[go: up one dir, main page]

JP2006049157A - Composite polymer electrolyte for lithium ion battery - Google Patents

Composite polymer electrolyte for lithium ion battery Download PDF

Info

Publication number
JP2006049157A
JP2006049157A JP2004230048A JP2004230048A JP2006049157A JP 2006049157 A JP2006049157 A JP 2006049157A JP 2004230048 A JP2004230048 A JP 2004230048A JP 2004230048 A JP2004230048 A JP 2004230048A JP 2006049157 A JP2006049157 A JP 2006049157A
Authority
JP
Japan
Prior art keywords
cation
polymer electrolyte
anion
monomer
electrolyte composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004230048A
Other languages
Japanese (ja)
Inventor
Shinya Wakita
真也 脇田
Daisuke Teramoto
大介 寺本
Tsutomu Sada
勉 佐田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Trekion Co Ltd
Original Assignee
Trekion Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Trekion Co Ltd filed Critical Trekion Co Ltd
Priority to JP2004230048A priority Critical patent/JP2006049157A/en
Publication of JP2006049157A publication Critical patent/JP2006049157A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Polymerisation Methods In General (AREA)
  • Conductive Materials (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polymer electrolyte composition for a lithium ion battery, having high ion conductivity and improved mechanical properties. <P>SOLUTION: The electrolyte composition is manufactured, in such a way that a monomer composition containing a quaternary ammonium salt fused salt into which a polymerizable functional group is introduced, a lithium salt is polymerized under existence of a polymer reinforcing material, and a polymer obtained is vacuum heat-pressed. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は,リチウムイオン電池において電極間に配置される複合高分子電解質組成物に関する。 The present invention relates to a composite polymer electrolyte composition disposed between electrodes in a lithium ion battery.

リチウム二次電池には,リチウム塩を含んでいる非水電解液が一般に使用されている。この溶液は,エチレンカーボネート,プロピレンカーボネート,ジメチルカーボネート,ジエチルカーボネート,メチルエチルカーボネートなどのカーボネート類,γ−ブチロラクトンなどのラクトン,テトラヒドロフランなどのエーテルのような非プロトン性の極性溶媒にリチウム塩を溶かしたものである。 For the lithium secondary battery, a non-aqueous electrolyte containing a lithium salt is generally used. This solution was prepared by dissolving a lithium salt in an aprotic polar solvent such as carbonates such as ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, and methyl ethyl carbonate, lactones such as γ-butyrolactone, and ethers such as tetrahydrofuran. Is.

しかしながら,これら有機溶媒は揮発し易く,引火性であり,過充電,過放電,及び短絡などの際に安全性の問題がある。また,液体電解液は電池を液密にシールする際の取扱いが困難である。ゲル化した非水電解液を使用しても有機溶媒の揮発および引火危険性の問題は解消せず,ゲルから相分離した電解液が漏れる問題は依然として残っている。 However, these organic solvents are volatile, flammable, and have safety problems during overcharge, overdischarge, and short circuit. Also, the liquid electrolyte is difficult to handle when sealing the battery in a liquid-tight manner. Even if gelled non-aqueous electrolyte is used, the problems of volatilization of organic solvent and danger of ignition are not solved, and the problem of leakage of electrolyte separated from gel remains.

最近,4級アンモニウムカチオンを含む常温溶融塩にリチウム塩を溶かした非水電解質を使ったリチウム二次電池が提案されている。例えば,特開平10−92467,特開平10−265674,特開平11−92467及び特開2002−11230参照。常温溶融塩は常温で液状でありながら,不揮発性で且つ不燃性であるため安全であるが,マトリックスポリマーによりゲルとしても液体を含むため力学的性質が不十分であり,かつ液体が相分離することがあるので,取扱上の問題および電池設計上の問題は依然として残っている。 Recently, a lithium secondary battery using a non-aqueous electrolyte in which a lithium salt is dissolved in a room temperature molten salt containing a quaternary ammonium cation has been proposed. For example, see JP-A-10-92467, JP-A-10-265674, JP-A-11-92467 and JP-A-2002-11230. Room temperature molten salt is safe because it is liquid at room temperature but is non-volatile and non-flammable, but it contains liquid as a gel due to the matrix polymer, and its mechanical properties are insufficient, and the liquid undergoes phase separation. As a result, handling and battery design issues still remain.

イオン伝導性溶融塩を形成するイミダゾリウム塩にビニル基を導入し,この単量体を重合して全固体高分子電解質を製造する提案もなされている。特開平10−83821および特開2000−11753参照。しかしながら,この高分子電解質も充分な力学的強度を持っていない。
特開平10−83821号 特開平10−92467号 特開平10−265674号 特開平11−92467号 特開2000−11753号 特開2002−11230号
There have also been proposals for producing an all solid polymer electrolyte by introducing a vinyl group into an imidazolium salt forming an ion conductive molten salt and polymerizing the monomer. See JP-A-10-83821 and JP-A-2000-11753. However, this polyelectrolyte does not have sufficient mechanical strength.
Japanese Patent Laid-Open No. 10-83821 JP-A-10-92467 JP-A-10-265673 JP-A-11-92467 JP 2000-11754 JP 2002-11230 A

従って,高いイオン伝導度と満足な力学的性質を持っている安全な高分子電解質に対する要望は依然として残っている。 Therefore, there remains a need for safe polyelectrolytes with high ionic conductivity and satisfactory mechanical properties.

本発明は,4級アンモニウムカチオンとフッ素含有アニオンからなる4級アンモニウム塩構造と重合性官能基を持っている溶融塩単量体,およびリチウム塩を含んでいる単量体組成物を,電気化学的に不活性な高分子補強材料としてのポリフッ化ビニリデンの存在下で重合し、真空ヒートプレスすることにより製造された複合高分子電解質組成物を提供することによって上の要望を満たす。 The present invention relates to a monomer composition comprising a molten salt monomer having a quaternary ammonium salt structure comprising a quaternary ammonium cation and a fluorine-containing anion and a polymerizable functional group, and a lithium salt. The above needs are met by providing a composite polyelectrolyte composition produced by polymerization in the presence of polyvinylidene fluoride as a chemically inert polymeric reinforcement material and vacuum heat pressing.

