JP2006038898A - Single mode optical fiber and distributed Raman amplification transmission system - Google Patents
Single mode optical fiber and distributed Raman amplification transmission system Download PDFInfo
- Publication number
- JP2006038898A JP2006038898A JP2004213917A JP2004213917A JP2006038898A JP 2006038898 A JP2006038898 A JP 2006038898A JP 2004213917 A JP2004213917 A JP 2004213917A JP 2004213917 A JP2004213917 A JP 2004213917A JP 2006038898 A JP2006038898 A JP 2006038898A
- Authority
- JP
- Japan
- Prior art keywords
- optical fiber
- wavelength
- mode optical
- single mode
- refractive index
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
- Lasers (AREA)
- Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
Abstract
【課題】 広波長域分布ラマン増幅伝送に好適な単一モード光ファイバ、及び分布ラマン増幅伝送システムを提供する。
【解決手段】
単一モード光ファイバは、純石英を用いたコア部と、コア部よりも屈折率が低いクラッド部を有し、理論遮断波長を1.36μm以下とし、零分散波長を1.36μm以下とし、所定条件下における曲げ損失を0.5dB以下に設計する。
【選択図】図6PROBLEM TO BE SOLVED: To provide a single mode optical fiber suitable for wide wavelength region distributed Raman amplification transmission and a distributed Raman amplification transmission system.
[Solution]
The single mode optical fiber has a core portion using pure quartz and a cladding portion having a refractive index lower than that of the core portion, a theoretical cutoff wavelength is 1.36 μm or less, a zero dispersion wavelength is 1.36 μm or less, The bending loss under a predetermined condition is designed to be 0.5 dB or less.
[Selection] Figure 6
Description
本発明は、単一モード光ファイバ、及び当該単一モード光ファイバを適用してなる分布ラマン増幅伝送システムに関し、例えば、波長1.46μmから1.625μmの広波長帯域において、後方励起による分布ラマン増幅伝送システムに適用することができる単一モード光ファイバであり、また当該単一モード光ファイバを用いた分布ラマン増幅伝送システムである。 The present invention relates to a single-mode optical fiber and a distributed Raman amplification transmission system to which the single-mode optical fiber is applied. For example, in a wide wavelength band of wavelengths from 1.46 μm to 1.625 μm, distributed Raman by backward pumping is provided. It is a single mode optical fiber that can be applied to an amplification transmission system, and is a distributed Raman amplification transmission system using the single mode optical fiber.
光ファイバ1心あたりの伝送容量を拡大するため、伝送速度の高速化、及び波長分割多重(WDM:Wavelength Division Multiplexing)技術が広く検討されている。 In order to expand the transmission capacity per optical fiber, a high transmission rate and wavelength division multiplexing (WDM) technology have been widely studied.
これに伴い、波長1.46μmから1.625μmの低損失帯域における長距離・高速WDM伝送の適用を目的とし、該波長帯域で波長分散が非零となるように設計された光ファイバや、低分散スロープ型の光ファイバが提案されている(下記、特許文献1、非特許文献1を参照。)。
Along with this, for the purpose of application of long-distance / high-speed WDM transmission in the low loss band of wavelengths from 1.46 μm to 1.625 μm, an optical fiber designed to have non-zero chromatic dispersion in the wavelength band, A dispersion slope type optical fiber has been proposed (see
一方、分布ラマン増幅は、信号対雑音比(SNR:Signal to Noise Ratio)特性に優れ、励起波長の選択により、任意の信号波長を広帯域に増幅することが可能であることから、WDM伝送システムヘの適応が広く検討されている(下記、非特許文献2,3を参照。)。
On the other hand, distributed Raman amplification is excellent in signal-to-noise ratio (SNR) characteristics, and an arbitrary signal wavelength can be amplified in a wide band by selecting an excitation wavelength. Is widely studied (see Non-Patent
また、伝送路に用いる光ファイバコア部のドーパント添加量を低減することにより、分布ラマン増幅の適応による伝送特性の改善効果を向上できることが報告されている(下記、非特許文献4を参照。)。更に、光ファイバコア部のドーパント添加量を低減した光ファイバとして、純石英ガラスコア光ファイバが提案されている(下記、特許文献2を参照。)。
In addition, it has been reported that the effect of improving transmission characteristics by adapting distributed Raman amplification can be improved by reducing the amount of dopant added to the optical fiber core used in the transmission line (see Non-Patent
分布ラマン増幅では、励起光波長から長波長側へ約13THzの周波数シフト領域の波長に存在する信号光を増幅する(上記、非特許文献5を参照。)。このため、1.46μmから1.625μmの波長帯域で分布ラマン増幅を適応した単一モードWDM伝送を行うには、1.46μmから約13THzの周波数シフト位置に相当する、波長が100nm短い1.36μm以下に理論遮断波長を設計する必要がある。 In distributed Raman amplification, signal light existing at a wavelength in the frequency shift region of about 13 THz from the pumping light wavelength to the long wavelength side is amplified (see Non-Patent Document 5 above). Therefore, in order to perform single-mode WDM transmission adapted to distributed Raman amplification in the wavelength band from 1.46 μm to 1.625 μm, the wavelength corresponding to the frequency shift position from 1.46 μm to about 13 THz is shorter by 1. It is necessary to design the theoretical cutoff wavelength to 36 μm or less.
