JP2006058239A - Particle detector - Google Patents
Particle detector Download PDFInfo
- Publication number
- JP2006058239A JP2006058239A JP2004242760A JP2004242760A JP2006058239A JP 2006058239 A JP2006058239 A JP 2006058239A JP 2004242760 A JP2004242760 A JP 2004242760A JP 2004242760 A JP2004242760 A JP 2004242760A JP 2006058239 A JP2006058239 A JP 2006058239A
- Authority
- JP
- Japan
- Prior art keywords
- air
- sample air
- flow
- suction nozzle
- sample
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002245 particle Substances 0.000 title claims abstract description 34
- 238000001514 detection method Methods 0.000 claims abstract description 18
- 239000010419 fine particle Substances 0.000 claims abstract description 10
- 230000001678 irradiating effect Effects 0.000 claims abstract description 6
- 238000010926 purge Methods 0.000 claims description 13
- 239000004973 liquid crystal related substance Substances 0.000 claims 1
- 230000005284 excitation Effects 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 229920000742 Cotton Polymers 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000012510 hollow fiber Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- -1 polyethylene Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000010902 straw Substances 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
【課題】 検出領域において試料空気及び清浄空気の流れが乱流状態になることがない粒子検出器を提供する。
【解決手段】 吸入ノズル21よりセンサブロック4内へ試料空気を導き、この試料空気にレーザ光Laを照射して試料空気中の微粒子を光学的に検出する粒子検出器において、吸入ノズル21を囲んで吸入ノズル21と同軸上に配置され、試料空気の流れを囲む清浄空気を供給する鞘管22を備え、鞘管22中または清浄空気を鞘管22に導く流路2に、流れの特性を表わすレイノルズ数(層流と乱流の臨界値)を下げる整流素子26を設けた。
【選択図】 図1PROBLEM TO BE SOLVED: To provide a particle detector in which a flow of sample air and clean air is not in a turbulent state in a detection region.
In a particle detector that guides sample air from a suction nozzle 21 into a sensor block 4 and optically detects fine particles in the sample air by irradiating the sample air with a laser beam La, the suction nozzle 21 is surrounded. Is provided coaxially with the suction nozzle 21 and includes a sheath tube 22 for supplying clean air surrounding the flow of the sample air, and the flow characteristics are provided in the sheath tube 22 or in the flow path 2 that guides the clean air to the sheath tube 22. A rectifying element 26 for reducing the Reynolds number (the critical value of laminar flow and turbulent flow) is provided.
[Selection] Figure 1
Description
本発明は、センサブロック内へ導入される試料空気中の微粒子を光学的に検出する粒子検出器に関する。 The present invention relates to a particle detector that optically detects fine particles in sample air introduced into a sensor block.
レーザ光が照射されている検出領域に試料空気を導き、その中に含まれる粒子がレーザ光を受けて発する散乱光から粒子を検出する粒子検出器が知られている。試料空気は、吸入ノズルによってセンサブロック内へ導かれ、レーザ光で照射された後に、排出ノズルによってセンサブロック外へ排出される。 There is known a particle detector that introduces sample air to a detection region irradiated with laser light and detects particles from scattered light emitted by particles contained therein receiving the laser light. The sample air is guided into the sensor block by the suction nozzle, irradiated with laser light, and then discharged out of the sensor block by the discharge nozzle.
ここで、吸入ノズル内の空気の流れ及びセンサブロック内の空気の流れが乱流であると、センサブロック内で試料空気中の粒子が迷走し、検出領域を同一粒子が複数回通過し、粒子の計数に誤りが発生することがある。また、空気の流れが乱流になることにより、レーザ光を乱し、光ノイズを増加させてS/N比を低下させることがある。 Here, if the air flow in the suction nozzle and the air flow in the sensor block are turbulent, the particles in the sample air stray in the sensor block, and the same particles pass through the detection region multiple times. An error may occur in the count. Moreover, the turbulent air flow may disturb the laser light, increase optical noise, and lower the S / N ratio.
そこで、試料空気の流れを層流にするために、扁平な吸入ノズルを囲んで設けられる扁平な鞘管の先端部を内方へ傾斜したテーパー状とした粒子計数器が知られている(例えば、特許文献1参照)。 Therefore, in order to make the flow of sample air into a laminar flow, there is known a particle counter having a tapered shape in which a tip portion of a flat sheath tube provided surrounding a flat suction nozzle is inclined inward (for example, , See Patent Document 1).
