[go: up one dir, main page]

JP2006074136A - Surface acoustic wave element and surface acoustic wave device - Google Patents

Surface acoustic wave element and surface acoustic wave device Download PDF

Info

Publication number
JP2006074136A
JP2006074136A JP2004252057A JP2004252057A JP2006074136A JP 2006074136 A JP2006074136 A JP 2006074136A JP 2004252057 A JP2004252057 A JP 2004252057A JP 2004252057 A JP2004252057 A JP 2004252057A JP 2006074136 A JP2006074136 A JP 2006074136A
Authority
JP
Japan
Prior art keywords
acoustic wave
surface acoustic
wave element
cut
quartz
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004252057A
Other languages
Japanese (ja)
Inventor
Keigo Iizawa
慶吾 飯澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2004252057A priority Critical patent/JP2006074136A/en
Publication of JP2006074136A publication Critical patent/JP2006074136A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To decrease a constant k in a current square characteristic of a surface acoustic wave element chip. <P>SOLUTION: The surface acoustic wave element chip is provided with an IDT comprising interdigital electrodes. Electrode fingers of each interdigital electrode are alternately arranged at an equal interval in parallel in the IDT. A projected area S of the electrode fingers included in a region within a cross width b of the electrode fingers onto a crystal substrate in the surface acoustic wave element chip is selected to be 0.014 mm<SP>2</SP>≤S≤0.019 mm<SP>2</SP>. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、弾性表面波素子片にかかり、特に水晶結晶を用いた弾性表面波素子片および弾性表面波装置に関する。   The present invention relates to a surface acoustic wave element piece, and more particularly to a surface acoustic wave element piece and a surface acoustic wave device using a quartz crystal.

水晶振動子を構成する水晶振動片は、ドライブレベル、すなわち水晶振動片を流れる電流レベルによって発振周波数(共振周波数)が変動することが知られている。この水晶振動片のドライブレベル特性は、共振周波数をf、周波数の変動量をdf、水晶振動片を流れる電流をIとした場合、

Figure 2006074136
として表され、電流二乗特性と呼ばれている。数式1に示された定数κは、水晶のカット角、振動モード、水晶および電極の寸法によって決まる固有定数であるとされている(特許文献1)。そして、ATカット水晶の振動片の場合、κ=0.2×10−6[A−2]程度であるとされている。
特開平10−145140号公報 段落番号0006 It is known that the oscillation frequency (resonance frequency) of the crystal resonator element constituting the crystal resonator varies depending on the drive level, that is, the current level flowing through the crystal resonator element. The drive level characteristics of the quartz crystal resonator element are as follows: the resonance frequency is f, the frequency variation is df, and the current flowing through the crystal oscillator is I.
Figure 2006074136
And is called the current square characteristic. The constant κ shown in Expression 1 is an intrinsic constant determined by the cut angle of the crystal, the vibration mode, and the dimensions of the crystal and the electrode (Patent Document 1). In the case of an AT-cut quartz crystal resonator element, it is assumed that κ = 0.2 × 10 −6 [A −2 ].
Japanese Patent Laid-Open No. 10-145140, paragraph number 0006

上記数式1に示したように、電流二乗特性は、水晶振動片に流れる電流量が同じであっても、定数κの値によって周波数の変動量が異なってくる。そして、周波数の変動量が大きくなると、位相ノイズに影響し、位相ノイズが大きくなる。このため、定数κの大きな水晶振動片を用いた発振器などを使用すると、電子機器間における同期が取れなかったり、通信ができないなどの不具合を生ずる。したがって、電流二乗特性の定数κを可能な限り小さくすることが求められている。   As shown in Equation 1, the current square characteristic has a frequency variation amount that varies depending on the value of the constant κ even when the amount of current flowing through the quartz crystal resonator element is the same. When the amount of frequency fluctuation increases, the phase noise is affected and the phase noise increases. For this reason, when an oscillator using a crystal vibrating piece having a large constant κ is used, problems such as inability to synchronize between electronic devices and inability to communicate. Therefore, it is required to make the current square characteristic constant κ as small as possible.