また、分布ラマン増幅では、信号光と励起光の波長帯域中に零分散波長が存在する場合、四光波混合によって伝送特性が劣化する。上記非特許文献5では、零分散波長が信号光、及び励起光の波長帯域以下である場合、四光波混合が抑制され、零分散波長が信号光、及び励起光の波長帯域中に存在する時よりも伝送特性が改善されることが示されている。 In distributed Raman amplification, when a zero-dispersion wavelength exists in the wavelength band of signal light and pumping light, transmission characteristics are degraded by four-wave mixing. In Non-Patent Document 5, when the zero dispersion wavelength is less than or equal to the wavelength band of the signal light and the excitation light, the four-wave mixing is suppressed, and the zero dispersion wavelength exists in the wavelength band of the signal light and the excitation light. It is shown that the transmission characteristics are improved.
このため、1.46μmから1.625μmの波長帯域で信号光と励起光との四光波混合を抑制するためには、零分散波長も1.36μm以下となるように光ファイバを設計する必要が生じる。 For this reason, in order to suppress the four-wave mixing of the signal light and the excitation light in the wavelength band of 1.46 μm to 1.625 μm, it is necessary to design the optical fiber so that the zero dispersion wavelength is also 1.36 μm or less. Arise.
しかしながら、上記特許文献2に記載のファイバは、波長1.55μm帯での使用を想定しており、必ずしも遮断波長特性が前記条件を満たすとは限らないという問題があった。また、上記特許文献1、及び非特許文献1に記載のファイバでは、コア部にゲルマニウムが添加されているため、必ずしも、分布ラマン増幅伝送システムに好適ではないという問題点があった。
However, the fiber described in
本発明は、このような問題に鑑みてなされたものであり、1.46μmから1.625μmに渡る広い波長帯域において、分布ラマン増幅を適応したWDM伝送システムに好適な単一モード光ファイバ、及び分布ラマン増幅伝送システムを提供することを目的とする。 The present invention has been made in view of such a problem, and a single mode optical fiber suitable for a WDM transmission system adapted for distributed Raman amplification in a wide wavelength band ranging from 1.46 μm to 1.625 μm, and An object is to provide a distributed Raman amplification transmission system.
上記課題を解決する本発明に係る単一モード光ファイバは、
純石英によって形成されたコア部と、コア部よりも屈折率が低いクラッド部を有し、
理論遮断波長が1.36μm以下であることを特徴とする単一モード光ファイバである。
The single mode optical fiber according to the present invention that solves the above problems is
Having a core part made of pure quartz and a cladding part having a lower refractive index than the core part,
A single mode optical fiber having a theoretical cutoff wavelength of 1.36 μm or less.
また、上記単一モード光ファイバにおいて、
零分散波長が1.36μm以下であることを特徴とする単一モード光ファイバである。
In the single mode optical fiber,
A single mode optical fiber having a zero dispersion wavelength of 1.36 μm or less.
