioner (10), the degree of dryness of the refrigerant is adjusted by adjusting the opening of the expansion valve (23) and the flow rate adjustment valve (27) so that the discharge temperature of the compressor (31) becomes the target discharge temperature. Configured to adjust. The target discharge temperature is set to a temperature at which the coefficient of performance is optimal. This is because when the dryness of the refrigerant sucked into the compressor (31) decreases, the discharge temperature of the compressor (31) also decreases, and conversely, when the dryness of the refrigerant increases, the discharge temperature of the compressor (31). The discharge temperature of the compressor (31) corresponding to the dryness of the refrigerant is determined for each operating condition. Therefore, the dryness of the refrigerant that is the optimum coefficient of performance for each operating condition is set, and the discharge temperature of the compressor (31) corresponding to the dryness of the refrigerant is set as the target discharge temperature. Thereby, even if the operating condition changes, the target discharge temperature of the compressor (31) corresponding to the operating condition is set, so that the operation can be performed with the optimum coefficient of performance obtained in the operating state at that time. .

−運転動作−
上記空調機(10)の運転動作について説明する。ここでは、通常の冷房運転時および暖房運転時の動作について説明する。
-Driving action-
The operation of the air conditioner (10) will be described. Here, operations during normal cooling operation and heating operation will be described.

〈冷房運転〉
上記冷房運転時には、四路切換弁(21)が図1に示す破線側の状態に設定される。この状態でモータ(32)に通電すると、冷媒回路(20)で冷媒が図1に示す一点鎖線の矢示の方向に循環して蒸気圧縮式冷凍サイクルが行われる。なお、上記液インジェクション管(26)の流量調整弁(27)は、全閉状態に設定されている。
<Cooling operation>
During the cooling operation, the four-way switching valve (21) is set to the state on the broken line side shown in FIG. When the motor (32) is energized in this state, the refrigerant is circulated in the refrigerant circuit (20) in the direction indicated by the one-dot chain line shown in FIG. 1 to perform a vapor compression refrigeration cycle. The flow rate adjustment valve (27) of the liquid injection pipe (26) is set to a fully closed state.

上記圧縮機(31)で圧縮された冷媒は、吐出管(3a)より吐出される。この状態で、冷媒の圧力は、その臨界圧力よりも高くなっている。この吐出冷媒は、四路切換弁(21)を通って室外熱交換器(24)へ流れ、室外空気と熱交換して放熱する。この室外熱交換器(24)で放熱した冷媒は、膨張弁(23)で所定圧力まで減圧された後、室内熱交換器(22)にて室内空気と熱交換して蒸発し、過熱状態のガス冷媒となる。その際、室内空気が冷却される。この過熱状態のガス冷媒は、四路切換弁(21)を通って吸入管(3b)より圧縮機(31)へ吸入され、再び圧縮されて吐出される。   The refrigerant compressed by the compressor (31) is discharged from the discharge pipe (3a). In this state, the refrigerant pressure is higher than the critical pressure. The discharged refrigerant flows through the four-way switching valve (21) to the outdoor heat exchanger (24), and dissipates heat by exchanging heat with outdoor air. The refrigerant radiated by the outdoor heat exchanger (24) is depressurized to a predetermined pressure by the expansion valve (23), then evaporates by exchanging heat with the indoor air in the indoor heat exchanger (22), and is in an overheated state. It becomes a gas refrigerant. At that time, the room air is cooled. This superheated gas refrigerant is sucked into the compressor (31) through the suction pipe (3b) through the four-way switching valve (21), and is compressed again and discharged.

〈暖房運転〉
上記暖房運転時には、四路切換弁(21)が図1に示す実線側の状態に設定される。この状態でモータ(32)に通電すると、冷媒回路(20)で冷媒が図1に示す実線の矢示の方向に循環して蒸気圧縮式冷凍サイクルが行われる。その循環の際の冷媒状態は、図2に一点鎖線で示すように、A1→B1→C→Dのサイクルとなる。また、上記液インジェクション管(26)の流量調整弁(27)は、全閉状態に設定されている。なお、図2におけるA→B→C→Dのサイクルは、圧縮機(31)の吸入冷媒の過熱度がゼロである従来の冷凍サイクルを示したものである。この従来の冷凍サイクルでは、圧縮機より吐出されたB点の冷媒が放熱器で放熱してC点の冷媒となり、続いて膨張機構で減圧されてD点の冷媒となり、その後蒸発器で蒸発して過熱度ゼロのガス冷媒(A点)となって圧縮機へ吸入される。
<Heating operation>
During the heating operation, the four-way selector valve (21) is set to the state on the solid line side shown in FIG. When the motor (32) is energized in this state, the refrigerant is circulated in the refrigerant circuit (20) in the direction indicated by the solid line in FIG. 1 to perform a vapor compression refrigeration cycle. The refrigerant state during the circulation is a cycle of A1 → B1 → C → D, as shown by a one-dot chain line in FIG. The flow rate adjustment valve (27) of the liquid injection pipe (26) is set to a fully closed state. In addition, the cycle of A → B → C → D in FIG. 2 shows a conventional refrigeration cycle in which the superheat degree of the refrigerant sucked in the compressor (31) is zero. In this conventional refrigeration cycle, the refrigerant at point B discharged from the compressor dissipates heat at the radiator to become refrigerant at point C, and then is decompressed by the expansion mechanism to become refrigerant at point D, and then evaporates at the evaporator. As a result, gas refrigerant (point A) with zero superheat is drawn into the compressor.

この暖房運転において、圧縮機(31)で圧縮された冷媒は、吐出管(3a)より吐出される(図2のB1点)。この状態で、冷媒の圧力は、その臨界圧力よりも高くなっている。この吐出冷媒は、四路切換弁(21)を通って室内熱交換器(22)へ流れ、室内空気と熱交換して放熱する(図2のC点)。その際、室内空気が加熱される。この室内熱交換器(22)で放熱した冷媒は、膨張弁(23)で所定圧力まで減圧された後(図2のD点)、室外熱交換器(24)にて室外空気と熱交換して蒸発する(図2のA1点)。この状態で、蒸発した冷媒は、成績係数が最適となる所定の乾き度(湿り状態)になっている。この湿り状態の冷媒は、四路切換弁(21)を通って吸入管(3b)より圧縮機(31)へ吸入され、再び圧縮されて過熱状態の冷媒となり、吐出される。このように、暖房運転時には、最適な成績係数で運転を行うことができ、省エネ運転を図ることができる。   In this heating operation, the refrigerant compressed by the compressor (31) is discharged from the discharge pipe (3a) (point B1 in FIG. 2). In this state, the refrigerant pressure is higher than the critical pressure. The discharged refrigerant flows through the four-way selector valve (21) to the indoor heat exchanger (22), and exchanges heat with indoor air to radiate heat (point C in FIG. 2). At that time, the room air is heated. The refrigerant radiated by the indoor heat exchanger (22) is depressurized to a predetermined pressure by the expansion valve (23) (point D in FIG. 2), and then exchanges heat with outdoor air by the outdoor heat exchanger (24). Evaporates (point A1 in FIG. 2). In this state, the evaporated refrigerant has a predetermined dryness (wet state) at which the coefficient of performance is optimum. The wet refrigerant passes through the four-way switching valve (21) and is sucked into the compressor (31) through the suction pipe (3b), and is compressed again to become a superheated refrigerant and is discharged. Thus, at the time of heating operation, operation can be performed with an optimum coefficient of performance, and energy saving operation can be achieved.