ところで、近年、電子技術の進展に伴ってGHz帯の周波数を用いた高速通信が行われている。このような高周波数帯においては、弾性表面波(Surface Acoustic Wave:SAW)を利用した水晶からなる弾性表面波素子片を用いたSAWフィルタやSAW共振子などの弾性表面波装置が多く用いられる。しかし、弾性表面波素子片は、ATカット水晶振動片より周波数特性が悪く、いかに周波数変動を小さくするかが大きな課題の1つになっている。ところが、弾性表面波素子片についての電流二乗特性に対する研究が充分に進んでおらず、数式1のκを小さくするための条件も明らかでない。   By the way, in recent years, high-speed communication using a frequency in the GHz band is performed with the progress of electronic technology. In such a high frequency band, surface acoustic wave devices such as SAW filters and SAW resonators using surface acoustic wave element pieces made of quartz using surface acoustic waves (SAW) are often used. However, the surface acoustic wave element piece has a frequency characteristic worse than that of the AT-cut quartz crystal piece, and how to reduce the frequency fluctuation is one of the major problems. However, research on the current square characteristic of the surface acoustic wave element piece has not sufficiently progressed, and the conditions for reducing κ in Formula 1 are not clear.

本発明は、弾性表面波素子片の電流二乗特性における定数κを小さくすることを目的としている。   An object of the present invention is to reduce the constant κ in the current square characteristic of a surface acoustic wave element.

本発明者らは、弾性表面波素子片の電流二乗特性について詳細に検討して種々実験を行ったところ、電流二乗特性の定数κが弾性表面波素子片のIDT(Interdigital Transducer)であるすだれ状電極の面積に依存していることを見出した。本発明は、このような知見に基づいてなされたものである。   The inventors of the present invention conducted various experiments by examining the current square characteristics of the surface acoustic wave element piece in detail, and found that the constant κ of the current square characteristic is an interdigital transducer (IDT) of the surface acoustic wave element piece. It was found that it depends on the area of the electrode. The present invention has been made based on such knowledge.

すなわち、本発明に係る弾性表面波素子片は、水晶基板に形成したすだれ状電極を構成する電極指の交差幅内における前記水晶基板への投影面積Sが0.014mm≦S≦0.019mmであることを特徴としている。このようになっている本発明は、電流二乗特性の定数κを±0.02×10−6[A−2]以下と、ATカット水晶振動片についてのκの値の1/10以下にすることができる。したがって、本発明に係る弾性表面波素子片は、ドライブレベルによる周波数の変動量を非常に小さくすることができる。 That is, in the surface acoustic wave element according to the present invention, the projected area S on the quartz substrate within the intersecting width of the electrode fingers constituting the interdigital electrode formed on the quartz substrate is 0.014 mm 2 ≦ S ≦ 0.019 mm. It is characterized by 2 . In the present invention configured as described above, the constant κ of the current square characteristic is set to ± 0.02 × 10 −6 [A −2 ] or less and 1/10 or less of the value of κ for the AT-cut quartz crystal resonator element. be able to. Therefore, the surface acoustic wave element piece according to the present invention can greatly reduce the amount of frequency fluctuation due to the drive level.

弾性表面波素子片を形成する水晶基板は、カット角がオイラー角表示で(0°,113°〜135°,0°)のSTカット水晶板を用いることができる。このようなカット角を有する水晶基板は、周波数温度特性が優れており、使用環境の温度変化に対して周波数安定度の良好な弾性表面波素子片とすることができる。また、水晶基板は、カット角がオイラー角表示で(0°,113°〜135°,±(40°〜49°))の面内回転STカット水晶板を用いることができる。このようなカット角を有する水晶基板は、より一層周波数温度特性を改善することができる。しかも、弾性表面波素子の縦モードスプリアスを非常に小さくすることができる。   As the quartz substrate on which the surface acoustic wave element piece is formed, an ST-cut quartz plate with a cut angle represented by Euler angles (0 °, 113 ° to 135 °, 0 °) can be used. The quartz substrate having such a cut angle has excellent frequency-temperature characteristics, and can be a surface acoustic wave element having good frequency stability against temperature changes in the usage environment. Further, as the quartz substrate, an in-plane rotated ST-cut quartz plate with cut angles represented by Euler angles (0 °, 113 ° to 135 °, ± (40 ° to 49 °)) can be used. The quartz substrate having such a cut angle can further improve the frequency temperature characteristics. In addition, the longitudinal mode spurious of the surface acoustic wave element can be made very small.