しかし、特許文献1に記載された粒子計数器においては、吸入ノズル内の流れが乱流である場合や、センサブロック内へ脇から送り込まれる清浄空気が乱流である場合には、吸入ノズルの形状を変えても、検出領域において乱流が発生してしまうという問題があった。乱流が発生する要因としては、流れが速いことが挙げられる。また、流量を調整するために、オリフィスやバルブを用いるが、これらは流路を狭めて圧力差を高める構造であるため、乱流を誘発する虞があるからである。 However, in the particle counter described in Patent Document 1, when the flow in the suction nozzle is turbulent, or when the clean air fed from the side into the sensor block is turbulent, Even if the shape is changed, there is a problem that turbulence occurs in the detection region. The cause of the turbulent flow is that the flow is fast. Moreover, in order to adjust the flow rate, an orifice or a valve is used. However, these have a structure in which the flow path is narrowed to increase the pressure difference, so that turbulent flow may be induced.
本発明は、従来の技術が有するこのような問題点に鑑みてなされたものであり、その目的とするところは、検出領域において試料空気及び清浄空気の流れが乱流状態になることがない粒子検出器を提供しようとするものである。 The present invention has been made in view of such problems of the prior art, and the object of the present invention is to provide particles in which the flow of sample air and clean air does not become turbulent in the detection region. It is intended to provide a detector.
上記課題を解決すべく請求項1に係る発明は、吸入ノズルよりセンサブロック内へ試料空気を導き、この試料空気に光を照射して前記試料空気中の微粒子を光学的に検出する粒子検出器において、前記吸入ノズル中または前記試料空気を前記吸入ノズルに導く流路に整流素子を設けたものである。 In order to solve the above-mentioned problem, the invention according to claim 1 is a particle detector for guiding sample air from a suction nozzle into a sensor block and irradiating the sample air with light to optically detect fine particles in the sample air. In which a rectifying element is provided in a flow path for guiding the sample air to the suction nozzle.
請求項2に係る発明は、吸入ノズルよりセンサブロック内へ試料空気を導き、この試料空気に光を照射して前記試料空気中の微粒子を光学的に検出する粒子検出器において、前記吸入ノズルを囲んで前記吸入ノズルと同軸上に配置され、前記試料空気の流れを囲む清浄空気を供給する鞘管を備え、前記鞘管中または前記清浄空気を前記鞘管に導く流路に整流素子を設けたものである。 According to a second aspect of the present invention, in the particle detector for guiding the sample air from the suction nozzle into the sensor block and irradiating the sample air with light to optically detect fine particles in the sample air, the suction nozzle includes A sheath tube that is disposed coaxially with the suction nozzle and that supplies clean air that surrounds the flow of the sample air; and a rectifying element is provided in the sheath tube or a flow path that guides the clean air to the sheath tube It is a thing.
請求項3に係る発明は、吸入ノズルよりセンサブロック内へ試料空気を導き、この試料空気に光を照射して前記試料空気中の微粒子を光学的に検出し、前記試料空気を排気ノズルにより前記センサブロック外へ排出する粒子検出器において、前記排気ノズル中または前記排気ノズルに接続される流路に整流素子を設けたものである。 According to a third aspect of the present invention, sample air is guided from the suction nozzle into the sensor block, and the sample air is irradiated with light to optically detect fine particles in the sample air, and the sample air is detected by the exhaust nozzle. In the particle detector discharged outside the sensor block, a rectifying element is provided in the exhaust nozzle or in a flow path connected to the exhaust nozzle.
請求項4に係る発明は、吸入ノズルよりセンサブロック内へ試料空気を導き、この試料空気に光を照射して前記試料空気中の微粒子を光学的に検出する粒子検出器において、前記センサブロック内へ清浄空気を供給するパージエア管を備え、前記パージエア管中または前記清浄空気を前記パージエア管に導く流路に整流素子を設けたものである。 According to a fourth aspect of the present invention, there is provided a particle detector for guiding sample air from a suction nozzle into a sensor block and irradiating the sample air with light to optically detect fine particles in the sample air. And a purge air pipe for supplying clean air to the pipe, and a rectifying element is provided in the purge air pipe or in a flow path for guiding the clean air to the purge air pipe.