次に、上述した状態で外気温度等が変化すると、冷凍サイクルの高圧圧力や低圧圧力等が変更されて新たな運転条件が設定され、その運転条件に応じた圧縮機(31)の目標吐出温度が設定される。そして、上記圧縮機(31)の吐出温度が目標吐出温度となるように膨張弁(23)の開度が調整され、もしくは液インジェクション管(26)の流量調整弁(27)の開度が調整される。これにより、圧縮機(31)へ吸入される冷媒の乾き度が最適な乾き度となり、運転条件に応じた最適な成績係数で運転を行うことができる。   Next, when the outside air temperature or the like changes in the state described above, the high pressure or low pressure of the refrigeration cycle is changed to set new operating conditions, and the target discharge temperature of the compressor (31) according to the operating conditions Is set. Then, the opening of the expansion valve (23) is adjusted so that the discharge temperature of the compressor (31) becomes the target discharge temperature, or the opening of the flow rate adjustment valve (27) of the liquid injection pipe (26) is adjusted. Is done. Thereby, the dryness of the refrigerant sucked into the compressor (31) becomes the optimal dryness, and the operation can be performed with the optimal coefficient of performance corresponding to the operation conditions.

また、この暖房運転では、常に圧縮機(31)へ湿り状態の冷媒が吸入されるので、従来のように過熱状態の冷媒を吸入させる場合と比べて、圧縮機(31)の吐出温度が著しく低下する。したがって、上記モータ(32)が異常高温となるのを防止することができ、また圧縮機(31)内の冷凍機油が高温に加熱されて劣化するのを抑制することができる。この結果、装置の信頼性を向上させることができる。   Further, in this heating operation, since the wet refrigerant is always sucked into the compressor (31), the discharge temperature of the compressor (31) is significantly higher than that in the case where the superheated refrigerant is sucked as in the prior art. descend. Therefore, it is possible to prevent the motor (32) from becoming an abnormally high temperature, and it is possible to prevent the refrigerating machine oil in the compressor (31) from being heated to a high temperature and being deteriorated. As a result, the reliability of the apparatus can be improved.

また、通常、上記圧縮機(31)より冷媒と共に吐出された冷凍機油の一部は、蒸発器まで流れるが、蒸発器から流出する冷媒が完全なガス状態であるために蒸発器に溜まり易くなる。ところが、本実施形態の場合、蒸発器である室外熱交換器(24)から流出する冷媒が湿り状態、つまり気液二相状態であるため、ガス状態の冷媒よりも熱交換器より冷凍機油を連行し易い。したがって、従来に比べて、圧縮機(31)へ戻される冷凍機油が多くなるので、圧縮機(31)における潤滑不良を抑制することができる。   In addition, a part of the refrigerating machine oil discharged together with the refrigerant from the compressor (31) usually flows to the evaporator, but the refrigerant flowing out of the evaporator is in a complete gas state, so that it easily collects in the evaporator. . However, in the case of this embodiment, the refrigerant flowing out of the outdoor heat exchanger (24) that is the evaporator is in a wet state, that is, in a gas-liquid two-phase state. Easy to take. Therefore, since more refrigeration oil is returned to the compressor (31) than in the prior art, poor lubrication in the compressor (31) can be suppressed.

−実施形態の効果−
以上説明したように、本実施形態によれば、通常の暖房運転時に圧縮機(31)へ湿り状態の冷媒を吸入させるようにしたので、過熱状態の冷媒を吸入させる場合に比べて、成績係数(COP)を向上させることができる。特に、運転条件に応じて成績係数が最適となる湿り状態の冷媒を圧縮機(31)へ吸入させているので、確実に最適な成績係数で運転を行うことができる。この結果、省エネ運転を一層図ることができる。
-Effect of the embodiment-
As described above, according to the present embodiment, since the refrigerant in the wet state is sucked into the compressor (31) during the normal heating operation, the coefficient of performance is compared with the case of sucking in the refrigerant in the overheated state. (COP) can be improved. In particular, since the wet refrigerant having the optimum coefficient of performance according to the operating conditions is sucked into the compressor (31), the operation can be reliably performed with the optimum coefficient of performance. As a result, energy saving operation can be further promoted.

また、例えば、デフロスト運転や、圧縮機(31)の吐出温度が異常高温になった場合における従来の液インジェクションなどとは全く異なり、通常運転の下で成績係数を最適とすることができる。   Further, for example, the coefficient of performance can be optimized under normal operation, which is completely different from, for example, defrosting operation or conventional liquid injection when the discharge temperature of the compressor (31) becomes abnormally high.

さらに、成績係数が最適となる冷媒の乾き度に対応する圧縮機(31)の目標吐出温度を設定し、圧縮機(31)の吐出温度が目標吐出温度になるように圧縮機(31)の吸入冷媒の乾き度(湿り状態)を調整するようにしたので、確実に成績係数が最適となる運転を行うことができる。   Furthermore, the target discharge temperature of the compressor (31) corresponding to the dryness of the refrigerant with the optimum coefficient of performance is set, and the compressor (31) is set so that the discharge temperature of the compressor (31) becomes the target discharge temperature. Since the dryness (wet state) of the suction refrigerant is adjusted, it is possible to reliably perform the operation with the optimum coefficient of performance.

また、上記膨張弁(23)または流量調整弁(27)の開度調整によって圧縮機(31)の吸入冷媒の乾き度を調整するようにしたので、確実に且つ容易に最適な成績係数で運転を行うことができる。   In addition, the degree of dryness of the refrigerant sucked in the compressor (31) is adjusted by adjusting the opening of the expansion valve (23) or the flow rate adjusting valve (27), so that the operation with the optimum coefficient of performance can be performed reliably and easily. It can be performed.

また、圧縮機(31)へは湿り状態の冷媒が吸入されることから、圧縮機(31)の吐出温度が著しく低下し、モータ(32)や冷凍機油を保護することができる。この結果、装置の信頼性を向上させることができる。   Further, since the wet refrigerant is sucked into the compressor (31), the discharge temperature of the compressor (31) is remarkably lowered, and the motor (32) and the refrigerating machine oil can be protected. As a result, the reliability of the apparatus can be improved.