また、本発明に係る弾性表面波装置は、上記に記載の弾性表面波素子片のいずれかを有していることを特徴としている。このような弾性表面波装置は、上記の効果を奏することができる。   The surface acoustic wave device according to the present invention includes any one of the surface acoustic wave element pieces described above. Such a surface acoustic wave device can achieve the effects described above.

本発明に係る弾性表面波素子片および弾性表面波装置の好ましい実施の形態を、添付図面に従って詳細に説明する。
図1は、本発明の実施の形態に係る弾性表面波素子片の要部を説明する平面図である。図1において、弾性表面波素子片10は、圧電体である水晶基板12から形成してある。水晶基板12は、実施形態の場合、カット角がオイラー角表示で(0°,113°〜135°,0°)のSTカット水晶板、またはカット角がオイラー角表示で(0°,113°〜135°,±(40°〜49°))となっているいわゆる面内回転STカット水晶板からなっている。水晶基板12は、矩形状に形成してあって、その主面の中央部に、IDT14が設けてある。
Preferred embodiments of a surface acoustic wave element and a surface acoustic wave device according to the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is a plan view for explaining a main part of a surface acoustic wave element according to an embodiment of the present invention. In FIG. 1, a surface acoustic wave element piece 10 is formed from a quartz crystal substrate 12 which is a piezoelectric body. In the case of the embodiment, the quartz substrate 12 is an ST-cut quartz plate whose cut angle is Euler angle display (0 °, 113 ° to 135 °, 0 °), or whose cut angle is Euler angle display (0 °, 113 °). It consists of a so-called in-plane rotating ST-cut quartz plate that is ˜135 °, ± (40 ° -49 °). The quartz substrate 12 is formed in a rectangular shape, and an IDT 14 is provided at the center of the main surface.

IDT14は、一対の櫛形電極16(16a、16b)からなっていてすだれ状をなし、各櫛型電極16の櫛歯に相当する電極指18(18a、18b)が交互に、かつ平行に等間隔で配置してある。IDT14は、櫛型電極16aと櫛型電極16bとの間に信号電圧が印加されることにより、所定周波数の弾性表面波を水晶基板12の表層部に発生させる。また、弾性表面波素子片10は、IDT14の両側に反射器20が設けてある。各反射器20は、同じように形成してあって、それぞれ複数の導体ストリップ22を有する。各反射器20は、複数の導体ストリップ22の両端が相互に連結されて、格子状をなしている。これらのIDT14と一対の反射器20とは、実施形態の場合、アルミニウムまたはアルミニウム合金(以下、単にアルミニウムという)の薄膜から形成してある。すなわち、IDT14と反射器20とは、水晶ウエハの表面に蒸着やスパッタリングなどによって成膜されたアルミニウム薄膜を、所定の形状にエッチングすることにより形成される。   The IDT 14 is composed of a pair of comb-shaped electrodes 16 (16a, 16b) and has an interdigital shape. The electrode fingers 18 (18a, 18b) corresponding to the comb teeth of each comb-shaped electrode 16 are alternately and in parallel at equal intervals. It is arranged with. The IDT 14 generates a surface acoustic wave having a predetermined frequency on the surface layer portion of the quartz substrate 12 by applying a signal voltage between the comb electrode 16a and the comb electrode 16b. The surface acoustic wave element piece 10 is provided with reflectors 20 on both sides of the IDT 14. Each reflector 20 is formed in the same manner and has a plurality of conductor strips 22. Each reflector 20 has a lattice shape in which both ends of a plurality of conductor strips 22 are connected to each other. In the embodiment, the IDT 14 and the pair of reflectors 20 are formed from a thin film of aluminum or an aluminum alloy (hereinafter simply referred to as aluminum). That is, the IDT 14 and the reflector 20 are formed by etching an aluminum thin film formed on the surface of a quartz wafer by vapor deposition or sputtering into a predetermined shape.

