[go: up one dir, main page]

JP2006071475A - Sample stand for blood observation, and separation quantitative evaluation method of blood cell - Google Patents

Sample stand for blood observation, and separation quantitative evaluation method of blood cell Download PDF

Info

Publication number
JP2006071475A
JP2006071475A JP2004255602A JP2004255602A JP2006071475A JP 2006071475 A JP2006071475 A JP 2006071475A JP 2004255602 A JP2004255602 A JP 2004255602A JP 2004255602 A JP2004255602 A JP 2004255602A JP 2006071475 A JP2006071475 A JP 2006071475A
Authority
JP
Japan
Prior art keywords
red blood
blood
blood cells
thin film
observation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004255602A
Other languages
Japanese (ja)
Inventor
Koichi Shimizu
孝一 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hakuju Institute for Health Science Co Ltd
HAKUJU INST FOR HEALTH SCIENCE CO Ltd
Original Assignee
Hakuju Institute for Health Science Co Ltd
HAKUJU INST FOR HEALTH SCIENCE CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hakuju Institute for Health Science Co Ltd, HAKUJU INST FOR HEALTH SCIENCE CO Ltd filed Critical Hakuju Institute for Health Science Co Ltd
Priority to JP2004255602A priority Critical patent/JP2006071475A/en
Publication of JP2006071475A publication Critical patent/JP2006071475A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a quantitative evaluation method of a blood cell separation state for evaluating quantitatively the separation/aggregation state of erythrocyte not only for pathologic diagnosis but also for initial examination of a health condition and a nutrition state, and also to provide a sample stand for blood observation to be used for the quantitative evaluation method. <P>SOLUTION: This sample stand for blood observation is equipped with: a flat glass substrate; a spacer thin film having the uniform thickness disposed on the glass substrate; and a cover glass placed thereon. The spacer thin film is equipped with: a maintenance means having a recessed part for storing a prescribed amount of blood; and an escape connected to the recessed part. The sample stand is also equipped with a maintaining means for maintaining the blood amount dropped into the recessed part to be always constant. The spacer thin film has the thickness of 2-9 μm, preferably the thickness of 5 μm (±10%). <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、病態診断だけではなく、健康状態及び栄養状態の初期的検査のための赤血球の分離・凝集状態を定量的に評価するための血液細胞分離状態の定量評価方法及びこの定量評価方法に使用するための血液観察用試料台に関する。   The present invention provides a method for quantitative evaluation of blood cell separation state for quantitatively evaluating the separation / aggregation state of red blood cells not only for pathological diagnosis but also for initial examination of health and nutritional state, and to this quantitative evaluation method. The present invention relates to a sample table for blood observation for use.

血液塗抹染色標本を用いて顕微鏡下に観察される血球像から種々の病態を診断する検査法は、早くから臨床に供されており、異常状態の発見や病名の確定に力を発揮している。この検査のための血液塗抹標本の作製は、引きガラスの引き具合などに経験を要し、作製者の個人差を避け得ないものであった。また、血液を薄層にした後、すばやく乾燥させ、固定・染色などのプロセスを要するものでもあった。   Test methods for diagnosing various pathological conditions from blood cell images observed under a microscope using a blood smear stained specimen have been used in clinical practice from an early stage, and are effective in finding abnormal states and determining disease names. The preparation of blood smears for this examination required experience in pulling glass, etc., and it was inevitable that there were individual differences among the creators. In addition, after the blood was made into a thin layer, it was quickly dried to require a process such as fixation and staining.

従来の血球顕微鏡像解析に使用される血液塗抹染色標本は、ガラス基板上に血液を滴下して乾燥させ染色・固定して作られるので、血液の厚みにバラツキが生じる。また、従来の血液塗抹染色標本によれば「死んだ」血液を観察して種々の病態診断をしていることになる。さらに、血液の観察において、血球が厚く重なった状態になり、精度良く観察を行うことに適していない。   A blood smear-stained specimen used for conventional blood cell microscopic image analysis is produced by dropping blood on a glass substrate, drying it, and staining and fixing it, resulting in variations in blood thickness. In addition, according to the conventional blood smear stained specimen, “dead” blood is observed and various pathological conditions are diagnosed. Furthermore, in blood observation, blood cells are thick and overlapped, which is not suitable for performing observation with high accuracy.

これに対し近年、予防医学や健康科学の観点から、一滴の新鮮な血液そのものから情報を得ようとする試みがある。つまり、染色や固定などの前処理をせず、直接光学顕微鏡下に観察した血球像から、被験者の栄養状態や健康状態に関する種々の情報を得ようとするものである。しかし現在のところ、その判断基準は、ほとんどが定性的なものであり、検査者の主観によっているのが現状である。簡易な初期チェックとしてのこの方法の簡便さが注目され、再現性のある客観的定量評価を可能とする手法が研究されている。   On the other hand, in recent years, there have been attempts to obtain information from a drop of fresh blood itself from the viewpoint of preventive medicine and health science. That is, it is intended to obtain various information on the nutritional status and health status of the subject from the blood cell image directly observed under an optical microscope without pretreatment such as staining or fixation. However, at present, most of the judgment criteria are qualitative, and the present condition depends on the subjectivity of the examiner. The simplicity of this method as a simple initial check has attracted attention, and methods that enable objective quantitative evaluation with reproducibility have been studied.

新鮮血の血球顕微鏡像解析において、最も特徴的で、頻繁に観察されるものが、赤血球の分離・凝集状態である。通常、赤血球表面は陰性に荷電し、互いに反発し合うことから、赤血球同士は分離している。しかし、中性荷電した軸比の大きな物質が赤血球表面に結合すると、この分子の両端が赤血球に架橋し、赤血球が結合すると言われている。また新鮮血において赤血球を結合する原因物質として、飽和脂肪や異常なタンパク質が関与すると言われている。これらより、赤血球の分離・凝集状態が、生理状態の一端を反映すると考えられる。   In the blood cell microscopic image analysis of fresh blood, the most characteristic and frequently observed is the state of red blood cell separation / aggregation. Usually, erythrocytes are separated from each other because the erythrocyte surface is negatively charged and repels each other. However, it is said that when a neutrally charged substance with a large axial ratio binds to the erythrocyte surface, both ends of this molecule crosslink to the erythrocyte and the erythrocyte binds. In addition, it is said that saturated fats and abnormal proteins are involved as causative substances that bind red blood cells in fresh blood. From these, it is considered that the separation / aggregation state of red blood cells reflects one end of the physiological state.