ポリフッ化ビニリデンに代表される電気化学的に不活性な高分子補強材料を溶融塩単量体のポリマーと複合化させるにはいくつかの方法がある。 There are several methods for combining an electrochemically inactive polymer reinforcing material represented by polyvinylidene fluoride with a polymer of molten salt monomer.

第1の方法はリチウム塩を含んでいる溶融塩単量体と高分子補強材料を適当な溶媒に溶解し,この溶液をフィルム状に流延した後重合する方法である。 The first method is a method in which a molten salt monomer containing a lithium salt and a polymer reinforcing material are dissolved in an appropriate solvent, and this solution is cast into a film and then polymerized.

第2の方法は基本的には第1の方法と同じであるが,あらかじめ炭素−炭素間二重結合のような架橋点となる官能基を導入した高分子補強材料を使用する点で第1の方法と異なっている。 The second method is basically the same as the first method, but the first method is that a polymer reinforcing material into which a functional group that becomes a crosslinking point such as a carbon-carbon double bond is introduced in advance is used. The method is different.

いずれの場合も重合は熱,光(紫外線)または電子線照射によって行うことができる。 In either case, the polymerization can be carried out by heat, light (ultraviolet light) or electron beam irradiation.

重合前の溶融塩単量体を含む溶液をガラス,ポリエステルなどの非接着の基材上にフィルム状に流延し,重合後剥離して独立膜として使用することもできるし,代って電極の活物質面に塗布し,その状態で重合して電極と一体化したフィルムとして形成しても良い。 The solution containing the molten salt monomer before polymerization can be cast as a film on a non-adhesive substrate such as glass or polyester, and then peeled off after polymerization to be used as an independent film. The film may be applied to the active material surface and polymerized in that state to form a film integrated with the electrode.

さらに、一旦成形された高分子電解質フィルムを真空ヒートプレスにより空孔をなくすように押し潰すと、イオン伝導度は飛躍的に向上されることが見い出された。 Furthermore, it has been found that when the polymer electrolyte film once formed is crushed by a vacuum heat press so as to eliminate voids, the ionic conductivity is dramatically improved.

このようにして形成した本発明の高分子電解質フィルムは,高分子補強材料の存在によってそれを含まないフィルムに比較して引張り強度に代表されるその力学的性質が著しく向上する。もし望むならば溶融塩単量体に少割合の多官能単量体を共重合し,力学的性質をさらに向上させることができる。補強の結果,本発明の複合高分子電解質組成物を使ってコンパクトでエネルギー密度の高い高性能電池等に組立てることが可能になる。 The polymer electrolyte film of the present invention formed as described above has remarkably improved mechanical properties represented by tensile strength as compared with a film not containing the polymer reinforcing material due to the presence of the polymer reinforcing material. If desired, a small proportion of polyfunctional monomer can be copolymerized with the molten salt monomer to further improve the mechanical properties. As a result of the reinforcement, the composite polymer electrolyte composition of the present invention can be used to assemble a compact high-performance battery having a high energy density.

4級アンモニウムカチオンとフッ素原子含有アニオンとから成る4級アンモニウム塩構造及び重合性官能基を含む単量体の塩構造とは,脂肪族,脂環族,芳香族,あるいは複素環の4級アンモニウムカチオンとフッ素原子含有のアニオンからなる塩構造である。ここでいう「4級アンモニウムカチオン」とは,窒素のオニウムカチオンを意味し,イミダゾリウム,ピリジウムのような複素環オニウムイオンを含む。下記アンモニウムカチオン群から選ばれた少なくとも1つのアンモニウムカチオンと下記アニオン群から選ばれた少なくとも1つのアニオンからなる塩構造を挙げることが出来る。 A quaternary ammonium salt structure composed of a quaternary ammonium cation and a fluorine atom-containing anion and a salt structure of a monomer containing a polymerizable functional group are aliphatic, alicyclic, aromatic, or heterocyclic quaternary ammonium. It is a salt structure composed of a cation and a fluorine atom-containing anion. The “quaternary ammonium cation” here means an onium cation of nitrogen, and includes heterocyclic onium ions such as imidazolium and pyridium. Mention may be made of a salt structure comprising at least one ammonium cation selected from the following ammonium cation group and at least one anion selected from the following anion group.

(アンモニウムカチオン群)ピロリウムカチオン,ピリジニウムカチオン,イミダゾリウムカチオン,ピラゾリウムカチオン,ベンズイミダゾリウムカチオン,インドリウムカチオン,カルバゾリウムカチオン,キノリニウムカチオン,ピロリジニウムカチオン,ピペリジニウムカチオン,ピペラジニウムカチオン,アルキルアンモニウムカチオン(但し,炭素数1〜30の炭化水素基,ヒドロキシアルキル,アルコキシアルキルで置換されているものを含む)。いずれも,N及び/又は環に炭素数1〜10の炭化水素基,ヒドロキシアルキル基,アルコキシアルキル基が結合しているものを含む。 (Ammonium cation group) pyrrolium cation, pyridinium cation, imidazolium cation, pyrazolium cation, benzimidazolium cation, indolium cation, carbazolium cation, quinolinium cation, pyrrolidinium cation, piperidinium cation, Piperazinium cation, alkylammonium cation (including those substituted with a hydrocarbon group having 1 to 30 carbon atoms, hydroxyalkyl, alkoxyalkyl). Any of them includes N and / or a ring having a hydrocarbon group having 1 to 10 carbon atoms, a hydroxyalkyl group, or an alkoxyalkyl group.

(アニオン群)BF,PF,C2n−1CO(但しnは1〜4の整数),C2n−1SO(但しnは1〜4の整数),(FSON,(CFSON,(CSON,(CFSOC,CF−SO−N−COCF),R−SO−N−SOCFLi(Rは脂肪族基),およびArSO−N−SOCF(Arは芳香族基)。 (Anion group) BF 4 , PF 6 , C n F 2n-1 CO 2 (where n is an integer of 1 to 4), C n F 2n-1 SO 3 (where n is an integer of 1 to 4), (FSO 2) 2 N, (CF 3 SO 2) 2 N, (C 2 F 5 SO 2) 2 N, (CF 3 SO 2) 3 C, CF 3 -SO 2 -N-COCF 3), R-SO 2 -N-SO 2 CF 3 Li ( R is an aliphatic group), and ArSO 2 -N-SO 2 CF 3 (Ar is an aromatic group).

