JP2006063370A - Method for recovering rare earth - Google Patents
Method for recovering rare earth Download PDFInfo
- Publication number
- JP2006063370A JP2006063370A JP2004245535A JP2004245535A JP2006063370A JP 2006063370 A JP2006063370 A JP 2006063370A JP 2004245535 A JP2004245535 A JP 2004245535A JP 2004245535 A JP2004245535 A JP 2004245535A JP 2006063370 A JP2006063370 A JP 2006063370A
- Authority
- JP
- Japan
- Prior art keywords
- rare earth
- sulfuric acid
- solution
- earth magnet
- recovery method
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910052761 rare earth metal Inorganic materials 0.000 title claims abstract description 176
- 150000002910 rare earth metals Chemical class 0.000 title claims abstract description 157
- 238000000034 method Methods 0.000 title claims abstract description 32
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims abstract description 86
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 claims abstract description 16
- 238000004519 manufacturing process Methods 0.000 claims abstract description 7
- 239000013078 crystal Substances 0.000 claims abstract description 5
- 238000011084 recovery Methods 0.000 claims description 16
- 235000011114 ammonium hydroxide Nutrition 0.000 claims description 13
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 claims description 12
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonium chloride Substances [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 claims description 6
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 6
- 239000000243 solution Substances 0.000 abstract description 30
- 239000007864 aqueous solution Substances 0.000 abstract description 4
- 239000012535 impurity Substances 0.000 abstract description 4
- 150000003863 ammonium salts Chemical class 0.000 abstract 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 41
- 229910052742 iron Inorganic materials 0.000 description 19
- -1 rare earth metal ions Chemical class 0.000 description 17
- 238000002425 crystallisation Methods 0.000 description 13
- 230000008025 crystallization Effects 0.000 description 13
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 9
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 7
- 235000011130 ammonium sulphate Nutrition 0.000 description 7
- 239000002244 precipitate Substances 0.000 description 7
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 6
- 229910052779 Neodymium Inorganic materials 0.000 description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 238000001914 filtration Methods 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 6
- 238000005498 polishing Methods 0.000 description 6
- 229910052692 Dysprosium Inorganic materials 0.000 description 5
- 229910052771 Terbium Inorganic materials 0.000 description 5
- 239000011549 crystallization solution Substances 0.000 description 5
- KBQHZAAAGSGFKK-UHFFFAOYSA-N dysprosium atom Chemical compound [Dy] KBQHZAAAGSGFKK-UHFFFAOYSA-N 0.000 description 5
- 238000005868 electrolysis reaction Methods 0.000 description 5
- 239000000706 filtrate Substances 0.000 description 5
- GZCRRIHWUXGPOV-UHFFFAOYSA-N terbium atom Chemical compound [Tb] GZCRRIHWUXGPOV-UHFFFAOYSA-N 0.000 description 5
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 229910017604 nitric acid Inorganic materials 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- 229910001404 rare earth metal oxide Inorganic materials 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- 239000010802 sludge Substances 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000004090 dissolution Methods 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 238000009616 inductively coupled plasma Methods 0.000 description 3
- 150000002506 iron compounds Chemical class 0.000 description 3
- 235000014413 iron hydroxide Nutrition 0.000 description 3
- NCNCGGDMXMBVIA-UHFFFAOYSA-L iron(ii) hydroxide Chemical compound [OH-].[OH-].[Fe+2] NCNCGGDMXMBVIA-UHFFFAOYSA-L 0.000 description 3
- 229910001172 neodymium magnet Inorganic materials 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- 235000006408 oxalic acid Nutrition 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 239000002699 waste material Substances 0.000 description 3
- 229910052772 Samarium Inorganic materials 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- QJVKUMXDEUEQLH-UHFFFAOYSA-N [B].[Fe].[Nd] Chemical compound [B].[Fe].[Nd] QJVKUMXDEUEQLH-UHFFFAOYSA-N 0.000 description 2
- ZLXPLDLEBORRPT-UHFFFAOYSA-M [NH4+].[Fe+].[O-]S([O-])(=O)=O Chemical compound [NH4+].[Fe+].[O-]S([O-])(=O)=O ZLXPLDLEBORRPT-UHFFFAOYSA-M 0.000 description 2
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 2
- 239000000920 calcium hydroxide Substances 0.000 description 2
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 239000003973 paint Substances 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- KZUNJOHGWZRPMI-UHFFFAOYSA-N samarium atom Chemical compound [Sm] KZUNJOHGWZRPMI-UHFFFAOYSA-N 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910052684 Cerium Inorganic materials 0.000 description 1
- 229910052777 Praseodymium Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- KPLQYGBQNPPQGA-UHFFFAOYSA-N cobalt samarium Chemical compound [Co].[Sm] KPLQYGBQNPPQGA-UHFFFAOYSA-N 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 150000002222 fluorine compounds Chemical class 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000011356 non-aqueous organic solvent Substances 0.000 description 1
- PUDIUYLPXJFUGB-UHFFFAOYSA-N praseodymium atom Chemical compound [Pr] PUDIUYLPXJFUGB-UHFFFAOYSA-N 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 229910000938 samarium–cobalt magnet Inorganic materials 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Manufacture And Refinement Of Metals (AREA)
Abstract
Description
本発明は、レアアースマグネットの製造工程で発生するスラッジ及び有形屑、及び市中から発生する廃レアアースマグネット等のレアアースマグネット屑中からレアアースを回収する方法に関する。 The present invention relates to a method for recovering rare earth from rare earth magnet scraps such as sludge and tangible scrap generated in the manufacturing process of rare earth magnets and waste rare earth magnets generated in the city.