発明者らの研究によると、弾性表面波素子片10の電流二乗特性の定数κは、IDT14の電極の有効な面積に依存していることが明らかになった。すなわち、定数κは、図1の破線24に示した領域24内の電極指18a、18bの、水晶基板12への投影した面積に逆比例していることを見出した。なお、図1に示した符号aは電極指18の幅を示し、符号bは電極指18の交差幅を示している。   According to the research by the inventors, it has been clarified that the constant κ of the current square characteristic of the surface acoustic wave element piece 10 depends on the effective area of the electrode of the IDT 14. That is, it has been found that the constant κ is inversely proportional to the projected area of the electrode fingers 18a and 18b in the region 24 indicated by the broken line 24 in FIG. In addition, the code | symbol a shown in FIG. 1 has shown the width | variety of the electrode finger 18, and the code | symbol b has shown the crossing width of the electrode finger 18. As shown in FIG.

発明者らは、図2に示した試料A〜Cの弾性表面波素子片を作製し、これらの試料A〜Cについて詳細な実験を行い、ドライブレベルと共振周波数との関係を求めた。試料Aは、カット角がオイラー表示で(0°,113°〜135°,0°)のSTカット水晶板からなり、620MHz帯の共振周波数を有する弾性表面波素子片である。そして、試料Aは、電極指の対数n=125、電極指の幅a=1.24μm、電極指の交差幅b=49.6μmである。試料Bは、前記と同様のSTカット水晶板からなる共振周波数が1GHz帯の弾性表面波素子片であって、n=180、a=0.76μm、B=30.4μmである。また、試料Cは、カット角がオイラー角表示で(0°,113°〜135°,±(40°〜49°))の面内回転STカット水晶板からなる共振周波数が640MHz帯の弾性表面波素子片である。そして、試料Cは、n=250、a=0.92μm、b=36.8μmである。   The inventors produced surface acoustic wave element pieces of samples A to C shown in FIG. 2, conducted detailed experiments on these samples A to C, and obtained the relationship between the drive level and the resonance frequency. Sample A is a surface acoustic wave element piece made of an ST-cut quartz plate having a cut angle of Euler display (0 °, 113 ° to 135 °, 0 °) and having a resonance frequency of 620 MHz band. Sample A has a pair of electrode fingers n = 125, an electrode finger width a = 1.24 μm, and an electrode finger crossing width b = 49.6 μm. Sample B is a surface acoustic wave element having a resonance frequency of 1 GHz made of an ST-cut quartz plate similar to the above, and n = 180, a = 0.76 μm, and B = 30.4 μm. Sample C is an elastic surface having a resonance frequency of a 640 MHz band made of an in-plane rotating ST-cut quartz plate with a cut angle represented by Euler angles (0 °, 113 ° to 135 °, ± (40 ° to 49 °)). It is a wave element piece. Sample C has n = 250, a = 0.92 μm, and b = 36.8 μm.

これらの弾性表面波素子における領域24内の電極指18の水晶基板12への投影面積Sは、

Figure 2006074136
である。したがって、試料Aの投影面積Sは、約0.015mm、試料Bの投影面積Sは約0.008m、試料Cの投影面積Sは約0.017mである。そして、これらの試料A〜Cについて、ドライブレベルである弾性表面波素子片に流す電流量Iを0.1mA〜1.5mAまで0.1mAずつ変えて共振周波数fを繰り返し測定した。さらに、共振周波数fの測定結果から、Iと(df/f)との関係を求めた。ただしdfは周波数変動量である。 In these surface acoustic wave elements, the projected area S of the electrode fingers 18 in the region 24 on the quartz substrate 12 is:
Figure 2006074136
It is. Accordingly, the projected area S of the sample A is about 0.015 mm 2 , the projected area S of the sample B is about 0.008 m 2 , and the projected area S of the sample C is about 0.017 m 2 . Then, for these samples A to C, the resonance frequency f was repeatedly measured by changing the current amount I flowing through the surface acoustic wave element at the drive level from 0.1 mA to 1.5 mA by 0.1 mA. Further, the relationship between I 2 and (df / f) was obtained from the measurement result of the resonance frequency f. However, df is a frequency fluctuation amount.