また、蒸発器である室外熱交換器(24)から流出する冷媒が気液二相の湿り状態であることから、その冷媒によって熱交換器内の冷凍機油が除去され易いので、圧縮機(31)へ戻される冷凍機油が多くなり、圧縮機(31)における潤滑不良を抑制することができる。したがって、上述した効果と相まって圧縮機(31)をより一層保護することができる。   In addition, since the refrigerant flowing out of the outdoor heat exchanger (24), which is an evaporator, is in a gas-liquid two-phase wet state, the refrigerating machine oil in the heat exchanger is easily removed by the refrigerant, so that the compressor (31 The amount of refrigerating machine oil returned to () increases, and poor lubrication in the compressor (31) can be suppressed. Therefore, the compressor (31) can be further protected in combination with the effects described above.

《発明の実施形態2》
本実施形態の空調機(10)は、図5に示すように、上記実施形態1が冷凍サイクルの膨張機構として膨張弁(23)を備えるようにしたのに代えて、圧縮機(31)にモータ(32)を介して機械的に接続された膨張機(33)を用いるようにしたものである。
<< Embodiment 2 of the Invention >>
As shown in FIG. 5, the air conditioner (10) of the present embodiment is replaced with a compressor (31) instead of the embodiment 1 having an expansion valve (23) as an expansion mechanism of the refrigeration cycle. An expander (33) mechanically connected via a motor (32) is used.

具体的に、上記圧縮機(31)とモータ(32)と膨張機(33)とは、ケーシングに収納されて1つのユニットを構成している。上記圧縮機(31)は、例えば、ロータリ式圧縮機やスクロール式圧縮機などの容積型圧縮機で構成されている。上記膨張機(33)は、例えば、ロータリ式膨張機やスクロール式膨張機などの容積型膨張機で構成されている。   Specifically, the compressor (31), the motor (32), and the expander (33) are housed in a casing to constitute one unit. The compressor (31) is composed of a positive displacement compressor such as a rotary compressor or a scroll compressor, for example. The expander (33) is a positive displacement expander such as a rotary expander or a scroll expander, for example.

上記膨張機(33)は、図示しないが、2つのシリンダを備え、前段のシリンダで膨張した後、続いて後段のシリンダでさらに膨張する、いわゆる2段式膨張機により構成されている。そして、上記膨張機(33)は、動力を回収するように構成されている。つまり、上記膨張機(33)において冷媒が膨張することにより発生するエネルギを回転動力として圧縮機(31)の駆動に利用し、動力を回収するようにしている。   Although not shown, the expander (33) is configured by a so-called two-stage expander that includes two cylinders, expands in the former cylinder, and then expands further in the latter cylinder. The expander (33) is configured to recover power. That is, the energy generated by the expansion of the refrigerant in the expander (33) is used as rotational power for driving the compressor (31) to recover the power.

上記圧縮機(31)や膨張機(33)のケーシングには、圧縮機(31)用の吐出管(3a)および吸入管(3b)の他に、冷媒が膨張機(33)の前段のシリンダに流入する流入ポート(3c)と、後段のシリンダから膨張後の冷媒がケーシング外に流出する流出ポート(3d)とが設けられている。   In addition to the discharge pipe (3a) and the suction pipe (3b) for the compressor (31), the casing of the compressor (31) and the expander (33) contains a refrigerant in front of the expander (33). And an inflow port (3d) through which the expanded refrigerant flows out of the casing from the rear cylinder.

上記冷媒回路(20)は、室外機(11)における連絡配管(14)と室外熱交換器(24)との間にブリッジ回路(41)が設けられている。このブリッジ回路(41)は、4つの逆止弁(CV1〜CV4)をブリッジ状に接続したものである。具体的に、このブリッジ回路(41)は、第1逆止弁(CV1)および第4逆止弁(CV4)の流入側が膨張機(33)の流出ポート(3d)に、第2逆止弁(CV2)および第3逆止弁(CV3)の流出側が膨張機(33)の流入ポート(3c)に、第1逆止弁(CV1)の流出側および第2逆止弁(CV2)の流入側が連絡配管(14)を介して室内熱交換器(22)の他端に、第3逆止弁(CV3)の流入側および第4逆止弁(CV4)の流出側が室外熱交換器(24)の他端にそれぞれ接続されている。   In the refrigerant circuit (20), a bridge circuit (41) is provided between the communication pipe (14) and the outdoor heat exchanger (24) in the outdoor unit (11). The bridge circuit (41) is formed by connecting four check valves (CV1 to CV4) in a bridge shape. Specifically, in this bridge circuit (41), the inflow side of the first check valve (CV1) and the fourth check valve (CV4) is connected to the outflow port (3d) of the expander (33). (CV2) and third check valve (CV3) outflow side to expander (33) inflow port (3c), first check valve (CV1) outflow side and second check valve (CV2) inflow The side is connected to the other end of the indoor heat exchanger (22) via the connecting pipe (14), the inflow side of the third check valve (CV3) and the outflow side of the fourth check valve (CV4) is the outdoor heat exchanger (24 ) At the other end.

上記冷媒回路(20)には、インジェクション管(42)が設けられている。このインジェクション管(42)は、一端がブリッジ回路(41)と膨張機(33)の流入ポート(3c)との間に、他端が膨張機(33)における前段および後段のシリンダの中間ポート(図示せず)にそれぞれ接続されている。上記インジェクション管(42)には、インジェクション弁(43)が設けられている。このインジェクション弁(43)は、インジェクション管(42)における冷媒流量を調節するための電動弁であって、流量調節弁を構成している。   The refrigerant circuit (20) is provided with an injection pipe (42). One end of the injection pipe (42) is between the bridge circuit (41) and the inflow port (3c) of the expander (33), and the other end is an intermediate port of the front and rear cylinders of the expander (33) ( (Not shown). The injection pipe (42) is provided with an injection valve (43). The injection valve (43) is an electric valve for adjusting the refrigerant flow rate in the injection pipe (42), and constitutes a flow rate adjustment valve.