従来、レアアースマグネットの製造工程において、切断及び研磨等によりレアアース(希土類元素)を含むスラッジ及び有形屑が大量に発生している。また、レアアースマグネット(希土類磁石)を使用した製品(例えば、ハードディスクのモータ等)が市中に廃棄されている。これらのレアアースマグネット屑には、レアアースが30質量%程度含まれており、これを回収する方法が開発されている。
例えば、特許文献1には、レアアースを含有する合金スクラップを溶解炉の加熱部に投入しながら溶解させ、下部から凝固した合金を徐々に引き下げて合金を回収する希土類金属を含有する合金スクラップの回収方法が開示されている。
Conventionally, in the process of manufacturing a rare earth magnet, a large amount of sludge and tangible waste containing rare earth (rare earth elements) are generated by cutting and polishing. In addition, products using rare earth magnets (such as hard disk motors) are discarded in the city. These rare earth magnet scraps contain about 30% by mass of rare earth, and a method for collecting the rare earth has been developed.
For example, in Patent Document 1, an alloy scrap containing rare earth is melted while being charged into a heating part of a melting furnace, and the alloy solid containing rare earth metal is recovered by gradually lowering the solidified alloy from the lower part and recovering the alloy. A method is disclosed.
また、特許文献2には、レアアースマグネット中のレアアースを硝酸希釈溶液に溶解させ、この溶液にフッ素化合物又はシュウ酸等を添加して、レアアースを塩として沈殿させ、溶液中の鉄と分離する方法が開示されている。また、特許文献3には硝酸希釈溶液の代わりに、塩酸によってレアアースを溶解させる方法が開示されている。
更に、特許文献4には、2種類以上のレアアースを含む水溶液と、抽出試薬を含む非水系の有機溶媒とを混合して、レアアースを有機溶媒に移動させた後、有機溶媒中のレアアースを逆抽出して得る希土類金属イオンの分離回収方法が開示されている。
Patent Document 2 discloses a method in which a rare earth in a rare earth magnet is dissolved in a dilute nitric acid solution, a fluorine compound or oxalic acid is added to the solution, the rare earth is precipitated as a salt, and separated from iron in the solution. Is disclosed. Patent Document 3 discloses a method of dissolving rare earth with hydrochloric acid instead of dilute nitric acid solution.
Furthermore, in Patent Document 4, an aqueous solution containing two or more types of rare earths and a non-aqueous organic solvent containing an extraction reagent are mixed to move the rare earths to the organic solvent, and then the rare earths in the organic solvent are reversed. A method for separating and recovering rare earth metal ions obtained by extraction is disclosed.
しかしながら、特許文献1の発明では、レアアースマグネットの切削時及び研磨時に使用する研削機等から炭素及びケイ素、及び、レアアースマグネットの酸化防止のために施されている塗料が残渣として同時に回収されるので、回収したレアアースの純度が低下し、このレアアースを再使用したレアアースマグネットの性能が低下するという問題があった。また、特許文献2及び3の発明では、硝酸又は塩酸を使用してレアアースを溶解しているので、反応容器の腐食対策が必要となるという問題があり、また、硝酸又は塩酸の液量当たりのレアアースの溶解量が少なく実用的ではないという問題もあった。更に、特許文献4の発明では、溶媒抽出及び逆抽出という複雑な操作、及び有機溶媒の処理が必要となるという問題があった。 However, in the invention of Patent Document 1, carbon and silicon and paint applied to prevent oxidation of the rare earth magnet are simultaneously collected as a residue from a grinding machine or the like used when cutting and polishing the rare earth magnet. There has been a problem that the purity of the collected rare earth is lowered, and the performance of the rare earth magnet using the rare earth is lowered. In addition, in the inventions of Patent Documents 2 and 3, since rare earth is dissolved using nitric acid or hydrochloric acid, there is a problem that countermeasures against corrosion of the reaction vessel are required, and the amount of nitric acid or hydrochloric acid per liquid amount There was also a problem that the amount of rare earth dissolved was small and not practical. Furthermore, in the invention of Patent Document 4, there is a problem that complicated operations such as solvent extraction and back extraction and processing of an organic solvent are required.
本発明はかかる事情に鑑みてなされたもので、不純物の混入を防止し、安価に大量のレアアースを回収するレアアースの回収方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a rare earth recovery method that prevents contamination of impurities and recovers a large amount of rare earths at low cost.
前記目的に沿う本発明に係るレアアースの回収方法は、レアアースマグネットの製造工程及び市中のいずれか一方又は双方から発生するレアアースマグネット屑を硫酸に供給し、該レアアースマグネット屑中のレアアースを該硫酸に溶解させる第1工程と、
前記硫酸に溶解しない成分を除去し、前記レアアースを含む溶解液を得る第2工程と、
前記溶解液にアンモニア水溶液を添加する第3工程と、
前記アンモニア水溶液の添加により生成するレアアース硫酸アンモニウム塩を晶析させる第4工程と、
前記第4工程で生成する前記レアアース硫酸アンモニウム塩の結晶を回収する第5工程とを有する。
The method for recovering a rare earth according to the present invention in accordance with the above object is to supply the rare earth magnet scrap generated from one or both of the rare earth magnet manufacturing process and the market to sulfuric acid, and the rare earth in the rare earth magnet scrap is converted to the sulfuric acid. A first step of dissolving in
Removing a component that does not dissolve in sulfuric acid to obtain a solution containing the rare earth;
A third step of adding an aqueous ammonia solution to the solution;
A fourth step of crystallizing the rare earth ammonium sulfate salt produced by the addition of the aqueous ammonia solution;
And a fifth step of recovering the rare earth ammonium sulfate crystals produced in the fourth step.