そして、電流Iと(df/f)との関係から、電流二乗特性のκを算出した。求められたκは、図2に示したように、試料Aについては、κ=0.018×10−6[A−2]とκ=0.014×10−6[A−2]、試料Bについては、κ=0.088×10−6[A−2]とκ=0.043×10−6[A−2]、試料Cについては、κ=−0.008×10−6[A−2]とκ=−0.003×10−6[A−2]が得られた。そこで、投影面積Sと定数κとの関係を求めると、図3に示したような関係が得られた。 Then, κ of the current square characteristic was calculated from the relationship between the current I 2 and (df / f). As shown in FIG. 2, the obtained κ is κ = 0.018 × 10 −6 [A −2 ] and κ = 0.014 × 10 −6 [A −2 ] for the sample A, the sample For B, κ = 0.088 × 10 −6 [A −2 ] and κ = 0.043 × 10 −6 [A −2 ], and for Sample C, κ = −0.008 × 10 −6 [ A −2 ] and κ = −0.003 × 10 −6 [A −2 ] were obtained. Therefore, when the relationship between the projected area S and the constant κ is obtained, the relationship as shown in FIG. 3 is obtained.

図3から明らかなように、弾性表面波素子片10の場合、図1に示された領域24内の電極指18の水晶基板12への投影面積Sを0.014〜0.019mmとすることにより、κ=±0.02×10−6[A−2]と、ATカット水晶振動片の1/10以下にすることができる。したがって、領域24内の電極指18の水晶基板12への投影面積Sを0.014〜0.019mmとした弾性表面波素子片10は、ドライブレベルによる周波数変化を非常に小さくすることができ、高精度なSAW共振子などの弾性表面波装置を得ることができる。 As apparent from FIG. 3, in the case of the surface acoustic wave element piece 10, the projected area S of the electrode finger 18 on the crystal substrate 12 in the region 24 shown in FIG. 1 is set to 0.014 to 0.019 mm 2 . Thus, κ = ± 0.02 × 10 −6 [A −2 ] and 1/10 or less of the AT-cut quartz crystal vibrating piece can be achieved. Therefore, the surface acoustic wave element piece 10 in which the projected area S of the electrode finger 18 in the region 24 on the quartz substrate 12 is 0.014 to 0.019 mm 2 can greatly reduce the frequency change due to the drive level. A surface acoustic wave device such as a highly accurate SAW resonator can be obtained.

なお、水晶基板12は、カット角がオイラー角表示で(0°,113°〜135°,0°)のSTカット水晶板を用いると、周波数温度特性の優れた弾性表面波素子を得ることができ、使用環境の温度変化に対して周波数安定度の良好な弾性表面波素子片とすることができる。さらに、水晶基板12として、カット角がオイラー角表示で(0°,113°〜135°,±(40°〜49°))の面内回転STカット水晶板を用いることにより、より一層周波数温度特性の優れた弾性表面波素子片とすることができる。また、弾性表面波素子の縦モードスプリアスを非常に小さくすることができる。   In addition, if the ST cut quartz plate whose cut angle is Euler angle display (0 °, 113 ° to 135 °, 0 °) is used for the quartz substrate 12, a surface acoustic wave element having excellent frequency temperature characteristics can be obtained. It is possible to obtain a surface acoustic wave element with good frequency stability against temperature changes in the usage environment. Furthermore, by using an in-plane rotated ST-cut quartz plate with a cut angle (0 °, 113 ° to 135 °, ± (40 ° to 49 °)) as a crystal substrate 12 as a Euler angle display, the frequency temperature is further increased. A surface acoustic wave element having excellent characteristics can be obtained. Further, the longitudinal mode spurious of the surface acoustic wave element can be made very small.

実施の形態に係る弾性表面波素子片の要部を示す平面図である。It is a top view which shows the principal part of the surface acoustic wave element piece which concerns on embodiment. 本発明の実施の形態に係る試料の説明図である。It is explanatory drawing of the sample which concerns on embodiment of this invention. 実施の形態に係る試料の電極指の投影面積と定数κとの関係を示す図である。It is a figure which shows the relationship between the projection area of the electrode finger of the sample which concerns on embodiment, and the constant (kappa).