赤血球の分離・凝集状態を評価するには、分離赤血球と集塊状赤血球の個数の割合を求めるのが、直接的である。しかし、解析上、複雑に重なり合った集塊状赤血球を正確に数えることは難しく、計測時間も長くなる。   In order to evaluate the separation / aggregation state of erythrocytes, it is straightforward to obtain the ratio of the number of separated erythrocytes and aggregated erythrocytes. However, for analysis, it is difficult to accurately count the complicatedly overlapping agglomerated erythrocytes, and the measurement time becomes long.

本発明は、従来の欠点を鑑みてなされたもので、本発明の目的は、生きたままの赤血球の動的観察をすることによって個別に分離した赤血球と連鎖状や集塊状に凝集した赤血球の割合を定量化する方法、すなわち画像中に存在する分離赤血球と集塊状赤血球を数えるか、又は画像中に存在する全赤血球の面積に対する分離赤血球の総面積の比を用いて定量評価する方法、及びこの定量化方法の評価のために使用される血液観察用試料台を提供することにある。   The present invention has been made in view of the conventional drawbacks, and the object of the present invention is to analyze the red blood cells that have been separated from the individually separated red blood cells by dynamically observing the live red blood cells. A method of quantifying the proportion, i.e., counting the separated red blood cells and clumped red blood cells present in the image, or quantitatively evaluating using the ratio of the total area of the separated red blood cells to the total red blood cell area present in the image, and The object is to provide a sample table for blood observation used for evaluation of this quantification method.

(1)本発明に係る血液観察用試料台は、平板なガラス基板と、このガラス基板上に配設される均一な厚みのスペーサ薄膜と、その上に載置されたカバーガラスとを備え、前記スペーサ薄膜は、所定量の血液を貯蔵する凹所とこの凹所に接続する逃げ道とを有して、この凹所内に滴下された血液量を常に一定に維持するための維持手段を備えることを特徴とする。
(2)(1)の血液観察用試料台において、
前記スペーサ薄膜は、2μm〜9μmの厚みを有することを特徴とする。
さらに、その厚みは、5μm(±10%)であることが好ましい。
(1) A sample stage for blood observation according to the present invention comprises a flat glass substrate, a spacer thin film having a uniform thickness disposed on the glass substrate, and a cover glass placed thereon. The spacer thin film has a recess for storing a predetermined amount of blood and an escape passage connected to the recess, and has a maintaining means for constantly maintaining the amount of blood dripped in the recess. It is characterized by.
(2) In the sample table for blood observation of (1),
The spacer thin film has a thickness of 2 μm to 9 μm.
Further, the thickness is preferably 5 μm (± 10%).

(3)(1)または(2)の血液観察用試料台において、
前記スペーサ薄膜が、基板上にメッキ技術により金属薄膜を形成してなることを特徴とする。
(3) In the blood observation sample stage of (1) or (2),
The spacer thin film is formed by forming a metal thin film on a substrate by a plating technique.

(4)(1)または(2)の血液観察用試料台において、
前記スペーサ薄膜が、基板上に印刷技術により非金属薄膜を形成してなることを特徴とする。
(4) In the blood observation sample stage of (1) or (2),
The spacer thin film is formed by forming a non-metallic thin film on a substrate by a printing technique.

(5)本発明に係る血液細胞の分離定量評価方法は、(1)〜(4)いずれかに記載の血液観察用試料台を用いて血液の観察を行い、その画像中に存在する赤血球総数に対する分離赤血球数の割合を赤血球分離度と定義し、この値を用いて赤血球の分離・凝集状態を定量的に以下の式を用いて評価することを特徴とする。
赤血球分離度(%)=100×(分離赤血球の総数)/(分離赤血球の総数+凝集赤血球の総数)
(5) The method for separating and quantitatively evaluating blood cells according to the present invention comprises observing blood using the blood observation sample stage according to any one of (1) to (4), and the total number of red blood cells present in the image. The ratio of the number of separated erythrocytes to is defined as the degree of erythrocyte separation, and using this value, the separation / aggregation state of erythrocytes is quantitatively evaluated using the following formula.
Red blood cell separation rate (%) = 100 × (total number of separated red blood cells) / (total number of separated red blood cells + total number of aggregated red blood cells)

(6)本発明に係る血液細胞の分離定量評価方法は、(1)〜(4)いずれかに記載の血液観察用試料台を用いて血液の観察を行い、その画像中に存在する全赤血球の面積に対する分離赤血球の総面積の割合を赤血球分離度と定義し、この値を用いて赤血球の分離・凝集状態を定量的に以下の式を用いて評価する。
赤血球分離度(%)=100×(分離赤血球の総面積)/(分離赤血球の総面積+凝集赤血球の総面積)
(6) The method for separating and quantitatively evaluating blood cells according to the present invention comprises observing blood using the blood observation sample stage described in any of (1) to (4), and total red blood cells present in the image The ratio of the total area of separated erythrocytes to the area of erythrocytes is defined as the degree of erythrocyte separation, and using this value, the separation / aggregation state of erythrocytes is quantitatively evaluated using the following formula.
Red blood cell separation rate (%) = 100 × (total area of separated red blood cells) / (total area of separated red blood cells + total area of aggregated red blood cells)

近年新たな方法として注目されている生きたままの血液の動的観察に対して、従来、判断基準が定性的で、検査者の主観によっていた評価法について、定量化基準を確立し、客観化することを試みた。定量化基準として赤血球分離度を定義することにより、赤血球の分離・凝集状態を定量化することができた。赤血球分離度を再現性よく計測するために、薄膜をスペーサとするスライドガラスを発明し、一定厚みの血液試料の作製を可能とした。これらにより、血球顕微鏡像の画像処理において、赤血球分離度の客観評価が可能になった。   In contrast to dynamic observation of live blood, which has been attracting attention as a new method in recent years, we established a quantification standard for objective evaluation methods based on qualitative criteria based on the subject's subjectivity. Tried to do. By defining the red blood cell separation degree as a quantification standard, the separation / aggregation state of red blood cells could be quantified. In order to measure the degree of red blood cell separation with good reproducibility, a slide glass using a thin film as a spacer was invented to enable the preparation of a blood sample with a constant thickness. As a result, objective evaluation of the degree of red blood cell separation is possible in image processing of a blood cell microscopic image.