ここで、レアアースマグネット(RE−Fe)は、例えば、ネオジム(Nd)−鉄−ボロン(B)系、又はサマリウム(Sm)−コバルト(Co)系があり、ネオジム、サマリウム、ジスプロシウム(Dy)、テルビウム(Tb)、プラセオジム(Pr)、及びセリウム(Ce)等のいずれか1又は2以上のレアアース(希土類元素)が含まれている。レアアースマグネットを硫酸に供給すると、(1)式のように反応して、レアアース及び鉄が溶解する。
RE−Fe+nH2 SO4 →RE3++Fex++nSO4 2-+nH2 ↑ ・・・(1)
Here, the rare earth magnet (RE-Fe) includes, for example, a neodymium (Nd) -iron-boron (B) system or a samarium (Sm) -cobalt (Co) system, and includes neodymium, samarium, dysprosium (Dy), One or more rare earths (rare earth elements) such as terbium (Tb), praseodymium (Pr), and cerium (Ce) are included. When a rare earth magnet is supplied to sulfuric acid, it reacts as shown in formula (1) and the rare earth and iron are dissolved.
RE-Fe + nH 2 SO 4 → RE 3+ + Fex + + nSO 4 2− + nH 2 ↑ (1)
また、レアアースマグネットに含まれる不純物(例えば、レアアースマグネットの切削時又は研磨時に、切削装置又は研磨装置から混入する炭素及びケイ素のいずれか一方又は双方、また、レアアースマグネットの酸化を防止するためにレアアースマグネットに施した塗料等)が不溶成分として析出するので、濾過等によりレアアースが溶解した硫酸(溶解液)から分離する。 In addition, impurities contained in the rare earth magnet (for example, one or both of carbon and silicon mixed from the cutting device or the polishing device during cutting or polishing of the rare earth magnet, or rare earth magnet to prevent oxidation of the rare earth magnet) Since the paint applied to the magnet is deposited as an insoluble component, it is separated from sulfuric acid (dissolved solution) in which the rare earth is dissolved by filtration or the like.
次に、(2)式に示すように、溶解液にアンモニア水溶液を加えて晶析し、レアアースをレアアース硫酸アンモニウム塩(NH4 RE(SO4 )2 )として析出させ、濾過等によりレアアース硫酸アンモニウム塩を分離して、溶解液に溶解している鉄及びニッケル(めっきする場合、以下同じ)と分離することができる。
RE3++Fex++nSO4 2-+NH4 OH
→NH4 RE(SO4 )2 +Fex++(n−2)SO4 2- ・・・(2)
Next, as shown in the formula (2), an aqueous ammonia solution is added to the solution and crystallized to deposit rare earth as rare earth ammonium sulfate (NH 4 RE (SO 4 ) 2 ). It can isolate | separate and can isolate | separate with the iron and nickel which are melt | dissolving in a solution (when plating, it is the same below).
RE 3+ + Fex + + nSO 4 2− + NH 4 OH
→ NH 4 RE (SO 4 ) 2 + Fe x + + (n−2) SO 4 2− (2)
本発明に係るレアアースの回収方法は、レアアースマグネット屑を硫酸に供給してレアアースを溶解させるので、不純物を容易に除去することができる。また、溶解液にアンモニア水溶液を添加して晶析し、レアアース硫酸アンモニウム塩を析出させるので、レアアースマグネット中の鉄やニッケルを除去することができる。なお、レアアースの溶解には、硫酸を使用するので、例えば、ステンレス製等の反応容器に腐食対策を施す必要がない。 In the rare earth recovery method according to the present invention, the rare earth magnet waste is supplied to sulfuric acid to dissolve the rare earth, so that impurities can be easily removed. Further, since an aqueous ammonia solution is added to the solution and crystallized to precipitate a rare earth ammonium sulfate salt, iron and nickel in the rare earth magnet can be removed. In addition, since sulfuric acid is used for melt | dissolution of rare earths, it is not necessary to take corrosion countermeasures, for example to reaction vessels made from stainless steel.
また、レアアースマグネット屑の量に対して、所定量の硫酸を使用した場合には、レアアースの回収率及び純度を高めることができる。更に、第1工程において、pHを1以下に保持した場合には、硫酸中により多くのレアアースを溶解させることができ、また、第3工程において、pHを2以下に保持した場合には、レアアースマグネット屑中の鉄が沈殿物(結晶)として形成され難くなり、鉄及び鉄化合物の析出を防止できるので、回収されるレアアースの純度を高めることができる。 Further, when a predetermined amount of sulfuric acid is used with respect to the amount of rare earth magnet scrap, the recovery rate and purity of the rare earth can be increased. Furthermore, when the pH is maintained at 1 or less in the first step, more rare earth can be dissolved in the sulfuric acid, and when the pH is maintained at 2 or less in the third step, the rare earth is Iron in the magnet scrap is hardly formed as a precipitate (crystal), and precipitation of iron and iron compounds can be prevented, so that the purity of the rare earth to be recovered can be increased.