上記のアンモニウムカチオン及びアニオン種は耐熱性,耐還元性又は耐酸化性に優れ,電気化学窓が広くとれ,電池やキャパシタに用いるために好ましい。 The above ammonium cation and anion species are excellent in heat resistance, reduction resistance or oxidation resistance, have a wide electrochemical window, and are preferable for use in batteries and capacitors.

単量体における重合性官能基としては,ビニル基,アクリル基,メタクリル基,アリル基などの炭素−炭素不飽和基,エポキシ基,オキセタン基などの環状アルコキシド基やイソシアネート基,水酸基,カルボキシル基などを例示できる。 Polymerizable functional groups in monomers include carbon-carbon unsaturated groups such as vinyl, acrylic, methacrylic and allyl groups, cyclic alkoxide groups such as epoxy and oxetane groups, isocyanate groups, hydroxyl groups and carboxyl groups. Can be illustrated.

特に好ましいアンモニウムカチオン種としては,1−ビニル−3−アルキルイミダゾリウムカチオン,4−ビニル−1−アルキルピリジニウムカチオン,1−アルキル−3−アリルイミダゾリウムカチオン,1−(4−ビニルベンジル)−3−アルキルイミダゾリウムカチオン,1−(ビニルオキシエチル)−3−アルキルイミダゾリウムカチオン,1−ビニルイミダゾリウムカチオン,1−アリルイミダゾリウムカチオン,N−アリルベンズイミダゾリウムカチオン,ジアリル−ジアルキルアンモニウムカチオンなどを挙げることが出来る。但し,アルキルは炭素数1〜10のアルキル基である。 Particularly preferred ammonium cation species include 1-vinyl-3-alkylimidazolium cation, 4-vinyl-1-alkylpyridinium cation, 1-alkyl-3-allylimidazolium cation, 1- (4-vinylbenzyl) -3. -Alkyl imidazolium cation, 1- (vinyloxyethyl) -3-alkyl imidazolium cation, 1-vinyl imidazolium cation, 1-allyl imidazolium cation, N-allylbenzimidazolium cation, diallyl-dialkylammonium cation, etc. I can list them. However, alkyl is a C1-C10 alkyl group.

特に好ましいアニオン種としてはビス{(トリフルオロメチル)スルフォニル}アミド アニオン,2,2,2−トリフルオロ−N−(トリフルオロメチルスルフォニル)アセトアミド アニオン,ビス{(ペンタフルオロエチル)スルフォニル}アミド アニオン,ビス{(フルオロ)スルフォニル}アミド アニオン,テトラフルオロボレート アニオン,トリフルオロメタンスルフォネート アニオン,などを挙げることが出来る。 Particularly preferred anionic species include bis {(trifluoromethyl) sulfonyl} amide anion, 2,2,2-trifluoro-N- (trifluoromethylsulfonyl) acetamide anion, bis {(pentafluoroethyl) sulfonyl} amide anion, Bis {(fluoro) sulfonyl} amide anion, tetrafluoroborate anion, trifluoromethanesulfonate anion, and the like.

特に好ましい単量体としては,1−ビニル−3−アルキルイミダゾリウム ビス{(トリフルオロメチル)スルフォニル}アミド(但し,アルキルはC1〜C10),1−ビニル−3−アルキルイミダゾリウム テトラフルオロボレート(但し,アルキルはC1〜C10),4−ビニル−1−アルキルピリジニウム ビス{(トリフルオロメチル)スルフォニル}アミド(但し,アルキルはC1〜C10),4−ビニル−1−アルキルピリジニウム テトラフルオロボレート(但し,アルキルはC1〜C10),1−(4−ビニルベンジル)−3−アルキルイミダゾリウム ビス{(トリフルオロメチル)スルフォニル}アミド(但し,アルキルはC1〜C10),1−(4−ビニルベンジル)−3−アルキルイミダゾリウム テトラフルオロボレート(但し,アルキルはC1〜C10),1−グリシジル−3−アルキル−イミダゾリウム ビス{(トリフルオロメチル)スルフォニル}アミド(但し,アルキルはC1〜C10),1−グリシジル−3−アルキル−イミダゾリウム テトラフルオロボレート(但し,アルキルはC1〜C10),N−ビニルカルバゾリウム テトラフルオロボレートなどを例示出来る。 Particularly preferable monomers include 1-vinyl-3-alkylimidazolium bis {(trifluoromethyl) sulfonyl} amide (wherein alkyl is C1 to C10), 1-vinyl-3-alkylimidazolium tetrafluoroborate ( However, alkyl is C1-C10), 4-vinyl-1-alkylpyridinium bis {(trifluoromethyl) sulfonyl} amide (wherein alkyl is C1-C10), 4-vinyl-1-alkylpyridinium tetrafluoroborate (however, , Alkyl is C1-C10), 1- (4-vinylbenzyl) -3-alkylimidazolium bis {(trifluoromethyl) sulfonyl} amide (wherein alkyl is C1-C10), 1- (4-vinylbenzyl) -3-alkylimidazolium tetrafluoroborate (however, Alkyl is C1-C10), 1-glycidyl-3-alkyl-imidazolium bis {(trifluoromethyl) sulfonyl} amide (wherein alkyl is C1-C10), 1-glycidyl-3-alkyl-imidazolium tetrafluoroborate (However, alkyl is C1-C10), N-vinylcarbazolium tetrafluoroborate, etc. can be illustrated.

リチウムイオン電池の電荷移動イオン源はリチウム塩であるが,本発明では,好ましくは下記のリチウムカチオンとフッ素原子含有アニオンとからなるリチウム塩を使用することが出来る。 The charge transfer ion source of the lithium ion battery is a lithium salt. In the present invention, a lithium salt composed of the following lithium cation and fluorine atom-containing anion can be preferably used.

前記リチウム塩は,LiBF,LiPF,C2n−1COLi(但しnは1〜4の整数),C2n−1SOLi(但しnは1〜4の整数),(FSONLi,(CFSO,NLi,(CSONLi,(CFSO)3 CLi,(CF−SO−N−COCF)Li,(R−SO−N−SOCF)Li(Rは脂肪族基),および(ArSO−N−SOCF)Li(Arは芳香族基)である。 The lithium salt is LiBF 4 , LiPF 6 , C n F 2n-1 CO 2 Li (where n is an integer of 1 to 4), C n F 2n-1 SO 3 Li (where n is an integer of 1 to 4). , (FSO 2 ) 2 NLi, (CF 3 SO 2 ) 2 , NLi, (C 2 F 5 SO 2 ) 2 NLi, (CF 3 SO 2 ) 3 CLi, (CF 3 —SO 2 —N—COCF 3 ) Li, (R—SO 2 —N—SO 2 CF 3 ) Li (R is an aliphatic group), and (ArSO 2 —N—SO 2 CF 3 ) Li (Ar is an aromatic group).