また、上記冷媒回路(20)には、バイパス管(44)が設けられている。このバイパス管(44)は、一端がブリッジ回路(41)と膨張機(33)の流入ポート(3c)との間に、他端が膨張機(33)の流入ポート(3c)とブリッジ回路(41)との間にそれぞれ接続されている。上記バイパス管(44)には、バイパス弁(45)が設けられている。このバイパス弁(45)は、バイパス管(44)における冷媒流量を調節するための電動弁であって、流量調整弁を構成している。すなわち、上記バイパス管(44)は、バイパス弁(45)が開状態において、ブリッジ回路(41)から膨張機(33)へ向かう冷媒の一部が膨張機(33)をバイパスして流れるように構成されている。   The refrigerant circuit (20) is provided with a bypass pipe (44). The bypass pipe (44) has one end between the bridge circuit (41) and the inflow port (3c) of the expander (33), and the other end connected to the inflow port (3c) of the expander (33) and the bridge circuit ( 41) are connected to each other. The bypass pipe (44) is provided with a bypass valve (45). The bypass valve (45) is an electric valve for adjusting the refrigerant flow rate in the bypass pipe (44), and constitutes a flow rate adjusting valve. That is, in the bypass pipe (44), when the bypass valve (45) is open, a part of the refrigerant from the bridge circuit (41) to the expander (33) flows bypassing the expander (33). It is configured.

本実施形態の空調機(10)では、上記実施形態1と同様に、冷房運転時には圧縮機(31)へ所定の過熱状態のガス冷媒を吸入させ、暖房運転時には圧縮機(31)へ所定の湿り状態の冷媒を吸入させるように構成されている。具体的に、冷房運転の場合、室内熱交換器(22)において冷媒が蒸発して所定の過熱状態(例えば、過熱度0〜5℃)のガス冷媒となるように、インジェクション弁(43)の開度が設定される。一方、暖房運転の場合、室外熱交換器(24)において冷媒が蒸発して所定の乾き度(例えば、0.71〜0.77)の冷媒となるようにインジェクション弁(43)の開度が設定される。この所定の乾き度は、図3の下段の表および図4のE線のグラフに示すように、成績係数が最適となる数値に設定されている。なお、このシミュレーションも、実施形態1と同様に、冷凍サイクルの高圧圧力が10MPaに、低圧圧力が3.5MPaに設定され、室内熱交換器(22)の出口温度が25℃に設定され、圧縮機(31)の圧縮効率が70%に設定された運転条件の下で行ったものである。   In the air conditioner (10) of the present embodiment, as in the first embodiment, a predetermined superheated gas refrigerant is sucked into the compressor (31) during the cooling operation, and the compressor (31) is predetermined during the heating operation. The wet refrigerant is sucked in. Specifically, in the case of cooling operation, the injection valve (43) is configured so that the refrigerant evaporates in the indoor heat exchanger (22) and becomes a gas refrigerant in a predetermined superheated state (for example, a superheat degree of 0 to 5 ° C.). The opening is set. On the other hand, in the heating operation, the opening degree of the injection valve (43) is set so that the refrigerant evaporates in the outdoor heat exchanger (24) and becomes a refrigerant having a predetermined dryness (for example, 0.71 to 0.77). Is set. The predetermined dryness is set to a numerical value at which the coefficient of performance is optimal as shown in the lower table of FIG. 3 and the graph of the E line of FIG. In this simulation, as in the first embodiment, the high pressure of the refrigeration cycle is set to 10 MPa, the low pressure is set to 3.5 MPa, the outlet temperature of the indoor heat exchanger (22) is set to 25 ° C., and compression is performed. This was performed under the operating conditions in which the compression efficiency of the machine (31) was set to 70%.

そして、本実施形態の空調機(10)では、主としてインジェクション弁(43)およびバイパス弁(45)の開度調整によって冷媒の乾き度を調整するように構成されている。具体的には、上記バイパス弁(45)が全閉状態のままで、インジェクション弁(43)のみを開度調整するようになっており、例えば、冷媒の乾き度を高くする場合にはインジェクション弁(43)の開度を小さくし、冷媒の乾き度を低くする場合にはインジェクション弁(43)の開度を大きくする。そして、上記インジェクション弁(43)の開度が全開となり、インジェクション管(42)における冷媒流量がそれ以上増やせない状態になった場合には、インジェクション弁(43)の開度が全開状態のままで上記バイパス弁(45)の開度を調整するように構成されている。また、上記空調機(10)では、実施形態1と同様に、液インジェクション管(26)の流量調整弁(27)の開度を調整することによっても冷媒の乾き度を調整するように構成されている。   And in the air conditioner (10) of this embodiment, it is comprised so that the dryness of a refrigerant | coolant may be adjusted mainly by adjusting the opening degree of an injection valve (43) and a bypass valve (45). Specifically, the opening degree of only the injection valve (43) is adjusted while the bypass valve (45) is in a fully closed state. For example, when increasing the dryness of the refrigerant, the injection valve In order to reduce the opening of (43) and reduce the dryness of the refrigerant, the opening of the injection valve (43) is increased. When the opening of the injection valve (43) is fully opened and the refrigerant flow rate in the injection pipe (42) cannot be increased any further, the opening of the injection valve (43) remains fully open. The opening degree of the bypass valve (45) is adjusted. The air conditioner (10) is also configured to adjust the dryness of the refrigerant by adjusting the opening of the flow rate adjustment valve (27) of the liquid injection pipe (26), as in the first embodiment. ing.

−運転動作−
上記空調機(10)の動作について説明する。なお、ここでは、上記実施形態1の運転動作と異なる点について説明する。
-Driving action-
The operation of the air conditioner (10) will be described. Here, differences from the driving operation of the first embodiment will be described.

〈冷房運転〉
上記冷房運転時には、四路切換弁(21)が図5に示す破線側の状態に設定される。この状態でモータ(32)に通電すると、冷媒回路(20)で冷媒が図5に示す一点鎖線の矢示の方向に循環して蒸気圧縮式冷凍サイクルが行われる。なお、上記バイパス弁(45)および流量調整弁(27)は、全閉状態に設定されている。
<Cooling operation>
During the cooling operation, the four-way selector valve (21) is set to the broken line side shown in FIG. When the motor (32) is energized in this state, the refrigerant circulates in the refrigerant circuit (20) in the direction indicated by the one-dot chain line shown in FIG. 5 to perform the vapor compression refrigeration cycle. The bypass valve (45) and the flow rate adjustment valve (27) are set in a fully closed state.

上記室外熱交換器(24)で放熱した冷媒は、ブリッジ回路(41)の第3逆止弁(CV3)を通過した後、一部が流入ポート(3c)を通って膨張機(33)の前段のシリンダへ流入し、残りがインジェクション管(42)を通って膨張機(33)の中間ポートに流入する。この膨張機(33)では、冷媒が膨張し、その内部エネルギがモータ(32)の回転動力に変換されて圧縮機(31)の動力として回収される。そして、この膨張後の冷媒は、流出ポート(3d)から流出し、ブリッジ回路(41)の第1逆止弁(CV1)を通って室内熱交換器(22)へ流れる。この室内熱交換器(22)では、冷媒が室内空気と熱交換して蒸発し、過熱状態のガス冷媒となる。   The refrigerant radiated by the outdoor heat exchanger (24) passes through the third check valve (CV3) of the bridge circuit (41), and then partially passes through the inflow port (3c) of the expander (33). It flows into the front cylinder, and the remainder flows through the injection pipe (42) into the intermediate port of the expander (33). In the expander (33), the refrigerant expands, and the internal energy is converted into the rotational power of the motor (32) and recovered as the power of the compressor (31). Then, the expanded refrigerant flows out from the outflow port (3d) and flows to the indoor heat exchanger (22) through the first check valve (CV1) of the bridge circuit (41). In the indoor heat exchanger (22), the refrigerant exchanges heat with room air and evaporates to become a superheated gas refrigerant.