レアアースマグネット屑を、製造メーカー毎に分別したレアアースマグネット屑毎にレアアースを回収した場合には、回収したレアアース中に他の組成のレアアースが混入せず、このレアアースから再生したレアアースマグネットの性能低下を防止することができる。 When rare earth magnet scraps are collected for each rare earth magnet scrap separated by manufacturer, rare earths of other compositions are not mixed in the collected rare earth, and the performance of the rare earth magnet regenerated from this rare earth is reduced. Can be prevented.
続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
ここで、図1は本発明の一実施の形態に係るレアアースの回収方法のフローチャートである。
Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.
Here, FIG. 1 is a flowchart of a rare earth recovery method according to an embodiment of the present invention.
図1を参照して、本発明の一実施の形態に係るレアアースの回収方法について説明する。
レアアースマグネット屑は、例えば、ネオジム−鉄−ボロン系のレアアースマグネットの製造工程で切断及び研磨等により発生するスラッジ及び有形屑を使用した。ここで、本実施の形態では、レアアースマグネット屑に同一の製造メーカーで製造され、同一の組成を有するレアアースマグネットから得られたものを使用している。これによって、回収したレアアースから再生したレアアースマグネットに他の組成のレアアースが混入せず、レアアースマグネットの性能の低下を防止できる。
With reference to FIG. 1, a rare earth recovery method according to an embodiment of the present invention will be described.
As the rare earth magnet scrap, for example, sludge and tangible scrap generated by cutting and polishing in a manufacturing process of a neodymium-iron-boron rare earth magnet were used. Here, in the present embodiment, rare earth magnet scraps manufactured from the same manufacturer and obtained from rare earth magnets having the same composition are used. As a result, rare earths of other compositions are not mixed in the rare earth magnets regenerated from the collected rare earths, and the performance of the rare earth magnets can be prevented from deteriorating.
また、予めレアアースマグネット屑中のレアアースをICP(誘導結合プラズマ)装置、又は原子吸光装置等によって分析した結果、レアアースマグネット屑には、30質量%程度のレアアース(例えば、ネオジム30質量%、テルビウム1.5質量%、及びジスプロシウム2.5質量%)が含まれていた。なお、有形屑は、市中に廃棄されたハードディスク等から分離されるレアアースマグネット屑を使用してもよい。 In addition, as a result of analyzing the rare earth in the rare earth magnet scrap in advance with an ICP (inductively coupled plasma) apparatus, an atomic absorption apparatus or the like, the rare earth magnet scrap contains about 30 mass% rare earth (for example, 30 mass% neodymium, terbium 1 0.5 mass% and dysprosium 2.5 mass%). The tangible scrap may be a rare earth magnet scrap separated from a hard disk or the like discarded in the city.
(第1工程)
レアアースマグネット屑を、例えば、1.5mol/L以上かつ3.0mol/L以下の濃度の硫酸に供給して、前記(1)式に示すように溶解させた。
ここで、硫酸の濃度が、1.5mol/L未満であると、レアアースマグネット屑中のレアアースが溶け残り、3.0mol/Lを超えると、レアアースが硫酸に溶解する際にレアアース硫酸塩が析出する。
(First step)
For example, the rare earth magnet scrap was supplied to sulfuric acid having a concentration of 1.5 mol / L or more and 3.0 mol / L or less, and dissolved as shown in the formula (1).
Here, if the concentration of sulfuric acid is less than 1.5 mol / L, the rare earth in the rare earth magnet scrap remains undissolved, and if it exceeds 3.0 mol / L, the rare earth sulfate precipitates when the rare earth dissolves in sulfuric acid. To do.
また、硫酸は、レアアースマグネット屑1kgに対して、例えば、6L以上かつ16L以下使用している。硫酸の使用量が、レアアースマグネット屑1kgに対して、6L未満であると、レアアースが硫酸に溶解する際にレアアース硫酸塩が析出し、16Lを超えると、後述する第4工程で行う晶析での晶析量が減少する。 In addition, sulfuric acid is used in an amount of, for example, 6 L or more and 16 L or less with respect to 1 kg of rare earth magnet scrap. When the amount of sulfuric acid used is less than 6 L with respect to 1 kg of rare earth magnet scrap, rare earth sulfate precipitates when the rare earth dissolves in sulfuric acid, and when it exceeds 16 L, crystallization is performed in the fourth step described later. The amount of crystallization decreases.
更に、1.5mol/L以上かつ3.0mol/L以下の濃度の硫酸を、レアアースマグネット屑1kgに対して、6L以上かつ16L以下使用する際には、硫酸中のH2 SO4 が、1.4kg以上かつ2.4kg以下含有されるのが好ましい。H2 SO4 の量が1.4kg未満であると、レアアースマグネット屑中のレアアースが溶け残り、2.4kgを超えると、硫酸が無駄になると共に、レアアース硫酸塩が析出し易くなる。 Furthermore, when sulfuric acid having a concentration of 1.5 mol / L or more and 3.0 mol / L or less is used in an amount of 6 L or more and 16 L or less with respect to 1 kg of rare earth magnet scrap, H 2 SO 4 in sulfuric acid is 1 It is preferable that the content is not less than 4 kg and not more than 2.4 kg. When the amount of H 2 SO 4 is less than 1.4 kg, the rare earth in the rare earth magnet scraps remains undissolved, and when it exceeds 2.4 kg, sulfuric acid is wasted and the rare earth sulfate is liable to precipitate.