符号の説明Explanation of symbols

10………弾性表面波素子片、12………水晶基板、14………IDT、16a、16b………櫛型電極、18a、18b………電極指、a………電極指の幅、b………交差幅。   DESCRIPTION OF SYMBOLS 10 ......... Surface acoustic wave element piece, 12 ...... Quartz substrate, 14 ...... IDT, 16a, 16b ...... Comb-shaped electrode, 18a, 18b ...... Electrode finger, a ...... Width of electrode finger , B ... Crossing width.

Claims (4)

水晶基板に形成したすだれ状電極を構成する電極指の交差幅内における前記水晶基板への投影面積Sが0.014mm≦S≦0.019mmであることを特徴とする弾性表面波素子片。 A surface acoustic wave element having a projected area S on the quartz substrate within the intersection width of the electrode fingers constituting the interdigital electrodes formed on the quartz substrate is 0.014 mm 2 ≦ S ≦ 0.019 mm 2. . 請求項1に記載の弾性表面波素子片において、
前記水晶基板は、カット角がオイラー角表示で(0°,113°〜135°,0°)のSTカット水晶板であることを特徴とする弾性表面波素子片。
The surface acoustic wave element piece according to claim 1,
2. The surface acoustic wave element according to claim 1, wherein the quartz substrate is an ST cut quartz plate having a cut angle represented by Euler angles (0 °, 113 ° to 135 °, 0 °).
請求項1に記載の弾性表面波素子片において、
前記水晶基板は、カット角がオイラー角表示で(0°,113°〜135°,±(40°〜49°))の面内回転STカット水晶板であることを特徴とする弾性表面波素子片。
The surface acoustic wave element piece according to claim 1,
The surface acoustic wave device is characterized in that the quartz substrate is an in-plane rotating ST-cut quartz plate whose cut angle is expressed by Euler angle (0 °, 113 ° to 135 °, ± (40 ° to 49 °)). Piece.
請求項1ないし3のいずれかに記載の弾性表面波素子片を有することを特徴とする弾性表面波装置。   A surface acoustic wave device comprising the surface acoustic wave element according to claim 1.
JP2004252057A 2004-08-31 2004-08-31 Surface acoustic wave element and surface acoustic wave device Withdrawn JP2006074136A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004252057A JP2006074136A (en) 2004-08-31 2004-08-31 Surface acoustic wave element and surface acoustic wave device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004252057A JP2006074136A (en) 2004-08-31 2004-08-31 Surface acoustic wave element and surface acoustic wave device

Publications (1)

Publication Number Publication Date
JP2006074136A true JP2006074136A (en) 2006-03-16

Family

ID=36154325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004252057A Withdrawn JP2006074136A (en) 2004-08-31 2004-08-31 Surface acoustic wave element and surface acoustic wave device

Country Status (1)

Country Link
JP (1) JP2006074136A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8063534B2 (en) 2008-02-20 2011-11-22 Seiko Epson Corporation Surface acoustic wave device and surface acoustic wave oscillator
US8305162B2 (en) 2009-02-27 2012-11-06 Seiko Epson Corporation Surface acoustic wave resonator and surface acoustic wave oscillator
US8471434B2 (en) 2010-08-26 2013-06-25 Seiko Epson Corporation Surface acoustic wave device, surface acoustic wave oscillator, and electronic apparatus
US8476984B2 (en) 2010-12-07 2013-07-02 Seiko Epson Corporation Vibration device, oscillator, and electronic apparatus
US8598766B2 (en) 2010-12-03 2013-12-03 Seiko Epson Corporation Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic apparatus
US8692439B2 (en) 2010-08-26 2014-04-08 Seiko Epson Corporation Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic device
US8928432B2 (en) 2010-08-26 2015-01-06 Seiko Epson Corporation Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic apparatus
US8933612B2 (en) 2009-02-27 2015-01-13 Seiko Epson Corporation Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic instrument
US9048806B2 (en) 2010-09-09 2015-06-02 Seiko Epson Corporation Surface acoustic wave device, electronic apparatus, and sensor apparatus
US9088263B2 (en) 2010-06-17 2015-07-21 Seiko Epson Corporation Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic apparatus

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8084918B2 (en) 2008-02-20 2011-12-27 Seiko Epson Corporation Surface acoustic wave device and surface acoustic wave oscillator
US8237326B2 (en) 2008-02-20 2012-08-07 Seiko Epson Corporation Surface acoustic wave device and surface acoustic wave oscillator
US8063534B2 (en) 2008-02-20 2011-11-22 Seiko Epson Corporation Surface acoustic wave device and surface acoustic wave oscillator
US8933612B2 (en) 2009-02-27 2015-01-13 Seiko Epson Corporation Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic instrument
US8305162B2 (en) 2009-02-27 2012-11-06 Seiko Epson Corporation Surface acoustic wave resonator and surface acoustic wave oscillator
US9762207B2 (en) 2009-02-27 2017-09-12 Seiko Epson Corporation Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic instrument
US8502625B2 (en) 2009-02-27 2013-08-06 Seiko Epson Corporation Surface acoustic wave resonator and surface acoustic wave oscillator
US8952596B2 (en) 2009-02-27 2015-02-10 Seiko Epson Corporation Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic instrument
US9537464B2 (en) 2010-06-17 2017-01-03 Seiko Epson Corporation Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic apparatus
US9088263B2 (en) 2010-06-17 2015-07-21 Seiko Epson Corporation Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic apparatus
US8471434B2 (en) 2010-08-26 2013-06-25 Seiko Epson Corporation Surface acoustic wave device, surface acoustic wave oscillator, and electronic apparatus
US8928432B2 (en) 2010-08-26 2015-01-06 Seiko Epson Corporation Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic apparatus
US8692439B2 (en) 2010-08-26 2014-04-08 Seiko Epson Corporation Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic device
US9048806B2 (en) 2010-09-09 2015-06-02 Seiko Epson Corporation Surface acoustic wave device, electronic apparatus, and sensor apparatus
US8791621B2 (en) 2010-12-03 2014-07-29 Seiko Epson Corporation Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic apparatus
US8598766B2 (en) 2010-12-03 2013-12-03 Seiko Epson Corporation Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic apparatus
US8476984B2 (en) 2010-12-07 2013-07-02 Seiko Epson Corporation Vibration device, oscillator, and electronic apparatus

Similar Documents

Publication Publication Date Title
TWI762832B (en) Surface acoustic wave device
JP4757860B2 (en) Surface acoustic wave functional element
KR100200179B1 (en) Saw apparatus
JPWO2018097016A1 (en) Elastic wave device
JP2019114986A (en) Acoustic wave device
US9800225B2 (en) Elastic wave device
JP5648908B2 (en) Vibration device, oscillator, and electronic device
JPH11298290A (en) Surface acoustic wave device
JP4109877B2 (en) Surface acoustic wave functional element
JP2007267033A (en) Surface acoustic wave element and surface acoustic wave device
JP4645957B2 (en) Surface acoustic wave element and surface acoustic wave device
CN101964642A (en) Boundary acoustic wave device
JP4158650B2 (en) Surface acoustic wave device and manufacturing method thereof
JP2005204275A (en) Surface acoustic wave element, method of manufacturing the same, and surface acoustic wave device
JP2010226636A (en) Elastic wave device and manufacturing method thereof
JP2002100959A (en) Surface acoustic wave device
JP2006074136A (en) Surface acoustic wave element and surface acoustic wave device
JP2008054163A (en) Lamb wave type high frequency resonator
JP7519902B2 (en) Transducer structure for source suppression in SAW filter devices - Patents.com
JP2000188521A (en) Surface acoustic wave device and two-port surface acoustic wave resonator
JPH11136083A (en) Surface wave device
JP5563378B2 (en) Elastic wave element
KR0175201B1 (en) Method for manufacturing surface wave devices of the end-face reflection type
JP2002171153A (en) Elastic surface wave device and method of manufacturing the same
JP3255502B2 (en) Highly stable surface acoustic wave device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090130

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090325