〈暖房運転〉
上記暖房運転時には、四路切換弁(21)が図5に示す実線側の状態に切り換えられる。この状態でモータ(32)に通電すると、冷媒回路(20)で冷媒が図5に示す実線の矢示の方向に循環して蒸気圧縮式冷凍サイクルが行われる。その循環の際の冷媒状態は、図2に実線で示すように、A2→B2→C→D2のサイクルとなる。なお、上記バイパス弁(45)および流量調整弁(27)は、全閉状態に設定されている。
<Heating operation>
During the heating operation, the four-way switching valve (21) is switched to the state on the solid line side shown in FIG. When the motor (32) is energized in this state, the refrigerant circulates in the refrigerant circuit (20) in the direction indicated by the solid line shown in FIG. 5 to perform a vapor compression refrigeration cycle. The refrigerant state during the circulation is a cycle of A2 → B2 → C → D2, as indicated by a solid line in FIG. The bypass valve (45) and the flow rate adjustment valve (27) are set in a fully closed state.

上記圧縮機(31)の吐出冷媒(図2のB2点)は、室内熱交換器(22)で放熱する(図2のC点)。この冷媒は、ブリッジ回路(41)の第2逆止弁(CV2)を通過した後、一部が流入ポート(3c)を通って膨張機(33)の前段のシリンダへ流入し、残りがインジェクション管(42)を通って膨張機(33)の中間ポートに流入する。この膨張機(33)では、冷媒が膨張し、その内部エネルギがモータ(32)の回転動力に変換されて圧縮機(31)の動力として回収される(図2のD2点)。そして、この膨張後の冷媒は、流出ポート(3d)から流出し、ブリッジ回路(41)の第4逆止弁(CV4)を通って室外熱交換器(24)へ流れる。この室外熱交換器(24)では、冷媒が室外空気と熱交換して蒸発する(図2のA2点)。この状態で、蒸発した冷媒は、成績係数が最適となる所定の乾き度(湿り状態)になっている。   The refrigerant discharged from the compressor (31) (point B2 in FIG. 2) dissipates heat in the indoor heat exchanger (22) (point C in FIG. 2). After passing through the second check valve (CV2) of the bridge circuit (41), a part of this refrigerant flows into the front stage cylinder of the expander (33) through the inflow port (3c), and the rest is injected. It flows into the intermediate port of the expander (33) through the pipe (42). In the expander (33), the refrigerant expands, and the internal energy is converted into the rotational power of the motor (32) and recovered as power of the compressor (31) (point D2 in FIG. 2). Then, the expanded refrigerant flows out from the outflow port (3d) and flows to the outdoor heat exchanger (24) through the fourth check valve (CV4) of the bridge circuit (41). In the outdoor heat exchanger (24), the refrigerant evaporates by exchanging heat with outdoor air (point A2 in FIG. 2). In this state, the evaporated refrigerant has a predetermined dryness (wet state) at which the coefficient of performance is optimum.

次に、上述した状態で外気温度等が変化すると、冷凍サイクルの高圧圧力や低圧圧力等が変更されて新たな運転条件が設定され、その運転条件に応じた圧縮機(31)の目標吐出温度が設定される。そして、上記圧縮機(31)の吐出温度が目標吐出温度となるようにインジェクション弁(43)の開度が調整され、その開度が全開になるとバイパス弁(45)の開度が調整される。もしくは、上記液インジェクション管(26)の流量調整弁(27)の開度が適宜調整される。これにより、圧縮機(31)へ吸入される冷媒の乾き度が最適な乾き度となり、運転条件に応じた最適な成績係数で運転を行うことができる。   Next, when the outside air temperature or the like changes in the state described above, the high pressure or low pressure of the refrigeration cycle is changed to set new operating conditions, and the target discharge temperature of the compressor (31) according to the operating conditions Is set. The opening of the injection valve (43) is adjusted so that the discharge temperature of the compressor (31) becomes the target discharge temperature, and when the opening is fully opened, the opening of the bypass valve (45) is adjusted. . Alternatively, the opening degree of the flow rate adjustment valve (27) of the liquid injection pipe (26) is appropriately adjusted. Thereby, the dryness of the refrigerant sucked into the compressor (31) becomes the optimal dryness, and the operation can be performed with the optimal coefficient of performance corresponding to the operation conditions.

また、本実施形態の空調機(10)では、運転条件の変化により、膨張機(33)を流通する冷媒量と圧縮機(31)を流通する冷媒量とのバランスが崩れた場合、圧縮機(31)の吸入冷媒が最適な乾き度となることを前提として、インジェクション管(42)から冷媒の一部を導入することにより、さらにバイパス管(44)によって冷媒の一部を膨張機(33)に対してバイパスさせることにより、膨張機(33)と圧縮機(31)の流通冷媒量をバランスさせることができる。これにより、動力回収率を向上させることができるので、一層省エネ運転を行うことができる。なお、その他の構成、作用および効果は、実施形態1と同様である。   Further, in the air conditioner (10) of the present embodiment, when the balance between the refrigerant amount flowing through the expander (33) and the refrigerant amount flowing through the compressor (31) is lost due to a change in operating conditions, the compressor Assuming that the suction refrigerant of (31) has an optimum dryness, a part of the refrigerant is introduced from the injection pipe (42), and further a part of the refrigerant is expanded by the bypass pipe (44) (33). ), It is possible to balance the amount of refrigerant flowing through the expander (33) and the compressor (31). Thereby, since a power recovery rate can be improved, energy saving operation can be performed further. Other configurations, operations, and effects are the same as those in the first embodiment.

《その他の実施形態》
本発明は、上記実施形態について、以下のような構成としてもよい。
<< Other Embodiments >>
The present invention may be configured as follows with respect to the above embodiment.

例えば、上記各実施形態において、気液分離器(25)における液インジェクション管(26)の流量調整弁(27)の開度調整のみで冷媒の乾き度を調整するようにしてもよい。   For example, in each of the above embodiments, the dryness of the refrigerant may be adjusted only by adjusting the opening of the flow rate adjustment valve (27) of the liquid injection pipe (26) in the gas-liquid separator (25).