このように客観化された手法を用い、生理的変化検出の可能性を調べた結果、絶食・絶飲後のスポーツドリンク摂取に伴い、赤血球分離度が増加することが明らかとなった。また、糖負荷に伴い赤血球分離度が減少する傾向が見られた。純水摂取時の結果と合わせて考えると、スポーツドリンク摂取時の赤血球分離度の変化は、水分補給に伴うものと判断された。かくして、生理状態計測に対する新鮮血顕微鏡解析の信頼性および有用性の確証が得られた。   As a result of investigating the possibility of detecting physiological changes using such an objective technique, it was found that the degree of red blood cell separation increases with ingestion of sports drink after fasting and fasting. Moreover, the tendency for the degree of red blood cell separation to decrease with sugar load was observed. Considering together with the results when pure water was ingested, it was determined that the change in red blood cell separation upon ingestion of sports drinks was accompanied by hydration. Thus, confirmation of the reliability and usefulness of fresh blood microscopic analysis for physiological state measurement was obtained.

赤血球分離度を正しく定量的に評価するためには、再現性よく一定の結果が得られる条件を確立する必要がある。そのために作製した血液観察用試料台の原理を図1に示す。図1は、血液観察用試料台の断面図を示す模式図である。該図1において、符号10は、ガラス基板を示し、これは平板形状をなして所定の均一な厚みを有する。該ガラス基板10上に一定厚みのスペーサ薄膜12を固定して配設し、その上にカバーガラス14を載せて使用する。該図1において、ガラス基板10の上に堆積されたスペーサ薄膜12は、メッキ技術により、金、銀、銅、白金、ロジウム、パラジウム、ニッケル、スズ、クロム等の金属薄膜を、または、印刷技術によりエポキシ樹脂やフッ素樹脂等の非金属を、所定のパターン及び所定の厚さに堆積することにより形成される。   In order to accurately and quantitatively evaluate the degree of erythrocyte separation, it is necessary to establish conditions under which reproducible and constant results can be obtained. The principle of the blood observation sample stage prepared for this purpose is shown in FIG. FIG. 1 is a schematic view showing a cross-sectional view of a sample table for blood observation. In FIG. 1, reference numeral 10 indicates a glass substrate, which has a flat plate shape and a predetermined uniform thickness. A spacer thin film 12 having a constant thickness is fixedly disposed on the glass substrate 10, and a cover glass 14 is placed thereon for use. In FIG. 1, the spacer thin film 12 deposited on the glass substrate 10 is made of a metal thin film such as gold, silver, copper, platinum, rhodium, palladium, nickel, tin, or chromium by a printing technique, or a printing technique. Thus, a non-metal such as an epoxy resin or a fluorine resin is deposited in a predetermined pattern and a predetermined thickness.

ここで、堆積させた薄膜は、カバーガラスを所定の高さに維持するスペーサの機能を有する。このスペーサ薄膜の膜厚tは、2μm〜9μm、好ましくは5μm(±10%)である。すなわちスペーサ薄膜の膜厚tが、2μm以下であると、赤血球が押しつぶされるため血球の分離状態と凝集状態の区別がつきづらくなり動的観察が出来なくなる。また、膜厚が9μm以上であると、血球が多層になり、本来は分離しているのに凝集しているかのように観察される。これに対して、スペーサ薄膜の膜厚tが、2μm〜9μm、好ましくは5μm(±10%)であると、赤血球がほぼ一層となり、血球がお互いに妨げられることなく自由に動くことができるため、分離状態と凝集状態とを区別した動的観察が可能となる。   Here, the deposited thin film has a function of a spacer for maintaining the cover glass at a predetermined height. The thickness t of this spacer thin film is 2 μm to 9 μm, preferably 5 μm (± 10%). That is, when the thickness t of the spacer thin film is 2 μm or less, the red blood cells are crushed, making it difficult to distinguish the blood cell separation state and the aggregation state, and dynamic observation becomes impossible. Further, when the film thickness is 9 μm or more, blood cells are multilayered and are observed as if they were aggregated although they were originally separated. On the other hand, if the thickness t of the spacer thin film is 2 μm to 9 μm, preferably 5 μm (± 10%), the red blood cells are almost one layer, and the blood cells can move freely without being disturbed by each other. In addition, dynamic observation in which the separated state and the aggregated state are distinguished is possible.

さらに、スペーサ薄膜は、図2に示すような所定のパターン形状を有する。すなわち、スペーサ薄膜のパターンは、ガラス基板のほぼ中央に、直径d;約10mmのほぼ円形に抜いた形状を有している。この部分は、膜厚の厚さにより、深さt=2μm〜9μm、好ましくは5μm(±10%)のほぼ円形な凹所16を形成する。そして、この凹所16には、凹所内に滴下した血液が薄膜上に溢れ出ないように、血液の逃げ道18(流路)が連結して接続されている。該図2において、この血液の逃げ道18は、凹所16の所定の位置4箇所に設けられている。4箇所の各逃げ道は、円形形状の凹所16の中心からそれぞれ90度の角度をもって、それぞれガラス基板の長手方向及び縦方向に形成されている。なお、この赤血球の逃げ道18は、上述の凹所の所定の位置の4箇所に限定されずに、血液が薄膜上に溢れ出ないように、血液を排出する種々の形状を有することもできる。かくして、該凹所16内に滴下された血液は常に一定の厚みに維持され、顕微鏡観察用の血液試料の一定化が実現される。また、ガラス基板の一端側には、手で持つ領域20に血液が流れ出るのを防止するために、基板の縦方向に延出する凸部21が設けられている。   Further, the spacer thin film has a predetermined pattern shape as shown in FIG. That is, the pattern of the spacer thin film has a shape extracted in a substantially circular shape with a diameter d; about 10 mm at the center of the glass substrate. This portion forms a substantially circular recess 16 having a depth t = 2 μm to 9 μm, preferably 5 μm (± 10%), depending on the thickness of the film. A blood escape path 18 (flow path) is connected to and connected to the recess 16 so that blood dropped into the recess does not overflow on the thin film. In FIG. 2, the blood escape path 18 is provided at four predetermined positions of the recess 16. The four escape paths are formed in the longitudinal direction and the longitudinal direction of the glass substrate, respectively, at an angle of 90 degrees from the center of the circular recess 16. The red blood cell escape path 18 is not limited to the four predetermined positions of the above-mentioned recess, but may have various shapes for discharging blood so that the blood does not overflow on the thin film. Thus, the blood dropped into the recess 16 is always maintained at a constant thickness, and the blood sample for microscopic observation is made constant. Further, a convex portion 21 extending in the vertical direction of the substrate is provided on one end side of the glass substrate in order to prevent blood from flowing into the region 20 held by the hand.