ここで、硫酸にレアアースマグネット屑を供給した際に、レアアース等が溶解した硫酸のpHが上昇するので、更に調整用の硫酸を添加して溶解液のpHの上限を1、好ましくは下限を0.5程度に保つようにする。溶解液のpHが1を超えた場合には、以下の工程において、溶解液に添加するアンモニア水の量が減少し、生成するレアアース硫酸アンモニウム塩の晶析量が減少、すなわち、レアアースの回収量が減少する。 Here, when the rare earth magnet scrap is supplied to the sulfuric acid, the pH of the sulfuric acid in which the rare earth or the like is dissolved rises. Therefore, sulfuric acid for adjustment is further added to set the upper limit of the pH of the solution, preferably 0 to the lower limit. Keep it at about 5. When the pH of the solution exceeds 1, in the following steps, the amount of ammonia water added to the solution decreases, and the amount of crystallization of the rare earth ammonium sulfate salt produced decreases, that is, the amount of rare earth recovered is reduced. Decrease.
(第2工程)
レアアースマグネット屑を硫酸に供給し、レアアースマグネット屑中のレアアース及び鉄等を溶解させた際には、硫酸に溶解しない成分(以下、不溶成分という)、例えば、炭素及びケイ素のいずれか一方又は双方が溶け残る。この不溶成分を濾過により除去し、レアアース及び鉄の溶解した溶解液を得る。なお、不溶成分の除去は、遠心分離によって行ってもよい。また、溶解液中のレアアースの濃度は、予め測定したレアアースマグネット屑中のレアアースの重量から計算でき、12g/L以上かつ60g/L以下とするのが好ましい。ここで、溶解液中のレアアースの濃度が12g/L未満であると、以下の工程での晶析量が少なくなり、60g/Lを超えると、溶解液中にレアアース硫酸塩(RE2 (SO4 )3 )が析出する。
(Second step)
When the rare earth magnet scrap is supplied to sulfuric acid and the rare earth and iron in the rare earth magnet scrap are dissolved, the component does not dissolve in sulfuric acid (hereinafter referred to as insoluble component), for example, one or both of carbon and silicon Remains undissolved. This insoluble component is removed by filtration to obtain a solution in which rare earth and iron are dissolved. The insoluble component may be removed by centrifugation. The concentration of the rare earth in the solution can be calculated from the weight of the rare earth in the rare earth magnet scrap measured in advance, and is preferably 12 g / L or more and 60 g / L or less. Here, if the concentration of the rare earth in the solution is less than 12 g / L, the amount of crystallization in the following steps decreases, and if it exceeds 60 g / L, the rare earth sulfate (RE 2 (SO 2 4 ) 3 ) precipitates.
(第3工程)
得られた溶解液にアンモニア水(アンモニア水溶液)を添加して晶析液とする。ここで、晶析液はアンモニア水の添加によってアルカリ性となるので、別の調整用の硫酸を加えてpHの上限を2、好ましくは1とし、下限を0.5程度に保つようにする。晶析液のpHが2を超えると、鉄及び鉄化合物が析出し、レアアース硫酸アンモニウム塩として回収するレアアースの純度が低下する。また、溶解液に添加するアンモニア水は、レアアースマグネット屑中のレアアース1kg当たり、0を超え2L以下添加するのが好ましい。2Lを超えて添加すると鉄及び鉄化合物が析出するので、回収されたレアアースの純度が低下する。
(Third step)
Ammonia water (ammonia aqueous solution) is added to the resulting solution to prepare a crystallization solution. Here, since the crystallization liquid becomes alkaline when ammonia water is added, another adjustment sulfuric acid is added to set the upper limit of the pH to 2, preferably 1, and to keep the lower limit at about 0.5. When the pH of the crystallization solution exceeds 2, iron and iron compounds are precipitated, and the purity of the rare earth recovered as the rare earth ammonium sulfate is lowered. Moreover, it is preferable that the ammonia water added to a solution is added more than 0 and 2 L or less per 1 kg of rare earths in rare earth magnet scraps. If it is added in excess of 2 L, iron and iron compounds precipitate, so the purity of the collected rare earth decreases.
(第4工程)
晶析液はおよそ50〜60℃程度となっているので、低温、例えば、10〜30℃まで冷却し、撹拌しながら晶析する。前記(2)式に示すように、晶析によってレアアース硫酸アンモニウム塩が析出する。
晶析を行う時間は、12時間以上かつ18時間以下がよく、12時間未満であると、晶析量が少なく、18時間を超えると、鉄硫酸アンモニウム塩が生成し、レアアース硫酸アンモニウム塩の純度が低下する。
(4th process)
Since the crystallization liquid is about 50 to 60 ° C., it is cooled to a low temperature, for example, 10 to 30 ° C., and crystallized while stirring. As shown in the formula (2), a rare earth ammonium sulfate salt is precipitated by crystallization.
The crystallization time is preferably 12 hours or more and 18 hours or less. If the crystallization time is less than 12 hours, the amount of crystallization is small, and if it exceeds 18 hours, an iron sulfate ammonium salt is produced and the purity of the rare earth ammonium sulfate salt is lowered. To do.
(第5工程)
晶析によって生成したレアアース硫酸アンモニウム塩の結晶(沈殿)を濾過によって回収する。濾過の際に、水洗して鉄の溶解している晶析液を除去した。これによって、レアアース硫酸アンモニウム塩に鉄が混入するのを防ぐことができる。また、レアアースマグネットの酸化を防止するためにレアアースマグネットに施しためっきに含まれるニッケルも、晶析液に溶解してしているので除去できる。
(5th process)
Crystals (precipitates) of rare earth ammonium sulfate formed by crystallization are collected by filtration. During filtration, the crystallized solution in which iron was dissolved was removed by washing with water. This can prevent iron from being mixed into the rare earth ammonium sulfate. Further, nickel contained in the plating applied to the rare earth magnet in order to prevent oxidation of the rare earth magnet can be removed because it is dissolved in the crystallization solution.