また、上記各実施形態において、気液分離器(25)の液インジェクション管(26)を省略するようにしてもよい。つまり、各実施形態において、膨張弁(23)やインジェクション弁(43)のみを開度調整して冷媒の乾き度を調整するようにしてもよい。   Further, in each of the above embodiments, the liquid injection pipe (26) of the gas-liquid separator (25) may be omitted. That is, in each embodiment, only the expansion valve (23) and the injection valve (43) may be adjusted to adjust the degree of dryness of the refrigerant.

また、上記実施形態2では、バイパス管(44)およびインジェクション管(42)の両方を設けるようにしたが、本発明は、何れか一方のみを設けてその流量調整弁で冷媒の乾き度を調整するようにしてもよい。   In the second embodiment, both the bypass pipe (44) and the injection pipe (42) are provided. However, in the present invention, only one of them is provided, and the dryness of the refrigerant is adjusted by the flow rate adjusting valve. You may make it do.

また、上記各実施形態では、冷房運転および暖房運転が切換可能な空調機(10)を空調機(10)を構成するようにしたが、本発明は、暖房機能のみを備えた暖房装置に適用するようにしてもよいことは勿論である。   Further, in each of the above embodiments, the air conditioner (10) that can be switched between the cooling operation and the heating operation is configured as the air conditioner (10). However, the present invention is applied to a heating device having only a heating function. Of course, you may make it do.

以上説明したように、本発明は、蒸気圧縮式冷凍サイクルを行う冷媒回路を備えた冷凍装置として有用である。   As described above, the present invention is useful as a refrigeration apparatus including a refrigerant circuit that performs a vapor compression refrigeration cycle.

実施形態1に係る冷凍装置を示す冷媒回路図である。1 is a refrigerant circuit diagram illustrating a refrigeration apparatus according to Embodiment 1. FIG. 暖房運転時の冷媒回路における冷媒挙動を示すモリエル線図である。It is a Mollier diagram which shows the refrigerant | coolant behavior in the refrigerant circuit at the time of heating operation. 暖房運転時における冷媒の乾き度と成績係数との関係について示すシミュレーションのデータ表である。It is a data table of the simulation shown about the relation between the dryness of a refrigerant at the time of heating operation, and a coefficient of performance. 暖房運転時における冷媒の乾き度と成績係数との関係について示すシミュレーションのデータグラフである。It is a data graph of the simulation shown about the relationship between the dryness of the refrigerant | coolant at the time of heating operation, and a coefficient of performance. 実施形態2に係る冷凍装置を示す冷媒回路図である。6 is a refrigerant circuit diagram illustrating a refrigeration apparatus according to Embodiment 2. FIG.

符号の説明Explanation of symbols

10 空調機(冷凍装置)
20 冷媒回路
22 室内熱交換器(蒸発器)
24 室外熱交換器(蒸発器)
23 気液分離器
26 液インジェクション管
27 流量調整弁
31 圧縮機
32 モータ
33 膨張機
44 バイパス管
45 バイパス弁(流量調整弁)
10 Air conditioner (refrigeration equipment)
20 Refrigerant circuit
22 Indoor heat exchanger (evaporator)
24 Outdoor heat exchanger (evaporator)
23 Gas-liquid separator
26 Liquid injection tube
27 Flow control valve
31 Compressor
32 motor
33 Expander
44 Bypass pipe
45 Bypass valve (Flow adjustment valve)

Claims (8)

圧縮機(31)を有して冷凍サイクルを行う冷媒回路(20)を備えた冷凍装置であって、
冷媒をその時の運転状態において最適な成績係数(COP)となる湿り状態で上記圧縮機(31)へ吸入させる
ことを特徴とする冷凍装置。
A refrigeration apparatus including a refrigerant circuit (20) having a compressor (31) and performing a refrigeration cycle,
A refrigerating apparatus, wherein the refrigerant is sucked into the compressor (31) in a wet state that provides an optimum coefficient of performance (COP) in the operation state at that time.
圧縮機(31)を有して冷凍サイクルを行う冷媒回路(20)を備えた冷凍装置であって、
冷房運転時は冷媒を過熱状態で上記圧縮機(31)へ吸入させ、暖房運転時は冷媒を湿り状態で上記圧縮機(31)へ吸入させる
ことを特徴とする冷凍装置。
A refrigeration apparatus including a refrigerant circuit (20) having a compressor (31) and performing a refrigeration cycle,
A refrigerating apparatus, wherein a refrigerant is sucked into the compressor (31) in an overheated state during a cooling operation, and a refrigerant is sucked into the compressor (31) in a wet state during a heating operation.
圧縮機(31)を有して冷凍サイクルを行う冷媒回路(20)を備えた冷凍装置であって、
その時の運転状態において成績係数(COP)が最適となる上記圧縮機(31)の目標吐出温度を設定し、冷媒を上記圧縮機(31)の吐出温度が目標吐出温度となる湿り状態で上記圧縮機(31)へ吸入させる
ことを特徴とする冷凍装置。
A refrigeration apparatus including a refrigerant circuit (20) having a compressor (31) and performing a refrigeration cycle,
The target discharge temperature of the compressor (31) that optimizes the coefficient of performance (COP) in the operating state at that time is set, and the refrigerant is compressed in the wet state where the discharge temperature of the compressor (31) becomes the target discharge temperature. A refrigerating machine characterized by being sucked into a machine (31).
請求項1〜3の何れか1項において、
上記冷媒回路(20)は、膨張弁(23)が設けられ、
上記膨張弁(23)の開度を調節することによって圧縮機(31)の吸入冷媒の湿り状態を調節する
ことを特徴とする冷凍装置。
In any one of Claims 1-3,
The refrigerant circuit (20) is provided with an expansion valve (23),
A refrigeration apparatus for adjusting a wet state of refrigerant sucked in a compressor (31) by adjusting an opening degree of the expansion valve (23).
請求項1〜3の何れか1項において、
上記冷媒回路(20)は、蒸発器(22,24)と圧縮機(31)の吸入側との間に気液分離器(25)が設けられ、
上記気液分離器(25)は、流量調整弁(27)を有して気液分離器(25)の液冷媒を圧縮機(31)の吸入側へ導く液インジェクション管(26)を備える一方、
上記流量調整弁(27)を調節することによって圧縮機(31)の吸入冷媒の湿り状態を調節する
ことを特徴とする冷凍装置。
In any one of Claims 1-3,
The refrigerant circuit (20) is provided with a gas-liquid separator (25) between the evaporator (22, 24) and the suction side of the compressor (31),
The gas-liquid separator (25) includes a liquid injection pipe (26) that has a flow rate adjustment valve (27) and guides the liquid refrigerant of the gas-liquid separator (25) to the suction side of the compressor (31). ,
A refrigeration apparatus for adjusting a wet state of refrigerant sucked in a compressor (31) by adjusting the flow rate adjusting valve (27).
請求項1〜3の何れか1項において、
上記冷媒回路(20)は、圧縮機(31)に該圧縮機(31)のモータ(32)を介して機械的に接続された膨張機(33)が設けられると共に、
上記冷媒回路(20)は、膨張機(33)へ向かう冷媒の一部が膨張機(33)をバイパスして流れるバイパス管(44)と、該バイパス管(44)に設けられる流量調整弁(45)とを備え、
上記流量調整弁(45)を調節することによって圧縮機(31)の吸入冷媒の湿り状態を調節する
ことを特徴とする冷凍装置。
In any one of Claims 1-3,
The refrigerant circuit (20) is provided with an expander (33) mechanically connected to the compressor (31) via the motor (32) of the compressor (31),
The refrigerant circuit (20) includes a bypass pipe (44) in which a part of the refrigerant going to the expander (33) flows by bypassing the expander (33), and a flow rate adjusting valve provided in the bypass pipe (44) ( 45)
A refrigeration apparatus for adjusting a wet state of refrigerant sucked in a compressor (31) by adjusting the flow rate adjusting valve (45).
請求項1〜3の何れか1項において、
上記冷媒回路(20)は、冷凍サイクルの高圧圧力が冷媒の臨界圧力より高くなるように構成されている
ことを特徴とする冷凍装置。
In any one of Claims 1-3,
The refrigerating apparatus (20), wherein the refrigerant circuit (20) is configured such that a high pressure of the refrigeration cycle is higher than a critical pressure of the refrigerant.
請求項7において、
上記冷媒は、二酸化炭素である
ことを特徴とする冷凍装置。
In claim 7,
The refrigeration apparatus, wherein the refrigerant is carbon dioxide.
JP2004262176A 2004-09-09 2004-09-09 Refrigeration equipment Pending JP2006078087A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2004262176A JP2006078087A (en) 2004-09-09 2004-09-09 Refrigeration equipment
AU2005280900A AU2005280900B2 (en) 2004-09-09 2005-09-09 Refrigeration apparatus
CNB2005800301205A CN100501270C (en) 2004-09-09 2005-09-09 freezer
US11/662,206 US20090113907A1 (en) 2004-09-09 2005-09-09 Refrigeration Apparatus
KR1020077007764A KR20070067121A (en) 2004-09-09 2005-09-09 Freezer
EP05782353.6A EP1795833A4 (en) 2004-09-09 2005-09-09 COOLER
PCT/JP2005/016643 WO2006028218A1 (en) 2004-09-09 2005-09-09 Refrigerating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004262176A JP2006078087A (en) 2004-09-09 2004-09-09 Refrigeration equipment