また、上記単一モード光ファイバにおいて、
曲げ半径30mmで100回巻いたときの波長1.625μmにおける曲げ損失が0.5dB以下であることを特徴とする単一モード光ファイバである。
In the single mode optical fiber,
A single-mode optical fiber characterized in that a bending loss at a wavelength of 1.625 μm when wound 100 times with a bending radius of 30 mm is 0.5 dB or less.
上記課題を解決する本発明に係る単一モード光ファイバは、
純石英によって形成され、屈折率が均一なコア部と、該コア部よりも屈折率が低く、屈折率が均一なクラッド部を有し、
理論遮断波長が1.36μm以下であり、零分散波長が1.36μm以下であり、曲げ半径30mmで100回巻いたときの波長1.625μmにおける曲げ損失が0.5dB以下であると共に、
コア部の半径が2.4μmから4.6μmであり、クラッド部に対するコア部の比屈折率差が0.3%から1.2%であることを特徴とする単一モード光ファイバ。
The single mode optical fiber according to the present invention that solves the above problems is
A core part formed of pure quartz and having a uniform refractive index, a cladding part having a refractive index lower than that of the core part and a uniform refractive index,
The theoretical cutoff wavelength is 1.36 μm or less, the zero-dispersion wavelength is 1.36 μm or less, the bending loss at a wavelength of 1.625 μm when wound 100 times with a bending radius of 30 mm is 0.5 dB or less,
A single mode optical fiber, wherein the radius of the core part is 2.4 μm to 4.6 μm, and the relative refractive index difference of the core part with respect to the cladding part is 0.3% to 1.2%.
上記課題を解決する本発明に係る分布ラマン増幅伝送システムは、
上記単一モード光ファイバで構成される伝送路と、該単一モード光ファイバの後方に配置され、信号光の伝搬方向と逆方向に伝搬する励起光を注入する励起光源と、該単一モード光ファイバの累積分散を補償する分散補償素子と、光増幅器とを有することを特徴とする分布ラマン増幅伝送システムである。
The distributed Raman amplification transmission system according to the present invention that solves the above problems is as follows.
A transmission path composed of the single mode optical fiber; a pumping light source that is disposed behind the single mode optical fiber and injects pumping light that propagates in the direction opposite to the propagation direction of the signal light; and the single mode A distributed Raman amplification transmission system comprising a dispersion compensation element that compensates for cumulative dispersion of an optical fiber and an optical amplifier.
本発明に係る単一モード光ファイバによれば、純石英を用いたコア部と、コア部よりも屈折率が低いクラッド部を有する光ファイバを用い、該光ファイバのコア半径と比屈折率差を好適に設計することにより、1.46μmから1.625μmの波長帯域で分布ラマン増幅伝送システムに好適な、理論遮断波長特性、零分散波長特性、更には実用上問題のない曲げ損失特性を実現するといった効果を奏する。 According to the single mode optical fiber of the present invention, an optical fiber having a core portion using pure quartz and a cladding portion having a refractive index lower than that of the core portion is used, and the core radius and relative refractive index difference of the optical fiber are used. The ideal cutoff wavelength characteristics, zero-dispersion wavelength characteristics, and bending loss characteristics that have no practical problems in the wavelength band of 1.46 μm to 1.625 μm are realized by designing the HF appropriately. There is an effect such as.
詳細には、理論遮断波長を1.36μm以下としたことにより、波長1.36μm以上における励起光の単一モード特性を保持し、波長1.46μm以上の信号光の良好な分布ラマン増幅を可能とする効果を奏する。 Specifically, by setting the theoretical cutoff wavelength to 1.36 μm or less, the single-mode characteristics of the excitation light at wavelengths of 1.36 μm or more are maintained, and good distributed Raman amplification of signal light at wavelengths of 1.46 μm or more is possible. The effect is as follows.