更に、第5工程で得たレアアース硫酸アンモニウム塩を1380℃以上で焼成し、酸化レアアースとし、更に、酸化レアアースを溶融塩電解により金属レアアースを得ることができる。なお、鉄は鉄硫酸アンモニウム塩として析出しないので、溶融塩電解によって鉄を還元させる必要がなく、大幅に電力を削減することができる。 Furthermore, the rare earth ammonium sulfate salt obtained in the fifth step can be baked at 1380 ° C. or more to obtain a rare earth oxide, and a rare earth metal can be obtained by electrolysis of the rare earth oxide by molten salt electrolysis. In addition, since iron does not precipitate as an iron sulfate ammonium salt, it is not necessary to reduce iron by molten salt electrolysis, and electric power can be significantly reduced.
また、第5工程で得られるレアアース硫酸アンモニウム塩を除去した濾液に残存するレアアースは、この濾液にシュウ酸又は炭酸ナトリウムを添加して、レアアースシュウ酸塩又はレアアース炭酸塩として回収できる。更に、レアアースを除去した濾液に残存する鉄は、水酸化カルシウム又は水酸化ナトリウム等で酸化して水酸化鉄として回収することができる。この水酸化鉄は、セメント原料として使用できる。 Further, the rare earth remaining in the filtrate obtained by removing the rare earth ammonium sulfate obtained in the fifth step can be recovered as rare earth oxalate or rare earth carbonate by adding oxalic acid or sodium carbonate to the filtrate. Furthermore, iron remaining in the filtrate from which the rare earth has been removed can be recovered as iron hydroxide by oxidation with calcium hydroxide, sodium hydroxide, or the like. This iron hydroxide can be used as a cement raw material.
本発明の一実施の形態に係るレアアースの回収方法を適用して、同一製造メーカーによって製造され、同一組成を有するネオジム−鉄−ボロン系のレアアースマグネットを製造する工程で切断及び研磨等により発生するスラッジ及び有形屑からなるレアアースマグネット屑からレアアースを回収した。使用したレアアースマグネット屑は、ICPによる測定により、鉄を65質量%、ネオジムを30質量%、テルビウムを1.5質量%、及びジスプロシウムを2.5質量%含有していた。 Applying the method for recovering rare earth according to one embodiment of the present invention, it is generated by cutting, polishing, etc. in a process of manufacturing a rare earth magnet of the neodymium-iron-boron system having the same composition manufactured by the same manufacturer. Rare earth was recovered from rare earth magnet scraps consisting of sludge and tangible scraps. The rare earth magnet scrap used contained 65% by mass of iron, 30% by mass of neodymium, 1.5% by mass of terbium, and 2.5% by mass of dysprosium, as measured by ICP.
まず、このレアアースマグネット屑100kg(レアアースを34kg含む)を、2mol/Lの硫酸1000Lに供給し、レアアース及び鉄を溶解させた。なお、硫酸の使用量は、レアアースマグネット屑1kgに対して10Lであり、レアアースマグネット屑1kgに対して、硫酸中のH2 SO4 は1.96kg使用している。ここで、硫酸にレアアースマグネット屑を供給する際には、レアアースが溶解した硫酸のpHが上昇するので、硫酸を添加して溶解液のpHを1以下に保っている。 First, 100 kg of this rare earth magnet scrap (including 34 kg of rare earth) was supplied to 1000 L of 2 mol / L sulfuric acid to dissolve the rare earth and iron. Incidentally, the amount of sulfuric acid is 10L relative rare earth magnets scraps 1 kg, with respect to rare earth magnets scraps 1 kg, H 2 SO 4 in sulfuric acid is used 1.96 kg. Here, when the rare earth magnet scrap is supplied to the sulfuric acid, the pH of the sulfuric acid in which the rare earth is dissolved rises, so sulfuric acid is added to keep the pH of the solution at 1 or less.
次に、不溶成分を濾過して除去する。ここで、溶解液は、レアアースマグネットの溶解反応時の蒸発、及び濾過等により減少して約900Lとなった。この溶解液中にはレアアースが34kg含まれているので、溶解液中のレアアースの濃度はおよそ37.8g/Lとなっている。
更に、溶解液に溶解液のpHが2を超えないように、硫酸を加えながらアンモニア水を60L、すなわち、レアアースマグネット屑1kg当たりアンモニア水を0.6L添加する。
Next, insoluble components are removed by filtration. Here, the dissolution liquid decreased to about 900 L due to evaporation and filtration during the dissolution reaction of the rare earth magnet. Since this dissolved solution contains 34 kg of rare earth, the concentration of rare earth in the dissolved solution is approximately 37.8 g / L.
Further, 60 L of ammonia water is added to the solution so that the pH of the solution does not exceed 2 while adding sulfuric acid, that is, 0.6 L of ammonia water per 1 kg of rare earth magnet scrap.