Publications (1)

Publication Number Publication Date
JP2006078087A true JP2006078087A (en) 2006-03-23

Family

ID=36036500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004262176A Pending JP2006078087A (en) 2004-09-09 2004-09-09 Refrigeration equipment

Country Status (7)

Country Link
US (1) US20090113907A1 (en)
EP (1) EP1795833A4 (en)
JP (1) JP2006078087A (en)
KR (1) KR20070067121A (en)
CN (1) CN100501270C (en)
AU (1) AU2005280900B2 (en)
WO (1) WO2006028218A1 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100788459B1 (en) 2006-11-02 2007-12-24 주식회사 대우일렉트로닉스 Heat Pump Air Conditioner with Refrigerant Flow Control
JP2008076017A (en) * 2006-09-25 2008-04-03 Daikin Ind Ltd Refrigeration equipment
WO2008053752A1 (en) 2006-10-30 2008-05-08 Daikin Industries, Ltd. Heat source unit for refrigerating apparatus, and refrigerating apparatus
WO2008093718A1 (en) 2007-01-31 2008-08-07 Daikin Industries, Ltd. Heat source unit and refrigeration device
JP2010032100A (en) * 2008-07-28 2010-02-12 Denso Corp Vapor compression refrigerating cycle
JP2011075222A (en) * 2009-09-30 2011-04-14 Daikin Industries Ltd Refrigerating system
JP4806027B2 (en) * 2006-10-11 2011-11-02 パナソニック株式会社 Rotary expander
JP2011247547A (en) * 2010-05-28 2011-12-08 Denso Corp Refrigerating cycle device
JP2012515890A (en) * 2009-01-20 2012-07-12 パナソニック株式会社 Refrigeration cycle equipment
WO2013088638A1 (en) * 2011-12-14 2013-06-20 パナソニック株式会社 Refrigerating cycle device
JP2014181869A (en) * 2013-03-21 2014-09-29 Fujitsu General Ltd Air conditioner
JP2015075294A (en) * 2013-10-10 2015-04-20 日立アプライアンス株式会社 Air conditioner
WO2016117128A1 (en) * 2015-01-23 2016-07-28 三菱電機株式会社 Air conditioning device
US10775060B2 (en) 2013-10-24 2020-09-15 Mitsubishi Electric Corporation Air-conditioning apparatus
WO2020246338A1 (en) * 2019-06-07 2020-12-10 株式会社デンソー Refrigeration cycle device
WO2022210794A1 (en) * 2021-03-31 2022-10-06 ダイキン工業株式会社 Heat pump device

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104797893B (en) * 2012-11-21 2016-08-24 三菱电机株式会社 Conditioner
CN105115062B (en) * 2015-08-21 2018-03-30 Tcl空调器(中山)有限公司 Air conditioner outdoor unit and air conditioner
CN105783136B (en) * 2016-04-14 2019-04-02 海信(山东)空调有限公司 A kind of outdoor air-conditioner and air-conditioning system
CN107576096A (en) * 2017-09-12 2018-01-12 海信(山东)空调有限公司 Compressor unit and air-conditioning system
CN108444128B (en) * 2018-05-14 2019-05-24 西安交通大学 A kind of Trans-critical cycle CO2Wet Compression heat pump system and its operating method
CN111059683B (en) * 2019-12-03 2021-04-02 珠海格力电器股份有限公司 Control method for preventing liquid impact of suction belt liquid of compressor and air conditioner
WO2021205540A1 (en) * 2020-04-07 2021-10-14 三菱電機株式会社 Refrigeration cycle device
US20230067007A1 (en) * 2020-04-07 2023-03-02 Mitsubishi Electric Corporation Refrigeration cycle device
CN112432341A (en) * 2020-12-08 2021-03-02 合肥美的暖通设备有限公司 Control method of air conditioning system, air conditioning system and readable storage medium
IT202100007316A1 (en) * 2021-03-25 2022-09-25 Ariston S P A METHOD FOR MANAGING A HEAT PUMP OPERATING WITH AN OPERATING FLUID WITH LOW ENVIRONMENTAL IMPACT
CN114608181B (en) * 2022-03-21 2023-12-26 青岛海尔空调电子有限公司 Control method and device for electronic expansion valve, medium and air source heat pump unit