以上説明したように請求項1に係る発明によれば、検出領域における試料空気の流れを安定した層流にすることができる。 As described above, according to the first aspect of the invention, the flow of the sample air in the detection region can be made a stable laminar flow.
請求項2に係る発明によれば、試料空気の流れを囲む清浄空気の流れを層流にすることにより、試料空気の流れも安定した層流にすることができる。 According to the invention which concerns on Claim 2, the flow of the sample air can also be made into the stable laminar flow by making the flow of the clean air surrounding the flow of the sample air into the laminar flow.
請求項3に係る発明によれば、排気ノズルから排出される試料空気の流れを層流にすることにより、検出領域における試料空気の流れを安定した層流にすることができる。 According to the third aspect of the present invention, the flow of the sample air discharged from the exhaust nozzle is made a laminar flow, whereby the flow of the sample air in the detection region can be made a stable laminar flow.
請求項4に係る発明によれば、パージエア管からセンサブロック内へ供給される清浄空気の流れを安定した層流にすることにより、検出領域における試料空気の流れや試料空気の流れを囲む清浄空気の流れを乱すことがない。 According to the fourth aspect of the present invention, the flow of clean air supplied from the purge air pipe into the sensor block is made into a stable laminar flow, so that the clean air surrounding the flow of sample air and the flow of sample air in the detection region is obtained. Will not disturb the flow.
以下に本発明の実施の形態を添付図面に基づいて説明する。ここで、図1は本発明に係る粒子検出器の構成説明図、図2は整流素子の縦断面図(a)と横断面図(b)、図3は他の整流素子の縦断面図(a)と横断面図(b)である。 Embodiments of the present invention will be described below with reference to the accompanying drawings. Here, FIG. 1 is an explanatory diagram of the configuration of the particle detector according to the present invention, FIG. 2 is a longitudinal sectional view (a) and a transverse sectional view (b) of the rectifying element, and FIG. 3 is a longitudinal sectional view of another rectifying element ( It is a) and a cross-sectional view (b).
本発明に係る粒子検出器は、図1に示すように、光源としてのレーザ発振器1と、内部に試料空気の流れによる流路2とレーザ光Laにより検出領域3を形成するセンサブロック4と、検出領域3で発生する散乱光を受光して粒子を検出する受光部(不図示)を備えている。 As shown in FIG. 1, a particle detector according to the present invention includes a laser oscillator 1 as a light source, a flow path 2 due to the flow of sample air inside, and a sensor block 4 that forms a detection region 3 with laser light La, A light receiving unit (not shown) that receives scattered light generated in the detection region 3 to detect particles is provided.
レーザ発振器1は、励起用レーザ光Leを放射する半導体レーザ11と、励起用レーザ光Leを集光する集光レンズ12と、集光レンズ12で集光した励起用レーザ光Leを受けて励起し、レーザ光Laを放射する固体レーザ13と、固体レーザ13と流路2を挟んで対向して設置され、固体レーザ13が放射するレーザ光Laを反射する反射鏡14からなる。 The laser oscillator 1 is excited by receiving a semiconductor laser 11 that emits an excitation laser beam Le, a condenser lens 12 that collects the excitation laser beam Le, and an excitation laser beam Le that is collected by the condenser lens 12. The solid-state laser 13 that emits the laser light La and the reflecting mirror 14 that is disposed opposite to the solid-state laser 13 with the flow path 2 interposed therebetween and reflects the laser light La emitted by the solid-state laser 13.
センサブロック4は、試料空気を導く吸入ノズル21と、吸入ノズル21を囲むように吸入ノズル21と同軸上に配置されて清浄空気を導く鞘管22と、検出領域3を通過した試料空気と清浄空気を排出する排出ノズル23と、センサブロック4内に清浄空気を供給する2つのパージエア管24を設けている。 The sensor block 4 includes a suction nozzle 21 that guides the sample air, a sheath tube 22 that is arranged coaxially with the suction nozzle 21 so as to surround the suction nozzle 21, and that cleans the sample air that has passed through the detection region 3. A discharge nozzle 23 for discharging air and two purge air pipes 24 for supplying clean air into the sensor block 4 are provided.