一方、前記理論遮断波長条件を満たさない場合には、励起光の単一モード伝送帯域が減少し、分布ラマン増幅が可能となる信号光波長の下限が波長1.46μmより長波長に制限されてしまう。これは、波長1.46μmから1.625μmの低損失帯域を利用する長距離・高速WDM伝送において、該帯域の全てを十分に利用できないという損失につながる。 On the other hand, when the theoretical cutoff wavelength condition is not satisfied, the single-mode transmission band of the pumping light is reduced, and the lower limit of the signal light wavelength enabling the distributed Raman amplification is limited to a wavelength longer than the wavelength of 1.46 μm. End up. This leads to a loss that the entire band cannot be sufficiently used in long-distance / high-speed WDM transmission using a low loss band of wavelengths from 1.46 μm to 1.625 μm.
また、零分散波長を1.36μm以下としたことにより、信号光間、並びに信号光−励起光間の四光波混合による伝送特性劣化を抑制することが可能となる。 In addition, by setting the zero dispersion wavelength to 1.36 μm or less, it is possible to suppress deterioration in transmission characteristics due to four-wave mixing between signal light and between signal light and excitation light.
一方、前記零分散波長の条件を満たさない場合には、信号光−励起光間の四光波混合による伝送特性劣化が発生し、分布ラマン増幅を適用する際に良好な伝送特性を可能とする信号光波長の下限が波長1.46μmより長波長側に制限されてしまう。これが引き起こす損失は上述するとおりである。 On the other hand, when the condition of the zero-dispersion wavelength is not satisfied, the transmission characteristic is deteriorated due to the four-wave mixing between the signal light and the pumping light, and a signal that enables good transmission characteristics when applying distributed Raman amplification. The lower limit of the light wavelength is limited to the longer wavelength side than the wavelength of 1.46 μm. The loss caused by this is as described above.
さらに、曲げ半径30mmで100回巻いたときの波長1.625μmにおける曲げ損失を0.5dB以下としたことにより、現状のITU−T勧告G.652に規定されている単一モードファイバと同等の伝送特性を満たすといった効果も奏する。 Furthermore, the current ITU-T Recommendation G. ITU-T Recommendation G.1 is used by setting the bending loss at a wavelength of 1.625 μm when wound 100 times with a bending radius of 30 mm to 0.5 dB or less. An effect of satisfying the transmission characteristics equivalent to the single mode fiber defined in 652 is also achieved.
一方、前記曲げ損失の条件を満たさない場合には、特に長波長側において曲げによる損失増加が発生し、光信号伝送に使用できる光信号波長が1.625μmよりも短波長側に制限されてしまう。これが引き起こす損失は上述するとおりである。 On the other hand, when the bending loss condition is not satisfied, an increase in loss due to bending occurs particularly on the long wavelength side, and the optical signal wavelength that can be used for optical signal transmission is limited to the shorter wavelength side than 1.625 μm. . The loss caused by this is as described above.
また、純石英によって形成されたコア部と、コア部よりも屈折率が低いクラッド部を有し、理論遮断波長が1.36μm以下であり、零分散波長が1.36μm以下であり、曲げ半径30mmで100回巻いたときの波長1.625μmにおける曲げ損失が0.5dB以下であり、なおかつ屈折率が均一なコア部と、該コア部よりも屈折率が低く屈折率が均一なクラッド部を有し、コア部の半径が2.4μmから4.6μmであり、クラッド部に対するコア部の比屈折率差が0.3%から1.2%である条件を満たす場合には、波長1.46μmから1.625μmの信号光に対する良好な分布ラマン増幅の適用を可能とすると同時に、例えば波長1.55μmにおける波長分散を5ps/nm・kmから17ps/nm・kmの範囲で設計することが可能となり、光伝送路中の累積分散が低減されるために良好な伝送特性を実現し、また、分散補償量も低減することにより、例えば分散補償素子として分散補償ファイバを用いる場合、その分散補償ファイバの長さ、並びに挿入損失も低減できるといった効果も奏する。 Further, it has a core part made of pure quartz and a clad part having a refractive index lower than that of the core part, a theoretical cutoff wavelength is 1.36 μm or less, a zero dispersion wavelength is 1.36 μm or less, a bending radius A core portion having a bending loss of 0.5 dB or less at a wavelength of 1.625 μm when wound 100 times at 30 mm and having a uniform refractive index, and a clad portion having a refractive index lower than that of the core portion and a uniform refractive index. And the radius of the core portion is 2.4 μm to 4.6 μm, and the relative refractive index difference of the core portion with respect to the cladding portion is 0.3% to 1.2%. It is possible to apply good distributed Raman amplification to signal light of 46 μm to 1.625 μm, and at the same time, for example, design chromatic dispersion at a wavelength of 1.55 μm in the range of 5 ps / nm · km to 17 ps / nm · km. For example, when a dispersion compensation fiber is used as a dispersion compensation element by realizing good transmission characteristics because the accumulated dispersion in the optical transmission path is reduced and reducing the amount of dispersion compensation. There is also an effect that the length of the dispersion compensating fiber and insertion loss can be reduced.