図3は、スペーサ薄膜のパターンの他の例を示す。該図3において、円形凹所16からの血液の逃道として、2箇所の流路が設けられている。2箇所の各逃げ道は、円形形状の凹所の中心からそれぞれ180度の角度をもって、それぞれガラス基板の長手方向に形成されている。なお、血液の逃げ道18は、上述の凹所の所定位置から、4箇所又は2箇所に限定されずに形成することができるのは、勿論である。   FIG. 3 shows another example of the spacer thin film pattern. In FIG. 3, two flow paths are provided as a blood escape from the circular recess 16. Each of the two escape paths is formed in the longitudinal direction of the glass substrate at an angle of 180 degrees from the center of the circular recess. Of course, the blood escape path 18 can be formed without being limited to four or two places from the predetermined position of the above-mentioned recess.

かくして、厚さ9μm以上又は2μm以下のスペーサ薄膜により血液試料を作製したところ、赤血球が厚く重なり合い、解析に適さない状態が多く観察され、また、血液が円形凹所全体にうまく広がらないこともあった。しかし、スペーサ薄膜の膜厚を2μm〜9μm、好ましくは5μm(±10%)にし、指先から約0.25μlの血液を採取し、ガラス基板の中央の円形凹所に滴下したところ、赤血球が一層に近い状態で広がり、解析に適した状態で安定した血液試料の観察が可能となった。   Thus, when a blood sample was prepared with a spacer thin film having a thickness of 9 μm or more or 2 μm or less, erythrocytes overlapped thickly and many states were unsuitable for analysis, and blood did not spread well throughout the circular recess. It was. However, when the thickness of the spacer thin film is 2 μm to 9 μm, preferably 5 μm (± 10%), about 0.25 μl of blood is collected from the fingertip and dropped into the circular recess in the center of the glass substrate. It became possible to observe a stable blood sample in a state suitable for analysis.

この方法を用いて、同じ時間帯に採血した血液試料複数枚を観察したところ、血液厚みにバラつきがなく、同じ傾向の血球像が再現性よく観察できた。以降、この2μm〜9μm、好ましくは5μm(±10%)の厚みのあるスペーサ薄膜を使用して、種々の解析を行った。   When this method was used to observe a plurality of blood samples collected in the same time zone, the blood thickness did not vary and a blood cell image having the same tendency could be observed with good reproducibility. Thereafter, various analyzes were performed using a spacer thin film having a thickness of 2 μm to 9 μm, preferably 5 μm (± 10%).

上記のように血液厚みを一定化した血液観察用試料台を使用して、顕微鏡により赤血球の分離・凝集状態を観察する際に、次のように計測領域を分割し、赤血球の分離・凝集状態の不均一の影響を平均化するようにした。具体的には、図4に示すように血液試料中央部の2.0mm×2.5mmの範囲を0.5mm刻みに分割して合計30領域とし、各々を1000倍の倍率で観測した。1血液試料につき、これら30領域の画像について、画像解析により分離赤血球と凝集赤血球を区別した。区別した各々の血球数又は血球面積から赤血球分離度を求め、30領域の平均をもってその血液試料の赤血球分離度とした。   When observing the separation / aggregation state of red blood cells with a microscope using the blood observation sample stage with a constant blood thickness as described above, the measurement area is divided as follows to separate and aggregate the red blood cells. The effect of non-uniformity was averaged. Specifically, as shown in FIG. 4, a 2.0 mm × 2.5 mm range at the center of the blood sample was divided into 0.5 mm increments for a total of 30 areas, and each was observed at a magnification of 1000 times. For one blood sample, the separated red blood cells and the aggregated red blood cells were discriminated by image analysis for these 30 region images. The degree of erythrocyte separation was determined from the number of each blood cell or the area of the erythrocytes, and the average of 30 regions was used as the degree of erythrocyte separation of the blood sample.

このようにして得た赤血球分離度の安定性を確かめるため、各血液試料における30領域の赤血球分離度の分散の程度を調べた。25人の被験者につき各5回計測した結果、赤血球分離度の変動係数(標準偏差/平均値)は、ほぼ30%以内であり、比較的安定な計測パラメータであることが確かめられた。以降の解析では、この30領域の平均値を、その血液試料赤血球分離度の代表値とした。   In order to confirm the stability of red blood cell separation obtained in this way, the degree of dispersion of red blood cell separation in 30 regions in each blood sample was examined. As a result of measuring five times for each of 25 subjects, the coefficient of variation (standard deviation / average value) of the red blood cell separation degree was within about 30%, confirming that it was a relatively stable measurement parameter. In the subsequent analysis, the average value of the 30 regions was used as the representative value of the blood sample red blood cell separation degree.

この定量化方法の正確さを調べるために、600画像について血球数比による定量化と血球面積比による定量化を行い、比較をした。その結果を図5に示す。そして、図5に見られるように、相関係数r=0.97と高い相関関係が得られた。この結果より、処理上困難の大きい赤血球個数の計数を行わずとも、面積比によって同等の定量評価が可能なことが確かめられた。   In order to examine the accuracy of this quantification method, 600 images were quantified by a blood cell number ratio and a hemocyte area ratio, and compared. The result is shown in FIG. As shown in FIG. 5, a high correlation was obtained with a correlation coefficient r = 0.97. From this result, it was confirmed that an equivalent quantitative evaluation was possible by the area ratio without counting the number of red blood cells, which is difficult to process.