流路2は、吸入ノズル21から供給される試料空気と鞘管22から供給される清浄空気が排出ノズル23の下流に設置した吸引ポンプ(不図示)により吸引されて、試料空気と清浄空気が排出ノズル23に流れ込むことによって形成される。なお、パージエア管24から供給される清浄空気も同様に排出ノズル23に流れ込んで排出される。 In the flow path 2, the sample air supplied from the suction nozzle 21 and the clean air supplied from the sheath tube 22 are sucked by a suction pump (not shown) installed downstream of the discharge nozzle 23, so that the sample air and the clean air are It is formed by flowing into the discharge nozzle 23. Note that the clean air supplied from the purge air pipe 24 also flows into the discharge nozzle 23 and is discharged.
また、鞘管22へ清浄空気を導く配管25には、清浄空気の流れにおける乱流の発生を抑制して層流状態を維持することができる整流素子26を設けている。なお、整流素子26は配管25ではなく鞘管22中に設けることもできる。 Further, the piping 25 that guides clean air to the sheath tube 22 is provided with a rectifying element 26 that can suppress the occurrence of turbulent flow in the flow of clean air and maintain a laminar flow state. Note that the rectifying element 26 can be provided not in the pipe 25 but in the sheath pipe 22.
整流素子26とは、図2に示すように、極細ストローのような形状で、その表面にサブミクロンの微細孔が無数に開口しているポリエチレン中空糸26aを束ねて円柱形状にしてケース26bに充填し、入口と出口を設けたもので、流れの場における流体との接触面積を大きくし、流れの特性を表わすレイノルズ数(層流と乱流の臨界値)を下げるものである。 As shown in FIG. 2, the rectifying element 26 is shaped like an ultrathin straw, and a polyethylene hollow fiber 26a having numerous submicron micropores on its surface is bundled into a cylindrical shape to form a case 26b. Filled and provided with an inlet and an outlet, it increases the contact area with the fluid in the flow field and lowers the Reynolds number (the critical value of laminar flow and turbulent flow) representing the flow characteristics.
整流素子26を設ける場所としては、鞘管22に接続される配管25の他に、吸入ノズル21に試料空気を導く配管27、試料空気と清浄空気を排出するための排出ノズル23に接続される配管28、パージエア管24に清浄空気を導く配管29でもよい。また、鞘管22に接続される配管25及び排出ノズル23に接続される配管28に設けることもできるし、全ての配管25,27,28,29に設けることもできる。なお、整流素子26は吸入ノズル21中、排出ノズル23中、パージエア管24中に設けることもできる。 As a place where the rectifying element 26 is provided, in addition to the pipe 25 connected to the sheath pipe 22, the pipe 27 is connected to a pipe 27 for leading the sample air to the suction nozzle 21, and a discharge nozzle 23 for discharging the sample air and clean air. A pipe 29 and a pipe 29 for introducing clean air to the purge air pipe 24 may be used. Moreover, it can also provide in the piping 25 connected to the sheath pipe 22, and the piping 28 connected to the discharge nozzle 23, and can also be provided in all the piping 25,27,28,29. The rectifying element 26 can also be provided in the suction nozzle 21, the discharge nozzle 23, and the purge air pipe 24.
但し、整流素子26を設ける場所は、鞘管22とパージエア管24の場合には清浄空気の流量を調節するために配管25,29に設けたバルブ30,31の下流でなければならないし、排出ノズル23に接続された配管28の場合には配管28に設けたバルブ32の上流でなければならない。なお、バルブ30,31,32の代わりにオリフィスを設けることもできる。このように整流素子26の設置場所を決めるのは、バルブ30,31,32又はオリフィスが構造上乱流を誘発する虞があるからである。 However, in the case of the sheath pipe 22 and the purge air pipe 24, the place where the rectifying element 26 is provided must be downstream of the valves 30, 31 provided in the pipes 25, 29 in order to adjust the flow rate of clean air. In the case of the pipe 28 connected to the nozzle 23, it must be upstream of the valve 32 provided in the pipe 28. An orifice can be provided in place of the valves 30, 31, and 32. The reason for determining the installation location of the rectifying element 26 in this way is that the valves 30, 31, 32 or the orifice may structurally induce turbulent flow.