好ましい高分子補強材料はフッ素系ポリマーであり,特に好ましいのはポリフッ化ビニリデン及びその共重合ポリマー,その変性ポリマーである。その分子量は数平均分子量として2000〜2000000,好ましくは3000〜100000,特に好ましくは,5000〜50000である。 A preferred polymer reinforcing material is a fluorine-based polymer, and particularly preferred is polyvinylidene fluoride, a copolymer thereof, and a modified polymer thereof. The molecular weight is 2000 to 2000000 as a number average molecular weight, preferably 3000 to 100000, particularly preferably 5000 to 50000.

また、一旦成形された高分子電解質フィルムのイオン伝導度を飛躍的に向上させるために有効な真空ヒートプレスの条件の1つとしては,90℃,21Kg/cmであることが見い出された。 Further, it was found that one of the conditions of the vacuum heat press effective for dramatically improving the ionic conductivity of the once formed polymer electrolyte film was 90 ° C. and 21 Kg / cm 2 .

本発明によれば,溶融塩単量体,リチウム塩,および高分子補強材料をジメチルアセタミドのような適切な溶媒に溶かし,この溶液をガラスやポリエステルフィルムのような基材に流延またはコーティングし,重合後剥離して複合化した高分子電解質組成物の薄膜を得ることができる。 According to the present invention, the molten salt monomer, lithium salt, and polymer reinforcing material are dissolved in a suitable solvent such as dimethylacetamide and the solution is cast on a substrate such as glass or polyester film. It is possible to obtain a thin film of a polymer electrolyte composition which is coated and peeled after polymerization to form a composite.

溶融塩単量体のポリマーと補強材料のポリマープレンドを形成している電解質組成物の場合,高分子補強材料の割合は,力学的性質とイオン伝導度との最適なバランスが得られるようにして決定される。 In the case of an electrolyte composition forming a polymer salt of a molten salt monomer and a polymer blend of a reinforcing material, the proportion of the polymeric reinforcing material should be such that an optimal balance between mechanical properties and ionic conductivity is obtained. It is determined.

溶融塩単量体に対する補強材料の重量比は,一般的には0.1〜0.8,特に好ましくは0.35〜0.65の間にある。特定の溶融塩単量体と特定の高分子補強材料の組合わせについては,力学的性質とイオン伝導度の最適なバランスは実験的に定めることができる。 The weight ratio of reinforcing material to molten salt monomer is generally between 0.1 and 0.8, particularly preferably between 0.35 and 0.65. For a combination of a specific molten salt monomer and a specific polymeric reinforcement material, the optimal balance between mechanical properties and ionic conductivity can be determined experimentally.

同様にブレンドタイプの電解質組成物の場合,リチウム塩と力学的性質の最適のバランスは溶融塩単量体に対するリチウム塩の比に依存する。この比は重量で一般に0.05〜0.8,好ましくは0.1〜0.7,特に好ましくは0.15〜0.5の範囲である。 Similarly, in the case of blend type electrolyte compositions, the optimal balance between lithium salt and mechanical properties depends on the ratio of lithium salt to molten salt monomer. This ratio is generally in the range from 0.05 to 0.8, preferably from 0.1 to 0.7, particularly preferably from 0.15 to 0.5, by weight.

また、一旦成形された高分子電解質フィルムのイオン伝導度を飛躍的に向上させるために有効な真空ヒートプレスの条件の1つとしては,90℃,21Kg/cmであることが見い出された。 Further, it was found that one of the conditions of the vacuum heat press effective for dramatically improving the ionic conductivity of the once formed polymer electrolyte film was 90 ° C. and 21 Kg / cm 2 .

特定の溶融塩単量体と特定のリチウム塩の組合わせの最適比は実験的に容易に決めることができる。 The optimum ratio of the combination of a specific molten salt monomer and a specific lithium salt can be easily determined experimentally.

溶融塩単量体は単独重合,または,これ共重合し得る単量体と共重合させることができる。好ましい態様の1つは,溶融塩単量体と反応する官能基を有する高分子補強材料を用いたグラフト架橋重合体の形成である。共重合する単量体は2種類以上の溶融塩単量体を用いてもよいし,塩構造を含まない単量体や,さらには複数の重合性官能基を有する多官能単量体であってもよい。 The molten salt monomer can be homopolymerized or copolymerized with a monomer that can be copolymerized therewith. One of the preferred embodiments is the formation of a graft cross-linked polymer using a polymer reinforcing material having a functional group that reacts with the molten salt monomer. As the monomer to be copolymerized, two or more types of molten salt monomers may be used, a monomer that does not contain a salt structure, or a polyfunctional monomer having a plurality of polymerizable functional groups. May be.

本重合反応は,単量体熱重合開始剤や硬化剤を加え,通常40℃〜200℃に加熱して行なう。重合性官能基が炭素−炭素不飽和基である場合,熱重合開始剤としては,ベンゾイルパーオキサイド,ジクミルパーオキサイド,ジ−t−ブチルパーオキサイド,1,1−ビス(t−ブチルパーオキシ)シクロヘキサン,キュメンハイドロパーオキサイドなどのパーオキサイド類,2,2−アゾビスイソブチロニトリル,2,2−アゾビス(2,4−ジメチルバレロニトリル)などのアゾビス化合物,過硫酸アンモニウムなどの無機系開始剤などを挙げることが出来る。 The main polymerization reaction is usually performed by adding a monomer thermal polymerization initiator and a curing agent and heating to 40 ° C to 200 ° C. When the polymerizable functional group is a carbon-carbon unsaturated group, the thermal polymerization initiator may be benzoyl peroxide, dicumyl peroxide, di-t-butyl peroxide, 1,1-bis (t-butylperoxy). ) cyclohexane, peroxides such as cumene hydroperoxide, 2,2 - azobisisobutyronitrile, 2,2, - azobis (2,4-dimethylvaleronitrile) azobis compounds such as, inorganic, such as ammonium persulfate A system initiator etc. can be mentioned.