かくして、本発明では、赤血球数の計測が可能な場合には、血球数比を赤血球分離度を用い、また計測が困難な場合には、血球面積比を赤血球分離度に用いて、赤血球の分離・凝集状態を評価する。図6は、画像中に存在する分離赤血球と凝集赤血球の区別及び面積算出の結果の概略を示す。   Thus, in the present invention, when the red blood cell count can be measured, the red blood cell separation ratio is used as the blood cell count ratio, and when the measurement is difficult, the red blood cell separation ratio is used as the red blood cell separation ratio.・ Evaluate the aggregation state. FIG. 6 shows an outline of the results of discrimination and area calculation of separated red blood cells and aggregated red blood cells present in the image.

赤血球分離度(%)=100×(分離赤血球の総数)/(分離赤血球の総数+集塊状赤血球の総数)
又は、
赤血球分離度(%)=100×(分離赤血球の総面積)/(分離赤血球の総面積+凝集赤血球の総面積)
Red blood cell separation rate (%) = 100 × (total number of separated red blood cells) / (total number of separated red blood cells + total number of aggregated red blood cells)
Or
Red blood cell separation rate (%) = 100 × (total area of separated red blood cells) / (total area of separated red blood cells + total area of aggregated red blood cells)

本発明に係る方法による生理的変化検出の可能性を調べるため、スポーツドリンク摂取時の赤血球分離度の変化を実験的に調べた。実験では、被験者を脱水状態に近づけておき、体内への吸収が早いと言われるスポーツドリンク摂取前後の赤血球分離度の変化を調べた。被験者には約10時間の絶食・絶飲を課し、その後、血液顕微鏡像撮影を開始した。ここでは、500mlのスポーツドリンク摂取前及び後20分おきに赤血球分離度の計測を行った。また、血液状態の変化を確かめるため、細管を用いてヘマトクリットも同時に計測した。   In order to investigate the possibility of detecting a physiological change by the method according to the present invention, the change in the degree of red blood cell separation at the time of taking a sports drink was experimentally examined. In the experiment, the subject was kept close to dehydration, and the change in red blood cell separation before and after taking a sports drink, which is said to be absorbed quickly into the body, was examined. The subjects were fasted and drunk for about 10 hours, and then started to take blood micrographs. Here, the degree of red blood cell separation was measured before and after taking 500 ml of sports drink. In addition, hematocrit was also measured at the same time using a capillary tube to confirm changes in blood state.

計測結果の代表例を図7に示す。これは、一個人の計測結果を、前述の30領域の平均値と標準偏差の経時変化として示したものである。ヘマトクリットは各点1〜3回の平均値である。赤血球分離度の変化の大きさ、平均値変化幅と標準偏差の程度などが読み取れる。また、スポーツドリンク摂取に伴い、赤血球分離度とヘマトクリットが、ほぼ対称的な増減を示すこともわかる。これらの平均値を用いて、被験者25人分の計測値をまとめた結果を図8及び図9に示す。これらの図では、図7の一個人のデータと同様に、赤血球分離度は、スポーツドリンク摂取後20分で有意に増加し、その後その状態を保ちつつわずかに減少していく。ヘマトクリットは摂取後20分で減少し、その状態を保ちつつわずかに増加していく。   A representative example of the measurement result is shown in FIG. This shows a measurement result of one individual as a change with time of the average value and standard deviation of the 30 regions described above. Hematocrit is an average of 1 to 3 points for each point. You can read the magnitude of change in red blood cell separation, average value change, and standard deviation. It can also be seen that red blood cell separation and hematocrit show almost symmetrical increases and decreases with the intake of sports drinks. The result of putting together the measured values for 25 subjects using these average values is shown in FIGS. In these figures, similar to the data for one individual in FIG. 7, the degree of red blood cell separation increases significantly 20 minutes after taking a sports drink, and then decreases slightly while maintaining that state. Hematocrit decreases 20 minutes after ingestion and increases slightly while maintaining that state.

これらの結果より、赤血球分離度が、スポーツドリンク摂取に伴う生理的変化を反映していることが、定量的に明らかとなった。   From these results, it was quantitatively clarified that the degree of erythrocyte separation reflects a physiological change accompanying sports drink intake.

スポーツドリンク摂取に伴う赤血球分離度の変化の原因として、水分または糖分の補給が考えられる。これを明らかにするために、血糖負荷試験と純水摂取時の赤血球の分離度変化を調べた。血糖負荷試験では、被験者に約10時間の絶食・絶飲を課し、その後、血球顕微鏡像撮影を開始した。ここでは、ブドウ糖75gを含む225mlの糖液(清水製薬、トレーランG75)摂取前及び後30分おきに指先から血液を採取し、赤血球分離度を計測した。また、市販の血糖値計測キット(テルモ、メディセーフミニGR−102)を用いて血糖値を測るとともに細管によりヘマトクリットの計測も行った。   As a cause of the change in the degree of red blood cell separation accompanying sports drink intake, water or sugar supplementation can be considered. To clarify this, we examined the change in red blood cell separation during blood glucose tolerance test and pure water intake. In the blood glucose tolerance test, subjects were fasted and drunk for about 10 hours, and thereafter, blood cell micrographs were started. Here, blood was collected from the fingertips before ingestion and every 30 minutes after ingesting 225 ml of sugar solution (Shimizu Pharmaceutical, Toray Run G75) containing 75 g of glucose, and the degree of red blood cell separation was measured. In addition, the blood glucose level was measured using a commercially available blood glucose level measurement kit (Terumo, Medisafe Mini GR-102), and hematocrit was also measured using a thin tube.