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5494149A (en) * 1978-01-06 1979-07-25 Hitachi Ltd Freezer
JPH04155157A (en) * 1990-10-19 1992-05-28 Hitachi Ltd Refrigeration cycle using scroll compressor
JPH11173682A (en) * 1997-12-10 1999-07-02 Sanyo Electric Co Ltd Air conditioner
US6118099A (en) * 1998-11-12 2000-09-12 Daimlerchrysler Corporation Controller for heating in reversible air conditioning and heat pump HVAC system for electric vehicles
JP3227651B2 (en) * 1998-11-18 2001-11-12 株式会社デンソー Water heater
JP2000234814A (en) * 1999-02-17 2000-08-29 Aisin Seiki Co Ltd Vapor compressed refrigerating device
KR100482539B1 (en) * 1999-10-18 2005-04-14 다이킨 고교 가부시키가이샤 Refrigerating device
JP3956589B2 (en) * 1999-10-18 2007-08-08 ダイキン工業株式会社 Refrigeration equipment
JP2001116371A (en) * 1999-10-20 2001-04-27 Daikin Ind Ltd Air conditioner
JP3750457B2 (en) * 2000-02-04 2006-03-01 三菱電機株式会社 Refrigeration air conditioner
JP3812389B2 (en) * 2001-09-17 2006-08-23 株式会社デンソー Refrigeration cycle equipment
JP3849577B2 (en) * 2002-05-22 2006-11-22 松下電器産業株式会社 Heat pump bath water heater
JP3897681B2 (en) * 2002-10-31 2007-03-28 松下電器産業株式会社 Method for determining high-pressure refrigerant pressure of refrigeration cycle apparatus
JP2004225928A (en) * 2003-01-20 2004-08-12 Daikin Ind Ltd Refrigeration equipment
JP4375171B2 (en) * 2004-08-31 2009-12-02 ダイキン工業株式会社 Refrigeration equipment

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008076017A (en) * 2006-09-25 2008-04-03 Daikin Ind Ltd Refrigeration equipment
JP4806027B2 (en) * 2006-10-11 2011-11-02 パナソニック株式会社 Rotary expander
AU2007315521B2 (en) * 2006-10-30 2011-03-10 Daikin Industries, Ltd. Heat source unit of refrigeration system and refrigeration system
WO2008053752A1 (en) 2006-10-30 2008-05-08 Daikin Industries, Ltd. Heat source unit for refrigerating apparatus, and refrigerating apparatus
KR100788459B1 (en) 2006-11-02 2007-12-24 주식회사 대우일렉트로닉스 Heat Pump Air Conditioner with Refrigerant Flow Control
US8297073B2 (en) 2007-01-31 2012-10-30 Daikin Industries, Ltd. Heat source unit and refrigeration system
WO2008093718A1 (en) 2007-01-31 2008-08-07 Daikin Industries, Ltd. Heat source unit and refrigeration device
JP2010032100A (en) * 2008-07-28 2010-02-12 Denso Corp Vapor compression refrigerating cycle
JP2012515890A (en) * 2009-01-20 2012-07-12 パナソニック株式会社 Refrigeration cycle equipment
JP2011075222A (en) * 2009-09-30 2011-04-14 Daikin Industries Ltd Refrigerating system
JP2011247547A (en) * 2010-05-28 2011-12-08 Denso Corp Refrigerating cycle device
WO2013088638A1 (en) * 2011-12-14 2013-06-20 パナソニック株式会社 Refrigerating cycle device
JP2013124800A (en) * 2011-12-14 2013-06-24 Panasonic Corp Refrigerating cycle device
JP2014181869A (en) * 2013-03-21 2014-09-29 Fujitsu General Ltd Air conditioner
JP2015075294A (en) * 2013-10-10 2015-04-20 日立アプライアンス株式会社 Air conditioner
US10775060B2 (en) 2013-10-24 2020-09-15 Mitsubishi Electric Corporation Air-conditioning apparatus
WO2016117128A1 (en) * 2015-01-23 2016-07-28 三菱電機株式会社 Air conditioning device
JPWO2016117128A1 (en) * 2015-01-23 2017-07-27 三菱電機株式会社 Air conditioner
US10753660B2 (en) 2015-01-23 2020-08-25 Mitsubishi Electric Corporation Air-conditioning apparatus
WO2020246338A1 (en) * 2019-06-07 2020-12-10 株式会社デンソー Refrigeration cycle device
JP2020200978A (en) * 2019-06-07 2020-12-17 株式会社デンソー Refrigeration cycle device
JP7275876B2 (en) 2019-06-07 2023-05-18 株式会社デンソー refrigeration cycle equipment
WO2022210794A1 (en) * 2021-03-31 2022-10-06 ダイキン工業株式会社 Heat pump device

Also Published As

Publication number Publication date
AU2005280900B2 (en) 2009-03-05
CN101014813A (en) 2007-08-08
US20090113907A1 (en) 2009-05-07
CN100501270C (en) 2009-06-17
WO2006028218A1 (en) 2006-03-16
EP1795833A4 (en) 2014-12-24
AU2005280900A1 (en) 2006-03-16
EP1795833A1 (en) 2007-06-13
KR20070067121A (en) 2007-06-27

Similar Documents

Publication Publication Date Title
JP2006078087A (en) Refrigeration equipment
KR101201062B1 (en) Refrigeration device
JP4931848B2 (en) Heat pump type outdoor unit for hot water supply
JP5120056B2 (en) Refrigeration equipment
JP4781390B2 (en) Refrigeration cycle equipment
JP3925545B2 (en) Refrigeration equipment
JP5375919B2 (en) heat pump
JP2015148406A (en) Refrigeration device
JP2009257706A (en) Refrigerating apparatus
JP4407012B2 (en) Refrigeration equipment
JP4442237B2 (en) Air conditioner
JP2008241065A (en) Refrigeration apparatus and oil return method for refrigeration apparatus
JP5659908B2 (en) Heat pump equipment
WO2020203708A1 (en) Refrigeration cycle device
JP4751851B2 (en) Refrigeration cycle
KR20050072299A (en) Cooling and heating air conditioning system
JP4407000B2 (en) Refrigeration system using CO2 refrigerant
KR102313304B1 (en) Air conditioner for carbon dioxide
JP2003074990A (en) Refrigeration equipment
JP5163161B2 (en) Auxiliary heating unit and air conditioner
JP4084915B2 (en) Refrigeration system
JP5790675B2 (en) heat pump
JP2012207844A (en) Heat pump apparatus
JP4326004B2 (en) Air conditioner
JP2013092369A5 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090526

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091110