重合開始剤の使用量は,通常重合性単量体の総重量に対して0.1〜10%,好ましくは1〜5%である。重合性官能基がエポキシ基である場合,硬化剤としてアミン類や酸無水物,カルボン酸,反応触媒としてアルキルイミダゾール誘導体を用いることが出来る。 The amount of the polymerization initiator used is usually 0.1 to 10%, preferably 1 to 5%, based on the total weight of the polymerizable monomers. When the polymerizable functional group is an epoxy group, amines, acid anhydrides and carboxylic acids can be used as curing agents, and alkylimidazole derivatives can be used as reaction catalysts.

重合させるために紫外線(光重合開始剤を使用)や電子線などの放射線を照射することも出来る。電子線重合は,高分子補強材料自体の架橋反応や単量体の補強材料へのグラフト反応も期待でき,好ましい態様である。照射量は0.1〜50Mrad,好ましくは1〜20Mradである。 In order to polymerize, radiation such as ultraviolet rays (using a photopolymerization initiator) or an electron beam can be irradiated. Electron beam polymerization is a preferred embodiment because it can be expected to undergo a crosslinking reaction of the polymer reinforcing material itself and a graft reaction of the monomer to the reinforcing material. The irradiation amount is 0.1 to 50 Mrad, preferably 1 to 20 Mrad.

溶融塩と共重合可能な重合性官能基を2個以上含む多官能単量体の例は,ジビニルベンゼン,ジアリルフタレート,エチレングリコールジ(メタ)アクリレート,ジエチレングリコールジ(メタ)アクリレート,トリエチレングリコールジ(メタ)アクリレート,トリメチロールプロパントリ(メタ)アクリレート,ペンタエリスリトール テトラ(メタ)アクリレート,トリアリルイソシアヌレート,トリアリルシアヌレート,ジアリル−ジメチルアンモニウム ビス−{(トリフルオロメチル)スルフォニル}アミド,ジアリル−ジメチルアンモニウムテトラフルオロボレート,2,2−ビス(グリシジルオキシ)フェニルプロパンなどがある。これらの多官能モノマーは溶融塩単量体の0.5〜10モル%の量で使用し得る。 Examples of polyfunctional monomers containing two or more polymerizable functional groups copolymerizable with molten salt are divinylbenzene, diallyl phthalate, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (Meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, triallyl isocyanurate, triallyl cyanurate, diallyl-dimethylammonium bis-{(trifluoromethyl) sulfonyl} amide, diallyl- Examples include dimethylammonium tetrafluoroborate and 2,2-bis (glycidyloxy) phenylpropane. These polyfunctional monomers can be used in an amount of 0.5 to 10 mol% of the molten salt monomer.

本発明の複合高分子電解質組成物は,ポリマーブレンドの場合,リチウム塩を含んでいる溶融塩単量体と補強材料ポリマーとがミクロに相分離し,それぞれのイオン伝導性に力学的性質を付与する機能を果たしているものと考えられる。 In the polymer electrolyte composition of the present invention, in the case of a polymer blend, the molten salt monomer containing the lithium salt and the reinforcing material polymer are phase-separated microscopically to impart mechanical properties to the respective ionic conductivity. It is considered that the function is performed.

また、一旦成形された高分子電解質フィルムを90℃,21Kg/cmで真空ヒートプレスすることにより空孔をなくすと,イオン伝導度が約24%向上することが見い出された。 Further, it was found that the ionic conductivity was improved by about 24% when the pores were eliminated by vacuum heat pressing the once formed polymer electrolyte film at 90 ° C. and 21 kg / cm 2 .

本発明の複合高分子電解質組成物は,リチウムイオン電池の対向する電極間にサンドイッチされる。 The composite polymer electrolyte composition of the present invention is sandwiched between opposing electrodes of a lithium ion battery.

リチウムイオン電池には,典型的には黒鉛であるリチウムイオンを吸蔵放出する炭素材料よりなる活物質層を備えた負極と,LiCoO,LiFeO,LiNiCo1−n(n<1),LiMnなどに代表されるリチウムイオンを吸蔵放出するリチウムを含む複合金属酸化物よりなる活性物質層を有する正極が使用される。 The lithium-ion battery, a negative electrode, typically comprising an active material layer made of a carbon material that the lithium ion occluding and releasing is graphite, LiCoO 2, LiFeO, LiNi n Co 1-n O 2 (n <1) , A positive electrode having an active material layer made of a composite metal oxide containing lithium that absorbs and releases lithium ions typified by LiMn 2 O 4 is used.

以下に限定を意図しない実施例によって本発明を例証する。 The invention is illustrated by the following non-limiting examples.

実施例中すべての部および%は特記しない限り重量基準による。実施例中の測定は下記の方法によって行った。 All parts and percentages in the examples are on a weight basis unless otherwise specified. The measurement in an Example was performed with the following method.

イオン伝導度:電極面積 0.95cmの白金電極間に試料を挟み,室温,65%RHで,交流インピーダンス法(0.1V,周波数1Hz〜10MHz)により膜抵抗を測定し,イオン伝導率を算出した。 Ionic conductivity: Electrode area: 0.95cm 2 between the platinum electrodes, measure the membrane resistance by AC impedance method (0.1V, frequency 1Hz-10MHz) at room temperature and 65% RH, and determine the ionic conductivity. Calculated.

引張り強度:A&D社製,引張り試験機テンシロンRT1350を用い,23℃,5cm/min.で測定した。 Tensile strength: A tensile tester Tensilon RT1350 manufactured by A & D, 23 ° C., 5 cm / min. Measured with

また実施例中で合成した化合物はIRスペクトル,NMRスペクトルで同定した。 Moreover, the compound synthesize | combined in the Example was identified by IR spectrum and NMR spectrum.