アンモニア水を添加した溶解液、つまり、晶析液は、およそ50〜60℃となっているので、晶析液を低温、例えば、10〜30℃まで冷却し、撹拌しながら晶析を行う。晶析は、12時間以上かつ18時間以下で行った。
更に、晶析したレアアース硫酸アンモニウム塩を含む晶析液を濾過し、水洗して鉄の溶解している晶析液を除去して70kgのレアアース硫酸アンモニウム塩の4水和物(NH4 RE(SO4 )2 ・4H2 O)を得た。このレアアース硫酸アンモニウム塩には、レアアースマグネット屑に含有されたネオジム、テルビウム、及びジスプロシウムのそれぞれ80%、45%、及び25%を回収できた。
Since the dissolved solution to which ammonia water is added, that is, the crystallization solution is approximately 50 to 60 ° C., the crystallization solution is cooled to a low temperature, for example, 10 to 30 ° C., and crystallization is performed with stirring. Crystallization was performed for 12 hours or more and 18 hours or less.
Further, the crystallized solution containing the crystallized rare earth ammonium sulfate salt is filtered, washed with water to remove the crystallized solution in which iron is dissolved, and 70 kg of rare earth ammonium sulfate tetrahydrate (NH 4 RE (SO 4 ) 2 · 4H 2 O) was obtained. In this rare earth ammonium sulfate, 80%, 45%, and 25% of neodymium, terbium, and dysprosium contained in the rare earth magnet scrap could be recovered, respectively.
このレアアース硫酸アンモニウム塩を1380℃以上で焼成し、酸化レアアースとし、更に、酸化レアアースを溶融塩電解により金属レアアースを得た。この金属レアアースは、同一の組成を有するレアアースマグネット屑から得られたものを使用しているので、他の組成のレアアースが混入しておらず、これを用いて製造したレアアースマグネットの性能は低下しない。 This rare earth ammonium sulfate salt was baked at 1380 ° C. or more to obtain a rare earth oxide, and a rare earth metal was obtained by electrolysis of the rare earth oxide by molten salt electrolysis. Since this metal rare earth uses what was obtained from rare earth magnet scraps having the same composition, rare earths of other compositions are not mixed, and the performance of rare earth magnets manufactured using this rare earth magnet does not deteriorate. .
なお、レアアース硫酸アンモニウム塩を除去した濾液にシュウ酸を添加して、レアアースシュウ酸塩として回収した。これによって、レアアースマグネット屑に含有されたネオジム、テルビウム、及びジスプロシウムから、それぞれ10%、50%、及び45%回収され、レアアース硫酸アンモニウム塩と合わせて、90%、95%及び70%を回収できた。更に、濾液中に残存する鉄は、水酸化カルシウムで酸化して、水酸化鉄として回収した。 Note that oxalic acid was added to the filtrate from which the rare earth ammonium sulfate salt had been removed to recover the rare earth oxalate salt. As a result, 10%, 50%, and 45% were recovered from neodymium, terbium, and dysprosium contained in the rare earth magnet scrap, respectively, and 90%, 95%, and 70% were recovered together with the rare earth ammonium sulfate salt. . Further, iron remaining in the filtrate was oxidized with calcium hydroxide and recovered as iron hydroxide.
本発明は、前記した実施の形態に限定されるものではなく、本発明の要旨を変更しない範囲での変更は可能であり、例えば、前記した実施の形態や変形例の一部又は全部を組み合わせて本発明のレアアースの回収方法を構成する場合も本発明の権利範囲に含まれる。
例えば、前記実施の形態のレアアースの回収方法において、レアアースマグネット屑としてネオジム−鉄−ボロン系のものを使用したが、サマリウム−コバルト系でもよい。
The present invention is not limited to the above-described embodiment, and can be changed without changing the gist of the present invention. For example, a part or all of the above-described embodiment and modification examples are combined. Thus, the rare earth recovery method of the present invention is also included in the scope of the present invention.
For example, in the rare earth recovery method of the above embodiment, neodymium-iron-boron type was used as the rare earth magnet scrap, but samarium-cobalt type may be used.