以下、本発明の実施形態を図面を用いて詳細に説明するが、本発明はこれに限定されるものではない。図1は、実施形態に係る分布ラマン増幅伝送システムを示す概略構成図である。 Hereinafter, although an embodiment of the present invention is described in detail using a drawing, the present invention is not limited to this. FIG. 1 is a schematic configuration diagram illustrating a distributed Raman amplification transmission system according to an embodiment.
同図に示すように、実施形態に係る分布ラマン増幅伝送システム1は、伝送路である光ファイバ2と、分布ラマン増幅用の励起光源3と、励起光源3からの励起光を光ファイバ2へ入射する光サーキュレータ5と、分散補償素子6と、集中定数型の光増幅器7a,7bとからなる。
As shown in the figure, a distributed Raman
励起光源3からの励起光は、信号光4の伝播方向と反対方向へ入射され、光サーキュレータ5等を介して分散補償素子6、及び光増幅器7a,7bと接続される。分散補償素子6は、光ファイバ2で発生する累積分散を補償する素子である。以下、伝送路である光ファイバ2(単一モード光ファイバ)について詳細に説明する。
Excitation light from the excitation light source 3 is incident in a direction opposite to the propagation direction of the
図2は、実施形態に係る分布ラマン増幅伝送システム1に適用される単一モード光ファイバ2の断面方向の屈折率分布を表す概念図である。単一モード光ファイバ2のコア部は純石英で形成され、同図に示すように、均一な屈折率を有する。また、クラッド部は、コア部よりも屈折率が低く、かつ均一な屈折率を有する。
FIG. 2 is a conceptual diagram showing the refractive index distribution in the cross-sectional direction of the single-mode
クラッド部に対するコア部の比屈折率差ΔSは、純石英であるコア部の屈折率nSiO2、及びクラッド部の屈折率ncladを用いて、下記式(1)により定義される。なお、同図において、aはコア部の半径を表す。 The relative refractive index difference Δ S of the core with respect to the cladding is defined by the following formula (1) using the refractive index n SiO2 of the core made of pure quartz and the refractive index n clad of the cladding. In addition, in the same figure, a represents the radius of a core part.
図3は、単一モード光ファイバ2の比屈折率差ΔS、及びコア部の半径aに対する、波長1.55μmにおける等波長分散特性の計算例を表す図である。同図には、等しい波長分散(単位:ps/nm・km)の特性を示すラインを、0ps/nm・kmから18ps/nm・kmまで2ps/nm・km毎に示してある。
FIG. 3 is a diagram illustrating a calculation example of equal wavelength dispersion characteristics at a wavelength of 1.55 μm with respect to the relative refractive index difference Δ S of the single mode
図4は、単一モード光ファイバ2において、曲げ半径30mmで100回巻いたときの波長1.625μmにおける曲げ損失が0.5dB以下である条件αRを満たすときの比屈折率差ΔSとコア部の半径aの関係を表す図である。
FIG. 4 shows the relative refractive index difference Δ S when the single-mode
比屈折率差ΔSとコア部の半径aを、図4における条件αRを示す実線から右側の領域(斜線側の領域:下記式(2)を参照。)で設計することにより、上記曲げ損失条件αRを満たした単一モード光ファイバとすることが可能となる。なお、下記式(2)は、図4における条件αRを示す実線から求められる近似式である。 By designing the relative refractive index difference Δ S and the radius a of the core portion in the region on the right side from the solid line indicating the condition α R in FIG. 4 (the region on the oblique line side: see the following formula (2)), A single-mode optical fiber that satisfies the loss condition α R can be obtained. The following formula (2) is an approximate formula obtained from the solid line indicating the condition α R in FIG.