また、他の整流素子36としては、図3に示すように、コットンやガラスなどのファイバー36aを圧縮したり、接着したりしてランダムな構造とし、曲がりくねった流路を形成してケース36bに充填し、入口と出口を設けたものでもよい。その他、整流素子には、流れの場における流体との接触面積を大きくすることができるハニカム構造体、メッシュ構造体、繊維フィルタ構造体などが適用できる。 As another rectifying element 36, as shown in FIG. 3, a fiber 36a such as cotton or glass is compressed or bonded to form a random structure, and a tortuous flow path is formed in the case 36b. It may be filled and provided with an inlet and an outlet. In addition, a honeycomb structure, a mesh structure, a fiber filter structure, or the like that can increase the contact area with the fluid in the flow field can be applied to the rectifying element.
次に、以上のように構成した本発明に係る粒子検出器の作用について説明する。排出ノズル23の下流に設置した吸引ポンプ(不図示)により吸引することで試料空気を吸入ノズル21から検出領域3に導く。同時に、鞘管22を介して所定流量の清浄空気を試料空気の流れの周囲に供給する。 Next, the operation of the particle detector according to the present invention configured as described above will be described. The sample air is guided from the suction nozzle 21 to the detection region 3 by being sucked by a suction pump (not shown) installed downstream of the discharge nozzle 23. At the same time, a predetermined flow rate of clean air is supplied through the sheath tube 22 around the sample air flow.
鞘管22へ清浄空気を導く配管25に整流素子26が設置されているので、鞘管22からセンサブロック4内に供給される清浄空気の流れは整流素子26を通過することより、安定した層流状態になる。すると、試料空気の流れの周囲を囲んで流れる清浄空気が層流状態にあるため、試料空気の流れも層流状態になるよう誘導され、より安定した層流状態を維持することができる。従って、試料空気は清浄空気と共に、層流状態で検出領域3を通過し、排出ノズル23を通って排出される。 Since the rectifying element 26 is installed in the pipe 25 that guides the clean air to the sheath tube 22, the flow of the clean air supplied from the sheath tube 22 into the sensor block 4 passes through the rectifying element 26, so that a stable layer is obtained. It becomes a flow state. Then, since the clean air flowing around the sample air flow is in a laminar flow state, the sample air flow is also induced to be in a laminar flow state, and a more stable laminar flow state can be maintained. Therefore, the sample air passes through the detection region 3 in a laminar flow state together with clean air, and is discharged through the discharge nozzle 23.
このように、試料空気がセンサブロック4内を層流状態で通過するので、センサブロック4内で試料空気中の粒子が迷走して、同一粒子が検出領域3を複数回通過して粒子の誤計数が発生したり、試料空気の流れが乱流状態になることによりレーザ光Laが乱れて光ノイズが増加し、S/N比が低下したりする不具合が発生することがない。 As described above, since the sample air passes through the sensor block 4 in a laminar flow state, the particles in the sample air stray in the sensor block 4 and the same particles pass through the detection region 3 a plurality of times to cause erroneous particles. There is no problem that counting occurs or the sample air flow becomes turbulent and the laser light La is disturbed to increase optical noise and the S / N ratio is lowered.
本発明によれば、検出領域において試料空気が乱流状態にならず安定した層流状態を維持するので、粒子の誤計数が発生したり、光ノイズが増加してS/N比が低下したりする不具合が発生せず、精度の高い粒子検出器を構成することができる。 According to the present invention, since the sample air does not become a turbulent flow state in the detection region and maintains a stable laminar flow state, erroneous counting of particles occurs, optical noise increases, and the S / N ratio decreases. Therefore, a highly accurate particle detector can be configured.