1−メチル−3−(4−ビニルベンジル)イミダゾリウム ビス{(トリフルオロメチル)スルフォニル}アミド〔MVBI・TFSIと略す〕の合成Synthesis of 1-methyl-3- (4-vinylbenzyl) imidazolium bis {(trifluoromethyl) sulfonyl} amide [abbreviated as MVBI / TFSI]

1−メチルイミダゾール 37.0g(0.45mol)を200mlの1,1,1−トリクロロエタンに溶解し,室温で攪拌しながら,p−クロルメチルスチレン 68.7g(0.45mol)を100mlの1,1,1−トリクロロエタンに溶解した溶液を1時間かけて滴下後,更に10時間,65℃で撹拌を続けて反応を行った。生成物を分離し,各100mlの1,1,1−トリクロロエタンで2回洗浄後,65℃,0.1mmで2時間,乾燥し,淡黄色の固体1−メチル−3−(4−ビニルベンジル)イミダゾリウム クロライド〔MVBI・Cl〕52.8g(50%)を得た。次に,カリウム ビス{(トリフルオロメチル)スルフォニル}アミド (KTFSI)31.9g(0.1mol)を100mlの水に70℃で溶解し,50℃で攪拌しながら,上で得たMVBI・Cl 23.4g(0.1mol)を50mlの水に溶解した溶液を15分で滴下・混合した。50℃で激しく攪拌しながらさらに2時間,複分解反応を行った後,生成した油層を分離した。生成物を各50mlの水で2回洗浄した後,60℃,0.1mmHgで2時間乾燥し,1−メチル−3−(4−ビニルベンジル)イミダゾリウム ビス{(トリフルオロメチル)スルフォニル}アミド〔MVBI・TFSIと略す〕40.8g(収率85%)を得た。 While dissolving 37.0 g (0.45 mol) of 1-methylimidazole in 200 ml of 1,1,1-trichloroethane and stirring at room temperature, 68.7 g (0.45 mol) of p-chloromethylstyrene was added to 100 ml of 1,1,1-trichloroethane. A solution dissolved in 1,1-trichloroethane was added dropwise over 1 hour, and the reaction was further continued for 10 hours at 65 ° C. with stirring. The product was separated, washed twice with 100 ml each of 1,1,1-trichloroethane, dried at 65 ° C. and 0.1 mm for 2 hours, and pale yellow solid 1-methyl-3- (4-vinylbenzyl) ) 52.8 g (50%) of imidazolium chloride [MVBI · Cl] was obtained. Next, 31.9 g (0.1 mol) of potassium bis {(trifluoromethyl) sulfonyl} amide (KTFSI) was dissolved in 100 ml of water at 70 ° C. and stirred at 50 ° C., and the MVBI · Cl obtained above was dissolved. A solution obtained by dissolving 23.4 g (0.1 mol) in 50 ml of water was dropped and mixed in 15 minutes. After further metathesis reaction for 2 hours with vigorous stirring at 50 ° C., the produced oil layer was separated. The product was washed twice with 50 ml of water each and then dried at 60 ° C. and 0.1 mmHg for 2 hours to give 1-methyl-3- (4-vinylbenzyl) imidazolium bis {(trifluoromethyl) sulfonyl} amide. [It abbreviates as MVBI * TFSI] 40.8g (yield 85%) was obtained.

炭素−炭素間二重結合を含有するポリフッ化ビニリデン変性ポリマー〔DBFと略す〕の合成Synthesis of polyvinylidene fluoride modified polymer (abbreviated as DBF) containing a carbon-carbon double bond

アトフィナ〔(株)製ポリフッ化ビニリデン(Kynar461)15gとN−メチルピロリドン−2〔NMP〕85gを撹拌機付きの300ml三口フラスコに入れ,90℃で溶解した。同温度で撹拌しながらトリエチルアミン2.37gを約10分で滴下・添加した。さらに同温度で撹拌しながら30分間反応させた。冷却後,300mlの水に撹拌下で添加し,再沈殿させた。沈殿したポリマーを各500mlの水で2回浸漬洗浄・濾過し,60℃で10時間,真空乾燥した。 Atofina [Co., Ltd., 15 g of polyvinylidene fluoride (Kynar 461) and 85 g of N-methylpyrrolidone-2 [NMP] were placed in a 300 ml three-necked flask equipped with a stirrer and dissolved at 90 ° C. While stirring at the same temperature, 2.37 g of triethylamine was added dropwise in about 10 minutes. Furthermore, it was made to react for 30 minutes, stirring at the same temperature. After cooling, it was added to 300 ml of water under stirring and reprecipitated. The precipitated polymer was immersed and washed twice with 500 ml of water and filtered, and vacuum dried at 60 ° C. for 10 hours.

回収したポリマーはNMRスペクトル分析より,約8モル%の二重結合が導入されていることが分かった。 The recovered polymer was found to have about 8 mol% of double bonds introduced by NMR spectrum analysis.

実施例1で得られた,1−メチル−3−(4−ビニルベンジル)イミダゾリウム ビス{(トリフルオロメチル)スルフォニル}アミド〔MVBI・TFSIと略す〕8.4g,実施例2で得られたポリフッ化ビニリデン変性ポリマー〔DBF〕10.0g,ベンゾイルパーオキサイド0.17gをジメチルアセトアマイド80gに溶解した溶液を調整した。この溶液にリチウム ビス{(トリフルオロメチル)スルフォニル}アミド〔LiTFSIと略す〕4.0gを溶解させ,電解質プリカーサー液を調整した。本溶液を100μmのポリエステルフィルム(東レ製 Tタイプ)上にコーティングし,熱風乾燥機で130℃,30分間加熱し,乾燥と同時に重合反応を行った。塗工膜をポリエステルフィルムから剥がし,膜厚25μmの透明なフィルムを得た。 8.4 g of 1-methyl-3- (4-vinylbenzyl) imidazolium bis {(trifluoromethyl) sulfonyl} amide [abbreviated as MVBI · TFSI] obtained in Example 1, obtained in Example 2 A solution in which 10.0 g of polyvinylidene fluoride-modified polymer [DBF] and 0.17 g of benzoyl peroxide were dissolved in 80 g of dimethylacetamide was prepared. In this solution, 4.0 g of lithium bis {(trifluoromethyl) sulfonyl} amide [abbreviated as LiTFSI] was dissolved to prepare an electrolyte precursor solution. This solution was coated on a 100 μm polyester film (T type manufactured by Toray Industries, Inc.), heated with a hot air dryer at 130 ° C. for 30 minutes, and simultaneously with drying, a polymerization reaction was performed. The coating film was peeled off from the polyester film to obtain a transparent film having a film thickness of 25 μm.

このフィルムのイオン伝導度は20℃で2.1×10−3S/cm,引張り強度は11MPaであった。 The ionic conductivity of this film was 2.1 × 10 −3 S / cm at 20 ° C., and the tensile strength was 11 MPa.

さらに、この一旦成形された高分子電解質フィルムを90℃,21Kg/cmで真空ヒートプレスすると,フィルムの引張り強度を維持しながらイオン伝導度が約24%向上した。 Furthermore, when this once formed polymer electrolyte film was vacuum heat pressed at 90 ° C. and 21 Kg / cm 2 , the ionic conductivity was improved by about 24% while maintaining the tensile strength of the film.

実施例1と同様に,トリエチルアミンとp−クロルメチルスチレンから,トリエチル−(4−ビニルベンジル)アンモニウム クロライドを合成し,さらにこれをKTFSIと反応させ,トリエチル−(4−ビニルベンジル)アンモニウム・ビス{(トリフルオロメチル)スルフォニル}アミド〔TEVBA・TFSIと略す〕を合成した。次いで,上記で得たTEVBA・TFSI 7.0g,ポリフッ化ビニリデン樹脂(アトフィナ社製 Kynar461)13.0g,ベンゾイルパーオキサイド0.14g,LiTFSI 7.0gをジメチルアセトアマイド 80gに溶解した電解質プリカーサー液を調整した。本溶液を3mmのガラス板上に塗布し,ガラス板と共に130℃で30分間加熱し,乾燥と重合反応を行った。塗膜をガラス板から剥がし,膜厚30μmのフィルムを得た。 In the same manner as in Example 1, triethyl- (4-vinylbenzyl) ammonium chloride was synthesized from triethylamine and p-chloromethylstyrene and further reacted with KTFSI to obtain triethyl- (4-vinylbenzyl) ammonium bis { (Trifluoromethyl) sulfonyl} amide [abbreviated as TEVBA · TFSI] was synthesized. Next, an electrolyte precursor solution obtained by dissolving 7.0 g of TEVBA · TFSI obtained above, 13.0 g of polyvinylidene fluoride resin (Kynar 461 manufactured by Atofina), 0.14 g of benzoyl peroxide, and 7.0 g of LiTFSI in 80 g of dimethylacetamide was prepared. It was adjusted. This solution was applied onto a 3 mm glass plate, heated at 130 ° C. for 30 minutes with the glass plate, and dried and polymerized. The coating film was peeled off from the glass plate to obtain a film with a thickness of 30 μm.

本フィルムのイオン伝導度は20℃で3.0×10−4S/cm,引張り強度は6MPaであった。 The ionic conductivity of this film was 3.0 × 10 −4 S / cm at 20 ° C., and the tensile strength was 6 MPa.

さらに、この一旦成形された高分子電解質フィルムを90℃,21Kg/cmで真空ヒートプレスすると,フィルムの引張り強度を維持しながらイオン伝導度が約24%向上した。 Furthermore, when this once formed polymer electrolyte film was vacuum heat pressed at 90 ° C. and 21 Kg / cm 2 , the ionic conductivity was improved by about 24% while maintaining the tensile strength of the film.

Claims (7)

4級アンモニウムカチオンとフッ素含有アニオンからなる4級アンモニウム塩構造と,重合性官能基を持っている溶融塩単量体を含んでいる単量体組成物にリチウムイオンを添加し,電気化学的に不活性な高分子補強材料としてのポリフッ化ビニリデンの存在下で重合し,真空ヒートプレスすることにより製造されたリチウムイオン電池用複合高分子電解質組成物。 Lithium ions were added to a monomer composition containing a quaternary ammonium salt structure comprising a quaternary ammonium cation and a fluorine-containing anion and a molten salt monomer having a polymerizable functional group, and electrochemically added. A composite polymer electrolyte composition for a lithium ion battery produced by polymerization in the presence of polyvinylidene fluoride as an inert polymer reinforcing material and vacuum heat pressing. 前記単量体組成物は,前記溶融塩単量体と共重合し得る多官能単量体を含んでいる請求項1の複合高分子電解質組成物。 The composite polymer electrolyte composition according to claim 1, wherein the monomer composition contains a polyfunctional monomer that can be copolymerized with the molten salt monomer. 前記溶融塩単量体は,1−ビニル−3−アルキルイミダゾリウムカチオン,4−ビニル−1−アルキルピリジニウムカチオン,1−アルキル−3−アリルイミダゾリウムカチオン,1−(4−ビニルベンジル)−3−アルキルイミダゾリウムカチオン,1−(ビニルオキシエチル)−3−アルキルイミダゾリウムカチオン,1−ビニルイミダゾリウムカチオン,1−アリルイミダリウムカチオン,N−アリルベンズイミダゾリウムカチオン,および4級ジアリルジアルキルアンモニウムからなる群から選ばれた4級アンモニウムカチオンと,ビス〔(トリフルオロメチル)スルフォニルアミドアニオン,2,2,2−トリフルオロ−N−(トリフロオロメチルスルフォニル)アセトアミドアニオン,ビス〔(ペンタフルオロエチル)スルフォニル〕アミドアニオン,ビス〔(フルオロ)スルホニル〕アミドアニオン,テトラフルオロボレートアニオン,およびトリフルオロメタンスルフォネートアニオンからなる群から選ばれたアニオンとの塩である請求項1の複合高分子電解質組成物。 The molten salt monomer is 1-vinyl-3-alkylimidazolium cation, 4-vinyl-1-alkylpyridinium cation, 1-alkyl-3-allylimidazolium cation, 1- (4-vinylbenzyl) -3. -Alkyl imidazolium cation, 1- (vinyloxyethyl) -3-alkyl imidazolium cation, 1-vinyl imidazolium cation, 1-allyl imidazolium cation, N-allylbenzimidazolium cation, and quaternary diallyldialkylammonium A quaternary ammonium cation selected from the group consisting of bis [(trifluoromethyl) sulfonylamide anion, 2,2,2-trifluoro-N- (trifluoromethylsulfonyl) acetamide anion, bis [(pentafluoro Ethyl) sulfo 2. The composite polymer electrolyte composition according to claim 1, which is a salt with an anion selected from the group consisting of [Lu] amide anion, bis [(fluoro) sulfonyl] amide anion, tetrafluoroborate anion, and trifluoromethanesulfonate anion. . 前記ポリフッ化ビニリデンは,炭素−炭素間不飽和二重結合を含んでいるポリフッ化ビニリデンである請求項1の複合高分子電解質組成物。 The composite polymer electrolyte composition according to claim 1, wherein the polyvinylidene fluoride is polyvinylidene fluoride containing a carbon-carbon unsaturated double bond. 前記ポリフッ化ビニリデンは,前記溶融塩単量体の重合体とポリマーブレンドを形成している請求項1の複合高分子電解質組成物。 The composite polymer electrolyte composition according to claim 1, wherein the polyvinylidene fluoride forms a polymer blend with a polymer of the molten salt monomer. 前記リチウム塩は,LiBF,LiPF,C2n−1COLi(但しnは1〜4の整数),C2n−1SOLi(但しnは1〜4の整数),(FSONLi,(CFSO,NLi,(CSONLi,(CFSO)3 CLi,(CF−SO−N−COCF)Li,および(R−SO−N−SOCF)Li(Rはアルキル基またはアリール基)からなる群から選ばれたものである請求項1の複合高分子電解質組成物。 The lithium salt is LiBF 4 , LiPF 6 , C n F 2n-1 CO 2 Li (where n is an integer of 1 to 4), C n F 2n-1 SO 3 Li (where n is an integer of 1 to 4). , (FSO 2 ) 2 NLi, (CF 3 SO 2 ) 2 , NLi, (C 2 F 5 SO 2 ) 2 NLi, (CF 3 SO 2 ) 3 CLi, (CF 3 —SO 2 —N—COCF 3 ) The composite polymer electrolyte composition according to claim 1, which is selected from the group consisting of Li and (R—SO 2 —N—SO 2 CF 3 ) Li (where R is an alkyl group or an aryl group). 前記真空ヒートプレスは,90℃,21kg/cmの条件で行われた請求項1ないし6のいずれかの複合高分子電解質組成物。 The composite polymer electrolyte composition according to any one of claims 1 to 6, wherein the vacuum heat press is performed under conditions of 90 ° C and 21 kg / cm 2 .
JP2004230048A 2004-08-06 2004-08-06 Composite polymer electrolyte for lithium ion battery Withdrawn JP2006049157A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004230048A JP2006049157A (en) 2004-08-06 2004-08-06 Composite polymer electrolyte for lithium ion battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004230048A JP2006049157A (en) 2004-08-06 2004-08-06 Composite polymer electrolyte for lithium ion battery

Publications (1)

Publication Number Publication Date
JP2006049157A true JP2006049157A (en) 2006-02-16

Family

ID=36027459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004230048A Withdrawn JP2006049157A (en) 2004-08-06 2004-08-06 Composite polymer electrolyte for lithium ion battery

Country Status (1)

Country Link
JP (1) JP2006049157A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100075195A1 (en) * 2006-03-14 2010-03-25 Tda Research, Inc. Nanoporous Polymer Electrolyte
WO2016063994A1 (en) * 2014-10-22 2016-04-28 パイオトレック株式会社 Electrically conductive material and laminate
WO2017126701A1 (en) * 2016-01-19 2017-07-27 パイオトレック株式会社 High-efficient ionic conduction type lithium ion battery or lithium ion capacitor
US10774431B2 (en) * 2014-10-21 2020-09-15 Dioxide Materials, Inc. Ion-conducting membranes

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100075195A1 (en) * 2006-03-14 2010-03-25 Tda Research, Inc. Nanoporous Polymer Electrolyte
US8163204B2 (en) * 2006-03-14 2012-04-24 Tda Research Nanoporous polymer electrolyte
US10774431B2 (en) * 2014-10-21 2020-09-15 Dioxide Materials, Inc. Ion-conducting membranes
WO2016063994A1 (en) * 2014-10-22 2016-04-28 パイオトレック株式会社 Electrically conductive material and laminate
WO2017126701A1 (en) * 2016-01-19 2017-07-27 パイオトレック株式会社 High-efficient ionic conduction type lithium ion battery or lithium ion capacitor
JPWO2017126701A1 (en) * 2016-01-19 2019-01-24 パイオトレック株式会社 High-efficiency ion-conducting lithium-ion battery or lithium-ion capacitor

Similar Documents

Publication Publication Date Title
JP4674660B2 (en) Composite polymer electrolyte composition
US6395429B1 (en) Solid polymer electrolyte employing a crosslinking agent
JP5035909B2 (en) Electrolyte composition
WO2010113971A1 (en) Method of producing fluorinated polymer
JP3669944B2 (en) Polyalkylene oxide solid polymer electrolyte composition
CN1289557C (en) Polymer electrolyte and secondary lithium cell with the electrolyte
JP5089595B2 (en) Novel polymer electrolytes and electrochemical devices
WO2003028144A1 (en) Element using polymer gel electrolyte
JPWO2020026702A1 (en) Electrolyte composition, electrolyte membrane and method for producing electrolyte membrane
WO2000010213A1 (en) Lithium battery, polymer electrolyte, electrolyte material, di(meth)acrylic ester, and di(meth)acrylate polymer
CN114865070B (en) Single-ion polymer solid electrolyte with semi-interpenetrating network structure and preparation method thereof
JP2002100404A (en) Resin composition for gel polymer solid electrolyte, composition for gel polymer solid electrolyte, and gel polymer solid electrolyte, composite electrode, and electrochemical device using the same
JP2003187637A (en) Element using polymer gel electrolyte
JP2004162019A (en) Electrolyte composition
JP2006049157A (en) Composite polymer electrolyte for lithium ion battery
JP3843505B2 (en) Polymer electrolyte and battery
JP7387416B2 (en) Solid electrolytes, solid electrolyte membranes, electrodes and alkali metal batteries
JP4830314B2 (en) Composition for ion conductive electrolyte, ion conductive electrolyte, and secondary battery using the ion conductive electrolyte
JP2007122902A (en) Manufacturing method of lithium ion battery
JP2004035869A (en) Ionic resin composition and its cured product
EP3994756A1 (en) The preparation method of gel polymer electrolyte for lithium-sulphur battery
JP2005011820A (en) Solid polyelectrolyte
JP2003197262A (en) Polyelectrolyte and battery using the same
CN120261694A (en) A viscous polymer electrolyte and its preparation method and application
HK1126891B (en) Polymeric electrolyte, method for production thereof, and electrochemical element

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20071106