図5は、単一モード光ファイバ2において、条件αRを満たすと共に、理論遮断波長が1.36μm以下である条件λCを満たすときの比屈折率差ΔSとコア部の半径aの関係を表す図である。
FIG. 5 shows the relationship between the relative refractive index difference Δ S and the radius a of the core portion when the condition α R is satisfied and the condition λ C is 1.36 μm or less in the single mode
比屈折率差ΔSとコア部の半径aを、図5における条件λCを示す実線から左側の領域(斜線側の領域:下記式(3)を参照。)で設計することにより、上記理論遮断波長条件λCを満たすことが可能となる。なお、下記式(3)は、図5における条件λCを示す実線から求められる近似式である。更に、比屈折率差ΔSとコア部の半径aを、条件αRを示す実線及び条件λCを示す実線で囲まれる領域で設計することにより、上記曲げ損失条件αRと上記理論遮断波長条件λCとを同時に満たすことが可能となる。 By designing the relative refractive index difference Δ S and the core radius a in the region on the left side of the solid line indicating the condition λ C in FIG. 5 (the region on the oblique line side: see the following formula (3)), the above theory is obtained. It is possible to satisfy the cutoff wavelength condition λ C. Note that the following equation (3) is an approximate equation obtained from a solid line indicating the condition λ C in FIG. Furthermore, by designing the relative refractive index difference Δ S and the radius a of the core portion in a region surrounded by a solid line indicating the condition α R and a solid line indicating the condition λ C , the bending loss condition α R and the theoretical cutoff wavelength are determined. The condition λ C can be satisfied at the same time.
図6は、単一モード光ファイバ2において、条件αR及び条件λCを満たすと共に、零分散波長が1.36μm以下である条件λ0を満たすときの比屈折率差ΔSとコア部の半径aの関係を表す図である。
FIG. 6 shows the relative refractive index difference Δ S when the condition α R and the condition λ C are satisfied and the condition λ 0 where the zero-dispersion wavelength is 1.36 μm or less is satisfied in the single mode
比屈折率差ΔSとコア部の半径aを、図6の条件λ0を示す実線から上側の領域(斜線側の領域:下記式(4)を参照。)で設計することにより、上記零分散波長条件λ0を満たすことが可能となる。なお、下記式(4)は、図6における条件λ0を示す実線から求められる近似式である。更に、比屈折率差ΔSとコア部の半径aを、条件αRを示す実線及び条件λCを示す実線及び条件λ0を示す実線で囲まれる領域で設計することにより、上記曲げ損失条件αRと上記理論遮断波長条件λCと上記零分散波長条件λ0とを同時に満たすことが可能となる。 By designing the relative refractive index difference Δ S and the radius a of the core portion in the region above the solid line indicating the condition λ 0 in FIG. 6 (the region on the oblique line side: see the following formula (4)), the above zero is obtained. The dispersion wavelength condition λ 0 can be satisfied. The following formula (4) is an approximate formula obtained from the solid line indicating the condition λ 0 in FIG. Furthermore, by designing the relative refractive index difference Δ S and the core radius a in a region surrounded by a solid line indicating the condition α R , a solid line indicating the condition λ C and a solid line indicating the condition λ 0 , It is possible to simultaneously satisfy α R , the theoretical cutoff wavelength condition λ C, and the zero dispersion wavelength condition λ 0 .
図6において、条件αRを示す実線と条件λCを示す実線の交点は、比屈折率差0.3%、コア部の半径4.6μmの設計条件で成立し、条件αRを示す実線と条件λ0を示す実線の交点は、比屈折率差0.4%、コア部の半径3.1μmの設計条件で成立し、条件λCを示す実線と条件λ0を示す実線の交点は、比屈折率差1.2%、コア部の半径2.4μmの設計条件で成立する。 In FIG. 6, the intersection of the solid line indicating the condition α R and the solid line indicating the condition λ C is established under the design condition of a relative refractive index difference of 0.3% and a core radius of 4.6 μm, and the solid line indicating the condition α R And the solid line indicating the condition λ 0 is established under the design condition of a relative refractive index difference of 0.4% and a core radius of 3.1 μm. The intersection of the solid line indicating the condition λ C and the solid line indicating the condition λ 0 is This is established under design conditions of a relative refractive index difference of 1.2% and a core radius of 2.4 μm.