計測結果の代表例を図10に示す。これは、一個人の計測結果を、30領域の平均値と標準偏差の経時変化として示したものである。糖液摂取後30分で、赤血球分離度が顕著に減少し、その後、時間とともにもとに戻っていく様子がわかる。つぎに、同時に計測した血糖値とヘマトクリットの結果を図11に示す。血糖値が、赤血球分離度とほぼ対称的な増減を示すこと、およびヘマトクリットは特に一定した変化の傾向が見られないことが分かる。この実験を、6人の被験者に対し行った。その結果のまとめを図12及び図13に示す。測定結果のバラつきのため、差は減少したが、前述の代表例とほぼ同様の結果が得られた。これらの結果により、赤血球分離度は血糖値の変化に応じて、明らかな変化を示すことが定量的に示された。なお、糖負荷の際の赤血球の凝集については、他の計測による報告もある。   A representative example of the measurement result is shown in FIG. This shows a measurement result of one individual as a change with time of an average value and a standard deviation of 30 regions. It can be seen that 30 minutes after ingesting the sugar solution, the degree of red blood cell separation is markedly reduced, and then returns to its original state with time. Next, the blood glucose level and hematocrit results measured simultaneously are shown in FIG. It can be seen that the blood glucose level increases and decreases almost symmetrically with the degree of red blood cell separation, and that the hematocrit does not show a particularly constant tendency of change. This experiment was performed on six subjects. A summary of the results is shown in FIGS. Although the difference was reduced due to the variation in the measurement results, the results were almost the same as the above-mentioned representative example. From these results, it was quantitatively shown that the degree of red blood cell separation showed a clear change according to the change in blood glucose level. In addition, about the aggregation of the erythrocyte in the case of a sugar load, there exists a report by another measurement.

また、糖負荷に伴い赤血球分離度が減少することから考えると、スポーツドリンク摂取に伴い赤血球分離度が増加した原因は、スポーツドリンク中の糖成分によるものではないことが判明した。この結果を受け、スポーツドリンク摂取時における赤血球分離度変化の原因を確かめるため、さらに純水摂取時の赤血球分離度を調べた。実験の手順は、摂取物が純水であることを除いては、スポーツドリンク摂取の実験と同様である。さらに血糖値の計測も同時に行った。ここで得られた純水摂取前後の赤血球分離度の変化を図14に示す。純水の摂取に伴い赤血球分離度が増加することがわかる。ヘマトクリットは、赤血球分離度と対称的変化を示し、血糖値は有益な変化を示さなかった。   Further, considering that the red blood cell separation degree decreases with the sugar load, it has been found that the cause of the increase in the red blood cell separation degree with the intake of sports drink is not due to the sugar component in the sports drink. Based on this result, in order to confirm the cause of the change in red blood cell separation upon ingestion of sports drinks, the red blood cell separation upon intake of pure water was further investigated. The procedure of the experiment is the same as the experiment of taking a sports drink except that the intake is pure water. In addition, blood glucose levels were measured at the same time. FIG. 14 shows the change in red blood cell separation obtained before and after intake of pure water. It can be seen that the degree of red blood cell separation increases with the intake of pure water. Hematocrit showed a symmetrical change in red blood cell separation and blood glucose levels did not show any beneficial changes.

これらの結果を総合すると、スポーツドリンク摂取時の赤血球分離度の変化は、主として水分によるものと考えられる。つまり、赤血球分離度は水分補給に伴う生理的変化を顕著に反映することが明らかとなった。また、糖負荷に伴う生理的変化も、本手法で計測した赤血球分離度に反映されることが示された。   Summing up these results, it is considered that the change in the degree of red blood cell separation when taking a sports drink is mainly due to moisture. That is, it has been clarified that the degree of red blood cell separation remarkably reflects physiological changes associated with hydration. Moreover, it was shown that the physiological change accompanying a glucose load is reflected in the red blood cell separation degree measured by this method.

本発明は、被験者の生理状態、栄養状態や健康状態に関する情報を得るための検査や、その検査に使用するための血液観察用試料台として、容易に適用することができ、産業上の利用可能性は極めて大きい。   INDUSTRIAL APPLICABILITY The present invention can be easily applied as an examination for obtaining information on a subject's physiological state, nutritional state, and health state, and as a blood observation sample stage for use in the examination. The nature is extremely large.

本発明の一実施形態に係る血液観察用試料台であって、その断面を示す模式図である。It is a sample stand for blood observation concerning one embodiment of the present invention, and is a mimetic diagram showing the section. 同じく、本発明による血液観察用試料台のスペーサ薄膜のパターンの一例を示す平面図である。Similarly, it is a plan view showing an example of a spacer thin film pattern of the sample stage for blood observation according to the present invention. 同じく、本発明による血液観察用試料台のスペーサ薄膜の他のパターンを示す平面図である。Similarly, it is a top view which shows the other pattern of the spacer thin film of the sample stand for blood observation by this invention. 本発明に係る図であり、試料中央部における赤血球分離度測定手順を示す概念図である。It is a figure which concerns on this invention, and is a conceptual diagram which shows the red blood cell separation degree measurement procedure in the sample center part. 同じく、血球数比による分離度と面積比による分離度との相関を示す図である。Similarly, it is a figure which shows the correlation with the separation degree by a blood cell number ratio, and the separation degree by an area ratio. 同じく、画像中に存在する分離赤血球と凝集赤血球の区別及び面積算出の結果の概略を示す図である。Similarly, it is a figure which shows the outline of the result of the distinction of the separated erythrocyte and the aggregated erythrocyte which exist in an image, and area calculation. 同じく、一被験者のスポーツドリンク摂取における赤血球分離度の変化を示す図である。Similarly, it is a figure which shows the change of the red blood cell separation degree in one subject's sports drink intake. 同じく、スポーツドリンク摂取における赤血球分離度の25人平均の変化を示す図である。Similarly, it is a figure which shows the 25 person average change of the red blood cell separation degree in sports drink intake. 同じく、スポーツドリンク摂取におけるヘマトクリットの25人平均の変化を示す図である。Similarly, it is a figure which shows the change of 25 average of hematocrit in sports drink intake. 同じく、一被験者の糖液摂取における赤血球分離度の変化を示す図である。Similarly, it is a figure which shows the change of the red blood cell separation degree in the sugar water intake of one test subject. 同じく、一被験者の糖液摂取における血糖値及びヘマトクリットの変化を示す図である。Similarly, it is a figure which shows the change of the blood glucose level and hematocrit in the sugar water intake of one test subject. 同じく、糖液摂取における赤血球分離度の6人平均の変化を示す図である。Similarly, it is a figure which shows the 6-person average change of the red blood cell separation degree in sugar solution intake. 同じく、糖液摂取における血糖値及びヘマトクリットの6人変化を示す図である。Similarly, it is a figure which shows the 6 person change of the blood glucose level and hematocrit in sugar solution intake. 同じく、純水摂取における赤血球分離度の3人平均の変化を示す図である。Similarly, it is a figure which shows the change of the average of 3 persons of the red blood cell separation degree in pure water intake.