1…レーザ発振器、2…流路、3…検出領域、4…センサブロック、21…吸入ノズル、22…鞘管、23…排出ノズル、24…パージエア管、25,27,28,29…配管、26,36…整流素子、30,31,32…バルブ、La…レーザ光。 DESCRIPTION OF SYMBOLS 1 ... Laser oscillator, 2 ... Flow path, 3 ... Detection area, 4 ... Sensor block, 21 ... Intake nozzle, 22 ... Sheath pipe, 23 ... Discharge nozzle, 24 ... Purge air pipe, 25, 27, 28, 29 ... Piping 26, 36 ... rectifier, 30, 31, 32 ... bulb, La ... laser light.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004242760A JP2006058239A (en) | 2004-08-23 | 2004-08-23 | Particle detector |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004242760A JP2006058239A (en) | 2004-08-23 | 2004-08-23 | Particle detector |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006058239A true JP2006058239A (en) | 2006-03-02 |
Family
ID=36105802
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004242760A Pending JP2006058239A (en) | 2004-08-23 | 2004-08-23 | Particle detector |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006058239A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101801461B1 (en) | 2016-03-30 | 2017-11-28 | 가톨릭대학교 산학협력단 | Apparatus for acquisition image data of airborne asbestos concentration |
KR20210015052A (en) * | 2019-07-31 | 2021-02-10 | 국방과학연구소 | A Detecting Device for Fine Particles Using Circulation of Clean Air with Low-power |
WO2021029902A1 (en) * | 2019-08-13 | 2021-02-18 | Tsi Incorporated | Curtain flow design for optical chambers |
-
2004
- 2004-08-23 JP JP2004242760A patent/JP2006058239A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101801461B1 (en) | 2016-03-30 | 2017-11-28 | 가톨릭대학교 산학협력단 | Apparatus for acquisition image data of airborne asbestos concentration |
KR20210015052A (en) * | 2019-07-31 | 2021-02-10 | 국방과학연구소 | A Detecting Device for Fine Particles Using Circulation of Clean Air with Low-power |
KR102225664B1 (en) | 2019-07-31 | 2021-03-10 | 국방과학연구소 | A Detecting Device for Fine Particles Using Circulation of Clean Air with Low-power |
WO2021029902A1 (en) * | 2019-08-13 | 2021-02-18 | Tsi Incorporated | Curtain flow design for optical chambers |
KR20220034262A (en) * | 2019-08-13 | 2022-03-17 | 티에스아이 인코포레이티드 | Curtain flow design for optical chambers |
KR102479361B1 (en) | 2019-08-13 | 2022-12-19 | 티에스아이 인코포레이티드 | Curtain flow design for optical chambers |
US11604122B2 (en) | 2019-08-13 | 2023-03-14 | Tsi Incorporated | Curtain flow design for optical chambers |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109959591B (en) | Sensor combining dust sensor and gas sensor | |
KR101414923B1 (en) | Flow rate measurement device and flow speed measurement device | |
RU2377573C2 (en) | Optical flow metre for measuring flow of gases and liquids in pipes | |
US8911955B2 (en) | Virus detection device and virus detection method | |
WO2006104871A1 (en) | Air purged optical densitometer | |
JP2004078807A (en) | Sampling tube smoke detector | |
JPH01500060A (en) | Particulate counter air intake assembly | |
JP5841601B2 (en) | An improved discharge box for optical emission spectrometry. | |
CN110927031B (en) | Particle Sensing Sensor Components | |
JP6441967B2 (en) | Gas sensor probe with gas flow type sample gas flow | |
KR102479361B1 (en) | Curtain flow design for optical chambers | |
KR20190084537A (en) | Dust measuring apparatus | |
JP2007518087A (en) | Method and apparatus for increasing the size of microparticles | |
JP2006058239A (en) | Particle detector | |
CN110470631B (en) | Laser type gas analyzer | |
CN101634622B (en) | Side scattered light sensing device for particle counter | |
JP2019124682A (en) | Distance measurement device | |
JP5590875B2 (en) | Flow rate measuring device and flow velocity measuring device | |
JP2012073070A (en) | Fine particle measuring device | |
JP2012127773A (en) | Particulate number measuring device | |
CN111566458B (en) | Method for determining a volume and/or mass flow rate | |
KR101721200B1 (en) | Flowmeter | |
JP3966851B2 (en) | Light scattering particle counter | |
JP2006234568A (en) | Gas measuring device | |
JP2017133832A (en) | Optical measurement chamber and optical measurement apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070327 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20081027 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081104 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081224 |
|
A131 | Notification of reasons for refusal |
Effective date: 20090707 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A521 | Written amendment |
Effective date: 20090819 Free format text: JAPANESE INTERMEDIATE CODE: A523 |
|
A02 | Decision of refusal |
Effective date: 20100302 Free format text: JAPANESE INTERMEDIATE CODE: A02 |