以上より、図2に示す屈折率分布を有する単一モード光ファイバである場合には、コア部の半径を2.4μmから4.6μm、コア部に対するクラッド部の比屈折率差を0.3%から1.2%として設計することにより、1.36μm以下の理論遮断波長特性と、1.36μm以下の零分散波長と、曲げ半径30mm、100回巻き、波長1.625μmにおける0.5dB以下の曲げ損失の全ての条件を満たし、かつ波長1.55μmにおける波長分散を5ps/nm・kmから17ps/nm・kmとすることが可能であることが分かる。 As described above, in the case of the single mode optical fiber having the refractive index distribution shown in FIG. 2, the radius of the core portion is 2.4 μm to 4.6 μm, and the relative refractive index difference of the clad portion with respect to the core portion is 0.3. % To 1.2%, a theoretical cutoff wavelength characteristic of 1.36 μm or less, a zero dispersion wavelength of 1.36 μm or less, a bending radius of 30 mm, 100 turns, 0.5 dB or less at a wavelength of 1.625 μm It can be seen that the chromatic dispersion at a wavelength of 1.55 μm can be changed from 5 ps / nm · km to 17 ps / nm · km.
1 分布ラマン増幅伝送システム
2 光ファイバ
3 励起光源
4 信号光
5 光サーキュレータ
6 分散補償素子
7a,7b 光増幅器
DESCRIPTION OF
7a, 7b Optical amplifier
Claims (5)
理論遮断波長が1.36μm以下であることを特徴とする単一モード光ファイバ。 Having a core part made of pure quartz and a cladding part having a lower refractive index than the core part,
A single mode optical fiber having a theoretical cutoff wavelength of 1.36 μm or less.
零分散波長が1.36μm以下であることを特徴とする単一モード光ファイバ。 The single mode optical fiber according to claim 1, wherein
A single mode optical fiber having a zero dispersion wavelength of 1.36 μm or less.
曲げ半径30mmで100回巻いたときの波長1.625μmにおける曲げ損失が0.5dB以下であることを特徴とする単一モード光ファイバ。 The single mode optical fiber according to claim 1 or 2,
A single-mode optical fiber, wherein a bending loss at a wavelength of 1.625 μm when wound 100 times with a bending radius of 30 mm is 0.5 dB or less.
理論遮断波長が1.36μm以下であり、零分散波長が1.36μm以下であり、曲げ半径30mmで100回巻いたときの波長1.625μmにおける曲げ損失が0.5dB以下であると共に、
コア部の半径が2.4μmから4.6μmであり、クラッド部に対するコア部の比屈折率差が0.3%から1.2%であることを特徴とする単一モード光ファイバ。 A core part formed of pure quartz and having a uniform refractive index, a cladding part having a refractive index lower than that of the core part and a uniform refractive index,
The theoretical cutoff wavelength is 1.36 μm or less, the zero-dispersion wavelength is 1.36 μm or less, the bending loss at a wavelength of 1.625 μm when wound 100 times with a bending radius of 30 mm is 0.5 dB or less,
A single mode optical fiber, wherein the radius of the core part is 2.4 μm to 4.6 μm, and the relative refractive index difference of the core part with respect to the cladding part is 0.3% to 1.2%.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004213917A JP2006038898A (en) | 2004-07-22 | 2004-07-22 | Single mode optical fiber and distributed Raman amplification transmission system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004213917A JP2006038898A (en) | 2004-07-22 | 2004-07-22 | Single mode optical fiber and distributed Raman amplification transmission system |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006038898A true JP2006038898A (en) | 2006-02-09 |
Family
ID=35904000
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004213917A Pending JP2006038898A (en) | 2004-07-22 | 2004-07-22 | Single mode optical fiber and distributed Raman amplification transmission system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006038898A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011021966A (en) * | 2009-07-15 | 2011-02-03 | Sumitomo Electric Ind Ltd | Optical fiber temperature measurement system and optical fiber for temperature measurement used therein |
US20160216442A1 (en) * | 2013-04-15 | 2016-07-28 | Corning Incorporated | Low diameter optical fiber |
US20170176674A1 (en) * | 2014-11-12 | 2017-06-22 | Yangtze Optical Fibre And Cable Joint Stock Limited Company | Single-mode fiber with ultralow attenuation and large effective area |
-
2004
- 2004-07-22 JP JP2004213917A patent/JP2006038898A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011021966A (en) * | 2009-07-15 | 2011-02-03 | Sumitomo Electric Ind Ltd | Optical fiber temperature measurement system and optical fiber for temperature measurement used therein |
US20160216442A1 (en) * | 2013-04-15 | 2016-07-28 | Corning Incorporated | Low diameter optical fiber |
US9995874B2 (en) * | 2013-04-15 | 2018-06-12 | Corning Incorporated | Low diameter optical fiber |
US11009655B2 (en) | 2013-04-15 | 2021-05-18 | Corning Incorporated | Low diameter optical fiber |
US11009656B2 (en) | 2013-04-15 | 2021-05-18 | Corning Incorporated | Low diameter optical fiber |
US11150403B2 (en) | 2013-04-15 | 2021-10-19 | Corning Incorporated | Low diameter optical fiber |
US20170176674A1 (en) * | 2014-11-12 | 2017-06-22 | Yangtze Optical Fibre And Cable Joint Stock Limited Company | Single-mode fiber with ultralow attenuation and large effective area |
US9874687B2 (en) * | 2014-11-12 | 2018-01-23 | Yangtze Optical Fibre And Cable Joint Stock Limited Company | Single-mode fiber with ultralow attenuation and large effective area |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5555350B2 (en) | Optical fiber for wavelength division multiplexing transmission systems. | |
JP3760557B2 (en) | Dispersion compensating fiber and optical transmission system including the same | |
US8655133B2 (en) | Optical fiber and optical communication system including same | |
JP5242405B2 (en) | Optical fiber and optical fiber transmission line | |
JP4851371B2 (en) | Optical fiber and optical fiber transmission line | |
EP2822112B1 (en) | High-power double-cladding-pumped (DC) erbium-doped fiber amplifier (EDFA) | |
Yamamoto et al. | A new class of optical fiber to support large capacity transmission | |
US6862391B2 (en) | Optical transmission line, and optical fiber and dispersion compensating module employed in the same | |
JPWO2008093870A1 (en) | Optical transmission system and dispersion compensating optical fiber | |
US10790905B2 (en) | Optical fiber and optical transmission system | |
EP3457186B1 (en) | An optical transmission system | |
Matsui et al. | Applicability of photonic crystal fiber with uniform air-hole structure to high-speed and wide-band transmission over conventional telecommunication bands | |
WO2005114317A1 (en) | Raman amplifying optical fiber, optical fiber coil, raman amplifier and optical communication system | |
JP3999957B2 (en) | Fiber that compensates for S-band chromatic dispersion of single-mode fiber | |
US11156767B2 (en) | Optical fiber and optical transmission system | |
CN100354745C (en) | Wavelength converter | |
JP2015022083A (en) | Multimode optical fiber and optical fiber transmission system | |
JP2006038898A (en) | Single mode optical fiber and distributed Raman amplification transmission system | |
JP5937974B2 (en) | Multimode optical fiber and optical fiber transmission system | |
KR100433297B1 (en) | Optical fiber for wavelength division multiplexing communication | |
JP6654064B2 (en) | Mode converter, optical amplifier and optical transmission system | |
JP2008209654A (en) | Optical communication system | |
US7289710B2 (en) | Optical fiber suitable for high-speed large-scale wdm system, optical transmission line and optical transmission system using the same | |
JP2005196231A (en) | Optical transmission system | |
US6898361B2 (en) | Dispersion-compensating optical fiber and optical transmission line |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060712 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080519 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080527 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080728 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090324 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20090714 |