符号の説明Explanation of symbols

10 ガラス基板
12 スペーサ薄膜
14 カバーガラス
16 凹所
18 逃げ道(流路)
20 把持のための領域
21 流出防止用の凸部
10 Glass substrate 12 Spacer thin film 14 Cover glass 16 Recess 18 Escape (flow path)
20 Region for gripping 21 Protrusion for preventing outflow

Claims (6)

平板なガラス基板と、このガラス基板上に配設される均一な厚みのスペーサ薄膜と、その上に載置されたカバーガラスとを備え、
前記スペーサ薄膜は、所定量の血液を貯蔵する凹所とこの凹所に接続する逃げ道とを有して、この凹所内に滴下された血液量を常に一定に維持するための維持手段を備えることを特徴とする血液観察用試料台。
A flat glass substrate, a spacer thin film having a uniform thickness disposed on the glass substrate, and a cover glass placed thereon,
The spacer thin film has a recess for storing a predetermined amount of blood and an escape passage connected to the recess, and has a maintaining means for constantly maintaining the amount of blood dripped in the recess. A sample stage for blood observation characterized by.
前記スペーサ薄膜は、2μm〜9μmの厚みを有することを特徴とする請求項1記載の血液観察用試料台。   The sample table for blood observation according to claim 1, wherein the spacer thin film has a thickness of 2 μm to 9 μm. 前記スペーサ薄膜は、基板上に、メッキ技術により、金、銀、銅、白金、ロジウム、パラジウム、ニッケル、スズ、クロムの群から選択された1つの金属からなる金属薄膜を形成してなることを特徴とする請求項1または2に記載の血液観察用試料台。   The spacer thin film is formed by forming a metal thin film made of one metal selected from the group of gold, silver, copper, platinum, rhodium, palladium, nickel, tin, and chromium on a substrate by a plating technique. The sample table for blood observation according to claim 1 or 2, characterized in that: 前記スペーサ薄膜は、基板上に印刷技術によりエポキシ樹脂やフッ素樹脂からなる群から選ばれた1つの非金属からなる非金属薄膜を形成してなることを特徴とする請求項1または2に記載の血液観察用試料台。   The said spacer thin film forms the nonmetallic thin film which consists of one nonmetal selected from the group which consists of an epoxy resin and a fluororesin by the printing technique on a board | substrate, The Claim 1 or 2 characterized by the above-mentioned. Sample stage for blood observation. 請求項1〜4いずれかに記載の血液観察用試料台を用いて血液の観察を行い、その画像中に存在する赤血球総数に対する分離赤血球数の割合を赤血球分離度と定義し、この値を用いて赤血球の分離・凝集状態を次の式により定量的に評価することを特徴とする血液細胞の分離定量評価方法。
赤血球分離度(%)=100×(分離赤血球の総数)/(分離赤血球の総数+凝集赤血球の総数)
Blood is observed using the blood observation sample stage according to any one of claims 1 to 4, and the ratio of the number of separated red blood cells to the total number of red blood cells present in the image is defined as the degree of red blood cell separation, and this value is used. A method for separating and quantitatively evaluating blood cells, characterized by quantitatively evaluating the separation / aggregation state of erythrocytes by the following formula.
Red blood cell separation rate (%) = 100 × (total number of separated red blood cells) / (total number of separated red blood cells + total number of aggregated red blood cells)
請求項1〜4いずれかに記載の血液観察用試料台を用いて血液の観察を行い、その画像中に存在する全赤血球の面積に対する分離赤血球の総面積の割合を赤血球分離度と定義し、この値を用いて赤血球の分離・凝集状態を次の式により定量的に評価することを特徴とする血液細胞の分離定量評価方法。
赤血球分離度(%)=100×(分離赤血球の総面積)/(分離赤血球の総面積+凝集赤血球の総面積)
Blood is observed using the blood observation sample stage according to any one of claims 1 to 4, and the ratio of the total area of separated red blood cells to the area of total red blood cells present in the image is defined as the degree of red blood cell separation, A method for separation and quantitative evaluation of blood cells, characterized in that the separation / aggregation state of red blood cells is quantitatively evaluated by the following formula using this value.
Red blood cell separation rate (%) = 100 × (total area of separated red blood cells) / (total area of separated red blood cells + total area of aggregated red blood cells)
JP2004255602A 2004-09-02 2004-09-02 Sample stand for blood observation, and separation quantitative evaluation method of blood cell Pending JP2006071475A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004255602A JP2006071475A (en) 2004-09-02 2004-09-02 Sample stand for blood observation, and separation quantitative evaluation method of blood cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004255602A JP2006071475A (en) 2004-09-02 2004-09-02 Sample stand for blood observation, and separation quantitative evaluation method of blood cell

Publications (1)

Publication Number Publication Date
JP2006071475A true JP2006071475A (en) 2006-03-16

Family

ID=36152267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004255602A Pending JP2006071475A (en) 2004-09-02 2004-09-02 Sample stand for blood observation, and separation quantitative evaluation method of blood cell

Country Status (1)