Claims (8)
前記硫酸に溶解しない成分を除去し、前記レアアースを含む溶解液を得る第2工程と、
前記溶解液にアンモニア水溶液を添加する第3工程と、
前記アンモニア水溶液の添加により生成するレアアース硫酸アンモニウム塩を晶析させる第4工程と、
前記第4工程で生成する前記レアアース硫酸アンモニウム塩の結晶を回収する第5工程とを有することを特徴とするレアアースの回収方法。 A first step of supplying rare earth magnet scrap generated from either or both of the rare earth magnet manufacturing process and the city to sulfuric acid, and dissolving the rare earth in the rare earth magnet scrap in the sulfuric acid;
Removing a component that does not dissolve in sulfuric acid to obtain a solution containing the rare earth;
A third step of adding an aqueous ammonia solution to the solution;
A fourth step of crystallizing the rare earth ammonium sulfate salt produced by the addition of the aqueous ammonia solution;
And a fifth step of recovering crystals of the rare earth ammonium sulfate salt produced in the fourth step.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004245535A JP4243230B2 (en) | 2004-08-25 | 2004-08-25 | How to collect rare earth |
CNB2004100978203A CN1321201C (en) | 2004-08-25 | 2004-11-25 | Method for recovering rear-earth element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004245535A JP4243230B2 (en) | 2004-08-25 | 2004-08-25 | How to collect rare earth |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006063370A true JP2006063370A (en) | 2006-03-09 |
JP4243230B2 JP4243230B2 (en) | 2009-03-25 |
Family
ID=36092884
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004245535A Expired - Fee Related JP4243230B2 (en) | 2004-08-25 | 2004-08-25 | How to collect rare earth |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP4243230B2 (en) |
CN (1) | CN1321201C (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102154553A (en) * | 2011-02-26 | 2011-08-17 | 赣州力赛科新技术有限公司 | Method for removing iron and aluminum by autoxidation of iron-based waste material containing high-value elements |
JP2015120124A (en) * | 2013-12-24 | 2015-07-02 | 太平洋セメント株式会社 | Method for solidifying residue containing rare earth |
CN111180017A (en) * | 2020-01-09 | 2020-05-19 | 江西理工大学 | Method for calculating dosage of ionic rare earth mineral leaching agent |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101705380B (en) * | 2009-11-30 | 2013-10-23 | 有研稀土新材料股份有限公司 | Method for recovering rare earth from rare earth-containing aluminum-silicon materials |
CN101880782B (en) * | 2010-01-06 | 2013-03-06 | 马克印 | Process for rare-earth smelting resource reclamation and cyclic production |
CN103540756B (en) * | 2013-10-29 | 2016-06-29 | 中南大学 | A kind of method processing waste and old neodymium iron boron material dissolution rare earth |
JP6849158B2 (en) * | 2018-10-16 | 2021-03-24 | 住友ゴム工業株式会社 | tire |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2651797A1 (en) * | 1989-09-13 | 1991-03-15 | Rhone Poulenc Chimie | PROCESS FOR TREATING ORES CONTAINING RARE EARTH. |
CN1119216A (en) * | 1994-09-22 | 1996-03-27 | 泰兴市君泰稀土实业有限公司 | Method for preparing neodymium and neodymium-dysprosium compounds from waste neodymium-iron-boron recovery |
JP2002249828A (en) * | 2001-02-26 | 2002-09-06 | Sumitomo Metal Mining Co Ltd | Method for recovering valuable metal from used nickel- hydrogen secondary battery |
JP4654548B2 (en) * | 2001-07-27 | 2011-03-23 | 住友金属鉱山株式会社 | Valuable metal recovery method from nickel metal hydride secondary battery scrap |
-
2004
- 2004-08-25 JP JP2004245535A patent/JP4243230B2/en not_active Expired - Fee Related
- 2004-11-25 CN CNB2004100978203A patent/CN1321201C/en not_active Expired - Fee Related
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102154553A (en) * | 2011-02-26 | 2011-08-17 | 赣州力赛科新技术有限公司 | Method for removing iron and aluminum by autoxidation of iron-based waste material containing high-value elements |
CN102154553B (en) * | 2011-02-26 | 2012-05-30 | 赣州力赛科新技术有限公司 | Method for removing iron and aluminum from iron-based waste containing high-value elements through natural oxidation |
JP2015120124A (en) * | 2013-12-24 | 2015-07-02 | 太平洋セメント株式会社 | Method for solidifying residue containing rare earth |
CN111180017A (en) * | 2020-01-09 | 2020-05-19 | 江西理工大学 | Method for calculating dosage of ionic rare earth mineral leaching agent |
CN111180017B (en) * | 2020-01-09 | 2023-07-28 | 江西理工大学 | Calculation method of dosage of ionic rare earth leaching agent |
Also Published As
Publication number | Publication date |
---|---|
CN1740351A (en) | 2006-03-01 |
JP4243230B2 (en) | 2009-03-25 |
CN1321201C (en) | 2007-06-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102441721B1 (en) | Method for extraction and separation of rare earth elements | |
JP5647750B2 (en) | Rare earth recovery method from rare earth element containing alloys | |
AU2013238535B2 (en) | Method for producing high-purity nickel sulfate | |
CN112522527B (en) | Electrolytic-based method for selectively recovering rare earth elements from Nd-Fe-B magnet scrap | |
JP5440569B2 (en) | Recovery method for heavy rare earth elements | |
JP2007231379A (en) | Method for collecting rare earth | |
CA2846932C (en) | Process for producing rare metal | |
JP4243230B2 (en) | How to collect rare earth | |
JP2010059035A (en) | Method for producing aqueous arsenous acid solution of high purity from copper removal slime | |
JP6478113B2 (en) | Recovery method of rare earth elements | |
JP2012167345A (en) | Method for separating and recovering metal element from rare-earth-based magnetic alloy material | |
JP4243231B2 (en) | How to collect rare earth | |
KR20190109082A (en) | Recovery method rare earth elements from waste RE:YAG crystal | |
JPS63182216A (en) | Method for separation and recovery of rare earth element | |
JP2019026871A (en) | Manufacturing method of rare earth fluoride | |
Zakeri et al. | A Review of the Current Progress in High-Temperature Recycling Strategies for Recovery of Rare-Earth Elements from Magnet Waste | |
JP2007231378A (en) | Method for collecting rare earth | |
JP2014109039A (en) | Method of recovering rare-earth element from alloy containing rare-earth element and iron | |
JP2004099975A (en) | Method for recovering ruthenium and / or iridium | |
WO2003072503A1 (en) | Method of purifying niobium compound and/or tantalum compound | |
JP2023181679A (en) | Selective separation method of rare earth element mixed sulfuric acid double salt | |
JP3980526B2 (en) | Method for producing cobalt sulfate | |
AU2014202045B2 (en) | Process for producing rare metal | |
JP6358150B2 (en) | Method for producing indium metal | |
JP2018204041A (en) | Method for producing indium metal |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070322 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070403 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070528 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20081216 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20081226 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120109 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4243230 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130109 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |