[go: up one dir, main page]

JP2006045041A - Method of manufacturing foamed glass having surface formed into zeolite - Google Patents

Method of manufacturing foamed glass having surface formed into zeolite Download PDF

Info

Publication number
JP2006045041A
JP2006045041A JP2004245961A JP2004245961A JP2006045041A JP 2006045041 A JP2006045041 A JP 2006045041A JP 2004245961 A JP2004245961 A JP 2004245961A JP 2004245961 A JP2004245961 A JP 2004245961A JP 2006045041 A JP2006045041 A JP 2006045041A
Authority
JP
Japan
Prior art keywords
glass
foamed
aqueous solution
aluminum
zeolite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004245961A
Other languages
Japanese (ja)
Inventor
Takayuki Shimamune
孝之 島宗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CS GIJUTSU KENKYUSHO KK
Original Assignee
CS GIJUTSU KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CS GIJUTSU KENKYUSHO KK filed Critical CS GIJUTSU KENKYUSHO KK
Priority to JP2004245961A priority Critical patent/JP2006045041A/en
Publication of JP2006045041A publication Critical patent/JP2006045041A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing process capable of continuously and inexpensively giving foamed glass having a surface formed into zeolite which is effective as embedding material, a soil conditioner or marine covering sand material. <P>SOLUTION: The foamed glass having the surface formed into zeolite is manufactured by heating and melting a raw material obtained by mixing powdery glass with a foaming agent, lowering the temperature to a temperature near the glass softening temperature to keep the foamed state and applying an aluminum salt aqueous solution to react and cool. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は主として廃ガラスから表面にゼオライト性の吸着能を有する発泡ガラスの製造方法に関するものであり、海域に沈降させて、重金属分やCOD分の除去を行う、あるいは屋上緑化用の軽量埋設物としてその表面に肥料分を吸着保持させる事が出来る比重を制御し、しかも表面吸着能を有する発泡ガラスを低コストで供給する製造方法である。The present invention mainly relates to a method for producing foamed glass having zeolitic adsorptive capacity on the surface from waste glass, and is made to settle in the sea area to remove heavy metals and COD, or a lightweight buried object for rooftop greening As described above, the specific gravity capable of adsorbing and holding the fertilizer component on the surface is controlled, and the foam glass having the surface adsorbing ability is supplied at a low cost.

土壌の浄化、水処理、あるいは養魚場水のアンモニウム処理などに近年、廃ガラス瓶などを加工した発泡ガラスを入れることによって、その表面が有するある程度の陽イオン吸着作用を利用することが行われるようになっている。この発泡ガラスは廃ガラス瓶などの廃ガラスを主原料として、発泡剤と共に熱処理することによって得られ、金属の溶出の問題もないこと、又極めて軽量であると共にその比重は製造条件によって制御出来ること、保水性も良好なことから斜面緑化、土壌埋め戻し、海岸の処理剤等として使用される様になっているものである。またガラス粒径が数mm以下の砂状ガラスは廃ガラス瓶などの粉砕物であり、発泡ガラスほどではないが、大きな表面積を有すること、又ガラス破断面は活性であり、発泡ガラスと同様のイオン吸着能を有するので比重の比較的大きいことを要する海水処理や養魚場水処理などに使用されている。このような砂状ガラスや発泡ガラスはその用途の拡大に伴って、その特徴を保持しながら、選択吸着が可能で、あるいは保水性が良好となり、たとえば土壌浄化、肥料のよりよい保持、など要望が高くなってきている。又養魚などでは水中に含まれるアンモニウム基等な富栄養化分の処理などより高度な処理の要望が高まってきている。これらに対する方法としてこのような発泡ガラスあるいは砂状ガラスに天然ゼオライトを加えたり比較的安価な人工ゼオライトを加えたりしてその処理に使用することが行われている。しかしながら最も望まれることはガラスそれ自身をゼオライト型の吸着能を有するようにすれば取り扱いのしにくいゼオライトとの混合が不要となる。In recent years, by using foam glass that has been processed from waste glass bottles, etc., for soil purification, water treatment, or ammonium treatment of fish farm water, it is possible to utilize the degree of cation adsorption that the surface has. It has become. This foam glass is obtained by heat treatment with a foaming agent using waste glass such as a waste glass bottle as a main raw material, and there is no problem of metal elution, and it is extremely lightweight and its specific gravity can be controlled by manufacturing conditions. Because of its good water retention, it is used for slope greening, soil backfilling, and coastal treatments. Sandy glass with a glass particle size of several millimeters or less is a pulverized product such as a waste glass bottle. Although it is not as large as foam glass, it has a large surface area, and the glass fracture surface is active. Because it has adsorption capacity, it is used for seawater treatment and fish farm water treatment that require a relatively large specific gravity. As such sandy glass and foamed glass expand their applications, they can be selectively adsorbed while maintaining their characteristics, or water retention is improved, for example, soil purification, better retention of fertilizer, etc. Is getting higher. In fish farming and the like, there is an increasing demand for more advanced treatments such as treatment of eutrophication such as ammonium groups contained in water. As a method for these, natural zeolite is added to such foamed glass or sandy glass, or relatively inexpensive artificial zeolite is added and used for the treatment. However, what is most desired is that if the glass itself has a zeolite-type adsorption capacity, mixing with zeolite which is difficult to handle becomes unnecessary.

しかしながら従来の技術では、いわゆる合成ゼオライトの製造方法としてアルミニウム、珪素、及びナトリウムなどのアルカリ成分を液状としておき、そこから水熱法で合成する方法が示されている。又いわゆる人工ゼオライトの製造方法として固体をゼオライト化することが示されているが、それらは石炭灰や焼却灰からであり、いずれもアルミノ珪酸塩からであり、いずれもあらかじめアルミニウム成分と珪酸成分が結合を持っており、それに反応しやすいアルカリ成分を反応させることによって得ているものである。これらはいずれもガラスなどの表面に付けるものではなくて、全体をバルクの状態でゼオライト化するものである。従ってこれらは結果において微粉体状となってしまい、その取り扱いの作業性は必ずしも良いとは言えず、そのままで海水や養魚場の処理用として、あるいは土壌埋設用としては必ずしも取り扱いの容易なものではなかった。However, in the prior art, as a method for producing a so-called synthetic zeolite, a method in which an alkaline component such as aluminum, silicon, and sodium is liquefied and synthesized therefrom by a hydrothermal method is shown. In addition, it has been shown that the so-called artificial zeolite is produced by zeolitic solids, but these are from coal ash and incinerated ash, both from aluminosilicate, both of which have an aluminum component and a silicate component in advance. It is obtained by reacting an alkaline component that has a bond and is easy to react with it. All of these are not attached to the surface of glass or the like, but are zeolitized in a bulk state. Therefore, they are in the form of fine powder in the results, and the handling workability is not necessarily good, and it is not always easy to handle as it is for treatment of seawater and fish farms, or for soil embedding. There wasn't.

以下の特許文献に過去の代表的な事例を示すが、いずれもアルミニウム、珪素、アルカリの溶液からの合成、あるいはアルミノ珪酸塩とアルカリの反応に依ってバルクのゼオライトを得るものであった。瓶ガラスに代表される様なソーダガラス、あるいはソーダ石灰ガラスではガラス中に十分なアルミニウム成分が入っていないので、ゼオライトを生成させるためにはアルミニウム成分の導入が必要である。しかしアルミニウム化合物とガラス成分の珪素化合物を結合することが困難であったためか、短時間に結合してゼオライトを作る技術は全く知られていなかった。The following patent documents show typical examples in the past. In either case, bulk zeolite was obtained by synthesis from an aluminum, silicon, or alkali solution, or by reaction between an aluminosilicate and an alkali. Since soda glass such as bottle glass or soda lime glass does not contain a sufficient aluminum component, it is necessary to introduce an aluminum component in order to produce zeolite. However, because it was difficult to bond the aluminum compound and the silicon compound of the glass component, a technique for forming a zeolite by bonding in a short time was not known at all.

特開2001−213619並びに特開2001−240409にはいわゆる合成ゼオライトの製造方法が述べられている。つまり、いわゆる合成ゼオライトの製造方法であり、アルミニウム原料として実質的にアルミン酸塩として液状水溶液とし、これに同じく実質的に液体として取り扱える水ガラスを珪素分として加え、アルカリ液中で加熱あるいは加圧してゼオライトを得る技術が示されている。つまりゼオライトを構成する全部の成分を液状として混合し、液体から結晶を生成させる方法である。
一方特開平10−324518はいわゆる人工ゼオライトの製造方法であり焼却灰や石炭灰などのアルミノ珪酸塩を原料としてこれにアルカリを作用させるとともに、100から120℃、空気圧1から2kg/cmの水熱条件下で連続循環流動層を使用して処理を行いゼオライトを製造する方法が述べられている。これによりアルミノ珪酸塩をゼオライトに変えているのである。
特開平6−321525、及び特開平6−321526ではアルミノ珪酸からなる石炭灰にアルカリを作用させてスラリー化し、水熱条件90から100℃で処理することによってゼオライト化する方法並びにその装置が示されている。
特願平11−225320(特許第3090657号公報)では、焼却灰やアルミノ珪酸塩を原料として、熱源として300MHzから30GHzの電磁波を当てることによって連続的にゼオライトを製造しそれを使用するということが行われている。
Japanese Patent Laid-Open Nos. 2001-213619 and 2001-240409 describe so-called synthetic zeolite production methods. In other words, it is a so-called synthetic zeolite production method, in which an aluminum raw material is substantially an aluminate in a liquid aqueous solution, and water glass that can also be handled as a liquid is added as a silicon component and heated or pressurized in an alkaline solution. Techniques for obtaining zeolites are shown. That is, it is a method in which all the components constituting the zeolite are mixed as a liquid and crystals are generated from the liquid.
On the other hand JP-A 10-324518, together with the action of an alkali to the aluminosilicate as a raw material, such as manufacturing method a is incinerator ash and coal ash so-called artificial zeolite, 100 from 120 ° C., from the air pressure 1 2 kg / cm 2 Water A method is described in which a zeolite is produced by treatment using a continuous circulating fluidized bed under thermal conditions. This changes aluminosilicate into zeolite.
JP-A-6-321525 and JP-A-6-321526 show a method and an apparatus for zeolitization by applying an alkali to a coal ash made of aluminosilicate to form a slurry and treating it at a hydrothermal condition of 90 to 100 ° C. ing.
In Japanese Patent Application No. 11-225320 (Patent No. 3090657), it is said that incineration ash or aluminosilicate is used as a raw material, and a zeolite is continuously produced by applying an electromagnetic wave of 300 MHz to 30 GHz as a heat source. Has been done.

これらはいずれもバルクのゼオライトを製造するプロセスが示されているがこれらによって生成するゼオライトはいずれも微粉末であり、特性としては優れているが製造プロセスが複雑であり、また仕様に際しては造粒を必要とするあるいは他の媒体の表面に被覆するなどの余分の手間が必要になると共に、取り扱いはかならずしも容易ではないという問題点があった。
特開2001−213619 特開2001−240409 特開平10−324518 特開平6−321525 特開平6−321526 特願平11−225320(特許第3090657号公報)
All of these show a process for producing a bulk zeolite, but the zeolites produced by these are all fine powders, which are excellent in characteristics but complicated in the production process. In addition, there is a problem in that it requires extra work such as coating on the surface of other media, and handling is not always easy.
JP 2001-213619 A JP 2001-240409 A JP-A-10-324518 JP-A-6-321525 JP-A-6-321526 Japanese Patent Application No. 11-225320 (Japanese Patent No. 3090657)

本発明では埋設材や土壌改良材あるいは、海洋覆砂として有効な表面をゼオライト化した発泡ガラスを連続的に、より低コストで提供出来る製造プロセスを提供することを課題とした。An object of the present invention is to provide a production process capable of continuously providing foamed glass having an effective surface as a buried material, soil improving material, or marine sand-covering sand at a lower cost.

発明を解決するための手段Means for Solving the Invention

本発明は粉末状のガラスと発泡剤を混合した原料を、加熱溶融しながら発泡させ、発泡状態を保持させるようにガラス軟化点付近まで温度を下げた後、アルミニウム含有塩水溶液を接触させて反応冷却することにより表面をゼオライト化した粒状の発泡ガラスの製造方法であって、工程として、あらかじめ発泡剤を加えたガラス粉末を投入する工程、該ガラス粉末が加熱される工程、更に加熱融体化すると共に発泡化する工程、発泡化しながら急冷半固化する工程、アルミニウム塩含有水溶液処理を行い冷却すると共に反応させる工程、反応発泡ガラスを取り出し、放冷する工程、からなるものであり、これの前段としてガラスの粉砕工程、あるいは後段としてゼオライト化ガラスの洗浄工程を含むことも出来るものである。In the present invention, a raw material in which powdery glass and a foaming agent are mixed is foamed while being heated and melted, and the temperature is lowered to the vicinity of the glass softening point so as to maintain the foamed state, and then contacted with an aqueous salt solution containing aluminum. A method for producing granular foamed glass whose surface has been zeoliticized by cooling, comprising a step of adding glass powder to which a foaming agent has been added in advance, a step of heating the glass powder, and further heat-melting And the step of foaming, the step of quenching and semi-solidifying while foaming, the step of cooling and reacting with an aqueous solution containing an aluminum salt, the step of taking out the reaction foamed glass and allowing it to cool, It is also possible to include a step of pulverizing glass or a step of washing zeolitic glass as a subsequent step.

つまり粒径を10から120ミクロン程度に微粉砕したソーダガラスに炭酸カルシウムやドロマイトなどあるいは炭素やSiCなど加熱分解してガスを出す発泡剤を5%以下程度混合し、加熱するとガラスの種類によるが、廃ガラス瓶などに使用されるソーダ石灰ガラスではその軟化温度が700から750℃程度でありそれより約100から150℃程度高い800から900℃程度から粘度が低く、融体化すると共に発泡成分が分解し発泡が起こる。これを発泡過程で急冷し、軟化温度付近まで冷却するとガラス中に気泡が保持され発泡化状態が保たれる。このものを外気に出して更に温度を下げると発泡状態のまま、表面と内部の温度差/熱膨張差により、微粉砕された発泡ガラスを得ることが出来る。本条件では発泡状態のガラスがそのままで軟化点付近まで温度を下げて発泡状態を保持しこれにアルミニウム原料としてアルミン酸ナトリウムなどのアルミニウム塩含有水溶液をシャワーないし噴霧して接触、冷却しながら反応させる。アルミン酸ソーダの場合その濃度は1から15%が適当であり、これによって実質的にアルミニウム塩がガラス表面と反応すると共に水蒸気による水熱条件が保持される様になる。これによってガラス表面がゼオライト化する。アルミニウム塩含有水溶液としてアルミニウムを苛性ソーダなどのアルカリに溶解したもの、あるいはそれに加えて珪酸ソーダなどの珪素成分を加えることが出来る。In other words, about 5% or less of a foaming agent that generates gas by thermally decomposing such as calcium carbonate or dolomite or carbon or SiC is mixed with soda glass finely pulverized to a particle size of about 10 to 120 microns. In soda lime glass used for waste glass bottles, etc., the softening temperature is about 700 to 750 ° C., and the viscosity is low from about 800 to 900 ° C., which is about 100 to 150 ° C. higher than that. Decomposes and foams. When this is rapidly cooled in the foaming process and cooled to near the softening temperature, bubbles are retained in the glass and the foamed state is maintained. When this is taken out to the outside air and the temperature is further lowered, a finely pulverized foamed glass can be obtained by the temperature difference / thermal expansion difference between the surface and the inside in the foamed state. Under this condition, the foamed glass is left as it is, and the temperature is lowered to the vicinity of the softening point to maintain the foamed state, and an aluminum salt-containing aqueous solution such as sodium aluminate is showered or sprayed on this as a raw material for aluminum and reacted while being contacted and cooled. . In the case of sodium aluminate, the concentration is suitably 1 to 15%, so that the aluminum salt substantially reacts with the glass surface and the hydrothermal condition by water vapor is maintained. As a result, the glass surface becomes zeolitic. An aluminum salt-containing aqueous solution in which aluminum is dissolved in an alkali such as caustic soda, or in addition thereto, a silicon component such as sodium silicate can be added.

更に水分による冷却によって表面からガラスの割れが生じていき、最終的には全体として粉末化するがこの間も水蒸気雰囲気下での反応が継続するためにガラス表面はほぼ全面にわたってゼオライト化する。このときには発泡ガラスの微細孔にはその蒸気圧からごく僅かしかアルミニウム塩が入り込まないこと、また入ったものはゼオライト化してしまうので未反応のアルミニウム塩分はガラス表面に僅か残るものの、冷却後の水洗浄で容易に除去出来る。Further, the glass is cracked from the surface by cooling with moisture, and finally, it is pulverized as a whole. During this time, the reaction in the water vapor atmosphere continues, so that the glass surface is almost completely zeoliteized. At this time, only a small amount of aluminum salt enters the fine pores of the foam glass due to its vapor pressure, and since it enters a zeolite, a small amount of unreacted aluminum salt remains on the glass surface. Can be easily removed by washing.

発明の効果The invention's effect

以上によって廃ガラスなどのガラス粉末を発泡ガラス化すると共に、表面を選択的にゼオライト化出来る。しかもゼオライト化はガラスの発泡化に連続して行えるので、特別な熱処理その他も不要である。これにより、ゼオライトを製造するための消費エネルギーはほぼ必要がないことになり、しかも通常の水熱法によるようなガラスの気泡中にまで反応液が入り込むことによる洗浄の困難さも無いために、極めて容易に作業が進められるという効果がある。またこれによるゼオライトは発泡ガラスの比重によるが陽イオン交換能は50から100meq/100g程度と非常に高く、また適度な粒径であるために、合成ゼオライトや人工ゼオライトに見られるような造粒作業を必要としないという効果を併せ持つことが可能となった。As described above, the glass powder such as waste glass can be made into foam glass and the surface can be selectively zeoliteized. Moreover, since the zeolitization can be performed continuously after the foaming of the glass, no special heat treatment or the like is required. As a result, almost no energy is required to produce the zeolite, and there is no difficulty in cleaning due to the reaction liquid entering the glass bubbles as in the usual hydrothermal method. There is an effect that work can be easily performed. In addition, the zeolite produced by this method has a very high cation exchange capacity of about 50 to 100 meq / 100 g depending on the specific gravity of the foamed glass, and since it has an appropriate particle size, it can be granulated as seen in synthetic zeolite and artificial zeolite. It has become possible to have the effect of not requiring.

発泡ガラスを製造するプロセスは通常の発泡ガラス製造とほぼ同じ条件で良く、たとえば廃ガラス瓶であれば粒径10から120ミクロンが望ましくは20から80ミクロン程度に粉砕し、その1から5重量%t程度の発泡材、つまりSiCとドロマイトなどを混合して800から900℃程度まで加熱溶融しながら発泡させる。このときにSiCは比較的広い温度領域で分解しながら発泡しているガラスの温度を100℃程度下げてガラスをある程度固化して気泡を保持し、そのままゼオライト化処理部に移動して濃度が1から15%程度のアルミン酸ソーダあるいは水酸化アルミニウム+苛性ソーダ水溶液を降らしてガラスと接触させ反応させながら冷却する。これによって微粒化し、表面がゼオライト化した発泡ガラスが得られる。このものの冷却後に必要に応じて洗浄し過剰なアルミニウム塩分、アルカリ分を除去することによって表面ゼオライト化発泡ガラスを製造することが可能となる。アルミニウム塩に加えて珪酸ソーダなどの珪酸分を合わせて加える事も出来る。以下に実施例によって説明する。The process for producing the foam glass may be carried out under substantially the same conditions as in the production of ordinary foam glass. For example, in the case of a waste glass bottle, the particle size is 10 to 120 microns, preferably 20 to 80 microns, and 1 to 5% by weight t About a foam material, that is, SiC and dolomite are mixed and foamed while being heated and melted to about 800 to 900 ° C. At this time, SiC decomposes in a relatively wide temperature range, lowers the temperature of the foamed glass by about 100 ° C., solidifies the glass to some extent to hold bubbles, moves directly to the zeolitic treatment section, and has a concentration of 1 Then, about 15% sodium aluminate or aluminum hydroxide + caustic soda aqueous solution is dropped and brought into contact with glass and cooled while being reacted. As a result, it is possible to obtain a foamed glass having a fine particle size and a zeolitic surface. It is possible to produce a surface zeolitic foamed glass by washing it as necessary after cooling to remove excess aluminum salt and alkali. In addition to aluminum salt, silicic acid such as sodium silicate can be added together. Examples will be described below.

廃ガラス瓶を粉砕して平均粒径40ミクロンとしたガラス粉末を原料とし、これに重量で3%に相当する試薬級のドロマイト粉末と1%に相当するSiC粉末を混合し、均一な混合となるように更にボールミルによって混合した。これを見かけ厚さ10mm程度となるように平皿に敷き詰めた。このものを室温から600℃までは昇温速度20℃/分で昇温、その後900℃まで10分で加温し、3分間保持した後ヒータを切ってすぐに炉から取り出し、750℃程度まで温度を下げて発泡状態が保持され半固化したガラスブロックを得、それに15%アルミン酸ソーダ水溶液を噴霧して反応、冷却を行った。アルミン酸ソーダの噴霧は15分間行い、その後は放冷した。1時間後に取り出したところ、微細なひび割れがほぼ全体に走り全体として白色の色調を有するブロックが得られた。このものを軽くハンマーでたたいたところ容易に粒径1から5mm程度の微粉体となった。これについてエックス回折により生成物を分析したところ、結晶化し、A−型ゼオライトに似た回折パターンが得られたので、ガラス表面にゼオライトが生成したものと考えられた。これについて常法により陽イオン交換能を測定したところ50から60meq/100gであった。嵩比重を測定したところ0.6から0.8g/cm3であった。A glass powder having an average particle size of 40 microns by pulverizing a waste glass bottle is used as a raw material, and a reagent-grade dolomite powder equivalent to 3% by weight and a SiC powder equivalent to 1% are mixed to achieve uniform mixing. And then mixed by a ball mill. This was laid on a flat plate so as to have an apparent thickness of about 10 mm. The temperature is raised from room temperature to 600 ° C. at a rate of temperature increase of 20 ° C./minute, then heated to 900 ° C. in 10 minutes, held for 3 minutes, then turned off and immediately removed from the furnace to about 750 ° C. The temperature was lowered to obtain a glass block that was kept in a foamed state and semi-solidified, and was sprayed with a 15% sodium aluminate aqueous solution to perform reaction and cooling. The spraying of sodium aluminate was performed for 15 minutes and then allowed to cool. When it was taken out after 1 hour, fine cracks ran almost entirely and a block having a white color tone as a whole was obtained. When this was lightly struck with a hammer, it easily became a fine powder having a particle size of about 1 to 5 mm. When the product was analyzed by X-diffraction, it crystallized and a diffraction pattern similar to that of A-type zeolite was obtained. Therefore, it was considered that zeolite was formed on the glass surface. With respect to this, when the cation exchange capacity was measured by a conventional method, it was 50 to 60 meq / 100 g. When the bulk specific gravity was measured, it was 0.6 to 0.8 g / cm 3.

廃電球ガラスを平均粒径80ミクロンに粉砕し重量にして2%のドロマイトと1%のSiCを加えてボールミルで均一になるまで混合をした。これを厚み10mmとなるようにステンレススチール製の平皿上に敷き詰め、連続炉のコンベアー上に乗せて処理を行った。つまり10分間でほぼ連続的に温度600℃まで上昇、その後850℃に保持された部分に移動し、そこで5分間保持し発泡化させた。その後加熱部分から室温部分に2分間で移行させ、それを水滴が散らないようコンベヤ部分を除いてカバーされ、固定された反応室に移動させ、5%苛性ソーダ水溶液に3%相当分の水酸化アルミニウムを混合し、溶解した液を上から降らせた。30分間程度で室温となったので、反応液を止め、上から洗浄水を降らせて水洗浄し取り出した。実施例1と同様、白色の多孔ガラス粒状体が得られた。このものはCEC値が80meq/100gであり、嵩比重が0.6g/cm3であった。Waste bulb glass was crushed to an average particle size of 80 microns, 2% by weight of dolomite and 1% SiC were added, and mixed with a ball mill until uniform. This was spread on a flat plate made of stainless steel so as to have a thickness of 10 mm, and placed on a conveyor in a continuous furnace for processing. In other words, the temperature rose almost continuously to 600 ° C. in 10 minutes, and then moved to a portion maintained at 850 ° C., where it was held for 5 minutes to foam. After that, it is transferred from the heated part to the room temperature part in 2 minutes, and it is moved to a fixed reaction chamber except for the conveyor part so that water droplets are not scattered, and the aluminum hydroxide is equivalent to 3% in 5% sodium hydroxide aqueous solution. And the dissolved liquid was allowed to fall from above. Since the temperature reached room temperature in about 30 minutes, the reaction solution was stopped, washing water was dropped from above, washed with water and taken out. Similar to Example 1, white porous glass granules were obtained. This product had a CEC value of 80 meq / 100 g and a bulk specific gravity of 0.6 g / cm 3.

実施例1と同じガラス粉末を使用し、発泡剤として炭酸カルシウムとカーボンブラック粉末の粉末をガラス量に対して炭酸カルシウムを3%、カーボンブラックを0.2%混合したものを発泡剤として加え、均一に混合した後加熱発泡を行った。加熱条件は実質的に実施例1と同じにしたが、最高温度を950℃とし、950℃で5分間保持した後、温度を700℃くらいまで下げ、しかる後に5%アルミン酸ソーダと1%の珪酸ソーダ混合水溶液に1%相当の苛性ソーダを更に溶解した反応液を噴霧して冷却をしながら反応させた。実施例1と同じ条件で冷却、反応させたところ、同様に白色の多孔ガラス粉末が得られた。エックス線回折の結果はA−型ゼオライトの他に、同定の出来ないいくつかの回折線が見られた。また陽イオン交換能は85meq−/100gであり、優れた陽イオン交換能を示した。Using the same glass powder as in Example 1, as a foaming agent, a powder of calcium carbonate and carbon black powder as a foaming agent was added as a foaming agent with 3% calcium carbonate and 0.2% carbon black based on the amount of glass After uniform mixing, heating and foaming were performed. The heating conditions were substantially the same as in Example 1, but the maximum temperature was 950 ° C., held at 950 ° C. for 5 minutes, the temperature was lowered to about 700 ° C., and then 5% sodium aluminate and 1% A reaction solution in which caustic soda equivalent to 1% was further dissolved in a sodium silicate mixed aqueous solution was sprayed and reacted while cooling. When cooled and reacted under the same conditions as in Example 1, a white porous glass powder was obtained in the same manner. As a result of X-ray diffraction, in addition to the A-type zeolite, several diffraction lines that could not be identified were observed. The cation exchange capacity was 85 meq− / 100 g, indicating an excellent cation exchange capacity.

本プロセスによる表面をゼオライト化した発泡ガラスは、粒状であり、そのままの取り扱いが出来ること、また比重を小さくできることから、屋上緑化などの植物生育用の肥料並びに水分保持材として実質的に軽量土壌として使用することが出来、また比重の大きなものは港湾覆砂用として水質浄化用などとして有効に使用することが出来る。また養魚場などの水質浄化としても有効であり、さらには通常の土壌改良材などとしても使用可能であり、広い応用用途が考えられる。Foamed glass whose surface is zeoliticized by this process is granular, and can be handled as it is, and its specific gravity can be reduced. Therefore, it can be used as a fertilizer for plant growth such as rooftop greening and as a water retaining material. Those having a large specific gravity can be used effectively as a port covering sand for water purification. It is also effective as water purification for fish farms, etc., and can also be used as a normal soil conditioner, and can be used in a wide range of applications.

Claims (9)

粉末状のガラスと発泡剤を混合した原料を、加熱溶融しながら発泡させ、発泡状態を保持させるようにガラス軟化点付近まで温度を下げた後、アルミニウム含有塩水溶液を接触させて反応冷却することにより表面をゼオライト化した粒状の発泡ガラスの製造方法。The raw material mixed with powdered glass and foaming agent is foamed while being heated and melted, and the temperature is lowered to the vicinity of the glass softening point so as to maintain the foamed state, and then the reaction is cooled by contacting with an aqueous salt solution containing aluminum. The manufacturing method of the granular foam glass which made the surface zeolitic by. 粉末状のガラスが瓶ガラスであり、加熱溶融温度が800℃から950℃であることを特徴とする請求項1の発泡ガラスの製造方法。The method for producing foamed glass according to claim 1, wherein the powdery glass is bottle glass, and the heating and melting temperature is 800 ° C to 950 ° C. 粉末状のガラスが電球ガラスであり、加熱溶融温度が750℃から900℃であることを特徴とする請求項1の発泡ガラスの製造方法。The method for producing foamed glass according to claim 1, wherein the powdery glass is a bulb glass, and the heating and melting temperature is 750 ° C to 900 ° C. 粉末ガラスの粒度が10から120ミクロンであることを特徴とする請求項1の発泡ガラスの製造方法。2. The method for producing foam glass according to claim 1, wherein the particle size of the powder glass is 10 to 120 microns. 発泡剤がドロマイトとSiCであり、その合計量がガラスの1から5%であることを特徴とする請求項1の発泡ガラスの製造方法。The method for producing foamed glass according to claim 1, wherein the foaming agent is dolomite and SiC, and the total amount thereof is 1 to 5% of the glass. 粉末ガラスが瓶ガラス粉砕物であり、発泡剤が炭酸カルシウムからなり、その合計量が1から5%であることを特徴とする請求項1の発泡ガラスの製造方法。2. The method for producing foam glass according to claim 1, wherein the powder glass is a crushed bottle glass, the foaming agent is made of calcium carbonate, and the total amount thereof is 1 to 5%. アルミニウム含有塩水溶液がアルミン酸ソーダ水溶液であり、その濃度が1から15重量%であることを特徴とする請求項1の発泡ガラスの製造方法。The method for producing foamed glass according to claim 1, wherein the aluminum-containing salt aqueous solution is a sodium aluminate aqueous solution, and the concentration thereof is 1 to 15% by weight. アルミニウム含有塩水溶液が水酸化アルミニウムの苛性ソーダ水溶液であることを特徴とする請求項1の発泡ガラスの製造方法。The method for producing foamed glass according to claim 1, wherein the aluminum-containing salt aqueous solution is a sodium hydroxide aqueous solution of aluminum hydroxide. アルミニウム含有塩水溶液がアルミン酸ソーダと珪酸ソーダを含む水溶液であり、その濃度が1から15重量%であることを特徴とする請求項1の発泡ガラスの製造方法。The method for producing foamed glass according to claim 1, wherein the aluminum-containing salt aqueous solution is an aqueous solution containing sodium aluminate and sodium silicate, and the concentration thereof is 1 to 15% by weight.
JP2004245961A 2004-07-30 2004-07-30 Method of manufacturing foamed glass having surface formed into zeolite Pending JP2006045041A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004245961A JP2006045041A (en) 2004-07-30 2004-07-30 Method of manufacturing foamed glass having surface formed into zeolite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004245961A JP2006045041A (en) 2004-07-30 2004-07-30 Method of manufacturing foamed glass having surface formed into zeolite

Publications (1)

Publication Number Publication Date
JP2006045041A true JP2006045041A (en) 2006-02-16

Family

ID=36024044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004245961A Pending JP2006045041A (en) 2004-07-30 2004-07-30 Method of manufacturing foamed glass having surface formed into zeolite

Country Status (1)

Country Link
JP (1) JP2006045041A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009040623A (en) * 2007-08-07 2009-02-26 Nippon Kensetsu Gijutsu Kk Zeolitized foamed glass production method, and zeolitized foamed glass production equipment
JP2015525316A (en) * 2012-06-07 2015-09-03 ダウ グローバル テクノロジーズ エルエルシー Foam wall insulation system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009040623A (en) * 2007-08-07 2009-02-26 Nippon Kensetsu Gijutsu Kk Zeolitized foamed glass production method, and zeolitized foamed glass production equipment
KR101471458B1 (en) * 2007-08-07 2014-12-10 니혼 겐세츠 기쥬츠 가부시키가이샤 METHOD FOR PREPARING ZEOLATED FOAM GLASS AND ZEOLATED FOAM GLASS PRODUCTION EQUIPMENT
JP2015525316A (en) * 2012-06-07 2015-09-03 ダウ グローバル テクノロジーズ エルエルシー Foam wall insulation system

Similar Documents

Publication Publication Date Title
Deng et al. Formation of NaP zeolite from fused fly ash for the removal of Cu (II) by an improved hydrothermal method
JPH05508342A (en) Alumina-containing acid adsorbent and its manufacturing method
JP2006045041A (en) Method of manufacturing foamed glass having surface formed into zeolite
US6284207B1 (en) Process for producing high surface area material by controlled leaching of blast furnace slag
JP7104871B2 (en) Manufacturing method of food additives and antibacterial/disinfecting/sterilizing materials using the calcium component of hard water
US4311609A (en) Method of producing inorganic water-softening beads
US6524543B1 (en) Production of soluble silicates from biogenic silica
JPH01288335A (en) Manufacturing method of wastewater treatment agent
KR100472907B1 (en) Composition of material treating Sludge
CN103771452A (en) Square beta molecular sieve and preparing method thereof
JP2010111561A (en) Method for producing artificial zeolite using waste glass as raw material
JP2003327427A (en) Method of producing high specific surface area calcium hydroxide grain
US3695831A (en) Absorptive soda ash
JP2012041251A (en) Method for producing zeolite
JP4549429B2 (en) Foamed glass material containing porcelain powder and water treatment method, bottom quality improving method and soil improving material using the same
JP2004231490A (en) Glass production method and glass
JP2006045042A (en) Method of manufacturing granular glass
JP3695845B2 (en) Water purification material
JP2005029453A (en) Method of manufacturing glass having zeolitized surface
JP2006341226A (en) How to remove phosphorus from water
JP3942588B2 (en) Method for producing surface zeolitic glass
JP2675465B2 (en) Hydrous calcium carbonate and method for producing the same
KR100802163B1 (en) Adsorbent using purified water sludge and its manufacturing method
PL240207B1 (en) Method for synthesis of zeolites from ashes formed from burning and co-burning of biomass
CN109956481B (en) Method for preparing ammonia gas by using ammonium salt and silicate