Country Link
JP (1) JP2006071475A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009133769A1 (en) * 2008-04-30 2009-11-05 コニカミノルタオプト株式会社 Device for measuring blood coagulation ability
JP2012247205A (en) * 2011-05-25 2012-12-13 Konica Minolta Advanced Layers Inc Blood examination apparatus
JP2014002046A (en) * 2012-06-19 2014-01-09 Murazumi Kogyo Kk Preparation for inspection of liquid sample
JP2014041139A (en) * 2008-03-21 2014-03-06 Abbott Point Of Care Inc Method and apparatus for determining red blood cell indices of blood sample utilizing intrinsic pigmentation of hemoglobin contained within red blood cells
KR101379824B1 (en) * 2012-01-13 2014-04-01 (주)유 바이오메드 Microfilter chip with seperation and diagnostication of blood
JP2014196994A (en) * 2013-03-07 2014-10-16 日本電気硝子株式会社 Plate for making preparation, and preparation
JP5655779B2 (en) * 2009-05-29 2015-01-21 コニカミノルタ株式会社 Aggregation amount measuring apparatus and aggregation amount measuring method
CN108633304A (en) * 2015-09-14 2018-10-09 艾森利克斯公司 Collection analysis steam condensation, the especially device of expiratory air condensation and system and application method
JP2018532998A (en) * 2015-09-14 2018-11-08 エッセンリックス コーポレーション Apparatus and system for analyzing samples, in particular blood, and methods of their use
JP2020507768A (en) * 2017-02-09 2020-03-12 エッセンリックス コーポレーション QMAX assay method and application (II)
JP2021536563A (en) * 2018-08-16 2021-12-27 エッセンリックス コーポレーション Uniform assay method with particle agglutination or deagglomeration
JP2022520050A (en) * 2019-02-06 2022-03-28 エッセンリックス コーポレーション Assay with reduced interference (III)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014041139A (en) * 2008-03-21 2014-03-06 Abbott Point Of Care Inc Method and apparatus for determining red blood cell indices of blood sample utilizing intrinsic pigmentation of hemoglobin contained within red blood cells
US8611634B2 (en) 2008-04-30 2013-12-17 Konica Minolta Opto, Inc. Blood aggregation ability measuring apparatus
WO2009133769A1 (en) * 2008-04-30 2009-11-05 コニカミノルタオプト株式会社 Device for measuring blood coagulation ability
JP5655779B2 (en) * 2009-05-29 2015-01-21 コニカミノルタ株式会社 Aggregation amount measuring apparatus and aggregation amount measuring method
JP2012247205A (en) * 2011-05-25 2012-12-13 Konica Minolta Advanced Layers Inc Blood examination apparatus
KR101379824B1 (en) * 2012-01-13 2014-04-01 (주)유 바이오메드 Microfilter chip with seperation and diagnostication of blood
JP2014002046A (en) * 2012-06-19 2014-01-09 Murazumi Kogyo Kk Preparation for inspection of liquid sample
JP2014196994A (en) * 2013-03-07 2014-10-16 日本電気硝子株式会社 Plate for making preparation, and preparation
CN108633304A (en) * 2015-09-14 2018-10-09 艾森利克斯公司 Collection analysis steam condensation, the especially device of expiratory air condensation and system and application method
JP2018532998A (en) * 2015-09-14 2018-11-08 エッセンリックス コーポレーション Apparatus and system for analyzing samples, in particular blood, and methods of their use
JP7084959B2 (en) 2015-09-14 2022-06-15 エッセンリックス コーポレーション Devices and systems for analyzing samples, especially blood, and how to use them.
US12276660B2 (en) 2015-09-14 2025-04-15 Essenlix Corporation Device and system for analyzing a sample, particularly blood, as well as methods of using the same
CN108633304B (en) * 2015-09-14 2020-08-14 艾森利克斯公司 Device and system for collecting and analyzing steam condensate, in particular exhaled gas condensate, and method of use
JP2020128999A (en) * 2015-09-14 2020-08-27 エッセンリックス コーポレーション Devices and systems for analyzing samples, especially blood, and methods of using them
JP2020507768A (en) * 2017-02-09 2020-03-12 エッセンリックス コーポレーション QMAX assay method and application (II)
JP7219713B2 (en) 2017-02-09 2023-02-08 エッセンリックス コーポレーション QMAX assays and uses (II)
US12270810B2 (en) 2017-02-09 2025-04-08 Essenlix Corporation QMAX assay and applications (II)
CN111226113A (en) * 2017-02-09 2020-06-02 Essenlix公司 QMAX determination and use (II)
JP2021536563A (en) * 2018-08-16 2021-12-27 エッセンリックス コーポレーション Uniform assay method with particle agglutination or deagglomeration
JP2022520050A (en) * 2019-02-06 2022-03-28 エッセンリックス コーポレーション Assay with reduced interference (III)

Similar Documents

Publication Publication Date Title
US8361799B2 (en) Method and apparatus for determining the hematocrit of a blood sample utilizing the intrinsic pigmentation of hemoglobin contained within the red blood cells
JP5051402B2 (en) Method for preparing and examining cells from a blood sample
JP5461556B2 (en) Multi-layer slide for urine residue analysis
TW490561B (en) Method for performing blood cell counts
JP2006071475A (en) Sample stand for blood observation, and separation quantitative evaluation method of blood cell
EP2972345B1 (en) A flow-through cell counting assay
KR101885964B1 (en) Method and Apparatus for Measuring the level of HbA1c Using Optical Properties of Red Blood Cell
CN111684281B (en) Method for detecting an indicator of sepsis in a patient and device for carrying out said method
CN116519953A (en) Application of EDA2R protein and its specific antibody in the preparation of syphilis diagnostic products
Dhangadamajhi et al. Effect of Plasmodium falciparum infection on blood parameters and their association with clinical severity in adults of Odisha, India
US20170307504A1 (en) Measurement Of Serum Lipoproteins
WO2010058412A1 (en) A new rapid thrombochek test kit based on whole blood screening test to detect platelet hyperaggregation at a temparature of 37°c in the clinical laboratory
KR101361072B1 (en) Contact area diffusion factor for quantifying oil-like contents permeated in the body fluids
CN119269793A (en) Application of serum and cerebrospinal fluid FcRL2 protein in the preparation of diagnostic products for neurosyphilis or nerve damage
CN119291197A (en) Application of CLM-6 protein in the preparation of diagnostic products for neurosyphilis or nerve damage
US20070275425A1 (en) Device and method for analysis of a metabolic malady
Santoro et al. Platelet concentrations and platelet‐associated IgG in greyhounds
Popa et al. The prevalence of hematuria in dogs and cats
Hidalgo et al. Dried blood drops on vertical surfaces
EP2534491B1 (en) Compositons and methods for predicting cardiovascular events
WO2025037997A1 (en) Gasdermins as biomarker of psoriasis and psoriasis- associated disease
Ahmad et al. Discrimination Indices for Diagnosis of Beta (β) Thalassemia Trait
Ujjin et al. Evaluation of microalb immunoturbidimetric test for albuminuria screening
Ritonga et al. Performance Comparison of Urine Sediment Analytical Tool by Flowcytometry and Digital Imaging with Standardized Manual Microscopic Testing
WO2023169856A1 (en) A system and method for biomolecule detection

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20070829

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD03 Notification of appointment of power of attorney

Effective date: 20070829

Free format text: JAPANESE INTERMEDIATE CODE: A7423

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070831

A131 Notification of reasons for refusal

Effective date: 20090428

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090908